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In the first part of this paper, we extend the d-dimensional unitarity cut method of Anastasiou et al. to
cases with massive propagators. We present formulas for integral reduction with which one can obtain
coefficients of all pentagon, box, triangle and massive bubble integrals. In the second part of this paper, we
present a detailed study of the phase space integration for unitarity cuts. We carry out spinor integration in
generality and give algebraic expressions for coefficients, intended for automated evaluation.
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I. INTRODUCTION

With the approach of the Large Hadron Collider experi-
ments, accurate descriptions of particle physics will re-
quire knowledge of one-loop cross sections. Compu-
tational complexity increases dramatically with the num-
ber of legs, even at the amplitude level. It is desirable to
find a simple and fast algorithm for these computations.
There has been notable progress in the last couple of years
[1–11].

The unitarity method introduced in Ref. [12] seeks to
compute amplitudes by applying a unitarity cut to an
amplitude on one hand, and its expansion in a basis of
master integrals on the other [13]. With knowledge of the
basis and the general structure of the coefficients in the
expansion, the coefficients can be constrained.

The holomorphic anomaly [14] reduces the problem of
phase space integration to one of algebraic manipulation,
namely, evaluating residues of a complex function. By
applying this operation within the unitarity method, coef-
ficients can be extracted systematically. In this manner, a
method was introduced to evaluate any finite four-
dimensional unitarity cut and systematically derive com-
pact expressions for the coefficients [6,7].

When working with four-dimensional cuts, one loses
information of possible rational terms that are cut-free in
four dimensions. However, unitarity methods can find
rational terms as well, if we carry out the integral in d �
�4� 2�� dimensions to higher orders in � [15]. This pro-
gram was developed in Refs. [9,16–18].

Recently, a general d-dimensional unitarity cut method
was developed for one-loop amplitudes [19,20]. In this
method, coefficients are extracted by first separating and
performing a four-dimensional integral by a technique of
choice, and then identifying the integral over the remaining
d� 4 dimensions with a coefficient using recursive dimen-
sional shift identities. In principle one can work out the
coefficients to all orders in �. In fact, for cases with only
massless propagators, this method is a complete alternative
to Passarino-Veltman reduction.

In the first part of this paper (Secs. II and III) we
generalize the work of [19,20] to cases where propagators
have nonzero, nonuniform masses. We present formulas
for integral reduction from which one can obtain coeffi-
cients of all scalar pentagon, box, triangle and massive
bubble integrals. Pentagons in arbitrary dimensions are
truly independent master integrals, though in four dimen-
sions they can be expressed in terms of boxes up to O���.
Amplitudes allowing massive propagators will most gen-
erally have tadpole and massless-bubble master integrals as
well. Unitarity methods cannot access this information
directly, but other physical considerations pin it down.

In the second part (Secs. IV), we further simplify the
technique of spinor integration over phase space by carry-
ing out some intermediate steps in generality. These steps
include expressing the integrand as a total derivative and a
possible Feynman-parameter integral. We give algebraic
expressions for the coefficients of the cut-containing basis
integrals. Our formulas should be suitable for program-
ming. To this end we include some possibly helpful iden-
tities in the Appendix, as well as a discussion of the issue of
multiple poles.

We close with a discussion (Sec. V) of the tree-level
input and possible alternative approaches. We compare our
approach of spinor integration to the procedure of Ossola,
Papadopoulos and Pittau [2] of evaluating integrands at
particular values of loop momentum and solving a system
of linear equations. Both our method and theirs algebraic
substitution at the integrand level. We claim that the com-
plexity is equivalent.

II. UNITARITY CUTS WITH MASSIVE
PROPAGATORS

Here we develop the program of double-cut phase space
integration in (4� 2�) dimensions [9,16–20] by general-
izing to the case of propagators with nonzero and different
masses.

One difference from the massless case is in the basis of
master integrals. If all propagators are massless, the basis
consists of scalar pentagons, boxes, triangles and bubbles.
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But if some propagators are massive, there are tadpoles and
massless bubbles (i.e., the case K2 � 0 for bubbles). The
tadpoles are [16]

 I1 �m
2�2� ��1� ��

���� 1�
; (1)

 �
m2

�
�m2�1� �� 2 log�m�� �O���; (2)

while for massless bubbles we find

 I2�K � 0� �
M2�2�

1 �M2�2�
2

M2
1 �M

2
2

��1� ��
��1� ��

(3)

 

�
1

�
� �1� �� �

2

M2
1 �M

2
2

�M2
1 log�M1� �M2

2 log�M2��

�O���

or
1

�
� ��� 2 logM1� �O��� if M1 � M2: (4)

It is evident from the lack of all momentum dependence
that unitarity methods alone can never detect these two
functions.

However, as discussed in Ref. [16], it is possible in some
cases to address this difficulty by considering the known
divergent behavior of the amplitude. For massless gauge
theory amplitudes, the conditions are such that quadratic
divergences cancel and the remaining (logarithmic) diver-
gence matches the known value. With these conditions we
can fix coefficients at leading order in �. In more general
cases, we might need some additional information. This
could come, for example, from taking the heavy mass limit
of one propagator [21]. We shall not discuss the tadpoles
and massless bubbles further in this paper.

A. Cuts of scalar integrals

We define the n-point scalar function with nonuniform
masses as follows1:

 In�M1;M2; m1; . . . ; mn�2� 	
Z d4�2�p

�2��4�2�

1

�p2 �M2
1���p� K�

2 �M2
2�
Qn�2
j�1 ��p� Pj�

2 �m2
j �
: (5)

This definition is written with a view towards taking the unitarity cut. The masses of the cut propagators are M1 and M2,
and the momentum flowing through the cut is K. The other momenta Pj and massesmj are the ones necessary to complete
the scalar function, and not necessarily in cyclic order.

Our calculations are done in the ‘‘four-dimensional helicity’’ (FDH) scheme, i.e. all external momenta Ki are
4 dimensional and only the internal momentum p is �4� 2�� dimensional. Thus it is useful to write p � ~‘� ~�, where
~‘ is 4 dimensional and ~� is ��2�� dimensional.

 

Z d4�2�p

�2��4�2� �
Z d4 ~‘

�2��4
Z d�2�‘�
�2���2� �

Z d4 ~‘

�2��4
�4���

�����

Z
d�2��2��1��:

Then the scalar function as defined in Eq. (5) becomes

 In�M1;M2; m1; . . . ; mn�2� �
�4���

�����

Z
d�2��2��1��

Z d4 ~‘

�2��4



1

�~‘2 �M2
1 ��

2���~‘� K�2 �M2
2 ��

2�
Qn�2
j�1 ��

~‘� Pj�
2 �m2

j ��
2�
: (6)

Following the setup of Ref. [19], we decompose the 4 mo-
mentum into a null component and a component propor-
tional to the cut momentum K.

 

~‘ � ‘� zK; ‘2 � 0;

)
Z
d4 ~‘ �

Z
dzd4‘���‘2��2‘ � K�:

(7)

We define the ‘‘signature of the cut,’’ ��K;M1;M2�, as

 ��K;M1;M2� 	 �K
2�2 � �M2

1�
2 � �M2

2�
2 � 2K2M2

1

� 2K2M2
2 � 2M2

1M
2
2; (8)

and a dimensionless parameter u to be

 u 	
4K2�2

��K;M1;M2�
: (9)

Then

 

Z
d�2��2��1�� !

�
��K;M1;M2�

4K2

�
�� Z 1

0
duu�1��:

1Note that, for ease of presentation, we are omitting the
prefactor i��1�n�1�4��D=2 (which was included, for example,
in Ref. [16]).
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Since �4���

�2��4����� �
��K;M1;M2�

4K2 ��� is a universal factor on both sides (basis and amplitude) of the cut calculation, we neglect it
henceforth.

Thus, we have rewritten the integral as

 In�M1;M2; m1; . . . ; mn�2� �
Z 1

0
duu�1��

Z
dzd4‘���‘2��2‘ � K�



1

�~‘2 �M2
1 ��

2���~‘� K�2 �M2
2 ��

2�
Qn�2
j�1 ��

~‘� Pj�2 �m2
j ��

2�
; (10)

where �2 is related to u through Eq. (9).

