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Abstract. This paper should be considered as a sequel to our previous paper on n-
point functions of intersection numbers [5]. Here we prove several new effective recursion
formulae for computing all intersection indices (integrals of ψ classes) on the moduli space
of curves, inducting only on the genus. We also prove an improved recursion formula of
n-point functions.

1. Introduction

We denote by Mg,n the moduli space of stable n-pointed genus g complex algebraic
curves. Let ψi be the first Chern class of the line bundle whose fiber over each pointed
stable curve is the cotangent line at the i-th marked point.

We adopt Witten’s notation in this paper,

〈τd1 · · · τdn〉g :=

∫

Mg,n

ψd1
1 · · ·ψdn

n ,
n∑

j=1

dj = 3g + n− 3.

Witten-Kontsevich theorem [9, 4] provides a recursive way to compute all these intersec-
tion numbers. However explicit and effective recursion formulae for computing intersection
indices are still very rare and very welcome. We call the following generating function

F (x1, . . . , xn) =
∞∑

g=0

∑
P

dj=3g−3+n

〈τd1 · · · τdn〉g
n∏

j=1

x
dj

j

the n-point function.
Our recursion formula [5] for normalized n-point function computes intersection indices

recursively by decreasing the number of marked points. We will prove the following
improved recursion formula of n-point functions in this paper.

Theorem 1.1. For n ≥ 2,

F (x1, . . . , xn) =
∑
r,s≥0

(2r + n− 3)!!

12s(2r + 2s + n− 1)!!
Sr(x1, . . . , xn)

(
n∑

j=1

xj

)3s

,

where Sr is a homogeneous symmetric polynomial defined by

Sr(x1, . . . , xn) =


 1

2
∑n

j=1 xj

∑

n=I
‘

J

(
∑
i∈I

xi)
2(

∑
i∈J

xi)
2F (xI)F (xJ)




3r+n−3

=
1

2
∑n

j=1 xj

∑

n=I
‘

J

(
∑
i∈I

xi)
2(

∑
i∈J

xi)
2

r∑

r′=0

Fr′(xI)Fr−r′(xJ),

1
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where I, J 6= ∅, n = {1, 2, . . . , n} and Fg(xI) denotes the degree 3g + |I| − 3 homogeneous
component of the |I|-point function F (xk1 , . . . , xk|I|), where kj ∈ I.

It is natural to ask whether there exists a recursion formula which explicitly expresses
intersection indices in terms of intersection indices with strictly lower genus. Motivated
by Witten’s KdV coefficient equation and our n-point function formula, we find such a
recursion formula.

Theorem 1.2. Let dj ≥ 0 and
∑n

j=1 dj = 3g + n− 3. Then

(2g + n− 1)(2g + n− 2)〈
n∏

j=1

τdj
〉g

=
2d1 + 3

12
〈τ 4

0 τd1+1

n∏
j=2

τdj
〉g−1 − 2g + n− 1

6
〈τ 3

0

n∏
j=1

τdj
〉g−1

+
∑

{2,...,n}=I
‘

J

(2d1 + 3)〈τd1+1τ
2
0

∏
i∈I

τdi
〉g′〈τ 2

0

∏
i∈J

τdi
〉g−g′

−
∑

{2,...,n}=I
‘

J

(2g + n− 1)〈τd1τ0

∏
i∈I

τdi
〉g′〈τ 2

0

∏
i∈J

τdi
〉g−g′ .

It’s not difficult to see that when indices dj ≥ 1, all non-zero intesection indices on the
right hands have genera strictly less than g.

The above recursion formula, together with the string and dilaton equations, provides
an effective recursive algorithm for computing intersection indices on moduli spaces of
curves by inducting solely on genus g. We have written a Maple program implementing
the above recursion formula to compute intersection indices which is available at [10].

Besides our n-point function formula and the above new recursion formula, the only
known effective formula for computing intersection indices is the following DVV formula
[1, 2] (equivalent to Virasoro constraints)

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

[
n∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g

+
1

2

∑

r+s=k−1

(2r + 1)!!(2s + 1)!!〈τrτsτd1 · · · τdn〉g−1

+
1

2

∑

r+s=k−1

(2r + 1)!!(2s + 1)!!
∑

n=I
‘

J

〈τr

∏
i∈I

τdi
〉g′〈τs

∏
i∈J

τdi
〉g−g′




which computes intersection indices by inducting on both the genus and the number
of marked points. We know that Mirzakhani’s recursion formula [7] of Weil-Petersson
volumes is essentially equivalent to the DVV formula [6, 8].

We also found the following simple identity, which plays a key role in the discovery of
Theorem 1.2.
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Theorem 1.3. Let dj ≥ 0 and
∑n

j=1 dj = 3g + n− 2. Then

(2g + n− 1)〈τ0

n∏
j=1

τdj
〉g =

1

12
〈τ 4

0

n∏
j=1

τdj
〉g−1 +

1

2

∑

n=I
‘

J

〈τ 2
0

∏
i∈I

τdi
〉g′〈τ 2

0

∏
i∈J

τdi
〉g−g′ .

