
§ 3. 高维波动方程的Cauchy问题

从本节起我们将研究高维空间中的波动方程。在本节中我们首先给出n维空间中的

波动方程并着重推导出二维膜振动方程，然后介绍波动方程的定解条件的提法。本节

的重点是介绍求解三维空间中波动方程的Cauchy问题的球平均法，在此基础上我们还

将介绍Hadamard 的降维法并利用该方法求解二维空间中波动方程的Cauchy问题。

3.1 高维空间中的波动方程

关于n个空间变量x1, x2, · · · , xn以及时间t的函数u = u(t, x) = u(t, x1, · · · , xn)的波动

方程是

¤u = utt − c24u = 0, (3.1)

其中c是正常数。由(3.1)定义的算子

¤u = utt − c24u = utt − c2

n∑
i=1

uxixi
(3.2)

称为
::::::::::::::::
D’Alembert算

:::
子或

:::
波

::
算

:::
子。

当n = 1时，(3.1)式可以描述管道中的声波或弦的振动；当n = 2时，方程(3.1)可用

来描述水面波或薄膜的微小振动；当n = 3时，这个方程描述了声波或光波的传播。

由于考虑到建模的重要性，下面我们以膜振动为例介绍二维膜振动方程的建立。

这里介绍的膜是指弹性固体薄片，我们做以下假设：

(H1) 膜是均匀的，它的面密度为常数ρ(不妨设ρ ≡ 1)；

(H2) 膜的厚度很小，可视为一张曲面；

(H3) 膜的平衡位置处于一个平面内，膜上各点在垂直该平面的方向上做微小振动；

(H4) 膜所受的外力F与平衡位置所在的平面垂直；

(H5) 膜是柔软的，它因弯曲而发生的形变不会产生任何抵抗力。

设膜的平衡位置所处的平面为ox1x2，以u(t, x1, x2)记膜上的点(x1, x2)处在时刻 t的

位移。对于一个紧张着的薄膜，若它满足上面的基本假设，则在薄膜上任一点的张

力T是常值。这时，若过薄膜上指定点P沿某一方向作一个截口 l，则该薄膜位于 l两

侧的部分分别对于对方有单位强度为T的拉力，拉力的方向与曲面法向垂直，又与 l方

向相垂直。

为了推导膜振动方程，在膜上任取一小块Σ，它在ox1x2平面上的投影为Ω(见

图3.1)。以下来计算在时间段(t, t +4t)内作用于膜块Σ的冲量以及该时间段内这一小块

膜的动量变化。
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图 3.1:振动膜

先考察作用在Σ的边界∂Σ上的张力。设∂Σ在ox1x2平面的投影为∂Ω。以τ表示曲

线∂Σ的切线方向，ν表示Σ的法线方向，s表示曲线∂Ω的切线方向，n表示平面上∂Ω的

法线方向。因此张力T的方向与τ × ν的方向一致。膜的位移用u(t, x1, x2)表示，Σ 的方

程为u = u(t, x1, x2)，曲面法线ν的方向可以取为(−ux1 ,−ux2 , 1)。

现在考察方向τ，因s的方向为

(cos(x1, s), cos(x2, s), 0),

故τ的方向可以取为

(cos(x1, s), cos(x2, s),
∂u

∂s
).

所以τ × ν的方向可取为(a1, a2, a3)，其中

α1 = cos(x2, s) +
∂u

∂s
ux2 ,

α2 = − cos(x1, s)− ∂u

∂s
ux1 ,

α3 = ux1 cos(x2, s)− ux2 cos(x1, s) = ux1 cos(x1, n) + ux2 cos(x2, n) =
∂u

∂n
.

由此可知，张力T在垂直方向的分量是

Tu =
α3√

α2
1 + α2

2 + α2
3

T.

由于ux1 , ux2以及
∂u

∂s
都是小量，故Tu ≈ T

∂u

∂n
.
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根据以上的分析知，沿着曲线∂Σ，张力的合力为

∫

∂Ω

T
∂u

∂n
ds,

而在面积Σ上膜所受外力F的合力为

∫∫

Ω

F (t, x1, x2)dx1dx2,

所以在时间段(t, t +4t)内作用于Σ的冲量为

∫ t+4t

t

[∫

∂Ω

T
∂u

∂n
ds +

∫∫

Ω

F (t, x1, x2)dx1dx2

]
dt. (3.3)

又在这个时间段内膜块Σ的动量变化为

∫∫

Ω

[
∂u

∂t
(t +4t, x1, x2)− ∂u

∂t
(t, x1, x2)

]
dx1dx2. (3.4)

因此得到 ∫ t+4t

t

[∫

∂Ω

T
∂u

∂n
ds +

∫∫

Ω

F (t, x1, x2)dx1dx2

]
dt

=

∫∫

Ω

[
∂u

∂t
(t +4t, x1, x2)− ∂u

∂t
(t, x1, x2)

]
dx1dx2.