B. Kinematics and the domain of integration

In this subsection we determine the integration domain.
Assuming K2 � 0, we choose the frame where ~K �

�K; 0; 0; 0�, ~‘ � �x; y; 0; 0�. Then the second cut propagator
is ~‘� ~K � �x� K; y; 0; 0�. From the on-shell conditions

 x2 � y2 � M2
1 ��

2; �x� K�2 � y2 � M2
2 ��

2;

we solve for x and y to find

 x �
K2 �M2

1 �M
2
2

2K
; y � �

������������������������������
x2 �M2

1 ��
2

q
: (11)

The requirement that y has a real solution is the following
constraint:

 �2 
��K;M1;M2�

4K2 ; (12)

with the definition of ��K;M1;M2� given in Eq. (8). The
condition (12) also requires the right hand side to be
positive, which can be arranged by working in a region
with sufficiently large cut momentum, K >M1 �M2.
Then the physical constraint (12) restricts u to lie in a
unit interval:

 u 2 �0; 1�: (13)

After using (7) to decompose the vector ~‘ � ‘� zK, the
lightlike condition ‘2 � 0 becomes �x� zK�2 � y2, or

 z2K2 � z�K2 �M2
1 �M

2
2� � �M

2
1 ��

2� � 0:

Solving this equation, we find

 z �
�K2 �M2

1 �M
2
2� �

�������������������������������������������������
��K;M1;M2� � 4K2�2

p
2K2 :

(14)

In the kinematic region of this cut K > 0. Then the
positive-light-cone condition ���‘2� is equivalent to x�
zK > 0. Consequently, exactly one of the two solutions
(14) for z is selected. Specifically,

 z �
�K2 �M2

1 �M
2
2� �

�������������������������������������������������
��K;M1;M2� � 4K2�2

p
2K2 ;

(15)

which we rewrite as

 z �
a� b

������������
1� u
p

2
; (16)

where we have defined two useful parameters:

 a 	
K2 �M2

1 �M
2
2

K2 ; b 	

�����������������������������
��K;M1;M2�

p
K2 : (17)

In the massless limit a � b � 1.

C. First steps: Separating the four-dimensional integral

Now we are ready to discuss the cut integral. Consider
the two delta functions of the cut propagators

 ��~‘2 �M2
1 ��

2����~‘� K�2 �M2
2 ��

2�:

Inside the integral, we perform the following manipula-
tions:
 

��~‘2 �M2
1 ��

2����~‘� K�2 �M2
2 ��

2�

� ��~‘2 �M2
1 ��

2���K2 � 2~‘ � K �M2
1 �M

2
2�

� ��z2K2 � z�2‘ � K� �M2
1 ��

2����1� 2z�K2

� 2‘ � K �M2
1 �M

2
2�

� ��z�1� z�K2 � z�M2
1 �M

2
2� �M

2
1 ��

2�


 ���1� 2z�K2 � 2‘ � K �M2
1 �M

2
2�:

In the last step we used the second delta function to find
2‘ � K � �1� 2z�K2 �M2

1 �M
2
2. We will make this sub-

stitution in the measure (7). At this point the first delta
function is independent of ‘. The cut part of the integral
now takes the form

 

Z 1

0
duu�1��

Z
dz��1� 2z�K2 �M2

1 �M
2
2���z�1� z�K

2

� z�M2
1 �M

2
2� �M

2
1 ��

2�
Z
d4‘���‘2����1� 2z�K2

� 2‘ � K �M2
1 �M

2
2�:

The second line is the four-dimensional phase space inte-
gration, which can be performed in various ways, as dis-
cussed in Ref. [19]. We can integrate out z using the delta
function in the first line. Here we need to account for the
factor
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@
@z
�z�1� z�K2 � z�M2

1 �M
2
2� �M

2
1 ��

2�

� �1� 2z�K2 � �M2
1 �M

2
2�;

which serves to cancel the first factor of the first line of
Eq. (18). Finally, we arrive at the expression
 Z 1

0
duu�1��

Z
d4‘���‘2����1� 2z�K2 � 2‘ � K

�M2
1 �M

2
2�; (18)

where z is related to u by Eq. (16).

III. RECURSION AND REDUCTION FORMULAS
WITH MASS

In this section we compute the massive analogs of the
recursion and reduction formulas for master integrals pre-
sented in Ref. [19] and derived in detail in Ref. [20]. It is
not hard to check that the results of this section reproduce
the massless results when we set all mi � 0 [and hence
a � b � 1 in Eq. (17)].

We refer to Ref. [20] rather than review all details of the
setup here. However, we do need to remind the reader that
the results for cuts of these basis integrals were derived
with spinor integration, in which the massless four-
dimensional vector ‘ is rewritten as

 ‘ � t�~�; (19)

and the measure transforms as

 

Z
d4‘�����‘2���� �

Z 1
0
dtt

Z
~�� ��
h�; d�i�~�; d~�����:

(20)

Here t ranges over the positive real line, and �, ~� are
homogeneous spinors, also written, respectively, as j‘i,
j‘� in many expressions involving spinor products. The
first step in spinor integration is to integrate over the
variable t simply by solving the delta function of the
second cut propagator. In this section, we sketch the begin-
nings of certain derivations by writing the integrand before
and after this t integration—which, we emphasize, is not
true integration.

Spinor integration proceeds by writing the integrand as a
total derivative plus delta functions using ‘‘holomorphic
anomaly’’ formulas, and finally identifying the contribu-
tions of delta functions as residues of a complex function.
For an exposition of this technique, we refer the reader to
Refs. [6,7].

A. Bubble

The cut bubble is exactly the integral described in the
previous section without any additional factors. We just
need to do the four-dimensional integral.

 Z
dzd4‘���‘2��2‘ � K���z�1� z�K2 � z�M2

1 �M
2
2� �M

2
1 ��

2����1� 2z�K2 � 2‘ � K �M2
1 �M

2
2�

�
Z
dzd4‘���‘2���1� 2z�K2 �M2

1 �M
2
2���z�1� z�K

2 � z�M2
1 �M

2
2� �M

2
1 ��

2�


 ���1� 2z�K2 � 2‘ � K �M2
1 �M

2
2�:

After phase space integration we are left with

 

�1� 2z�K2 �M2
1 �M

2
2

K2
� b

������������
1� u
p

; (21)

where we have put in z given by Eq. (16). So, the cut is

 C�I2�M1;M2;K�� � b
Z 1

0
duu�1��

������������
1� u
p

; (22)

where b is given in Eq. (17). This factor of b is where this
expression differs from the massless case.

Recursion relation: Now we define a sequence of func-
tions indexed by nonnegative integers n:

 Bub �n� 	
Z 1

0
duu�1��un

������������
1� u
p

: (23)

Note that the physical cut is related to the zeroth function
by a factor of b:

 C�I2�M1;M2;K�� � bBub�0�: (24)

Because the definition (23) is identical to the massless
case, we derive exactly the same recursion formula as in
Refs. [19,20]:

 Bub �n� � F�n�2!2 Bub�0�; (25)

where the form factor is

 F�n�2!2 �
����3=2

�n� ��3=2
: (26)

Here �x�n � ��x� n�=��x� is the Pochhammer symbol.
Written in a form suitable for reading master integrands,

we have the result
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 b
Z 1

0
duu�1��un

������������
1� u
p

� F�n�2!2C�I2�M1;M2;K��: (27)

B. Triangle

The integrand to start with is

 

��~‘2 �M2
1 ��

2����~‘� K1�
2 �M2

2 ��
2�

��~‘� K3�
2 �m2

1 ��
2�

:

After t integration we get

 

�
�1� 2z� �

M2
1 �M

2
2

K2
1

�
1

h‘jK1j‘�h‘jQj‘�

� b
������������
1� u
p 1

h‘jK1j‘�h‘jQj‘�
;

where

 Q �
�
�1� 2z� �

M2
1 �M

2
2

K2
1

�
K3

�
K2

3 �M
2
1 �m

2
1 � z�2K1 � K3�

K2
1

K1: (28)

The four-dimensional integral gives

 �
1������
�3

p �
�1� 2z� �

M2
1 �M

2
2

K2
1

�
ln
�
��2K1 �Q� �

������
�3

p
��2K1 �Q� �

������
�3

p �
;

(29)

where

 �3 � 4��K1 �Q�2 � K2
1Q

2�: (30)

The ingredients for Eq. (30) are

 

K1 �Q �
K2

1 �M
2
1 �M

2
2

K2
1

�K1 � K3� � �K2
3 �M

2
1 �m

2
1�;

Q2 �
�2K2

1�K
2
3 �M

2
1 �m

2
1� � �K

2
1 �M

2
1 �M

2
2��2K1 � K3��

2 � �1� u��3;m�0��K1;M1;M2�

4�K2
1�

3 ;

where

 �3;m�0 	 4��K1 � K3�
2 � K2

1K
2
3�; (31)

which we recognize as the signature of a triangle with
massless propagators.

We can now see that

 �3 �
�1� u��3;m�0��K1;M1;M2�

�K2
1�

2 � b2�1� u��3;m�0:

(32)

It is interesting to see that �3 is built from the factors
��K1;M1;M2�, the signature of the cut, and �3;m�0, the
signature of the triangle.

Now we define

 Z 	 �
�2K1 �Q�K

2
1���������������������������������������������

�3;m�0��K1;M1;M2�
q : (33)

Then we have
 

C�I3�M1;M2; m1;K1; K3��

�
Z 1

0
duu�1����b

������������
1� u
p

�
1������
�3

p ln
�
Z�

������������
1� u
p

Z�
������������
1� u
p

�

�
Z 1

0
duu�1��

�
�

1���������������
�3;m�0

p �
ln
�
Z�

������������
1� u
p

Z�
������������
1� u
p

�
: (34)

This is the same expression as in the massless case, but now
with a different Z.

