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Abstract

In this paper, we study the well-posedness of the initial value problem for the
Schrodinger-Boussinesq system. By exploiting the Strichartz estimates for the linear
Schrédinger operator, we establish the local and global well-posedness of initial value
problem for the Schrédinger-Boussinesq system with the initial data in low regularity
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1 Introduction

It is well known that the nonlinear Schrédinger (NLS) equation models a wide range of
physical phenomena including self-focusing of optical beams in nonlinear media, the mod-
ulation of monochromatic waves, propagation of Langmuir waves in plasmas, etc. The
nonlinear Schrodinger equations play an important role in many areas of applied physics,
such as non-relativistic quantum mechanics, laser beam propagation, Bose-Einstein con-
densates, and so on (see [20]). The initial value problem (IVP) or the initial-boundary
value problem (IBVP) for the nonlinear Schrédinger equations on R™ have been extensively
studied in the last two decades (e.g., see [3]-[4], [1], [7], [17])-

The Boussinesg-type equations are essentially a class of models appearing in physics
and fluid mechanics. The so-called Boussinesq equation was originally derived by Boussi-
nesq to describe two-dimensional irrotational flows of an inviscid liquid in a uniform rect-
angular channel. It also arises in a large range of physical phenomena including the prop-
agation of ion-sound waves in a plasma and nonlinear lattice waves. The study on the IVP
for various generalizations of the Boussinesq equation has recently attracted considerable
attention from many mathematicians and physicists (see [11], [13]).

This paper concerns with the initial value problem for the Schrédinger-Boussinesq

system
iug + Au = uv + alul?u, w1
vy — Av + A%0 = Alul?

with the initial data

t=0: u=up(x), v=uvo(x), vr=n101(x), (1.2)

where u = u(x,t) and v = v(z,t) are complex and real-valued functions of (x,t) € (R",R™)
respectively, ug(x) is a given complex value function, vg(z) and vi(x) are two given real
value functions, « is a real parameter.

The system (1.1) of the Schrédinger-Boussinesq equations is considered as a model of
interactions between short and intermediate long waves, which is derived in describing the
dynamics of Langmuir soliton formation and interaction in a plasma (see [14]-[16], [22]) and
diatomic lattice system (see [21]), etc. The Schrodinger-Boussinesq system also appears in
the study of interaction of solitons in optics. The solitary wave solutions and integrability
of nonlinear Schrédinger-Boussinesq equations has been considered by several authors

(see [14]-[15]) and the references therein. The IVP for various generalizations of nonlinear



Schrodinger-Boussinesq equations on R™ have been extensively studied (see [6], [5], [12],
[18], [10]). In [6], Guo and Shen established the existence and uniqueness theorem of the
global solution of the Cauchy problem for dissipative Schrodinger-Boussinesq equations in
H*(integer k > 4) with n = 3. For the initial-boundary value problem for the damped
and dissipative Schrodinger-Boussinesq equations, Guo and Chen [5] and Li and Chen [10]
investigated the existence of global attractors and the finiteness of the Hausdorff and the
fractal dimensions of the attractor for one-dimensional case (n = 1) and multidimensional
case (n < 3), respectively. Linares and Navas [12] considered the IVP for the following

one-dimensional Schrodinger-Boussinesq equation

iug + 02u = uv + alul?u,

(1.3)
vy — O2v + Ofv = O2(Blv[P~1v + |ul?)

and established the local and global well-posedness results in the spaces L?(R) x L*(R) x
H™YR) and HY(R) x H'(R) x L?(R), provided that 3 is a positive (or negative) constant
and the initial data is sufficiently small, where p > 1 and « is a real number. Ozawa and

Tsutaya [18] studied the IVP for the following schrédinger-improved Boussinesq equations

ur + Au = uv,

(1.4)
Uit — Av — A’l)tt = A|u|2

and proved that the IVP is locally well-posed in L?(R") x L?(R") x L*(R") (n = 1,2,3)
and globally well-posed in H'(R") x L*(R") x L*(R")(H ' (R") (n = 1,2).

In this paper, we will investigate the well-posedness on the IVP (1.1)-(1.2), more
precisely speaking, we will establish the local well-posedness in L?(R") x L?(R") x H2(R")
and the global well-posedness in H'(R") x H'(R™) x H~Y(R") for the IVP (1.1)-(1.2).
Moreover, we also study the local and global well-posedness for the IVP (1.1)-(1.2) in
the space H*(R) x H*(R) x H*"2(R) (0 < s < 1). Here we would like to point out
that the method employed in the present paper is quite different from usual way used in
other papers. Instead of working with the IVP (1.1)-(1.2), we will consider an equivalent
integral equation (only) about the unknown function u. By investigating this integral
equation, we can establish the local and global well-posedness of the solution u of the
integral equation. And then, the local and global well-posedness of v can be obtained
by studying the corresponding integral equation corresponding to the second equation in

(1.1). This is different from other works (e.g., see [6], [5], [12], [18], [10]).



The paper is organized as follows. In Section 2, we state some notations and give
some preliminaries. Section 3 is devoted to establishing the local well-posedness of the
IVP (1.1)-(1.2) in L2(R") x L2(R") x H~2(R"), while Section 4 is devoted to establishing
the local and global well-posedness in the space H!(R") x H'(R") x H~!(R"). Finally, in
Section 5 we study the local and global well-posedness of the IVP (1.1)-(1.2) in fractional

sobolev spaces.

2 Preliminaries

In this section, we give some preliminaries.

2.1 Notations

Throughout this paper, we will use the following notations:

e The Fourier transform of f is denoted by

fo) = [ e e (2.1)

e The Fourier inverse transform is denoted by

< 1

x) = et . .
Fa) = e [, e e (2.2

e LP(R™) (1 < p < o0) denotes the usual space of all LP(R")-functions on R" with
LP-norm.

e H* denotes the s-th order Sobolev space on R™ with the norm

e = (1 = 2)2 fllz = 11+ [€1%)2 f1] 2, (2.3)

where s is a real number and [ is unitary operator.

e The Riesz potential of order —s is denoted by

D; = es([€°£(£))" (2.4)

e The LP — L7 norms are denoted as

r :
/1l 2p 2 = ( / |rf<-,t>ufzth) ,

17 zecy = (/R (/0T|f(-,t)]th>zdx>;.

(2.5)




2.2 Method used in this paper

We can simplify the problem (1.1)-(1.2) by writing explicitly the solution of

v(z,t) = %W(t)vg(x) + W(t)vi(z) +/0 W(t —7)Aluldr

to get the decoupled integro-differential equation

iug + Au=u (;W(t)vo(x)> +u(W (t)vi(x)) + u/o W(t — 7)Alu2dr + a|ul*u

with the initial data

u(z,0) = uo(z),

where
0 1 . 1
iV Om@) = g [ (e coslel(1 + e b
1 ey (o SIIEI(L+ €]t
w = . d
(0 (@) = s [ @@ PRI
and

/t W(t—T)A|U|2dT: o 1 /t/ eiaCESin‘§|(1+ ’5‘2)§<t_7—) |£\.7:(|u]2)dfd7
0 0 n

(2m) (1+ )=

It follows from (2.7)-(2.8) that

u(t) = S(t)uo — i/o S(t —7)[Fo(u(r)) + Fi(u(r)) + Fa(u(T)) + F3(u(r))]dr,
where 3
Ratult) =u (WO ). Fiu) = a6 @),
Fy(u(t)) = u/o W(t —7)Alufdr, F(u(t)) = alul®u,
and

. . Vv
S(tyuo = e ug = (7" )

is the unitary group associated to the linear Schrédinger equation

tup + Au = 0.

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

The method used in this paper is as follows. Instead of working with the problem

(1.1)-(1.2), we use its equivalent integral equation (2.12). Then we use LP — L9 estimates

or Strichartz estimates to prove our results by the contraction mapping principle. These



type of estimates were first established by Strichartz [19] for the solution of the linear
Schrodinger equation (2.15) with the initial data (2.8), i.e., the solution of the following

initial value problem

iug + Au =0,
u(x,0) = ug(z).