In fact, Theorem 1.3 is also very suitable for computing intersection indices. Note that
the non-zero intersection indices on the right hand side have strictly lower genus. We may
then compute inductively on the maximum index, say d1, and use the string equation

〈τd1

n∏
j=2

τdj
〉g = 〈τ0τd1+1

n∏
j=2

τdj
〉g −

n∑
i=2

〈τd1+1τdi−1

∏

j 6=i,1

τdj
〉g.

Theorem 1.2 and 1.3 are proved by applying our n-point function formula and Witten’s
KdV coefficient equation.

Theorem 1.2 tells us that the intersection numbers on moduli spaces of curves are
determined by intersection numbers on the boundaries. On the other hand, a theorem of
Ionel [3] says when g ≥ 2, any product of degree at least g of descendant or tautological
classes vanishes when restricted to Mg,n.

2. Proof of Theorems 1.1 ∼ 1.3

Consider the following “normalized” n-point function

G(x1, . . . , xn) = exp

(
−∑n

j=1 x3
j

24

)
· F (x1, . . . , xn).

In [5], we have proved the following recursion formula.

Theorem 2.1. [5] For n ≥ 2,

G(x1, . . . , xn) =
∑
r,s≥0

(2r + n− 3)!!

4s(2r + 2s + n− 1)!!
Pr(x1, . . . , xn)∆(x1, . . . , xn)s,

where Pr and ∆ are homogeneous symmetric polynomials defined by

∆(x1, . . . , xn) =
(
∑n

j=1 xj)
3 −∑n

j=1 x3
j

3
,

Pr(x1, . . . , xn) =


 1

2
∑n

j=1 xj

∑

n=I
‘

J

(
∑
i∈I

xi)
2(

∑
i∈J

xi)
2G(xI)G(xJ)




3r+n−3

=
1

2
∑n

j=1 xj

∑

n=I
‘

J
I,J 6=∅

(
∑
i∈I

xi)
2(

∑
i∈J

xi)
2

r∑

r′=0

Gr′(xI)Gr−r′(xJ).

We also need the following lemma.

Lemma 2.2. [5] Let P and ∆ be as defined in Theorem 2.1. Then

Gg(x1, . . . , xn) =
1

(2g + n− 1)
Pg(x1, . . . , xn) +

∆(x1, . . . , xn)

4(2g + n− 1)
Gg−1(x1, . . . , xn).
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In terms of n-point functions, it’s not difficult to see that Theorem 1.3 can be rephrased
as the following proposition.

Proposition 2.3. Let F (x1, . . . , xn) be n-point functions. Then

∞∑
g=0

(2g + n− 1)

(
n∑

i=1

xi

)
Fg(x1, . . . , xn) =

1

12

(
n∑

i=1

xi

)4

F (x1, . . . , xn)

+
1

2

∑

n=I
‘

J

(∑
i∈I

xi

)2 (∑
i∈J

xi

)2

F (xI)F (xJ).

Proof. For convenience of notation, we define

H = exp

(∑n
i=1 x3

i

24

)
, H−1 = exp

(−∑n
i=1 x3

i

24

)
,

Hd =
1

d!

(∑n
i=1 x3

i

24

)d

, H−1
d =

1

d!

(−∑n
i=1 x3

i

24

)d

.

Note that
∑d

i=0 HiH
−1
d−i = 0 if d > 0. We have

H−1 ·RHS∑n
i=1 xi

=
∞∑

g=0


 1

12

(
n∑

i=1

xi

)3

Gg−1(x1, . . . , xn) + Pg(x1, . . . , xn)




=
∞∑

g=0

(
(2g + n− 1)Gg(x1, . . . , xn) +

1

12

(
n∑

i=1

x3
i

)
Gg−1(x1, . . . , xn)

)

where we applied Lemma 2.2 in the second equation.

H−1 · LHS∑n
i=1 xi

=
∞∑

g=0

∑

a+b+c=g

(2a + 2b + n− 1)Ga(x1, . . . , xn)HbH
−1
c

=
∞∑

g=0

g∑
a=0

(2a + n− 1)Ga(x1, . . . , xn)
∑

b+c=g−a

HbH
−1
c

+
∞∑

g=0

∑

a+b+c=g

Ga(x1, . . . , xn)2bHbH
−1
c

=
∞∑

g=0

(2g + n− 1)Gg(x1, . . . , xn) +
∞∑

g=0

1

12

(
n∑

i=1

x3
i

)
Gg−1(x1, . . . , xn).

So we conclude the proof of the proposition. ¤

The following corollary clearly imply Theorem 1.1.
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Corollary 2.4.

Fg(x1, . . . , xn) =
1

12(2g + n− 1)

(
n∑

j=1

xj

)3

Fg−1(x1, . . . , xn)

+
1

(2g + n− 1)


 1

2(
∑n

j=1 xj)

∑

n=I
‘

J

(∑
i∈I

xi

)2 (∑
i∈J

xi

)2

F (xI)F (xJ)




3g+n−3

.