Recursion/reduction relation: We define the integrals

 Tri �n��Z� 	
Z 1

0
duu�1��un ln

�
Z�

������������
1� u
p

Z�
������������
1� u
p

�
; (35)

where the parameter Z is defined as in Eq. (33). The
physical cut integral is

 C�I3�M1;M2; m1;K1; K3�� � �
1���������������

�3;m�0

p Tri�0��Z�: (36)

In this case, our cut triangle functions (35) do depend on
the cut-propagator masses M1 and M2 via Z. Apart from
the generalized definition of Z, the formula is the same as
in the massless case. Therefore, we derive the same recur-
sion and reduction formulas as in Ref. [20], namely

 Tri �n��Z� � F�n�3!3�Z�Tri�0��Z� � ~F�n�3!2�Z�Bub�0�; (37)

where the two form factors are given by

 F�n�3!3�Z� �
��
n� �

�1� Z2�n; (38)

 

~F �n�3!2�Z� �
����3=2

n� �

Xn
k�1

2Z�1� Z2�n�k

�k� ��1=2
: (39)

These are functions of the variable Z, defined for a given
triangle by Eq. (33).

Equation (37) is not yet in the most applicable form. We
return to the language of physical cuts by including the
factor�1=

���������������
�3;m�0

p
from Eq. (36). The recursion/reduction

formula that we need is thus:
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Z 1

0
duu�1��un

�
�

1���������������
�3;m�0

p ln
�
Z�

������������
1� u
p

Z�
������������
1� u
p

��

� F�n�3!3�Z�C�I3�M1;M2; m1;K1; K3��

� F�n�3!2�K1; K3�C�I2�M1;M2;K1��; (40)

where

 F�n�3!2�K1; K3�� � �
1

b
���������������
�3;m�0

p ~F�n�3!2�Z�: (41)

C. Box

The integrand to start with is

 

��~‘2 �M2
1 ��

2����~‘� K�2 �M2
2 ��

2�

��~‘� P1�
2 �m2

1 ��
2���~‘� P2�

2 �m2
2 ��

2�
:

We define another useful mass-dependent parameter:

 ai 	
P2
i �M

2
1 �m

2
i

K2 : (42)

After t integration we get

 b
������������
1� u
p 1

h‘jQ1j‘�h‘jQ2j‘�
;

where

 Qi � ��b
������������
1� u
p

�Pi �
�
ai �

Pi � K

K2 �a� b
������������
1� u
p

�

�
K:

(43)

Now the procedure is the same as in the massless case, but
with this more general definition of Qi.

Define

 Ri � Qiju�0 (44)

 � �bPi �
�
ai �

Pi � K

K2 �a� b�
�
K: (45)

The physical cut is

 C�I4�M1;M2; m1; m2;K;P1; P2�

�
Z 1

0
duu�1�� b

2K2

1����������������
B� Au
p


 ln
�
D� Cu�

������������
1� u
p ����������������

B� Au
p

D� Cu�
������������
1� u
p ����������������

B� Au
p

�
; (46)

where
 

A � �
b4

K2 det

P2
1 P1 � P2 P1 � K

P1 � P2 P2
2 P2 � K

P1 � K P2 � K K2

0
BB@

1
CCA;

C �
b2

K2 det
P1 � P2 P1 � K

P2 � K K2

 !
;

B � � det
R2

1 R1 � R2

R1 � R2 R2
2

 !
;

D � R1 � R2:

(47)

Here again, the form of Eq. (46) differs from the one in
massless case only by the factor of b.

Recursion/reduction relation: We define

 Box �n��A;B;C;D� 	
Z 1

0
duu�1�� un����������������

B� Au
p


 ln
�
D� Cu�

������������
1� u
p ����������������

B� Au
p

D� Cu�
������������
1� u
p ����������������

B� Au
p

�
:

The physical cut is related to the zeroth function in Eq. (48)
by

 C�I4�M1;M2; m1; m2;K;P1; P2��

�
b

2K2 Box�0��A;B;C;D� (48)

if A, B, C, D are defined as in Eq. (47).
In the table in Eq. (49) we have listed which kinds of

triangles a box with given cut would reduce to (the propa-
gator mass must also be correctly identified):
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Boxes are related to triangles and bubbles in the reduction
formulas. In these relations we make use of a quantity
combining variables of the box and the associated triangles
to the table in Eq. (49):

 CZi 	 �Z
2
i � 1�C�D: (50)

 Box �n��A;B;C;D� � F�n�4!4�A;B�Box�0��A;B;C;D�

� ~F�n�4!3�A;B;C;D;Z1�Tri�0��Z1�

� ~F�n�4!3�A;B;C;D;Z2�Tri�0��Z2�

� ~F�n�4!2�A;B;C;D;Zi�Bub�0�;

(51)

where the form factors are given by

 F�n�4!4�A;B� �
����1=2

�n� ��1=2

�
B
A

�
n
; (52)

 

~F �n�4!3�A;B;C;D;Zi� � �
CZi

�n� ��1=2AZi



Xn
k�1

1

�k� 1=2� ��1=2




�
B
A

�
n�k

F�k�1�
3!3 �Zi�; (53)

 

~F �n�4!2�A;B;C;D;Zi� � �
��n� ��

��n� 1=2� ��
1

A

Xn
k�1

1

�k� 1=2� ��1=2

�
B
A

�
n�k

�CZ1

Z1

~F�k�1�
3!2 �Z1� �

CZ2

Z2

~F�k�1�
3!2 �Z2�

�
: (54)

Again Eq. (51) is not the final formula we are after. To get the proper physical result for identifying integrands, we need
to replace the kinematic factor b=2K2. The result is

 

Z 1

0
duu�1��un

�
b

2K2
����������������
B� Au
p ln

�
D� Cu�

������������
1� u
p ����������������

B� Au
p

D� Cu�
������������
1� u
p ����������������

B� Au
p

��

� F�n�4!4�A;B�C�I4�M1;M2; m1; m2;K;P1; P2�� �
X2

i�1

F�n�4!3�A;B;C;D;Zi�C�I3�M1;M2; m
�i�
1 ;K�i�1 ; K

�i�
3 ��

� F�n�4!2�A;B;C;D;Zi�C�I2�M1;M2;K��; (55)

where for the triangles, K�i�1 and K�i�3 are given by the table in Eq. (49), the mass m�1�1 must also be interpreted correctly
according to the same table, and the form factors are

 F�n�4!3�A;B;C;D;Zi� � �
b

��������
��i�3

q
2K2

~F�n�4!3�A;B;C;D;Zi�; F�n�4!2�A;B;C;D;Zi� �
1

2K2
~F�n�4!2�A;B;C;D;Zi�: (56)

D. Pentagon

The integrand is

 

��~‘2 �M2
1 ��

2����~‘� K�2 �M2
2 ��

2�

��~‘� P1�
2 �m2

1 ��
2���~‘� P2�

2 �m2
2 ��

2���~‘� P3�
2 �m2

3 ��
2�
:

The physical cut is

 C�I5�M1;M2; m1; m2; m3;K;P1; P2; P3�� �
Z 1

0
duu�1��

Z
h‘d‘i�‘d‘�

b
������������
1� u
p

h‘jKj‘�

�K2�2h‘jQ1j‘�h‘jQ2j‘�h‘jQ3j‘�
;

where

 Qi � ��b
������������
1� u
p

�Pi �
P2
i �M

2
1 �m

2
i � 2z�K � Pi�

K2 K: (57)

The total integral (apart from the universal prefactor) is

 b
Z 1

0
duu�1��

������������
1� u
p Z

h‘d‘i�‘d‘�
h‘jKj‘�

�K2�2h‘jQ1j‘�h‘jQ2j‘�h‘jQ3j‘�
: (58)
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Apart from the factor of b and the modified definition of Qi, the analysis proceeds as in the massless case [20]. Thus we
can cite the result directly as
 

C�I5�M1;M2; m1; m2; m3;K;P1; P2; P3��

� �b
Z 1

0
duu�1��

������������
1� u
p

�K2�2

�
S�Q3; Q2; Q1; K�

4
����������������������������������������
�Q3 �Q2�

2 �Q2
3Q

2
2

q ln
Q3 �Q2 �

����������������������������������������
�Q3 �Q2�

2 �Q2
3Q

2
2

q
Q3 �Q2 �

����������������������������������������
�Q3 �Q2�

2 �Q2
3Q

2
2

q

�
S�Q3; Q1; Q2; K�

4
����������������������������������������
�Q3 �Q1�

2 �Q2
3Q

2
1

q ln
Q3 �Q1 �

����������������������������������������
�Q3 �Q1�

2 �Q2
3Q

2
1

q
Q3 �Q1 �

����������������������������������������
�Q3 �Q1�

2 �Q2
3Q

2
1

q

�
S�Q2; Q1; Q3; K�

4
����������������������������������������
�Q2 �Q1�

2 �Q2
2Q

2
1

q ln
Q2 �Q1 �

����������������������������������������
�Q2 �Q1�

2 �Q2
2Q

2
1

q
Q2 �Q1 �

����������������������������������������
�Q2 �Q1�

2 �Q2
2Q

2
1

q �
; (59)

where S�Q3; Q2; Q1; K� is a rational function defined as
follows:

 S�Q2; Q1; Q3; K� �
T1

T2
; (60)

with

 T1 � �8 det
Q3 � K Q2 � K Q1 � K
Q2 �Q3 Q2

2 Q2 �Q1

Q1 �Q3 Q2 �Q1 Q2
1

0
@

1
A;

T2 � �4 det
Q2

3 Q2 �Q3 Q1 �Q3

Q2 �Q3 Q2
2 Q2 �Q1

Q1 �Q3 Q2 �Q1 Q2
1

0
B@

1
CA:

(61)

Let us make a few comments on the behavior of penta-
gon cuts. There are three terms. Each term looks like a box
signature multiplied by the factor S���=�2K2�. It is signifi-
cant that each function S��� has the same denominator
T2���, which does not depend on the order of the first three
arguments. This can be considered as another signature of a
cut-pentagon integral. This feature makes the reduction
simple. Where we see a factor of un, we just need to write
unS � P�u� � A

P3
i�1 Si��� where P�u� is a polynomial in

u and A is constant in u.2 The A term will be the pentagon
coefficient, while P�u� indicates reduction to boxes. In the
massless case, pentagons contribute to terms of O���, so
they can be neglected. However, in cases where propaga-
tors are massive or we wish to compute to higher orders in
�, their contribution must be included.