He proved that the solution of the problem (2.16) satisfies the estimate

2(n+2) ﬁ
(// 1S (#)uo () 2 dxdt) < cllug|l . (2.17)
R n

Generalization of these estimates have been obtained by several authors. For instance,

(2.16)

Ginigre and Velo [3] and Kenig, Ponce and Vega [8]. Since the energy for the solution
u of the IVP (1.1)-(1.2) is conserved, we obtain the global well-posedness in H!(R") x
H'(R™) x H~Y(R™). From the global result in H'(R") x H'(R") x H~'(R"), the global
result in H*(R) x H*(R) x H*"2(R) followed.

2.3 Preliminaries

Next we briefly recall some known results on smoothing effect estimates on free Schrodinger
evolution group.

Consider the IVP (2.16) and denote its solution by wu(z,t) = S(t)up, where S(t) is
defined by (2.14).

In order to state some results on smoothing effect estimates on free Schrodinger evo-

lution group, we need the following definition.

Definition 2.1 A pair (q,r) is called to be admissible, if
2 1 1
Y 2.1
q n<2 T> 215

2<r<ocoif n=1; 2<r<ooif n=2). (2.19)

and
2n

n —

2<r<
In this paper, we will use the following well-known Strichartz estimates.

Lemma 2.1 If (q1,71) and (q2,72) are admissible, then

IS ol < elluoll, (220

t
S(t— G', d < |G TN 2.21
|[[se=neen | <elely,, (221




11
(&b

t
‘/ S(t—7)G(-,T)dr <cT G|l . (2.22)
0 Ly L2L2
where
1 1 1 1
r2 Ty q2 qs

On the other hand,

Lemma 2.2 The solution u of the IVP (2.16) satisfies the following Kato smoothing effect

sup /
zeR R

See Cazenave [1] or Ginibre and Velo [4] for the proof of estimates (2.20) and (2.21),

1
DzS(t)g

> 2
dt} < cllglz2- (2.24)

see Corcho-Linares [2] for the proof of (2.22), see Kenig, Ponce and Vega [8] for the proof
of (2.24).

Lemma 2.3 Let s € R. For all t > 0, we have

B
H(%(W(t)%) < |lvollgs (where vo € H?), (2.25)
HS
W (t)vr || s < 2(t + 1)|Jvr||gs—2  (where v; € H*™?), (2.26)
2
‘ %(W(t)vo) < |lvo|lgs+2 (where vy € H*?), (2.27)
HS
0 s
H&(W(t)vl) < |lvillgs  (where vy € H?). (2.28)
HS
Proof. In fact,
Dww)| = |la+ieriz (Lo
ot Ny ot )
= |1+ [€1%)3 cos [€](1 + [€]2) 200 (€)]| 2
< @+ 13208 = llvollas-

This gives the proof of (2.25).



On the other hand,

W ®wilFe = 10+ P 2FW (@)vn)]72
1 2
AR et e
. 12
e R e
. 12
[ P o
A e O

1+—‘§|2 3 2% 21~ 2
/ o U e g Sim €1+ I 2610 (€) e

IN

422 / (14 [€12)° 2} (€) [2de +
|£1<1

2y5—2 2 Y is (o)
/|§|>1<1+|5| ) <1+ w) 6,(6) e

482 on 3 + 2 / (1+ [€[2)°2 1 (6)|2de

|€]>1

IA

IN

(482 + 2)[|v1[[Fe—e < A(E+ 1) or]lFs—.
This proves the estimate (2.26).

The proof of (2.27) and (2.28) is similar to that of (2.25), so we omit the proof. Thus,
the proof of Lemma 2.3 is completed. [ |

In order to estimate the nonlinear terms with fractional derivatives, we need the fol-

lowing commutators estimates established by Kenig, Ponce and Vega [9].

Lemma 2.4 Let o € (0,1), 01,2 € (0,) and p,p1,p2,4,q1,92 € (1,00). If they satisfy

1 1 1 1 1
- 4+, =4 (2.29)

1
a1 +oay =a, -— s )
p p1 P2 q q1 q2

then it holds that
1Dz (f9) = fD3g — gDz fllzzra < ell D fll o o 1529 pr2 oo (2.30)

and
1Dz (fg) — fD3g — gDz flle < cllgllzee || Dg fllze, (2.31)

moreover, (2.30) is still true for the case that an =0 and q1 = oo.



See the Appendix in Kenig, Ponce and Vega [9] for the proof.

The operators %W(t) and W (t) also satisfy the estimates of LP — L7 type similar to
those of the solution of the linear Schrédinger equation. In this case, the proof is very
complicated. Fortunately, using the oscillatory integrals theory developed by Kenig, Ponce

and Vega [8], Linares have obtained these estimates (see [11]).

Lemma 2.5 For f € L?(R), it holds that

T 9 4 1 \
(/ O wnys dt) < o1+ T flle, (2.32)
0 Lo
T 1 )
(/0 \W(t)axfu%wdt) < e+ TH s (2.33)
and )
T 4
(/0 HW(t)é’%fH‘ioodt) < el fll.. (2.34)

See Lemmas 2.4-2.6 in Linares [11].

We now state the Kato smoothing effect estimates.

Lemma 2.6 It holds that

[

T 10 2 2 1
sup / D2 LWl dtd < (1413 ooll, (2.35)
z€R 0 ot

T, 3 )
sup{/ \D%W(t)ﬁxvﬂzdt} < (14 T2)||v1||g— (2.36)
zeR 0

and
1

T 1 2 1
Sup{/ |D§W(t)a§v1|2dt} < (14 T2)||vr| 2. (2.37)
z€R 0

The proof of Lemma 2.6 has been given in Linares [11] and Kenig, Ponce and Vega [8].

3 Local well-posedness in L*(R") x L*(R") x H %(R")
Define the mapping

O(u)(t) = S(t)uo — 2/0 S(t = 7)[Fo(u(r)) + F1(u(7)) + Fa(u(r)) + F3(u(r))ldr,  (3.1)



where Fj(u(7)) (i = 0,1,2,3) are defined by (2.13). For any fixed T' > 0, we introduce the

function space

X(T) £ ([0, T); L2 (R™) () L* ([0, T); L*(R™))

equipped with the norm defined by

A
lullxery = lellzgers +llull s, VueX(T).

T Hx

It is not difficult to show that X (T') is a Banach space. For R > 0, let Br(T') be the closed

ball of radius R centered at the origin in X (7'), namely,
A
Br(T) = {u € X(T)| ||ullx(r) < R}.

In what follows, we show that ® has a unique fixed point in Br(T") by appropriately
choosing R and T'.

Lemma 3.1 (I) a # 0: Assume that ug,vg € L*(R), v1 € H 2(R), then ® : BR(T) —
Bgr(T) is a strictly contractive mapping;
() o = 0: Assume that ug,vo € L*(R"), v1 € H-2(R"), then ® : Br(T) — Bgr(T)

is a strictly contractive mapping, where n takes its values in {1,2,3}, i.e., n =1,2,3.
Proof. Step 1. Using (2.20) and noting the group’s properties, we obtain

15@)uollx(ry = 1S @)uollzgerz + 1S@)uoll s, < colluollzz. (3.2)
T Lz
Step 2. We next estimate the integral part in (3.1).

Taking (q1,71) = (00,2), (g2,72) = (£,4) and using (2.21) yields

Taking (q1,71) = (%,4), (g2,72) = (%,4) and using (2.21) again leads to

<c|Fo(u)ll s 4 (3-3)

L¥ L3

/0 S(t — 7)Fo(u(r))dr

LgL?

t
/ St —7)Fo(u(r))dr|| o  <c[Fo(u)] s 4. (3.4)
0 LI LA Ly "L

By Hélder inequality and (2.25), we have
— 9 0

IR s, g = (WO g, o <ol g [GOVOW] s,
(3.5)

<

T4—7n <T4—7n
Pl g, ol e < Tl ol

10



Combining (3.3), ( ) and (3.5) gives

4-n
(t —7)Fo(u(r))dr <aT 7 |lvoll g2 llull x (1) (3.6)

X(T)

Using the same method as that of proof of (3.3)-(3.4), we can prove

(t —7)Fy(u(T))dr (t —7)F(u(T))dr <c|Fi(w)| s 4.

