References:
1. Jean-Pierre Demailly: Complex analytic and algebraic geometry;
2. K.Kodaira, J.Morrow: Complex manifolds;
3. James D. Lewis: A survey of Hodge conjecture;

1. Holomorphic vector bundles

Definition 0.1. A complex manifold M of complex dimension n is a Hausdorff and second countable topological space, together with coordinate charts $\{(U_j, \phi_j)\}_{j \in J}$ where

1. $\{U_j\}_{j \in J}$ is an open cover of M;
2. $\phi_j : U_j \rightarrow V_j$ is a homeomorphism onto an open set $V_j \subset \mathbb{C}^n$;
3. the transition functions
 $$\phi_i \circ \phi_j^{-1} : h_j(U_j \cap U_i) \rightarrow h_i(U_i \cap U_j)$$
 are holomorphic (as functions between complex spaces) for all i and j whenever defined.

Example 0.2 (Complex projective spaces).

$$\mathbb{P}^n = \{ \text{lines in } \mathbb{C}^{n+1} \text{ through } 0 \} = \mathbb{C}^{n+1} \setminus \{0\}/\sim$$

where

$$[Z_0, \cdots, Z_n] \sim [Z_0', \cdots, Z_n']$$

if $Z_i = \lambda Z_i'$ for some $\lambda \in \mathbb{C}^n \setminus \{0\}$, $\forall i$. Define the coordinate charts (U_i, ϕ_i)

$$U_i = \{ [Z_0, \cdots, Z_n] \mid Z_i \neq 0 \}$$

$$\phi_i : U_i \rightarrow \mathbb{C}^n, \quad \phi_i([Z_0, \cdots, Z_n]) = \left(\frac{Z_0}{Z_i}, \cdots, \frac{Z_{i-1}}{Z_i}, \frac{Z_{i+1}}{Z_i}, \cdots, \frac{Z_n}{Z_i} \right)$$

It is obvious that the transition functions ($i < j$)

$$\phi_i \circ \phi_j^{-1} : \phi_j(U_j \cap U_i) \rightarrow \phi_i(U_i \cap U_j)$$

$$\phi_i \circ \phi_j^{-1}(z_1, \cdots, z_n) = \phi_i([z_1, \cdots, z_j, 1, z_{j+1}, \cdots, z_n])$$

are holomorphic for $z_i \neq 0$.

Definition 0.3. Let M be a complex manifold. A complex vector bundle of rank r over M is a smooth manifold E together with:

1. there exists a family of $\{V_j\}$ of open sets covering M indexed by J, and the V_j's are called the coordinate neighborhoods;
(2) for each \(j \in J \), a diffeomorphism
\[
\varphi_j : \pi^{-1}(V_j) \longrightarrow V_j \times \mathbb{C}^r
\]
called the coordinate function (or trivialization) which is required to satisfy the following condition:
\[
\varphi_j : \pi^{-1}(x) \longrightarrow \{ x \} \times \mathbb{C}^r
\]
is a linear isomorphism.

(3) For each \(i, j \in J \), the map
\[
\varphi_{ij} = \varphi_i \circ \varphi_j^{-1} : (V_i \cap V_j) \times \mathbb{C}^r \longrightarrow (V_i \cap V_j) \times \mathbb{C}^r
\]
acts as a linear automorphisms on each fiber \(\{ x \} \times \mathbb{C}^r \). It can be written as
\[
\varphi_{ij}(x, v) = (x, g_{ij}(x) \cdot v), \quad (x, v) \in (V_i \cap V_j) \times \mathbb{C}^r
\]
where \(g_{ij} \in C^\infty(V_i \cap V_j, GL(r, \mathbb{C})) \) satisfies
\[
g_{ij} \circ g_{jk} = g_{ik} \text{ on } v_i \cap V_j \cap V_k \quad (0.1)
\]
and \(g_{ij} \)'s are called transition functions. \(E \) is called the bundle space or the total space, \(M \) is called the base space.

\(E \) is called a holomorphic vector bundle over \(M \) if \(\varphi_i \) are biholomorphic.

Remark 0.4. (1) If we replace the vector space \(\mathbb{C} \) by \(\mathbb{R} \), we get the definition of real vector bundles.