IV. FORMULAS FOR COEFFICIENTS FROM
DOUBLE CUTS

Systematic extraction of coefficients of master integrals
from four-dimensional spinor integration techniques has

been described in Refs. [6,7], building on earlier tech-
niques reviewed in Refs. [22,23]. When applied to a spe-
cific amplitude in practice, there are choices to make
regarding how to ‘‘split’’ the integrand in partial fractions
as well as choosing arbitrary spinors on which the final
answer does not depend.

In this section we present canonical choices to further
simplify the method, aiming to automatize the heart of this
procedure to allow for easy implementation into a com-
puter program.

For brevity, we do not review the entire spinor integra-
tion technique here; instead we refer the reader to the
explanations given in Refs. [6,7]. The steps that concern
us here come after the coordinate change and t integration
mentioned at the beginning of Sec. III. At this point we
have an integrand whose terms are rational functions of
spinor products and homogeneous in the spinor integration
variables. The following steps are to split the integrand into
partial fractions (using Schouten identities), followed by
identification of master integrals and integration over a
single Feynman parameter. Finally we apply the holomor-
phic anomaly to complete the spinor integration by extract-
ing residues.

Here we are able to give explicit algebraic functions for
coefficients. In the Appendix we give a more detailed
discussion of how to evaluate these functions in practice.

A summary of the results this section may be found in
Sec. IV D.

A. Canonical splitting

Recall that our starting point is the product of the two
(on-shell) tree-level amplitudes from each side of the
unitarity cut. In spinor notation, this integrand takes the
general form3

2It is essential that because all three Si��� have same denomi-
nator T2, after reduction we have the same A multiplying all
three of the Si���.

3In this section we deal specifically with the case of massless
propagators. The generalization to the massive case is straight-
forward, as in the previous sections.

RUTH BRITTO AND BO FENG PHYSICAL REVIEW D 75, 105006 (2007)

105006-8



 

X C
Qn1
i�1h~aij‘j~bj�Qn2

j�1��
~‘� Pj�2 ��2�

:

Here C is some expression that does not depend on any
integration variable, and we have used the relation (7), ~‘ �
‘� zK, to rewrite the numerator. As we emphasized in the
beginning of Sec. III, the t integration is trivial because of
the second delta function, ���1� 2z�K2 � 2‘ � K�. Thus
we can write the result of this step immediately:

 

�1� 2z�K2

h‘jKj‘�2
X�
�
�1� 2z�K2

h‘jKj‘�

�
n1



h‘jKj‘�n2C

Qn1
i�1h~ai‘i�‘~bi�Qn2

j�1h‘jQjj‘�
:

So we see that, after integrating over t, the integrand for
phase space integration is a sum of terms of the following
form:

 Iterm �
G���

Qn�k�2
j�1 �aj‘�

h‘jKj‘�n
Qk
i�1h‘jQij‘�

: (62)

Here G��� is some monomial in the holomorphic spinor
only; hence it factorizes as

Q
h‘cii times a constant in ‘.

The functions aj may depend on � as well, for example, as
�ajj � h�jQj. But aj is the quantity we will need in order to
split the term further and extract the residues from multiple
poles.

We aim to describe all coefficients in terms of the
quantities K, Qi, aj, and G���.

The term (62) depends as well on n and k. The exponent
n is related to the type of master integral involved. Terms
with n � 0 contribute only to boxes and pentagons. Terms
with n � 1 contribute to triangles in addition, and terms
with n � 2 contribute to all of these plus bubbles. If n � 0
we can multiply both numerator and denominator by
h‘jKj‘�, so we shall always assume n � 1.

The first step in our program is to isolate poles by
splitting Iterm using the following partial fraction spinor
identity:

 

�a‘�
h‘jQ1j‘�h‘jQ2j‘�

�
�ajQ1j‘i

h‘jQ2Q1j‘ih‘jQ1j‘�

�
�ajQ2j‘i

h‘jQ1Q2j‘ih‘jQ2j‘�
: (63)

Because there are different factors in the denominator,
there are different sequences of splitting leading to differ-

ent but equivalent expressions. Here we choose a canonical
sequence:

(1) First we keep h‘jKj‘�n untouched and split the
factors h‘jQij‘� among themselves. At the end of
this step each term takes the form

~G���
h‘jKj‘�nh‘jQij‘�

.
(2) Then we split h‘jKj‘� from h‘jQij‘� as often as

necessary to get two types of terms,
~Gm���
h‘jKj‘�m and

~Fi���
h‘jKj‘�h‘jQij‘�

.
(3) Finally we will be left with

 

G���
Qn�k�2
j�1 �aj‘�

h‘jKj‘�n
Qk
i�1h‘jQij‘�

�
Xn
k�2

Gk���

Qk�2
j�1�bj‘�

h‘jKj‘�k

�
Xk
i�1

Fi���
1

h‘jKj‘�h‘jQij‘�
: (64)

Our task is to find expressions forGk���, Fi���, and bj in
the most compact and simple form. The result is

 Fi��� �
�

G���
Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
n�1 Qk

t�1;t�ih‘jQtQij‘i

�
; (65)

 Gp��� �
Xk
i�1

G���
Qk�1
s�1�asjQij‘iQk

t�1;t�ih‘jQtQij‘i

Qn�k�p
l�k �aljKj‘i

h‘jQiKj‘in�1�p ;

p � 2; . . . ; n;

(66)

 bj � aj�n�k�p: (67)

While Fi��� finds its simplest and most compact form in
Eq. (65), Gp��� in Eq. (66) may not be the simplest. For
example, it can be shown that all terms with 1=h‘jKj‘�n can
be summed into a single term. In general there are several
terms with 1=h‘jKj‘�a with 2  a < n. As we discuss in
Sec. V C, if we know that n  4, we can work them out
explicitly. However, in Sec. IV C we shall use a slightly
different method to deal with these rational terms.

The identities necessary for carrying out steps (1) and
(2) are the following, which may be proved by induction,
making use of the basic splitting identity (63).

 

Qk�1
j�1�aj‘�Qk

i�1h‘jQij‘�
�
Xk
i�1

1

h‘jQij‘�

Qk�1
j�1�ajjQij‘iQk

m�1;m�ih‘jQmQij‘i
;

(68)

 

Qn�1
j�1 �aj‘�

h‘jKj‘�nh‘jQj‘�
�

Qn�1
j�1 �ajjQj‘i

h‘jKQj‘in�1

1

h‘jKj‘�h‘jQj‘�
�
Xn�2

p�0

���n�p
Qn�p�2
j�1 �ajjQj‘i�an�p�1jKj‘i

Qn�1
t�n�p�at‘�

h‘jKj‘�p�2h‘jQKj‘in�p�1 : (69)
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One necessary condition for the form (68) is that all the Qi
are different, which is satisfied for generic momenta.

B. Box and triangle coefficients

In this subsection we derive a closed expression for box
coefficients and systematize the derivation of triangle
coefficients.

As we know from Sec. III C, box integrals and their
coefficients may be labeled by momenta Pi, Pj along
with the cut momentum K. From these momenta we have
defined Qi, Qj as in Eq. (43).

The terms we need to consider are of the following form:
 

I�i� �
Z
Fi���

1

h‘jKj‘�h‘jQij‘�

�
Z 1

0
dx
Z
h‘d‘i�d‘@‘�

�
Fi�����‘�

h‘jRj‘�h‘jRj��

�
;

R � xQi � �1� x�K:

As discussed in the previous subsection, there will be two
types of poles: those from h‘jKQj‘i contribute to triangles,
and those from h‘jQjQij‘i contribute to boxes. Let us see
precisely how these arise.