L L2 Ly L Ly "L}
(3.7)
By Hélder inequality and (2.26), we have
= <
IR g = VO g < s VO],

< (T+1)HUH 8 HleH 2 < 277 (T + 1) lu xcy o1 -2

(3.8)
Thus, combining (3.7) and (3.8) yields
t
4—n
/ S(t = 7)Fi(u(r))dr S T 7 (T + Dlor| g-2lullx z)- (3.9)
0 X(T)
Similar to (3.7), we have
t t
/ S(t — 7)Fa(u(r))dr / St —71)F(u(n))dr|| o  <c[F(u)] s 4
0 LPL2 0 LI LA r L3
(3.10)
Using Holder inequality, Minkowski inequality and (2.26) gives
t
IR0 s, 5 = w[ We-nappar| L
Ly LBTnLCi
< Jull s / Wt - 1)Audr|
Lf L3 L2
< TT | s H/ W(t — 7)Aul*dr
L%Lg LooL2
, (3.11)
< T |ul s sup / W(t —7)Alul*dr
Ly L4 t€[0,T] L2
< (T + Dllull 5 LZHHU‘QHLlTLg
< T+l g ol
T Hx TLélcl
4-n
< T2 (T4 Dl
Combining (3.10) and (3.11) leads to
/ S(t — 7)Fy(u(r))dr <72 (T + l)HuHX . (3.12)
X(T)

11



Similar to (3.7) again, we have

t t
\ | se-npumar| | [se-nR@mr Bl s .
0 LL2 0 LrLA Ly "L
(3.13)
Thanks to Holder inequality,
! 2 2
St — 1) F3(u(7))dT < clallllulfull s 4 <clall|u|| s U 4
| [ se-nmeenar| < el s, g < ollul g Ml
2-n 2-n
< ol Tl y < lalT*F ulkr)
T
(3.14)

Step 3. Combining (3.1), (3.2), (3.6), (3.9), (3.12) and (3.14) yields

4-n 4-n
[@(llxa) < colluollze + T 5 [lvoll 2 ullx(ry + T35 (T + Dfor|| g-2{lul x @)+

6-n = 2-n 3
(T2 +T72 +[afT 2 )|[ull )
(3.15)

Letting R = 4col|upl| 2 and choosing T' so small that
(3.16)

IR

4-n 4-n 6—n 4-n 2=n. 9
ci1T = ”’U()HL2—|-CQT 4 (T+ 1)HU1HH*2+C3(T 2 + 12 +‘04|T 2 )R <

In fact, for two cases under consideration: (I) a #0 and n=1; (I) a =0 and n =1,2,3,

we can always choose small 7" such that (3.16) holds. Thus, we obtain from (3.15) that
®(u)l|x ) < R.

This implies that the mapping ® maps Bgr(T) into Br(T).
Step 4. In what follows, we prove that when T is suitably small, ® is a contractive

mapping of Br(T).
In fact, for v and @ being in Br(T'), we have

O(u)(t) — B(a)(t) = —i /0 S(t — 7)G(r)dr, (3.17)

where

G(7) = Fo(u(r))—Fo(a(r))+F1(u(r)) = F1(a(r))+Fa(u(r)) - Fa(a(r))+F3(u(T)) = F3 (a(r)).

Similar to (3.15), we get

~ 4—n ~ 4—n ~
[@(u) = (@) x () < aaT 7 [lvollg2llu — @l x () + 2T ™5 (T + 1or]| g-2lu — @l x 1)+
6-—n 4—n 2—n ~ ~ ~
(T2 +T 7 +]a|T77 ) |lu—allxerllulk g + lulxa @l x ) + @l o)

12



For the cases under consideration: (I) & # 0 and n = 1; (I) a = 0 and n = 1, 2,3, we can

always choose T so small that (3.16) and the following inequality hold

(3.18)

N

4-n 4-—n 6—n 4—n 2—n 2
a1l 2 H?)0||L2+CQT 4 (T+1)”U1HH*2+3C3(T 2 + T2 +\a\T 2 )R <
Thus, we obtain
1 (u) — @(@)|| x () < *HU_UHX

This implies that ® is a strict contraction mapping on Bgr(T'), provided that T satisfies
(3.16) and (3.18). Thus, the proof of Lemma 3.1 is finished. [ |

When « # 0, using the part (I) in Lemma 3.1, we may prove the following theorem.

Theorem 3.1 Assume o # 0, ug,vo € L?(R),v; € H 2(R). Then there exists a positive
constant T = T(|al, ||uo|| L2, [|voll 12, ||v1 | zr—2) such that the IVP (2.7)-(2.8) has a unique

solution u = u(x,t) on the strip R x [0, T] and the solution satisfies the following properties
u e C([0,T]; L*(R)) () L*(0, TT; L (R), (3.19)

for an admissible pair (q,r)
Julzg ;< oo, (3.20)

and the mapping (ug,vo, v1) — u(t) from L*(R) x L*(R) x H=2(R) into the space given
by (3.19) is locally Lipschitz. Moreover, the function v = v(x,t) defined by (2.6) satisfies

v e C([0,T]; LA(R)) () €' ([0, T); H2(R)). (3.21)

Proof. Thanks to the contraction mapping principle and the Lemma 3.1, there exists a
unique u € Br(T) such that ®(u) = u.
We now prove (3.20).
Noting the fact u = ®(u), in a way similar to the estimate on [|®(u)||x () we have
3 3
lullgzy < colluollrz + cxTa ol 2 l[ullx 7y + 2T (T + Vvi]| g-2ull x () +
eo(TF + T3 + ol TH) [l ) < o0,

where (g, r) is an admissible pair.

We next investigate the property of v(t) defined by (2.6).

13



Using Minkowski inequality, Lemma 2.3 and Holder inequality, for fixed t € [0,7T] we
obtain from (2.6) that

)
| o)

t
ol < W@+ [ W - notpar
L2 0 L2
g 22
< loollze + 2T + Dlferllas + 20+ 1) [ Julfade (322)
0
3
< llwollzz +2(T + Dffor -2 + 20T + 1)lullZs 1.
Notice that
ve(x,t) = a—2W(t)U (x) + QW(t)v (x) + /t gW(t — 7)0%|ul?d
Y= 52 0 ot L o Ot 7O |UAT,
where
o 1 iz 2\3 2\+
W (tvo(z) = —o5— | e0o(&)[SI(1 4 [§]7) 2 sin [¢](1 + |€]7) 2¢dE.
6t 2T R
Similar to (3.22), we have
T
Jo®llrs < ool + foala-a+ | ulode
0 (3.23)
200,112
< wollzz + llorllz—= + T lullzs ps-
Combining (3.22) and (3.23) gives (3.21) directly. This proves Theorem 3.1. [

For the case a = 0, we have

Theorem 3.2 Suppose that « = 0 and n = 1,2,3, suppose furthermore that ug,vy €
L?(R™), vy € H72(R™). Then there exists a positive constant T = T(|lug|| .2, ||vol| 2, ||v1 || g-2)
such that the IVP (2.7)-(2.8) has a unique solution u = u(x,t) on the strip R™ x [0,T]

and the solution satisfies the following properties
we C((0,T); L2(R™) () L (0, T): LA(R™), (3.24)

for an admissible pair (q,r)

lullzs 1 < o, (3.25)

and the mapping (ug,vo,v1) — u(t) from L*(R") x L*(R") x H~2(R") into the space
given by (3.24) is locally Lipschitz. Moreover, the v = v(x,t) defined by (2.6) satisfies

v e C([0,T]; LA(R™) (| ([0, T]; H(R™)). (3.26)

14



Proof. The proof is similar to that of Theorem 3.1, so we omit it here. |

In what follows, we study some regularity properties for the solution of the IVP (1.1)-
(1.2). We have

Theorem 3.3 If (u,v) is a solution of the IVP (1.1)-(1.2), and the initial data satisfies
(uo, w0, v1) € L*(R) x L*(R) x H™*(R),

then
1 1
D2u,D2v € L™ (R; L*0,T)).