(2) It is obvious that given any \(\{ g_{ij} \} \) satisfy the relation 0.1 and 0.2, we can construct a complex vector bundle by
\[
E = \coprod_j (V_j \times \mathbb{C}^r) / \sim
\]
\((x_i, v_i) \sim (x_j, v_j) \) if and only if
\[
x_i = x_j = x, \quad v_j = g_{ij}(x) \cdot v_i
\]
where \((x_i, v_i) \in V_i \times \mathbb{C}^r\) and \((x_j, v_j) \in V_j \times \mathbb{C}^r\)

Example 0.5 (Holomorphic tangent bundle and cotangent bundle of \(\mathbb{P}^n \)).
\[
\pi : T\mathbb{P}^n \longrightarrow \mathbb{P}^n
\]
\[
\varphi_i : \pi^{-1}(U_i) \longrightarrow U_i \times \mathbb{C}^n
\]
If \(p \in U_i \) and \(v \in T_p\mathbb{P}^n \subset \pi^{-1}(U_i) \)
\[
v = \sum a_k \frac{\partial}{\partial z_k} \bigg|_p \in \pi^{-1}(U_i)
\]
where (Pay attention to the indices)
\[
z_k^{(i)} = \frac{Z_{k-1}}{Z_i}, k < i; \ z_{k-1}^{(i)} = \frac{Z_k}{Z_i}, k > i
\]
Then
\[\varphi_i(v) = (p, a_1, \cdots, a_n) \in U_i \times \mathbb{C}^n \]
and
\[\varphi_{ij} : (U_i \cap U_j) \times \mathbb{C}^n \rightarrow (U_i \cap U_j) \times \mathbb{C}^n \]
\[\varphi_{ij}(p, a_1, \cdots, a_n) = \varphi_i \left(\sum a_k \frac{\partial}{\partial z_k^{(j)}}|_p \right) = (p, g_{ij} \cdot a) \]
where \(g_{ij} \) is the matrix:
\[g_{ij} = \left(\frac{\partial z_i^{(i)}}{\partial z_k^{(j)}} \right) \in \mathcal{C}^\infty(U_i \cap U_j, GL(n, \mathbb{C})) \]

It is very easy to check the other conditions.

Similarly, the cotangent bundle \(T^*\mathbb{P}^n \) is given by the transition functions
\[h_{ij} = t^{-1}g_{ij} \]

Definition 0.6. A section \(s \) of the vector bundle \(E \rightarrow M \) over \(U \subset M \) is a \(\mathcal{C}^\infty \)-map
\[s : U \rightarrow E \]
such that \(s(x) \in E_x \) for every \(x \in U \), and the set of sections over \(U \) is denoted by \(\Gamma(U, E) \). A frame \(e \) for \(E \) over \(U \subset M \) is a collection \(e_1, \cdots, e_n \) of sections over \(U \) such that \(\{e_1(x), \cdots, e_n(x)\} \) is a basis for \(E_x \) for all \(x \in U \). A section \(s \in \Gamma(U, E) \) is said to be holomorphic if \(s : U \rightarrow E \) is a holomorphic map, a frame \(e = (e_1, \cdots, e_r) \) is called holomorphic if each \(e_i \) is holomorphic. In terms of a holomorphic frame \(e = (e_1, \cdots, e_r) \) any section
\[s(x) = \sum_{i=1}^r s_i(x) \cdot e_i(x) \]
is holomorphic if and only if the functions \(s_i \) are holomorphic.

Proposition 0.7. If \(\varphi : E_U \rightarrow U \times \mathbb{C}^r \) is a trivialization of \(E \), then we can get a frame for \(E \) over \(U \) by
\[e_i(x) = \varphi^{-1}(x, e_i) \]
where \(\{e_i\} \) is the canonical basis of \(\mathbb{C}^r \). Conversely, given any frame \(\{e_i\} \) over \(U \), we can get a trivialization
\[\varphi : E_U \rightarrow U \times \mathbb{C}^r, \quad \varphi(\lambda) = (x, (\lambda_1, \cdots, \lambda_r)) \]
where \(\lambda = \sum_{i=1}^r \lambda_i e_i \in E_x \).