We can construct two massless momenta fromQi andK:

 P�i�1;2 � Qi � x
�i�
1;2K; (70)

where
 

x�i�1;2 �
�2Qi � K �

��������
��i�
p

2K2 ;

��i� � �2Qi � K�
2 � 4Q2

i K
2:

(71)

We make the choice � � P�i�1 and find that

 I�i� �
Z 1

0
dx
Z
h‘d‘i�d‘@‘�

�
Fi����P

�i�
1 ‘�

h‘P�i�2 i�P
�i�
2 P

�i�
1 �



�x�i�1 � x

�i�
2 �

h‘jRj‘��x�x�i�1 � 1� � 1�

�
: (72)

The poles in this expression come from Fi��� and h‘P�i�2 i.
Note as well that since we have chosen � � P�i�1 , the factor
�P�i�1 ‘� appears in the numerator and therefore there is no
contribution from the pole at h‘P�i�1 i, which one might
naively expect from a factor of h‘jKQij‘i in the denomi-
nator of Fi���.

Apply a partial fraction expansion to the x-dependent
factors in the denominator of the integral. The result is
 

I�i� �
Z 1

0
dx
Z
h‘d‘i�d‘@‘�

�
Fi���
h‘jQiKj‘i




�
�

�x�i�1 � 1�

x�x�i�1 � 1� � 1
�

h‘jQi � Kj‘�
xh‘jQi � Kj‘� � h‘jKj‘�

��
;

(73)

where we have used the fact that

 h‘jQiKj‘i �
h‘P�i�1 i�P

�i�
1 P

�i�
2 �h‘P

�i�
2 i

�x�i�1 � x
�i�
2 �

: (74)

First term of (73): Let us consider the two terms of
Eq. (73) separately. The first is equal to

 I�i�1 	
Z 1

0
dx
Z
h‘d‘i�d‘@‘�

�
Fi���
h‘jQiKj‘i

�
�

�x�i�1 � 1�

x�x�i�1 � 1� � 1

��
�
Z
h‘d‘i�d‘@‘�

�
Fi���
h‘jQiKj‘i

�� ln��x�i�1 ��

�

�
Z
h‘d‘i�d‘@‘�

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i
ln��x�i�1 �

�
:

In the last line we made the substitution (65).
To complete the calculation for I�i�1 , we need to take residue of all poles except the one h‘P�i�1 i from factor h‘jKQij‘i.

This seems difficult to do directly. However, notice that the whole expression is holomorphic. Using the result that the sum
of residues of all poles of a holomorphic function is zero, we get

 I�i�1 � �

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i
ln��x�i�1 �

���������residue of h‘P�i�1 i

: (75)

These residues contribute to triangle coefficients. In the Appendix we show how to evaluate the residue of a multiple pole.
It can be seen that the expression (75) defines the algebraic function for the coefficients with input ai and Qi.

Second term of (73): The second term of (73) is defined by

 I�i�2 	
Z 1

0
dx
Z
h‘d‘i�d‘@‘�

�
Fi���
h‘jQiKj‘i

h‘jQi � Kj‘�
xh‘jQi � Kj‘� � h‘jKj‘�

�
; (76)
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 �
Z 1

0
dx
Z
h‘d‘i�d‘@‘�

�
�

G���
Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i

h‘jQi � Kj‘�
xh‘jQi � Kj‘� � h‘jKj‘�

�
: (77)

Again, we do not take the residue of h‘P�i�1 i from the factor h‘jKQij‘i.
There are two kinds of poles in Eq. (77): one is a simple pole from h‘jQjQij‘i and one is a possible multiple pole from

h‘P�i�2 i
n within h‘jKQij‘in. The former contributes to boxes; the latter contributes to triangles. Let us consider the multiple

poles first.
When we replace j‘� ! jP�i�2 �, the spinor dependence cancels out in the integrand, giving

 

h‘jQi � Kj‘�
xh‘jQi � Kj‘� � h‘jKj‘�

!
�x�i�2 � 1�

x�x�i�2 � 1� � 1
:

We integrate over the Feynman parameter and find that the residue is

 I�i�2 jh‘P�i�2 i
�

�
�

G���
Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘in
Qk
t�1;t�ih‘jQtQij‘i

ln��x�i�2 �

���������residue of h‘P�i�2 i

: (78)

Like Eq. (75), it will contribute to triangles.
Now we move to the simple poles in Eq. (77). For these simple poles we can evaluate the integral over the Feynman

parameter first and get

 I�i�2 jsimple poles �
Z
h‘d‘i�d‘@‘�

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘in
Qk
t�1;t�ih‘jQtQij‘i

ln
h‘jKj‘�
h‘jQij‘�

�
: (79)

Now we need to compute the residue from the poles in
h‘jQjQij‘i. Assume without loss of generality that i < j,
and construct two massless momenta as

 P�ij�1;2 � Qj � y
�ij�
1;2Qi; �i < j�; (80)

where

 y�ij�1;2 �
�2Qi �Qj �

���������
��ij�
p

2Q2
i

;

��ij� � �2Qi �Qj�
2 � 4Q2

i Q
2
j :

(81)

To simplify our expressions, we define the following func-
tion:

 Fi;j�‘� �
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�i;jh‘jQtQij‘i
: (82)

To sum the contributions from these two simple poles
h‘P�ij�1 i and h‘P�ij�2 i, notice that the P�ij�1;2 differ only by a
sign in front of the square root. Thus we can expand

 Fi;j�P
�ij�
1 � � F�S�i;j � F

�A�
i;j ; Fi;j�P

�ij�
2 � � F�S�i;j � F

�A�
i;j :

(83)

Putting this back into the expression (79) for the residue, it
is straightforward to derive that the contribution from these
two poles in I�i�2 is

 

�
1���������

��ij�
p

�
F�S�i;j ln

hP�ij�1 jKjP
�ij�
1 �

hP�ij�1 jQijP
�ij�
1 �

hP�ij�2 jQijP
�ij�
2 �

hP�ij�2 jKjP
�ij�
2 �

� F�A�i;j ln
hP�ij�1 jKjP

�ij�
1 �

hP�ij�1 jQijP
�ij�
1 �

hP�ij�2 jKjP
�ij�
2 �

hP�ij�2 jQijP
�ij�
2 �

�
:

To proceed further, we notice that the same simple-pole
factor h‘jQjQij‘i shows up in the I�j� term [or Fj��� in
Eq. (64)]. We can do a similar calculation to get residues in
I�j�2 in terms the function Fj;i���. One can easily check that

Fj;i�P
�ij�
1;2 � � Fi;j�P

�ij�
1;2 �, by noticing that

 Fj;i�P
�ij�
1;2 � �

G�P�ij�1;2 �
Qn�k�2
s�1 �asP

�ij�
2;1 �

hP�ij�1;2 jKjP
�ij�
2;1 �

nQk
t�1;t�j;ihP

�ij�
1;2 jQtjP

�ij�
2;1 �

� Fi;j�P
�ij�
1;2 �: (84)

Therefore the sum of contributions from residues associ-
ated to h‘jQjQij‘i � �h‘jQiQjj‘i in I�i�2 and I�j�2 is
 

�
1���������

��ij�
p

�
F�S�i;j ln

hP�ij�1 jQjjP
�ij�
1 �

hP�ij�1 jQijP
�ij�
1 �

hP�ij�2 jQijP
�ij�
2 �

hP�ij�2 jQjjP
�ij�
2 �

� F�A�i;j ln
hP�ij�1 jQjjP

�ij�
1 �

hP�ij�1 jQijP
�ij�
1 �

hP�ij�2 jQjjP
�ij�
2 �

hP�ij�2 jQijP
�ij�
2 �

�
; (85)

 � �
1���������

��ij�
p

�
F�S�i;j ln

y�ij�1

y�ij�2

� F�A�i;j ln
Q2
j

Q2
i

�
; (86)
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� �
1���������

��ij�
p

�Fi;j�P�ij�1 � � Fi;j�P
�ij�
2 �

2
ln
�2Qi �Qj �

���������
��ij�
p

�2Qi �Qj �
���������
��ij�
p

�
Fi;j�P

�ij�
1 � � Fi;j�P

�ij�
2 �

2
ln
Q2
j=K

2

Q2
i =K

2

�
: (87)

This is the result we are looking for. The first term is the
box contribution. To fix sign conventions, recall that the
double cut is given by4

 

�1� 2z�

K2

Z
h‘d‘i�‘d‘�

1

h‘jQ1j‘�h‘jQ2j‘�

�
�1� 2z�

K2

Z 1

0
dx

1

R2

�
�1� 2z�

K2

�1���������
��ij�
p ln

�2Qi �Qj �
���������
��ij�
p

�2Qi �Qj �
���������
��ij�
p :

Therefore the box coefficient is given by

 Cbox;ij �
K2

�1� 2z�

�Fi;j�P�ij�1 � � Fi;j�P
�ij�
2 �

2

�
; (88)

where Fi;j is given by Eq. (84).
It is important to realize that in fact Eq. (88) will be a

rational function of u rather than a polynomial, because it
contains results for pentagons as well. To separate the box
coefficient, we need to write

 Cbox;ij�u� � H�u� �
X

i2pentagons

AiPi; (89)

where H�u� is a polynomial in u, Pi is the pentagon cut
given by (59) and Ai is constant in u. ThusH�u� will be the
true box coefficient, for which we can apply the recursion
and reduction formulas, while Ai is the true pentagon
coefficient.