Proof. Since (4,00) and (6,6) are admissible pairs, it follows from Theorem 3.1 that
[ullpa poo <00, lullge s < oo
Notice that the solution u = u(x,t) of the IVP (1.1)-(1.2) satisfies
u(z,t) = S(t)up — i/ot S(t —7)(wv + |a)[u|®u)(T)dr. (3.27)
Using Minkowski inequality and (2.24) gives

1 1 t 1
IDZull s < 1D2S(t)uolloer2 + /0 |D2S(t —7) (uv + |adjul*0)]| o 2.

IN

t
clluollz + ¢ / i + lalfulull 2 dt
0

IN

3 1 3
clluollpz + cT's HUHL‘;L;;O [vllLgerz + cla|T2 ||U”L6TLg-

Using Minkowski inequality, Lemma 2.6 and Holder inequality, we obtain from (2.6) that

1 19
IDilizs < [[DFg WO

1 tooa
FIDZW ()01 || ez + [ IDEW (= 7)02|uf?|| oo p2.dT
ot =y T

LgeL2

IN

T
(14 T3)|[voll g2 + ¢(1+T2) o] g2 + (1 + T2) / ]uf?||dt
0

1 1 3 1
< e+ T2)vollgz + e+ T2) il -2 + T3 (1+T2) |l 75 14

This proves Theorem 3.3. |

4 Local and global well-posedness in H!(R")x H!(R")x H~1(R")

For any fixed T" > 0, define the function space
A n
X(T) = C([o,T); H'(R™))

15



equipped with the norm defined by

A
lullxry 2 Nl + ol 3, + IVl ¥ e X(T)

x

It is not difficult to show that X (7) is a complete metric space. For any fixed R > 0, let
Bpr(T) be the closed ball of radius R centered at the origin in X (7"), namely,

By(T) = {u € X(T)||lullx(r) < R}.
Introduce the mapping
O(u)(t) = S(t)ug — i/o St —71)[Fo(u(r)) + Fi(u(r)) + Fo(u(r)) + F3(u(r))]dr, (4.1)

where F;(u(7)) (i = 0,1,2,3) are defined by (2.13).
In what follows, we prove that ® has a unique fixed point in Br(T") by appropriately

choosing R and T'. We first prove the following lemma.

Lemma 4.1 (I) a # 0: Assume that ug,vo € H*(R), v € H }(R), then ® : BR(T) —
Bgr(T) is a strictly contractive mapping;
(I) o = 0: Assume that ug,vo € HY(R"), v; € H Y(R"), then ® : BR(T) — Bg(T)

is a strictly contractive mapping, where n takes its values in {1,2,3}, i.e., n =1,2,3.

Proof. Thanks to (2.20),

1S )uollx(ry < colluoll - (4.2)

Taking (q1,71) = (00,2), (q1,71) = (2,4), respectively, and (g2,m2) = (2,4) and using
(2.21) and (2.25) gives

Hv/ot S(t — ) Fy(u(r))dr

+ Hv/otsu ) Fo(u(r))dr

8
LL2 LnLA
< VR s
LY ™L3
0
=c V(ua—W(t)vo) 8 4
t L;B:Tng
0 0
<c|Vug Wt s, +ellua W)Vl s (4.3)
ot LE7L3 ot LEL3
<eval = | Zwiep Celull s ||2W (v
< R v 0 R v 0
LpLi || Ot L%%nL% Lrrs || ot Lﬁ%

< 4—n 4—n
< TNl g loollze + 5 ull g IVvollss

4-n
< I |Jwoll g flull x 1y

16



Using (2.26), in a way similar to (4.3) we have

+ HV/OtS(t —7)Fy(u(r))dr

Hv/otso: — 7VFy (u(r))dr

LgL? Ly (4.4)
4—n
< T (T + Dlvllg-llullx(z)-

Again, similar to (4.3), we get

8

+ HV/OtS(t ) Fy(u(r))dr

Hv/otsa — ) By(u(r))dr

LPL2 LR LA
t
<AVRW| = g = |V [ We-napfe)| Lo
Ly Ld Ly "LE

<<ﬂVUH8 st

Ly "L2

/ W(t — ) Alul2dr

cllull s W(t—T)AV|u|2dT
Ly Lz |1Jo

4
=n o,
L2

_l’_

4—n
ST [ Vaul| s
Ly Ls L2

t
/ W(t — 7)Alu|?dr
0

t
N H/ Wt — 7)AV |u2dr
i | o

LPL2

<"Vl 5l +wT4(T+1WM’84SW)/HVW|MWT
Li

z LT Ly xtEO

4—n 4—n
ScT?(T+1MVM|s uls  +cT T (T+1)|ul s /1HVthMhMt
wLa LELA Lr*L: Jo

x T x

A—n
ScTZ(T+1WVM|8|MW§
rle LpLi

< (T + 1)”“”){(7’

(4.5)
Similarly, we have
t t
HV/ S(t —7)Fs(u(r))dr + HV/ S(t—71)F3(u(r))dr|
0 sreg o Lf L4
<AV s g =clallluful s
T Li T T
<cla|[uVua| s 4 +cal|u®Val| s 4 (4.6)
L L3 LE L3
< cllallivul g I, o
nL2

2-n
< ello| T |[ull 7y

17



Noting (3.6), (3.9), (3.12), (3.14) and using (4.2)-(4.6), we obtain

4-m 4-n
[2(w)llxr) < colluollm +aT 5 ool g llullx(r) + 2T+ (T + Dlloill g1 lull x )+

2—n

6—n 4—n
c3(T™z +T2 +|ofT2 )Hu”i’((T)

(4.7)
Similar to (3.16), letting R = 4cg||ug|| ;1 and choosing suitably small T" leads to

4-n 4-n 6=n 4—n 2-n. o
al 7 ||vollgr + T % (T4 1)||vi||g-1 +e3(T 2 +T 2 +|afT 2 )R <

e~ w

Thus it follows from (4.7) and (4.8) that
[@(u)]lx(r) < R.

This implies that the mapping ® maps Bgr(T) into Bgr(T).

In what follows, we show that ®: Bgr(T) —— Bpg(T) is a strict contraction mapping,
provided that 7' is suitably small.

In fact, for arbitrary u,w € Br(T),

t 3
®(u)(t) — ®(a)(t) = —i/o S(t—7) Y (Fi(u(r)) = Fy(a(r))) dr. (4.9)
k

=0

Similar to (4.7), it follows from (4.9) that
~ 4—n . 4-n 5
[@(u) = @(a)l[x (1) < T |[voll g llu — @l xry + 2T (T + Dol g1 lu — @l x 1)+

6—n 4-n 2—-n ~ ~ ~
(T2 +T 7 +]a|T 72 )u—allxllul Xy + lullx@lalxay + lall5 )
Similar to (3.18), we can always choose T' so small that (4.8) and the following inequality

hold

4-n 4-n 6—n 4—n 2=n. 9
T+ H'l)oHHl + el (T‘f’l)”@lHH—l +3C3(T 2 + T2 —Ha\T 2 )R < (4.10)

N |

Therefore, we have
- 1 -
[®(u) — @(4) | x (1) < 5““ — | x (1)

This proves Lemma 4.1. |

In order to prove the global well-posedness of solutions for the problem (1.1)-(1.2), we

need the following Lemma.