The following is a reformulation of Witten’s KdV coefficient equation (see [5]).

Lemma 2.5. We have

(
2y

∂

∂y
+ 1

) 


(
y +

n∑
j=1

xj

)2

F (y, x1, . . . , xn)


 =


y

4

(
y +

n∑
j=1

xj

)4

+ y

(
y +

n∑
j=1

xj

)
 F (y, x1, . . . , xn)

+ y
∑

n=I
‘

J
J 6=∅




(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2 (∑
i∈J

xi

)2

 F (y, xI)F (xJ).

From Theorem 1.3, we can group the first and third terms on the right hand side of
Theorem 1.2 and further simplify to the following recursion relation.

(2g + n− 1)〈τr

n∏
j=1

τdj
〉g = (2r + 3)〈τ0τr+1

n∏
j=1

τdj
〉g

− 1

6
〈τ 3

0 τr

n∏
j=1

τdj
〉g−1 −

∑

n=I
‘

J

〈τ0τr

∏
i∈I

τdi
〉g′〈τ 2

0

∏
i∈J

τdi
〉g−g′ .

So we need only prove the following equivalent statement of Theorem 1.2.

Proposition 2.6. We have

y
∞∑

g=0

(2g + n− 1)Fg(y, x1, . . . , xn) = 2y
∂

∂y

((
n∑

j=1

y + xj

)
F (y, x1, . . . , xn)

)

+




(
y +

n∑
j=1

xj

)
− y

6

(
y +

n∑
j=1

xj

)3

 F (y, x1, . . . , xn)

− y
∑

n=I
‘

J
J 6=∅

(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)2

F (y, xI)F (xJ).
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Proof. From Lemma 2.5, it’s not difficult to get the following equation for the part of
differentiation with respect to y.

2y

(
y +

n∑
j=1

xj

)
∂

∂y

((
y +

n∑
j=1

xj

)
F (y, x1, . . . , xn)

)

=


y

4

(
y +

n∑
j=1

xj

)4

− y

(
y +

n∑
j=1

xj

)
−

(
y +

n∑
j=1

xj

)2

 F (y, x1, . . . , xn)

+ y
∑

n=I
‘

J
J 6=∅




(
y +

∑
i∈I

xi

)(∑
i∈J

xi

)3

+ 2

(
y +

∑
i∈I

xi

)2 (∑
i∈J

xi

)2

 F (y, xI)F (xJ).

Multiply each side of the equation in Proposition 2.6 by y +
∑n

j=1 xj and substitute the
differential part using the above equation, we get

y

∞∑
g=0

(2g + n− 1)

(
y +

n∑
i=1

xi

)
Fg(y, x1, . . . , xn)

=


 y

12

(
y +

n∑
j=1

xj

)4

− y

(
y +

n∑
j=1

xj

)
 F (y, x1, . . . , xn)

+ y
∑

n=I
‘

J
J 6=∅

(
y +

∑
i∈I

xi

)2 (∑
i∈J

xi

)2

F (y, xI)F (xJ).

Add to each side with the term

y

(
y +

n∑
j=1

xj

)
F (y, x1, . . . , xn),

we get the equation of Proposition 2.3. So we conclude the proof of Theorem 1.2. ¤

3. More recursion formulae of intersection numbers

It’s easy to see that Theorem 1.1 implies the following identity.

Proposition 3.1. Let n ≥ 2, dj ≥ 0 and
∑n

j=1 dj = 3g + n− 2. Then

(2g + n− 1)!!〈τ0

n∏
j=1

τdj
〉g

=
∑

r+s=g

(2r + n− 3)!!

12s

∑

a+b=3s

(
3s

a

) ∑

n=I
‘

J
I,J 6=∅

〈τa+2
0

∏
i∈I

τdi
〉r′〈τ b+2

0

∏
i∈J

τdi
〉r−r′ .

The following identity can be proved by similar methods of the last section.
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Proposition 3.2. Let dj ≥ 0, d1 ≥ 1 and
∑n

j=1 dj = 3g + n− 3. Then

(2d1 + 1)〈τ 2
1

n∏
j=1

τdj
〉g

=
(2d1 + 3)(2d1 + 1)

12
〈τd1+1τ

4
0

n∏
j=2

τdj
〉g−1 − 1

2
〈τd1−1τ

2
0 τ 2

1

n∏
j=2

τdj
〉g−1

+ (2d1 + 3)(2d1 + 1)
∑

{2,...,n}=I
‘

J

〈τd1+1τ
2
0

∏
i∈I

τdi
〉g′〈τ 2

0

∏
i∈J

τdi
〉g−g′

− (2g + n− 1)
∑

{2,...,n}=I
‘

J

(
〈τd1−1τ1

∏
i∈I

τdi
〉g′〈τ 2

0

∏
i∈J

τdi
〉g−g′

+2〈τd1−1τ0

∏
i∈I

τdi
〉g′〈τ0τ1

∏
i∈J

τdi
〉g−g′

)
.
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