The second term in Eq. (87) is the final piece needed for
triangles. When we rewrite it as

 

�
1

2
ln
Q2
i

K2

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i

���������residue of h‘jQjQij‘i

�
1

2
ln
Q2
j

K2

� G���
Qn�k�2
s�1 �asjQjj‘i

h‘jKQjj‘i
nQk

t�1;t�jh‘jQtQjj‘i

���������residue of h‘jQiQjj‘i
;

we see that the first term is minus half of the residue contribution of h‘jQjQij‘i inside Fi��� (I�i�) and the second term is
minus half of the residue contribution of h‘jQiQjj‘i inside Fj��� (I�j�). For the first term, when we sum up all simple-pole
contributions for Fi���, we will be left with the residue of the possible multiple pole h‘jKQij‘i

n. That is to say (using the
fact that Q2

i =K
2 � x�i�1 x

�i�
2 )

 

1

2
ln�x�i�1 x

�i�
2 �

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘in
Qk
t�1;t�ih‘jQtQij‘i

���������residue of h‘jKQij‘i
: (90)

Summing the three triangle contributions (90) with Eqs. (75) and (78) we finally reach

 

�
1

2

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i
ln
��x�i�1 �

2

�x�i�1 x
�i�
2 �

���������residue of h‘P�i�1 i

�
1

2

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i
ln
��x�i�2 �

2

�x�i�1 x
�i�
2 �

���������residue of h‘P�i�2 i

:

Notice that ln�x�i�1 =x
�i�
2 � is the signature of triangles. To compare, we recall that for triangles we have

 �1� 2z�
Z
h‘d‘i�‘d‘�

1

h‘jKj‘�h‘jQij‘�
� �1� 2z�

�1��������
��i�
p ln

�2Qi � K �
��������
��i�
p

�2Qi � K �
��������
��i�
p :

Therefore the triangle coefficient is given by

4In this part, we compare to the case where propagators are massless. For the massive case, we need to adjust the definition ofQi and
include a factors of b, as explained in Sec. III.
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Ctri;i �

��������
��i�
p

2�1� 2z�

��
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i

���������h‘P�i�1 i

(91)

 �

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘in
Qk
t�1;t�ih‘jQtQij‘i

���������h‘P�i�2 i

�
: (92)

It is important to observe that both box and triangle
coefficients are expressed as the difference of residues at
the two poles P�i�1 and P�i�2 . This is the origin of the
‘‘signature’’ square roots of box and triangle integrals. As
we will see shortly, for bubble coefficients, we need to add
up the residues at the two poles P�i�1 and P�i�2 . The addition
will get rid of the square root signature, but we are left with
(1� 2z), which is related to bubbles.

C. Rational part

Now we address bubble coefficients. They are given by
the first term of Eq. (64) with Gk��� given by Eq. (66). As
we have mentioned, for general n and k these are not the
simplest and most compact expressions. If we constrain
n  4, it is possible to use them directly. Here we use a
more general approach.

Our starting point is Eq. (62). We write it here as

 lim
�!0

G���
Qn�k�2
j�1 �aj‘�Qn�1

s�0 h‘jK � �s�j‘�
Qk
i�1h‘jQij‘�

; (93)

where �2 � 0 and � is a parameter which we eventually
take to zero.

Because no denominator factor appears more than once,
we can use Eq. (68) directly to reach

 

Xn�1

s�1

1

h‘jKj‘�h‘jK � �s�j‘�

G���
Qn�k�2
j�1 �ajjK � �s�j‘iQn�1

s0�1;s0�sh‘j�K � �s
0���K � �s��j‘i

Qk
i�1h‘jQi�K � �s��j‘i

�
Xk
i�1

1

h‘jKj‘�h‘jQij‘�



G���

Qn�k�2
j�1 �ajjQij‘iQn�1

s0�1;h‘j�K � �s
0��Qij‘i

Qk
i0�1;i0�ih‘jQi0Qij‘i

: (94)

When we take the �! 0 limit, the second line becomes the contribution to triangles and boxes that was discussed in the
previous subsection. The first line gives the bubble contribution. It appears that each term in the first line diverges in the
�! 0 limit. To proceed, define

 

~K�s� � K � �s�:

Then we find that each term in the first line of Eq. (94) can be rewritten as

 

1

h‘j ~K�s� � �s�j‘�h‘j ~K�s�j‘�

G���
Qn�k�2
j�1 �ajj ~K�s�j‘i

�n�2h‘j� ~K�s�j‘in�2 Qn�1
s0�1;s0�s�s

0 � s�
Qk
i�1h‘jQi

~K�s�j‘i
:

Now we can expand this expression as a power series in �, keeping those terms that will survive the limit �! 0.
Specifically, we substitute

 

1

h‘j ~K�s� � �s�j‘�h‘j ~K�s�j‘�
�
Xn�2

h�0

�hshh‘j�j‘�h

h‘j ~K�s�j‘�2�h
�O��n�1�:

Apply the familiar spinor integration procedure to replace one integrand by a total derivative using the identity

 �‘d‘�
�
��‘�n

h‘jPj‘�n�2

�
� �d‘@‘�

�
1

�n� 1�

1

h‘jPj��
��‘�n�1

h‘jPj‘�n�1

�
: (95)

The result is then the sum of residues of

 

G���
Qn�k�2
j�1 �ajj ~K�s�j‘i

�n�2h‘j� ~K�s�j‘in�1 Qn�1
s0�1;s0�s�s

0 � s�
Qk
i�1h‘jQi

~K�s�j‘i

�Xn�2

h�0

�hshh‘j�j‘�h�1

�h� 1�h‘j ~K�s�j‘�1�h

�
: (96)

For the multiple pole, h‘j� ~K�s�j‘i � h‘�i��j ~K�s�j‘i. Since the numerator contains a factor of ��‘�h�1, we do not take the
residue of h‘�i.

Finally, after defining the quantity
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R� ~K�s�; fQig; �� �
X

poles except �

Res
� G���

Qn�k�2
j�1 �ajj ~K�s�j‘i

�n�2h‘j� ~K�s�j‘in�1 Qn�1
s0�1;s0�s�s

0 � s�
Qk
i�1h‘jQi

~K�s�j‘i

�Xn�2

h�0

�hshh‘j�j‘�h�1

�h� 1�h‘j ~K�s�j‘�1�h

��
;

(97)

we can write the bubble coefficients as

 Cbubble �
1������������

1� u
p

Xn�1

s�1

R� ~K�s�; fQig; ��j�!0: (98)

The limit is taken by expanding and truncating the series.

D. Summary of results

Conventions:
We start from an integrand of the form

 Iterm �
G���

Qn�k�2
j�1 �aj‘�

h‘jKj‘�n
Qk
i�1h‘jQij‘�

(99)

and present here an expression to be integrated over the
final (� 2�) dimensions as discussed in Sec. II C.

Box coefficients:

 Cbox;ij �
K2������������
1� u
p

�Fi;j�P�ij�1 � � Fi;j�P
�ij�
2 �

2

�
; (100)

 P�ij�1;2 � Qj � y
�ij�
1;2Qi; �i < j�; (101)

 

y�ij�1;2 �
�2Qi �Qj �

���������
��ij�
p

2Q2
i

;

��ij� � �2Qi �Qj�
2 � 4Q2

i Q
2
j ;

(102)

 Fi;j�‘� �
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�i;jh‘jQtQij‘i
: (103)

Triangle coefficients:
 

Ctri;i �

��������
��i�
p

2
������������
1� u
p

��
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i

���������h‘P�i�1 i

�

�
G���

Qn�k�2
s�1 �asjQij‘i

h‘jKQij‘i
nQk

t�1;t�ih‘jQtQij‘i

���������h‘P�i�2 i

�
;

(104)

 P�i�1;2 � Qi � x
�i�
1;2K; (105)

 

x�i�1;2 �
�2Qi � K �

��������
��i�
p

2K2 ;

��i� � �2Qi � K�2 � 4Q2
i K

2:

(106)

Bubble coefficients:

 Cbubble �
1������������

1� u
p

Xn�1

s�1

R� ~K�s�; fQig; ��j�!0: (107)

The limit is taken by expanding and truncating the series.

 R� ~K�s�; fQig; �� �
X

poles except �

Res
� G���

Qn�k�2
j�1 �ajj ~K�s�j‘i

�n�2h‘j� ~K�s�j‘in�1 Qn�1
s0�1;s0�s�s

0 � s�
Qk
i�1h‘jQi

~K�s�j‘i

�Xn�2

h�0

�hshh‘j�j‘�h�1

�h� 1�h‘j ~K�s�j‘�1�h

��
;

(108)

 

~K�s� � K � �s�: (109)

For a detailed description of evaluation, see the
Appendix.

V. DISCUSSION

In this section, we first comment on the input needed for
this integration program, and then discuss the alternative
approaches of generalized unitarity cuts and the program
of Ossola, Papadopoulos, and Pittau [2].