18



Lemma 4.2 Assume that ug,vg € H'(R") and vi € H™1(R"), where n = 1,2,3. Then
the solution of the problem (1.1)-(1.2) satisfies the following energy equalities

[u(@)llz2 = [luol| 2 (4.11)
and
E(t) = E(0), (4.12)
where
2 1 -2 Lo 1 2 2 &4
B(0) = [Vulfs + 31-8)Furls + ol + 5190l + [ fulfode + Sl

Proof. We only prove the energy equalities for one-dimensional case, i.e., n = 1, the proof
for other cases is similar.
The proof of (4.11) is easy, here we omit it. In what follows, we prove (4.12).

A direct calculation yields

e = 2Re (/ uxuxt> —I—/(—A)_évt(—A)_évttdas—{—/vvtdl‘—l—
dt R R R

/ Vg Uzt dT +/ |u|?veda + 2Re/ utizvdx + 2aRe (/ \u|2uut) dz.
R R R R

Using the first equation in (1.1) and integrating by parts gives

2Re </ uxuxt> + 2Re/ utpvdr + 2aRe </ \u|2uut> dx
R R R

=2Re (/ (—02u + uv + a\u!%)ﬁﬂm)
R

= 2Re </ iutatdzn>
R

=0.

On the other hand, using the second equation in (1.1) and integrating by parts leads to

/(—8§)§vt(—8§)évttdx+/
R

vvtdaz—i—/vxvxtdm—k/ |u|?vda
R R R

= / vt((—é?g)_lvtt +v— 8%1} + |u\2)d:v
R
= /(3%)_12},5(1)” — agv + 3;11) — 8§|u|2)d:c
R

=0.

Therefore,

The proof of Lemma 4.2 is completed. |



Theorem 4.1 Suppose that « = 0 and n = 1,2,3, suppose furthermore that ug,vy €
HY(R™), v; € H~Y(R™). Then there exists a positive constant T = T (||uol| g1, ||voll g1, |v1 || g-1)
such that the IVP (2.7)-(2.8) has a unique solution u = u(x,t) on the domain R™ x [0,T]

and the solution satisfies the following properties
u € C([0,T]; HL(R™)), (4.13)
for an admissible pair (q,r)
lulla o + [Vl pg £ < oo, (4.14)

and the mapping (ug,vo,v1) — u(t) from H'(R™) x H'(R") x H~Y(R") into the space
defined by (4.13) is locally Lipschitz. Moreover, the function v = v(z,t) defined by (2.6)
satisfies

ve (0,7 H'(R™) () C'([0,T]; H(R™)). (4.15)
Furthermore, for any given positive T', the above solution can be extended to the domain

R" x [0,T].

Proof. By Lemma 4.1 and the contraction mapping principle, there exists a unique
u € Br(T) such that
O(u) = u.

It is not difficult to show that this solution satisfies
lallze sy + IVullzs ;< collwollin + x5 ool ullx oo+
2T T (T + Vvt |l g llullxery + e3(T°2 + T2 Jul%
< o0,

where (g, r) is an admissible pair.
We next prove (4.15).

In fact, noting (2.6) and using Minkowski inequality, Holder inequality and Lemma

20



2.3, we obtain

W or@)]a + H/OtW(t — ) Alul?dr

Ol < |5 Ou)

H H

T
< ol +2(T + Dlfor| -2 +2(T + 1)/ 1l .t
0

T
< ol +2(T + Dfforfl -+ +2(T + 1)/0 (lul?llzz + 1V |l £2)dt

x

4—n
< ol +2(T + Dffor| g+ + 2775 (T + 1)||U||i%L4+
T

4-—n
2T (T+ D|[Vull s lul
L2 LA

FraLpny
(4.16)
Notice that
ve(x,t) = 8—QW(t)v (x) + gW(t)v (z) + /t gW(t — 7)Alufdr
A Y T o2 0 ot ! o Ot ’
where
o 1 iz o 24 2y4
S unta) =~z [ (€l + e sinel(1 + J°) e
Similar to (4.16), we have
Il < ool + ol + Tl o+ TNl oy (01)

Thus, we have proved that v € C([0, T]; H*(R")) N C([0, T]; H~(R™)).
For any given positive constant 7', we now extend the above solution to the domain

R™ x [0, T7.

CaseIl:n=1

If n = 1, then it follows from (4.12) that
1 _1 1 1
luz 7z + S 1(=02)"2vell72 + SlvllZe + 5 llvalZ2
2 2 2
= E(0) —/ lu|?vda
R

< E(0) —i—/ |[ul?v|dz.
R
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Using Cauchy inequality and Gagliardo-Nirenberg inequality gives

1
/ Plolde < cllullle+ Slol2,
R 4
3 1 2
< cllullaluallzs + 5ol
1 1
< gl + cllull®s + 710l
< LualZa + LjolZs + clluol
= 4 x|l [2 4 L2 0 L2
Thus,
_1
a2 + 1(=02) " url|2s + [[o]2 + 022 < E(O) + clluo|C.
Casell: n=2

If n = 2, then we obtain from (4.12) that
1 _1 1 1
IVl + 3 I-2)Suuls + Sllols + 519012

= FE(0) — u|?vda
R2

< E(0) —I—/ Ju|?|v|dz.
R2

Using Holder inequality, Gagliardo-Nirenberg inequality and Sobolev imbedding theorem
(for the case H'(R?) C L*(R?)) yields

2 2
<
/1;2 ’u’ ’U‘dx = HUHL“HUHL%

3 1
< o Vollalul I Val ks
1
< ZHV’UH%Q"‘CHUHi2’\VU\|L2
< Loz, + Livulzs + cfug
= 4 L2 4 L2 L2
N P T, ]
< IVl + IVul3 + cluollts
Hence,
1
IVl + [(—A) urlZa + [[o]22 + [ Vo] < E(0) + cfullCa.
Caselll: n=3
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If n = 3, then we obtain from (4.12) that
1 _1 1 1
IVellZs + SI-2)BulZa + 5ol + 5190l
=E(0) — lu|*vda
3

R
< E(0) +/ lul?|v|dz.
R3

Using Holder inequality, Gagliardo-Nirenberg inequality and Sobolev imbedding theorem
(for the case H(R3) C L9(IR?)) leads to

/ wPloldz < Jlollzslull?
R3 L5

N

3 1

< | Vol llullZ | VullZ,
1

< IVl + el Vulle
< Livolz. + 21valz. + cul
= 7 L2 4 u L2 Cl|lu .2
< Livulz. + Livalz. + efuoll®
= 3 L2y L2 0llr2-

Thus,
_1
IVull72 + [1(=2)"2vel[72 + vl 72 + Vo] 72 < E(0) + ¢f|uol|72-

We observe from the above inequalities that [|ul|%, + H(—A)_%th%Q + ||v|%;: is bound.
Therefore we can repeat the argument of local existence of solution and then prove the
solution can be extended to the domain R™ x [0, 7] for any given positive T. Thus, the

proof of Theorem 4.1 is finished. |

Theorem 4.2 Suppose that o # 0, suppose furthermore that ug,vg € H'(R) and v; €
H=Y(R). Then there exists a positive constant T = T(|a, |luo|l g1, [|[voll g, |v1]| g-1) such
that the IVP (2.7)-(2.8) has a unique solution u = u(x,t) on the strip R x [0,T] and the

solution satisfies the following properties
u € C([0,T]; H'(R)), (4.18)
for an admissible pair (q,)
lull g £y + 102wl La r < o0, (4.19)

and the mapping (ug, vo, v1) — u(t) from H'(R) x H'(R) x H™1(R) into the space defined
by (4.18) is locally Lipschitz. Moreover, the function v = v(x,t) defined by (2.6) satisfies

v e C([0,T); H(R)) () C'([0,T); H(R)). (4.20)
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Furthermore, for any given positive T', the above solution can be extended to the domain

R x [0,T7.