Remark 0.8. If \(s \in \Gamma(M, E) \), we will denote
\[\varphi_i(s) := s^i = (s_1^i, \cdots, s_r^i)^t, \quad s = \sum_{k=1}^r s_k^i e_k^i \]
under the trivialization \(\varphi_i : E|_{V_i} \rightarrow V_i \times \mathbb{C}^r \) and basis \(e_k^i(x) = \varphi_i(x, e_k) \).
Proposition 0.9. If \(s \in \Gamma(M, E) \), then we have
\[
s_i = g_{ij} \cdot s_j \quad \text{on} \quad V_i \cap V_j
\]

Proof. If \(x \in V_i \cap V_j \),
\[
s(x) = \sum_{k=1}^{r} s_i^k(x) e_k(x) = \sum_{l=1}^{r} s_l^i(x) e_l(x)
\]
By the action of \(\varphi_i \) on both side,
\[
\varphi_i(s(x)) = (x, (s_i^1(x), \cdots, s_i^r(x))) = \sum_{l=1}^{r} s_l^i(x) \varphi_i(\varphi_j^{-1}(x, \epsilon_l)) = (x, g_{ij}(x) \cdot s_j)
\]
That is
\[
s_i = g_{ij} \cdot s_j \quad \text{on} \quad V_i \cap V_j \quad \square
\]

Example 0.10 (Holomorphic sections of \(TP^1 \)). If \(V \) is a holomorphic section of \(TP^1 \), then on the chart \((U_0, z^{(0)}) \) it has the form
\[
V = V^{(0)} \frac{\partial}{\partial z^{(0)}}
\]
on the chart \((U_1, z^{(1)}) \) it has the form
\[
V = V^{(1)} \frac{\partial}{\partial z^{(1)}}
\]
and on \(U_0 \cap U_1 \)
\[
V^{(0)} = g_{01} V^{(1)} = \frac{\partial z^{(0)}}{\partial z^{(1)}} V^{(1)}
\]
On the other hand on \(U_0 \cap U_1 \)
\[
z^{(0)} = \frac{Z_1}{Z_0} = \frac{1}{z^{(1)}}
\]
Now we set, on \(U_0 \cap U_1 \)
\[
V^{(1)} = \sum_{k=0}^{\infty} a_k (z^{(1)})^k
\]
than
\[
V^{(0)} = - \sum_{k=0}^{\infty} a_k (z^{(1)})^{k-2} = - \sum_{k=0}^{\infty} a_k (z^{(0)})^{2-k} = - a_0 (z^{(0)})^2 - a_1 z^{(0)} - a_2
\]
Hence there are three independent holomorphic vector fields, i.e.
\[
\dim_{\mathbb{C}} H^0(\mathbb{P}^1, TP^1) = 3
\]
In general
\[
\dim_{\mathbb{C}} H^0(\mathbb{P}^n, TP^n) = n^2 + 2n, \quad \dim_{\mathbb{C}} H^i(\mathbb{P}^n, TP^n) = 0, \ i > 0
\]
We will proof this later.

We shall consider differential forms on \(M \) with values in \(E \), in fact such forms are the sections of tensor product bundle \(\wedge^p T^* M \otimes E \). We shall write
\[
A^p(M, E) = \Gamma(M, \wedge^p T^* M \otimes E)
\]
Definition 0.11. A connection ∇ on the vector bundle E is a map $\nabla : A^p(E) \to A^{p+1}(M, E)$ such that:

$$\nabla(fs_1 + s_2) = df \otimes s_1 + (-1)^p f \wedge \nabla s_1 + \nabla s_2$$

where $f \in A^p(M, E)$ and $s_1, s_2 \in \Gamma(E)$.

Assume that $\varphi : E|_\Omega \to \Omega \times \mathbb{C}^r$ is a trivialization function of $E|_\Omega$, and $e = (e_1, \cdots, e_r)$ is the corresponding frame. If $s \in A^p(\Omega, E)$, then

$$s = \sum_{i=1}^r \sigma^i \otimes e_i, \quad \sigma^i \in A^p(\Omega, \mathbb{C})$$

By definition we have

$$\nabla s = \sum_{i=1}^r (d\sigma^i \otimes e_i + (-1)^p \sigma^i \wedge \nabla e_i)$$

For $\nabla e_j \in A^1(\Omega, E)$, we can write

$$\nabla e_j = \sum_{j=1}^r \theta^k_j \otimes e_k, \quad \theta^k_j \in A^1(\Omega, \mathbb{C})$$

thus

$$\nabla s = \sum_i (d\sigma^i + \sum_j \theta^k_j \wedge \sigma^k) \otimes e_i$$

Under the frame we write

$$\nabla s = d\sigma + \omega \wedge \sigma$$

where $\sigma = (\sigma^1, \cdots, \sigma^r)^t$ is the coordinate of s under the trivialization φ, $\omega = (\theta^k_j) \in A^1(\Omega, \text{End}(\mathbb{C}^r))$ which is called the connection 1-form of ∇ associated to the trivialization φ.