A. Tree-level input

The input needed for the unitary cut method is a collec-
tion of (on-shell) tree-level amplitudes, which can be cal-

culated by recursion relations. However, results with
spurious poles (which generally arise in the most compact
expressions) can make it hard to apply our method. To
avoid this difficulty, we can apply spinor identities to
regroup the terms into an expression free of spurious
poles.

Let us demonstrate this in one example. The five point
function with two massive scalars are given by5

5The sign of the second term is different from the correspond-
ing formula in Ref. [24]. We have checked, using the method of
Ref. [24], that the sign in this earlier formula was a typo.
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 A�‘1; 1
�; 2�; 3�; ‘2� � �

h3j‘2�1� 2�‘1j1�
2

h12ih23i��‘1 � k1�
2 ��2���‘2 � k3�

2 ��2��3j�1� 2�‘1j1�
�

�2�12�3

K2
123�23��3j�1� 2�‘1j1�

� �
h3j‘2�1� 2�‘1j1�

2

h12ih23ih1j‘1j1�h3j‘2j3��3j�1� 2�‘1j1�
�

�2�12�3

K2
123�23��3j�1� 2�‘1j1�

:

The spurious pole in the first term can be split from the others by the identity

 

h3j‘2�1� 2�j‘1j1�

h1j‘1j1��3j�1� 2�j‘1j1�
�

h3j‘2�1� 2�j1i

�3j�1� 2�j1ih1j‘1j1�
�

h3j‘2�1� 2��1� 2�j3�

h1j�1� 2�j3��3j�1� 2�j‘1j1�
:

Then

 A�‘1; 1
�; 2�; 3�; ‘2� � �

h3j‘2�1� 2�‘1j1�h3j‘2j2�

h12ih23i�32�h3j‘2j3�h1j‘1j1�
�

h3j‘2�1� 2�‘1j1��12�

h12ih23i�23��3j�1� 2�‘1j1�
�

�2�12�3

K2
123�23��3j�1� 2�‘1j1�

:

Using

 h3j‘2�1� 2�‘1j1�K2
123 � h3j‘2�1� 2�‘1j1��K2

12 � h3j�1� 2�j3��

� h3j‘2�1� 2�‘1j1�K
2
12 � h3j�1� 2�‘2j3��3j�1� 2�‘1j1� � K

2
12h3j‘1j1�h3j‘2j3�;

we can add the last two terms together and see that the
spurious pole �3j�1� 2�‘1j1� has been canceled (as it
must). Thus we finally get

 A�‘1; 1�; 2�; 3�; ‘2� �
h3j‘2�1� 2�‘1j1�h3j‘2j2�

h12iK2
23h1j‘1j1�h3j‘2j3�

�
�12�h3j�1� 2�‘2j3i

h12iK2
23K

2
123

: (110)

A similar calculation gives

 A5�‘
�
1 ; 1

�; 2�; 3�; ‘�2 � �
h2j‘1j1�h2j‘2j3�

2

h12iK2
23h3j‘2j3�h1j‘1j1�

�
�31�h2j‘1j1�h2j‘2j3�

K2
12K

2
23h3j‘2j3�

�
h2j‘2K123j2i�13�2

K2
12K

2
23K

2
123

; (111)

where spurious poles have been canceled.

B. The quadruple cut

In four dimensions, the quadruple cut [5] is a powerful
tool for getting box coefficients because the integral is
completely localized. Quadruple cuts may be applied
here as well since we have separated the
��2��-dimensional and four-dimensional integrations.
We apply them to boxes and pentagons.

Again, we write in the language of spinor integration
(see the brief remarks at the beginning of Sec. III), but this
is absolutely not essential to the technique of quadruple
cuts.

Let us start with the quadruple cut (denoted here by Cq)
of a box. It is given by

 

Cq4 �
Z 1

0
duu�1��

Z
d4‘���‘2����1� 2z�K2� 2‘ �K

�M2
1�M

2
2����

~‘�P1�
2�M2

3��
2�


���~‘�P2�
2�M2

4��
2�

�
Z 1

0
duu�1��

Z
d4‘���‘2����1� 2z�K2� 2‘ �K

�M2
1�M

2
2���P

2
1�M

2
1�M

2
3� z�2K �P1�

� 2‘ �P1���P2
2�M

2
1�M

2
4� z�2K �P2�� 2‘ �P2�:

After t integration, which sets t � ���1� 2z�K2 �M2
1 �

M2
2�=h‘jKj‘�, we have

 

Cq4 �
Z 1

0
duu�1��

Z
h‘d‘i�‘d‘�

�1� 2z�K2 �M2
1 �M

2
2

h‘jKj‘�2


 �
�
K2h‘jQ1j‘�
h‘jKj‘�

�
�
�
K2h‘jQ2j‘�
h‘jKj‘�

�
;

where

 Qi � �

�
�1� 2z� �

M2
1 �M

2
2

K2

�
P1

�
P2

1 �M
2
1 �M

2
i�2 � z�2K � P1�

K2 K: (112)

To solve the remaining two delta functions, we need to find
two momenta constructed from qi � Q2 � xiQ1, i � 1, 2
such that q2

i � 0. This is the same construction as in (81).
Then the two solutions for the two delta functions are given
by6

 ‘1 � jq1ijq2�; ‘2 � jq2ijq1�: (113)

Notice that these solutions are complex, as usual for qua-

6These are the ‘3, ‘4 of Ref. [2].
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druple cuts. There is a universal Jacobian factor, which in
general is a function of u. Putting it all together we have

 Cq4 �
Z 1

0
duu�1��J�u�; (114)

where J�u� is the Jacobian and should be symmetric in K,
P1, P2.

Next we consider the quadruple cut of pentagons. The
calculation is similar, so we shall be brief. After t integra-
tion we have
 

Cq5 �
Z 1

0
duu�1��

Z
h‘d‘i�‘d‘�

�1� 2z�K2 �M2
1 �M

2
2

h‘jKj‘�K2h‘jQ3j‘�


 �
�
K2h‘jQ1j‘�
h‘jKj‘�

�
�
�
K2h‘jQ2j‘�
h‘jKj‘�

�
;

with the Qi defined in Eq. (112).
Now we need to sum up the contributions of the two

solutions. The Jacobian of the two solutions is the same.
We end up with7

 

Cq5 �
Z 1

0
duu�1�� J�u�

K2

1

2

�
hq1jKjq2�

hq1jQ3jq2�
�
hq2jKjq1�

hq2jQ3jq1�

�

�
Z 1

0
duu�1�� J�u�

2K2 S�Q2; Q1; Q3; K�; (115)

where S�Q2; Q1; Q3; K� was defined in Eq. (67). We see
again that the relative factor between boxes and pentagons
is S���=�2K2�, just as we learned from the double cut.

In general, we perform the t-integral first and then add
the two solutions. This gives a rational function R�u�. Then
we need to split

 R�u� � P�u� �
X
Q3

aQ3

S�Q2; Q1; Q3; K�

2K2 ; (116)

where P�u� is a polynomial that gives the box contribution,
and aQ3

are constants in u that give corresponding coef-
ficients of pentagons. This decomposition is the same as
the one given by Eq. (89).

After getting box and pentagon coefficients from qua-
druple cuts, one might continue by applying triple cuts to
target specific triangle coefficients, and then finally use the
usual double cut for the bubble part only. Triple cuts have
been used to get particular one-loop coefficients in
Refs. [25–28], and recently a nice paper [11] has described
a general procedure to compute triple cuts in arbitrary
dimensions. One can try to systematically study the triple
cuts of Ref. [11] along the lines presented in this paper. It is
easy to see that the delta function there (plus possible
derivatives of delta function) corresponds to our multiple
pole.

C. Comparison with OPP method

Recently, a computation by Ossola, Papadopoulos, and
Pittau (OPP) [2] has been attracting attention. It seems to
be a very simple reduction method, which can be per-
formed at the integrand level. The key point of the OPP
method is that knowing the general form of spurious terms,
one can solve algebraically for the coefficients of physical
and spurious terms from knowing the initial data. The work
we have presented here is in the same spirit. In our method,
it is through splitting into partial fractions that we are able
to identify contributions to the various basis integrals and
find the functions for these coefficients.

We remark that in Ref. [2], it is claimed that in the
renormalizable gauge, there is an upper bound on the
number of spurious terms. For example, there are six for
triangles, eight for bubbles. The upper bound in the OPP
method will correspond to the upper bound of n in our
factor h‘jKj‘�n. Our experience suggests that we will al-
ways find n  4. The reason is the following. Before the t
integration we have

 

QN1
i�1�aij

~‘jbiiQN2
j�1��

~‘� Pj�2 ��2�
;

where the power of ~‘ in the numerator N1 has an upper
bound, N1  N2 � 2. The reason is that in renormalizable
gauge, the expression derived from Feynman rules has the
property that the degree of ~‘ in numerator is less than or
equal to that in the denominator. After peeling off the two
cut propagators, we have N1  N2 � 2. Now we count the
powers of 1=h‘jKj‘� after t integration. Numerators con-
tribute�N1 while denominators contribute N2. From

R
tdt

and the delta function, we get an additional �2. In all, we
have �1=h‘jKj‘���N1�2�N2 , thus n � N1 � 2� N2  4.