Proof. The proof of Theorem 4.2 is similar to that of Theorem 4.1, here we omit it. MW
The following theorem is a regularity result on the solution of the IVP (1.1)-(1.2).
Theorem 4.3 If (u,v) is a solution of the IVP (1.1)-(1.2) with the initial data satisfying
(uo,vo,v1) € H'(R) x H'(R) x H'(R),

then it holds that
u, v, Opu, Opv € LA([0, T]; L°(R)).

3 3
D2u,D2v € L™(R; L?*[0,T)).
Proof. Since (4,00) is an admissible pair, it follows from Theorem 4.2 that
u e L*([0,T]; L™(R)).

Using Minkowski inequality, Holder inequality and Lemma 2.5, we obtain from (2.6)
that

t
W @l + | [ W0 - niar
0

0
loligas < |50
LA Lge LALg

1 1 3
< e+ T9)||voll 2 + c(1+T5)|lvrll =1 + 5|75 1

Similarly, we can show

dpv € LY[0,T); L=(R)).

On the other hand, using (3.27), (2.20) and Sobolev imbedding Theorem, we have

VAN

T
Jorul grr < cloculn e [ lonuw + alulu)z
0

IN

1
clluo || g + CTHUHL%OH; HU”LOTOH; + T2 HU||%4TLgo HUHL;OH;-

Noting (2.24) and using Minkowski inequality gives
3 1 L 9
1Dz ul| o2 < Dz Oguoll oo 2, + |l / Dz S(t — 7)0x(wv + eful"u)d7|| oo 12
0

1
< clluollmr + cTllullzse mallvllso my + €T ||U”i4TLgo||U||L;°H;-
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By Lemma 2.6, Minkowski inequality and Holder inequality, it follows from (2.6) that

3 19
IDilissy, < w0

1
5 + |1 D2W (t)dv1| oo 2 +

L L2

too1
[ IDiw e - )Pl gy ar
0 A

< e(1+T3)voll + (1 + T2) o]l -1 + T3 (1 + T2l 1 poe 0] 50 1

This proves Theorem 4.3. |

5 Local and global well-posedness in H*(R) x H*(R) x H*(R)

For arbitrary fixed s € (0,1) and T > 0, we define the function space

>

X(T)=C([0,T); H*(R))
and equip with the norm
A
lullxry = llullgomg + ullpape, ¥V uwe X(T).

It is easy to verify that X (7') is a complete metric space. For any given positive real
number R > 0, let Br(T') be a closed ball of radius R centered at the origin in the space
X(T), namely,

Br(T) = {u € X (D) lullx(r) < R).

As in Section 4, we introduce the mapping (4.1). We have

Lemma 5.1 Suppose that ug,vo € H*(R), v; € H"2(R), then ® : BR(T) — Bgr(T) is

a strictly contractive mapping.
Proof. Step 1. By group properties and (2.20) in Lemma 2.1, we have

1S () uollx () < colluol|m=- (5.1)
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Step 2. Taking (g2,72) = (4,00) in (2.22) and using Holder inequality and (2.25), we

obtain

/0 S(t — 7)Fo(u(r))dr

/0 S(t — 7)Fy(u(r))dr

+
LPL2 LA Lge

o(Zwiom)

(5.2)

LILE
3
< cT'i|ul[ggop2[lvol[ 22

3
< eIt |vol| p2llull x (1)

Similarly,

/0 S(t — 7)Fy (u(r))dr

/0 S(t — 7)F (u(r))dr

+
L$L2 LiLg
1
< It fu(W(t)v)lipa s
1
< el lullpa 2 W (@)vrll 2 15

3
< AT+ 1)|ull ez [vill -2

]

< (T + Dol g-2llull x )

and

/0 S(t — 1) Fa(u(r))dr

/0 S(t —1)Fy(u(r))dr

+
LgL? L4 L

N

t
< T u/ W(t — )02 uldr
0

LLL2,

T
T+ D lulizs, [ ol

ST

<cT

3
< (T + Dllullpgerz lull s poe lull e 22

3
< T3 (T + D)Jull% -
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Noting Lemma 2.1 and using Minkowski inequality and Hélder inequality, we have

/ S(t — 1) By(u(r))dr / S(t — 1) By(u(r))dr
0 0

q
LL2 LA L

t t
< /0 1St = 7) s (u(r) | ae p2dr + /0 1S(t — 7) Fa(u(r) | 3 g

T T
1
< clal /O Pl 2dt < cla /0 lell3 ot < clolTH |l ezl

1
< clal|T= ul% 7)-

(5.5)
Step 3. We next continue to estimate
t
‘ D? (/ S(t— T)Fi(u(T))d7'> (1=0,1,2,3).
0 L$eL2
Using Minkowski inequality, we have
t t o
HD; (/ S(t— T)Fo(u(T))dT) = / S(t—7)D; (uW(t)v()) dr
0 L L2 0 ot LygL2
! s, 9 s 0 9 s
< St —1)(D; | u=W(t)vg | —uD; =W (t)vo — =W (t)voDyu)dr
0 ot ot ot LeoL2
t 0 t 0
+ / S(t — m)uD; (W(t)vo> dr + ‘ / S(t — 1) =W (t)voDjudr
0 ot LPL2 0 ot LPL2
2L+ 1+ Is.
(5.6)
Estimate of [;: Using Hélder inequality and Lemmas 2.1, 2.3 and 2.4, we obtain
L < c||D: UEW(t)U - uDSQW(t)U - QW(t)v Diu
b= »\ ot 0 2ot 07 ot e
< cljull D; 0 W(t)v
4 100 -
B brtE (7ot ’ L312 (5.7)

3 s

< clifullza peo [ D7voll 12
3

< 5| lvoll s [l x (r)-

Estimate of Iy: Taking (¢1,71) = (00,2), (g2,72) = (4,00) in (2.21) and using Holder
inequality and Lemma 2.3 , we get
uD; gW(t)vo

AN

3 3
T |ul| ez voll s < T |Jvo |l s [ ull x(7)-

0

I — t)D?
2 (%W() 200

IN

3
s < cTullzgerz
L3LL

L2 (5.8)

IN
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Estimate of I3: Similar to the estimate of Io,

0 W(t)vo

3
L<Ti|Z
3= 15

3
. [ D3ullzeer2 < €T ||voll s l[ull x(7)- (5.9)
L

Combining (5.7)-(5.9), we obtain from (5.6) that

t
HD; </ St — T)Fo(u(T))d7'> < CT%H’UOHHsHuHX(T). (5.10)
0 LgL2
Similar to (5.10),
t
o2 ([ se-nror)|  <et@s vl G
0 LgeL2

Taking (g2,72) = (00,2) in (2.21) and using Minkowski inequality, we have

D: ( /0 "S- T)FZ(u(T))dT>

iz ‘ /ot S(t = 7) Dy Fa(u(T))dr

t
D? (u/ W(t— T)8§|u|2d7>
0 Lhr2

t t
Ds <u/ W(t—r)agyu\2d7> —u/ W (t — )02 D3 |u|*dr
0 0

LPL2

< | DzFa(u)llpyrs = ¢

<c

t t
—D;u/ W(t — 7)02|ul?dr +c u/ W (t — 7)02 D% |u|?dr +
0 LyL3 0 LLL2
t
cNDzu [ Wit - n)oudr|yy g
0 :
£ J14+ Jo + Js.
(5.12)
Estimate of J;: Noting (2.31) and using Holder inequality, we obtain
t
Ji < clu|lpa e / W(t —1)02D:|udr|| ,
7 o L312
t
< cT%HuHLz;Loo / W(t — 7)02 D% |u|*dr
o Ly L2
s o (5.13)
< AT+ V)ul o e NPl 12
3 2
< AT+ Dlulps pee ||D§UHL§L%
3
< 2T+ 1)|Jul¥ -
Similarly,
T < cT3(T + 1) ully - (5.14)