Proposition 0.12. If $\tilde{\varphi} : E|_\Omega \to \Omega \times \mathbb{C}^r$ is another trivialization and if we set

$$g = \tilde{\varphi} \circ \varphi^{-1} \in \Gamma(\Omega, \text{End}(\mathbb{C}^r))$$

then the coordinate $\tilde{\sigma} = (\tilde{\sigma}_1, \cdots, \tilde{\sigma}_r)^t$ and $\sigma = (\sigma_1, \cdots, \sigma_r)^t$ is related by

$$\tilde{\sigma} = g \cdot \sigma, \quad \tilde{e} = g^{-1} \cdot e$$

and the corresponding connection 1-forms are related by

$$\tilde{\omega} = dg^{-1} \cdot g + g^{-1} \cdot \omega \cdot g$$

Proof. We have

$$s = \tilde{\sigma} \cdot \tilde{e} = \sigma \cdot e$$

then

$$\tilde{\varphi}(s) = \tilde{\sigma} = \tilde{\varphi}(\sigma \cdot e) = g \cdot \sigma$$

For

$$\nabla \tilde{e} = \tilde{\omega} \otimes \tilde{e}$$

On the other hand

$$\nabla \tilde{e} = \nabla(g^{-1} \cdot e) = dg^{-1} \otimes e + g^{-1} \cdot \omega \otimes e = (dg^{-1} \cdot g + g^{-1} \cdot \omega g) \otimes \tilde{e}$$

that is

$$\tilde{\omega} = dg^{-1} \cdot g + g^{-1} \cdot \omega \cdot g$$

\[\square\]
Caution: We should take care about the product of the matrices in the formulas! The result of last proposition is very different if the matrices product is defined differently.

Definition 0.13. The curvature of the connection ∇ is defined by

$$\nabla^2 : \Gamma(E) \longrightarrow \Omega^2(M, E)$$

Proposition 0.14. For any $f \in C^\infty(M)$ and $s \in \mathcal{A}^p(M, E)$, we have

$$\nabla^2(f \cdot s) = f \nabla^2 s$$

that is there exists a global 2-form $\Theta \in \mathcal{A}^2(M, \text{Hom}(E, E))$ such that

$$\nabla^2 s = \Theta \wedge s$$

where Θ is called the curvature tensor of ∇ which is given by

$$\Theta = d\omega - \omega \wedge \omega, \quad \text{i.e.} \quad \Theta^i_j = d\theta^i_j - \theta^k_i \wedge \theta^j_k$$

with respect to some trivialization φ and connection 1-form ω.

Proof. Under the trivialization we have

$$\nabla^2 s = \nabla((d\sigma^i + \theta^i_j \wedge \sigma^j) \otimes e_i)$$

$$= (d\theta^i_j \wedge \sigma^j - \theta^k_i \wedge d\sigma^j) \otimes e_i + (-1)^{p+1}(d\sigma^i + \theta^i_j \wedge \sigma^j)\theta^k_i \otimes e_k$$

$$= (d\theta^i_j - \theta^k_i \wedge \theta^j_k) \wedge \sigma^j \otimes e_i$$

We have the curvature transformation formula

$$\Theta' = g \cdot \Theta \cdot g^{-1}$$

under the base changing $s' = g \cdot s$.

$$\Theta' s' = \nabla^2 s' = \nabla^2(gs) = g \nabla^2 s = g \Omega s = g \cdot \Theta \cdot g^{-1}s'$$

where we use the C^∞-linear property of ∇^2.

Definition 0.15. If $\xi \in \Gamma(M, TM)$, the covariant derivative of a section $s \in \Gamma(M, E)$ in the direction ξ is defined to be the section

$$\nabla_\xi s := \nabla s \cdot \xi \in \Gamma(M, E)$$

Proposition 0.16. For all sections $s \in \Gamma(M, E)$ and all vector fields $\xi, \eta \in \Gamma(M, TM)$, we have

$$\nabla_\xi \nabla_\eta s - \nabla_\eta \nabla_\xi s - \nabla_{[\xi,\eta]} s = \Theta(\xi, \eta)s$$

Proof. Exercise.