Assuming that indeed n  4, the correspondence be-
tween our method and the OPP method becomes clearer.
It is easy to see that box and pentagon coefficients have the
same expressions. For triangle, we have multiple poles up
to order 4. From our discussion in the Appendix, it can be
seen that a pole of order n can be traded for a simple pole
with an �n� 1�-th derivative. In our case, with n  4 we
have up to third derivatives. This is similar to j � 1, 2, 3 in
Ref. . For bubble coefficients, we have up to three terms,
and each one has multiple poles up to order three, so we
would expect 3
 2 � 6 contributions, compared to the
eight spurious terms of the OPP method. Our impression
is that the spurious terms of OPP are hidden as multiple
poles as well as simple poles in our language. The alge-
braic complexity of the two methods should be equivalent.
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APPENDIX A: EVALUATION OF RESIDUES

In this Appendix, we discuss how to evaluate the various
functions we defined in Sec. IV to get formulas for coef-
ficients of the basis integrals. Our aim is to make the
formulas programmable, so we go into some detail.

1. Box coefficients

The box (and pentagon) coefficients are given by
Eq. (88),

 Cbox;ij �
K2

�1� 2z�

�Fi;j�P�ij�1 � � Fi;j�P
�ij�
2 �

2

�
; (A1)

where

 Fi;j�P
�ij�
1;2 � �

G�P�ij�1;2 �
Qn�k�2
s�1 �asP

�ij�
2;1 �

hP�ij�1;2 jKjP
�ij�
2;1 �

nQk
t�1;t�j;ihP

�ij�
1;2 jQtjP

�ij�
2;1 �

:

Let us rewrite the coefficient as

 Cbox;ij �
K2

2�1� 2z�
N
D
; (A2)

where8

 

N
D
� Fi;j�P

�ij�
1 � � Fi;j�P

�ij�
2 �;

N � G�P�ij�1 �
Yn�k�2

s�1

�asP
�ij�
2 �hP

�ij�
2 jKjP

�ij�
1 �

n



Yk

t�1;t�j;i

hP�ij�2 jQtjP
�ij�
1 � �G�P

�ij�
2 �



Yn�k�2

s�1

�asP
�ij�
1 �hP

�ij�
1 jKjP

�ij�
2 �

n
Yk

t�1;t�j;i

hP�ij�1 jQtjP
�ij�
2 �;

D � hP�ij�1 jKjP
�ij�
2 �

n
Yk

t�1;t�j;i

hP�ij�1 jQtjP
�ij�
2 �hP

�ij�
2 jKjP

�ij�
1 �

n



Yk

t�1;t�j;i

hP�ij�2 jQtjP
�ij�
1 �:

For D we use the following identity:

 h�1jSj�2�h�2jSj�1� � �2�1 � S��2�2 � S� � S
2�2�1 � �2�:

(A3)

Then,

 

hP�ij�1 jKjP
�ij�
2 �hP

�ij�
2 jKjP

�ij�
1 �

� �2K � �Qj � y
�ij�
1 Qi���2K � �Qj � y

�ij�
1 Qi�� �

K2��ij�

Q2
i

	 T�Qi;Qj; K�:

The function T�Qi;Qj; K� in this formula is T2=Q
2
i , with

the definition of T2 given in (61). Using this definition we
have

 D � T�Qi;Qj; K�n
Yk

t�1;t�j;i

T�Qi;Qj;Qt�: (A4)

It is easy to see that each term in N may be written as a
product of the form

 

�asP2�hP2jQjP1�hP1bsi

� �asjP2QP1jbsi � �asj�Qj � y2Qi�Q�Qj � y1Qi�jbsi:

Thus we see that the evaluation of box coefficients (A2) is
straightforward.

2. The residue of multiple poles

For triangles and bubbles, we need to know how to get
residue of multiple poles. There are several ways to do this.
The first one is to use the splitting method discussed in
Ref. [7].

The second method is to shift momentum parametrically
and then take the limit where the parameter goes to zero.
We illustrate this method with the example of a double
pole. We denote the small parameter by �.

 

1

h‘�i2

Qk
j�1h‘ajiQk
j�1h‘bji

!
1

h‘�ih‘��� �	�i

Qk
j�1h‘ajiQk
j�1h‘bji

�
1

h���� �	�i

Qk
j�1h�ajiQk
j�1h�bji

�
1

h���� �	�i

Qk
j�1h��� �	�ajiQk
j�1h��� �	�bji

�
1

�h�	i

Qk
j�1h�ajiQk
j�1h�bji

�
1�

Qk
j�1�1� �

h	aji
h�aji
�Qk

j�1�1� �
h	bji
h�bji
�

�
!

1

h�	i

Qk
j�1h�ajiQk
j�1h�bji

�
�
Xk
j�1

h	aji

h�aji
�
Xk
j�1

h	bji

h�bji

�

�

Qk
j�1h�ajiQk
j�1h�bji

�Xk
j�1

hajbji

h�ajih�bji

�
:

8Our functions jP�ij�1 ijP
�ij�
2 � and jP�ij�2 ijP

�ij�
1 � showing up in N and D are the ‘3, ‘4 of Ref. [2].
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We see that this is the correct result. Compared to the first method, we have more terms and one extra auxiliary spinor �.
However, in this method, the symmetry among ai’s and bi’s is explicit.

Now we can use the above idea to get the general expression for multiple poles:

 

1

h‘�in

Q
ih‘aiiQ
jh‘bji

!
1Qn�1

s�0 h‘��� s�	�i

Q
ih‘aiiQ
jh‘bji

�
Xn�1

s0�0

1Qn�1
s�0;s�s0

h��� �s0	���� s�	�i

Q
ih��� �s0	�aiiQ
jh��� �s0	�bji

�
Xn�1

s0�0

1

�n�1h�	in�1 Qn�1
s�0;s�s0

�s� s0�

Q
ih��� �s0	�aiiQ
jh��� �s0	�bji

�
Xn�1

s0�0

1

�n�1h�	in�1 Qn�1
s�0;s�s0

�s� s0�

Q
ih�aii�1� �s0

h	aii
h�aii
�Q

jh�bji�1� �s0
h	bji
h�bji
�

�
1

�n�1h�	in�1

Q
ih�aiiQ
jh�bji

�Xn�1

s0�0

1Qn�1
s�0;s�s0

�s� s0�

Q
i�1� �s0

h	aii
h�aii
�Q

j�1� �s0
h	bji
h�bji
�

�
:

We see that what we need to do is to expand the expression inside the parentheses as a series in �, keep only the terms up to
order �n�1. Although this expression has one auxiliary spinor �, the final result does not depend on it. Without writing out
intermediate steps, we reach the following result:

 

1

h�	in�1

Q
ih�aiiQ
jh�bji

�Xn�1

s0�0

sn�1
0Qn�1

s�0;s�s0
�s� s0�

X
N1�

P
k
j�1

mj�n�1

�Yk
j�1

���mj

�
h	bji

h�bji

�
mj
�� X

1i1<i2...<iN1
k�n�2

YN1

q�1

h	aiqi

h�aiqi

��
: (A5)

The third method is very similar to the second method. Upon noticing that

 

d

d�n�1

1

h‘�� �si
�
�n� 1�!h‘sin�1

h‘�� �sin
; (A6)

we can rewrite

 

1

h‘�in

Q
ih‘aiiQ
jh‘bji

!
1

h‘�� �sin

Q
ih‘aiiQ
jh‘bji

�
d

d�n�1

�
1

h‘�� �si
1

�n� 1�!h‘sin�1

Q
ih‘aiiQ
jh‘bji

�
:

Now we take the simple residue of h‘�� �si. That is, we set j‘i � j�� �si, take the derivative, and finally find that the
residue is

 Residue �
d

d�n�1

�
1

�n� 1�!h�sin�1

Q
ih��� �s�aiiQ
jh��� �s�bji

�
�!0

: (A7)

It should not be hard to check that Eq. (A5) is the same as Eq. (A7) if we identify 	 � s. As a demonstration, let us check
the case of a double pole:

 

1

h‘�� �si2

Qk
j�1h‘ajiQk
j�1h‘bji

!
d
d�

�
h‘si

1

h‘�� �si

Qk
j�1h‘ajiQk
j�1h‘bji

���������residue
�

d
d�

�
1

h�� �ssi

Qk
j�1h�� �sajiQk
j�1h�� �sbji

����������!0

�
1

h�si

Qk
j�1h�ajiQk
j�1h�bji

�X
j

hsbji

h�bji
�
X
j

hsaji

h�aji

�
:

This is exactly the same result given by the shifting technique.
Knowing how to evaluate the residue of multiple poles, we can discuss how to evaluate coefficients for triangles and

bubbles given by Eqs. (104) and (107). We use the third method. For example, for Eq. (104) we can shift K ! K � �s.
Then using Eq. (A6) we can transfer it to the residue of a simple pole. We can further simplify the sum of these two simple
poles using the same technique discussed in our previous subsection for box coefficients. After that we can take the
derivative and the �! 0 limit by truncating the power series.
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