We now estimate Js.
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Using Holder inequality and Lemma 2.5, we get

t
Ja < || Doulipnl [ W noufr
0

LiLge

t
< clDsulugrz [ IW(E =)0l gy ppdr
0
t T
< o Dsullpers /0 ( /0 ||W(f—7)3§|u|2||L°°df> dr
N t T . i (5.15)
< | DSul e 2 /0 ( /O Wt — 1)l ||Loodt) i
3 T 2
< | Dullors /0 el
3
< THIDsul e sl o o Nl e 2
3
< T3 |ullS -
Using (5.13)-(5.15), we obtain from (5.12) that
t .
HD; (/ S(t—T)FQ(u(T))dT) < o(T3 +T2)|ullr- (5.16)
0 L L2
On the other hand, using Lemma 2.1 and Minkowski inequality, we have
t t
'D; < / S(t—T)F;g(u(T))dT) :’ / S(t — 7)DS Fy(u(r))dr
0 LPL2 0 LgL?
t
< /0 1St — ) DS Ey(u(r)) | e 2
T T )
< / | DS Fy(u) 2 dt = cla / 15 ) | o
0 0 (5.17)
T
< dlof /0 1D (uf?u) — uDSJul? — [uf>Dsul| 2
T T
+lal / luDS uf? 2dt + clof / ol DSl 2dt
0 0
éKl—l-Kz—i-Kg.
Estimate of K;i: Using Lemma 2.4 and Holder inequality, we get
T
K < daf /0 il e DSl ol
T 2
< ca/ w||F oo || D3| r2dt
o [ Il 1Dzl 519

1
< clo|THul?y o |D3ul s 12

1
< |l T2 ||ull% -
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Estimate of K5: Using Lemma 2.4 and Holder inequality again, we have

T
Ky < cal / il o | D 2] 2t
0

1 1
< clalTEul2y o |1 D3ull e 12 (5.19)
1
< cla|T |l 7).
Estimate of K3: By Holder inequality, we obtain
r 2
Ko < col [ lulf~Diul o
1
< clalT?|full}y o ID3ull e 12 (5-20)
1
< || T2 ||ull5 -
Then, combining (5.18)-(5.20), we obtain from (5.17) that
t 1 3
HD; (/ S(t— T)Fg(u(f))d7> < clal T2l 7 (5.21)
0 L L3

Step 4. Therefore, the above estimates give

3 3
[2(w)llxy < colluollas + T |vollas l[ullx(ry + 2T (T + Dl|or][ o2 [u] x(z)

5 3 1 3
+e3(T2 + T2 + || T2) ||ul X (7
(5.22)

Letting R = 4c¢ol|uo|| s and choosing T' so small that

1T |vollgs + T3 (T + 1)||vi || oz + 3(T3 + T2 + |a|T2)R% < =, (5.23)

>~ w

we have

[®(u)l|x ) < R.

This implies that ® maps Br(T') into Br(T) .

Step 5. We next show that, when T is small enough, ® : Br(T) — Bgr(T) is a
strictly contractive mapping.
In fact, for arbitrary u,@ € Br(T),

3

O(u)(t) — ®(a)(t) = —i/o S(t—7) Y [F(u(r)) — F(a(r))ldr,

=0

where F;(u(t)) (j =0,1,2,3) are defined by (2.13).
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On the one hand, similar to (5.2) we have

/0 S(t — 7)(Fo(u(r)) — Fo(a(r)))dr

t
; \ | 8= Eotatr)) ~ Fotatr)ir
L¥L2 0 LALg
< T |uo | p2llu — @ll e 12
< T ||vo| 2 |lw — @l x ()
(5.24)
and
t t
\ [ st -nE ) - RG] \ | 8= E ) - R
0 LFL2 0 LpLge
< TH(T + Dvrllg-2llu — @l o2
< ¢TH(T + 1) o1l g2 |lu — @l x (2.
(5.25)
On the other hand, similar to (5.4) we obtain
t t
\ / S(t — 1)(Fa(u(r)) — Fy(a(r)))dr|  + / S(t — 1) (Fa(u(r)) — Fa(ii(r))dr
0 LPL2 0 L3 L

1
<cls

t t
u/ W(t—T)agyuPdT—a/ W(t — 7)02adr
0 0

LLL2

1
cTl'+

IN

1
+ cT's
LLLZ

(u—a) /0 W(t — T)8§|u|2d7'

t
u/ Wt — 7)O2(ul? — [a]?)dr
0

17,2
LiL2,
3
2

< (T + Dlu = all gz [lull o poe lull g 2
3 ~ ~ ~
+cT2(T + D)l pge 2 (ull pa poe + 1@l s pgo)llw — | Lo 22

3 _ _ _
< T2 (T + 1) |Ju = allx oy (ull5e ) + lullxnllalx + 1@ r)-

(5.26)
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Moreover, similar to (5.5), we get

/0 S(t — ) (Fs(u(r)) — F(a(r))dr|  + /0 S(t — 7)(Fs(u(r)) — Fa(a(r)))dr

LgL? LA L

T

< c\a|/0 H|u|2u— |ﬂ\2€LHL2 dt
r 2 2 r 2

<ol [ llulul = 1) st +clal [P =)
T T )

<C\a\/0 HU—ﬂHLw(HUHLw+Hﬂ\|L°o)HU||L2dt+C|Oé!/O 1G] 700 [|[w — @l r2dt
1 - -

< cla|T>ju - UHL‘*TL;o[Hu”L‘lTLgoHUHL;OLg + HUHL§L3<>|’UHL;OL§]+
1. . ~

C|QIT2||UH%4TL30HU—UHL;OLg

1 ~ ~ ~
< clal 7% u— il xcry (lulBeer + el xen lalxer + 1@l ) -
(5.27)

In a way similar to (5.10), we can prove

|22 ([ 5= nFitutr) - Btatryar)

3 _
< T lvollmslu = @l x () (5:28)
LgL?

0; ([ st = r)Fututr) - Foa(r)ir)

and

3
< (T + Dljor| ge-2llv — @l x(z)-

LPL2
(5.29)
Similar to (5.16),
' </ S(t — 7)(Fa( ())—FQ@(T)))CZT)
L L2 (5.30)
< o(T3 +T3) |u — il xery (lulZ o + lulxen @l xer) + lallk)-
Similar to (5.21),
D3 ([ S(t—7)(Fs(u(r)) — F3(a(r)))dr
[ ([ ste-nemtatrn - maemer)]| o

1 . . -
< cla|T2||u — uHX(T)(H“”%{(T) + 1wl x 1ol x oy + Hu\@((T))-
Combining these estimates yields
|9 (u) = (@) x(ry < exT |[voll s [ = @l x(ry + 275 (T + 1) [0n]| ga=sllu = @l x )

5 3 1 ~ ~ ~
+e3(T2 + T2 + o T2)|lu — @l x oy (el Xy + lullxlallxey + @5 qm)-
(5.32)
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Choosing T so small that (5.23) and the following inequality hold

1
T ol +eT5(T + Dlferlgees +3¢s(T3 + TH + o THEP < 2, (5.33)

we have
_ 1 _
12(w) = 2(@)llx(r) < 5llu—allx)-

This proves the lemma. |

Theorem 5.1 Lets € (0,1) be a fized real number and suppose that (ug, vy, v1) € H*(R) x
H*(R)xH*"2(R). Then there exists a positive constant T = (|a/, ||uo||ms, [[vol|ms, ||v1 ]| grs—2)
such that the IVP (2.7)-(2.8) has a unique solution u = u(x,t) on the domain R x [0,T]

and the solution satisfies the following property

uwe C([0,T); H(R)) (5.34)
with
lulla oy + ([ D3ullpa 1y < oo, (5.35)
where r € [2,4+00] and
2 1 1
qg 2

Moreover, the mapping (ug, vo,v1) — u(t) from H*(R) x H*(R) x H*~2(R) into the space
defined by (5.34) is locally Lipschitz, and the function v = v(x,t) defined by (2.6) satisfies

v e C([0,T); H*(R)) () C([0,T]; H**(R)). (5.36)

Furthermore, for any given positive T', the above solution can be extended to the domain

R x [0,T7.

Proof. Step 1. By Lemma 5.1 and the contraction mapping principle, there exists a
unique v € Bg(T) such that
O (u) = u.

It is easy to show that this solution satisfies

N

3 3
lullzery + [1Dzullper, < colluollas + e T4 |vollmsllullx(ry + 2T+ (T + )ljor]| o2 |lull x (1) +

5 3 1 3
es(T% + T3 + | T) ulfy ) < o0,

where 2 = 1 —
q 2

33



Step 2. We next show that
ve ([0, T]; H(R)) (") C ([0, T); H*2(R)).

In fact, noting (2.6) and using Minkowski inequality, Holder inequality and Lemmas

2.3-2.4, we have

) < H Ol WO+ H / Wt — )o2luldr
HS
< Joollas +2(T + D)oo + 2T + 1) / ol it
0
< lvollas + 2(T 4 1) |Jor || s—2+
T T
AT +1) / ol od +2(7 + 1) / 1D || 2t
0 0 (5.37)
< Jleollae + 2T + D)fforll ezt
T T
AT +1) / lull oo lull 2 + 6(T +1) / il oo | D] ot
0 0
3
< Joolls + 2T + Vlforllge-s + 275 (T + 1)l g 1ol e 12+
3
67 (T + 1)llul s oo | D30l e 12
Notice that
v(z,t) = 0 — W (t)vo(x) + 0 W (t)vy(x) —l—/t aW(t )A\u|2d
= = -7 T
o2 ot ! o Ot ’
where
H? 1 i€ A 2\1 . 2\1
T W (tyo() = ——— [ eEa0(€)[€](1 + |E[2)% sin [€](1 + |¢[2) Bt
8t 27T R
Similar to (5.37), we can prove
3
oe@llare-z < ool + forlls= + Ty e (lullzze 2z + 1D3ullizens). (5:38)

Thus, we have proved the following fact
v e C([0,T); H*(R)) () C([0,T]; H**(R)).

Step 3. For any given positive constant T', we now extend the above solution to the
domain R x [0, T7.

Assume that the maximal time 7% of existence of the solution u = u(z,t) is finite.
Noting the fact that the solution satisfies the integral equation ®(u) = u and the estimate
(5.22), we have

[ullx () < colluollmrs +0(T)|ullx(ry, VT €[0,T7), (5.39)

34



where 0(T') is a positive constant satisfying
3 3 5 3 1
0(T) < exTaflvoll s + 2T 3(T + D|vill ga—2 + e3(T2 + T2 + |a[T2)||u| e pg | ull £, r0
By Theorems 4.1-4.3, we get
lullzgery < llullpgeny < ¢ and lullpspe <c
Thus, we choose suitable T € [0,7%) such that

o(T) <

N

Obviously, T depends on ||, |Jvo||zs and |Jvy || gs—2. Then it follows from (5.39) that

||UHx(T’) < 2co||uol s (5.40)
for any fixed 7" € [0, T).
If T = T*, then it is obvious that the solution u = u(x,t) of IVP (2.7), (2.8) can be

extended to the domain R x [0,T* + ] and the solution satisfies

sup  [Ju(®)|lgs < 2col|uollms,
te[0,T* +€]

where ¢ is a positive constant. This contradicts the definition of T*. Therefore, we may
assume that
0<T<T"
Let m € N satisfy T* < mT and replace T by T = % We now consider the IVP for

the following equation

t
iwe + %Aw =w <§tW(t)vo(x)> +w(W(t)vi(x)) + w/o W(t — 7)Alw|?dr + a|w|?w,

with the initial data
w(z,T) = u(x,T).

The uniqueness of the solution yields that the function

u(z,t), tel0,T],

w(z,t) = o (5.41)

w(z,t); telT,2T].
is a solution of IVP (2.7), (2.8) in the domain R x [0,27]. On the other hand, thanks to
Theorems 4.1-4.3, the norm of ||ul| 4o and ]| s is bounded for any given positive
T. Therefore, we repeat the same procedure and obtain

lull x @y < max{2col[uollars, 2¢ollu(T)| -}

max{2cq||uol| s, 4ca || wol| 17+ }-
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Repeating this process m times gives
lull x(z+y < max{2eolluol| =, 4ed|luollrs - -~ , (2c0)™ |[uol =}
This contradicts the definition of T, hence T* = oo. This proves Theorem 5.1. |
The following theorem is on the regularity of the solution of the IVP (1.1)-(1.2).
Theorem 5.2 If (u,v) is a solution of the IVP (1.1)-(1.2) with the initial data satisfying
(uo, vo,v1) € H*(R) x H5(R) x H* %(R),

then it holds that

u, v, Diu, Div € L*([0,T]; L°(R)) (5.42)
and
541 1
D3 2w, Dy v e LO(R; L2[0,TY). (5.43)

Proof. It follows from the proof of Theorem 4.3 that
u, v € L([0,T]; L™ (R)).
We next show that
Diu, Div € L*([0,T); L=(R)).
Noting (2.31) and using Minkowski inequality, we have

[1Dz(wv)l[r2 < [[Di(uwv) — uDjv — vDjul[r2 + [[uDjvll 2 + [[vDyul 12
(5.44)
< cllullzgellDivllpe + (vl g |1 D7ull 2

and

D5 ([u)llz2 < |1D5(wa) — uDja — aDjul g2 + [luDjal 2 + [[aDjul| 2
(5.45)
< dlullzg | Dul Lz

By Minkowski inequality, (2.31) and (5.44), we obtain

1D (Jul*w)] 2

IN

1Dz (w?a) — w* Dy — a3 (u?)|| 2 + [[u” D3l 2 + [[aD3 (u®)] 2

IN

cl|ull Lo | Dull 2 + l|ull oo | D (u?)l| 12 < ellul|Fool| D3l 2.
(5.46)

36



Using (3.27), Minkowski inequality, (2.20), (5.44), (5.46) and Holder inequality, we get

IN

T T
ID3ullpse < clluollae +c /0 D5 )| ot + /0 1 D5 (Juf?u) | 2t

(5.47)

IN

3
clluollrs + Tt {|ull g poo [ Davll Lo 12+
3 1
T’ HU”L‘*TLgoHDf;UHL%OLg + T HUH%%LgOHD;uHL%OL%'

This proves

D3u e L*([0,T]; L=(R)).

Noting (2.6) and using Minkowski inequality, Lemma 2.5, (5.45) and Holder inequality,

we have

IN

T
1 1
1Dzl 4 poe c(L+T5)vollms + (1 +T7)||lor | o2 + C/O 1Dz (Jul?) || p2dt

1 1 3
< (@ +T0)vollas + (1 +T1)|villgrs—2 + T |ull 1 oo | Dull Lo 12
(5.48)

The above inequality implies
Div € L*([0,T]; L™ (R)).

In what follows, we prove (5.43).
Noting (2.24) and using Minkowski inequality, (5.44) and (5.46), we obtain from (3.27)
that

IN

T
41
1Da" 2 ull e 2 CIID§UO\IL2+C/O 1D (uv + |of [ul )| p2dt

(5.49)

IN

3
clluollzs + T ||ull pa oo [ D30l Lo 2+
3 1
cTalloll s poo | Dullpge 12 + T2 |’UH%4TL30HD§UHL%OL§-
This yields
s+%

D, ?u € L™ (R; L*0,T)).

Noting (2.6) again and using Minkowski inequality, Lemma 2.6, (5.45) and Holder

inequality, we have

+1 1 1 [T
IDz 0l pgers < C(1+T2)|Ivo|!Hs+c(1+T2)Hv1IIHs—2+c(1+T2)/ D3 ([ul?) | 2dt
0

1 1 3 1
< e+ T2)|vollas + c(1 4+ T2)|lor|lgs—2 + T4 (1 + T2)|ull pa poo [ D3ull 5o r2-
(5.50)

Thus, the proof of Theorem 5.2 is completed. |
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