假设u关于x1, x2的二阶偏导数都连续，利用Green公式可得

∫ t+4t

t

∫∫

Ω

{
T

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
+ F (t, x1, x2)− ∂2u

∂t2

}
dx1dx2dt = 0.

由于时间区间段与空间区域Ω的任意性，由上式就得到
:::
膜

::
振

:::
动

:::
方

::
程

∂2u

∂t2
= T

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
+ F (t, x1, x2).

记T = c2, f = F，就得到膜振动方程的标准形式：

∂2u

∂t2
= c2

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
+ f, (3.5)

其中f称为方程的
:::
自

::
由

:::
项。受外力F的振动称为

:::
强

::
迫

:::
振

:::
动。因此这样的方程也称为膜的

强迫振动方程。当f = 0时，方程是齐次的，此时的方程为

∂2u

∂t2
= c2

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
, (3.6)

称为膜的
:::
自

:::
由

::
振

:::
动

:::
方

::
程。方程(3.5)及(3.6 )也称为

:::
二

::
维

:::
波

::
动

:::
方

:::
程。

3.2 定解条件
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n维空间中的波动方程(3.1)的定解条件同样有边界条件和初始条件两种。

和弦振动的情形一样，在初始条件的提法中单有初始位移u(0, x)是不够的。这是因

为，以膜振动为例，两个相同的膜，如果它们的初始位移相同，但一个有初始速度，

而另一个在初始时是静止的，那么它们的运动情形也不会一样。因此初始条件的提法

通常为 



u(0, x) = ϕ(x),
∂u

∂t
(0, x) = ψ(x),

(3.7)

其中ϕ(x)及ψ(x)为已知函数。

类似于弦振动方程的情形，对于n维空间中的波动方程的边界条件的提法，通常也

有三种：

第一类边界条件 边界固定或依照一已知函数随时间而变化。此时边界条件的提法

为

u(t, x)|∂Ω = 0

或

u(t, x)|∂Ω = µ(t, x), (3.8)

其中Ω为自变量x的定义域，∂Ω为其边界，µ(t, x)为已知函数。这种边界条件称为
:::
第

::
一

:::
类

::
边

:::
界

::
条

:::
件。

第二类边界条件 边界可以在柱面上自由滑动，不受到摩擦力的作用。此时边界条

件的提法为
∂u

∂n

∣∣∣∣
∂Ω

= 0, (3.9)

或更一般地为
∂u

∂n

∣∣∣∣
∂Ω

= µ(t, x), (3.10)

其中µ(t, x)为已知函数。这种边界条件称为
:::
第

::
二

:::
类

::
边

:::
界

:::
条

::
件。

第三类边界条件 边界固定在弹性支承上，此时，边界条件归结为

(
∂u

∂n
+ σu

)∣∣∣∣
∂Ω

= 0, (3.11)

其中σ为已知正数。也可以考虑更普遍的边界条件

(
∂u

∂n
+ σu

)∣∣∣∣
∂Ω

= µ(t, x), (3.12)
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其中µ(t, x)为已知函数。这种边界条件称为
:::
第

::
三

:::
类

::
边

:::
界

:::
条

::
件。

对于波动方程(3.1)，同样可以提Cauchy问题，此时所给的初始条件为




u(0, x) = ϕ(x),
∂u

∂t
(0, x) = ψ(x),

∀ x ∈ Rn. (3.13)

3.3 球平均法

本小节我们考察高维波动方程Cauchy问题的求解。着重介绍Poisson的
::
球

:::
平

:::
均

::
法，该

方法是受下面的事实启发而总结出来的。

考察三维波动方程的Cauchy问题

utt − c2(ux1x1 + ux2x2 + ux3x3) = 0, (3.14)

u(0, x) = ϕ(x), ut(0, x) = ψ(x). (3.15)

假设初始条件ϕ(x)和ψ(x)具有球对称性，即此时ϕ和ψ仅为变量r =
√

x2
1 + x2

2 + x2
3的函

数。这样我们便可寻求只依赖于t和r的解u = u(t, r)。此时方程(3.14)可写成

utt = c2(urr +
2

r
ur). (3.16)

令v = ru，于是(3.16)可化为

vtt = c2vrr. (3.17)

利用一维波动方程的D′Alembert公式便可以求出v，进而可得到Cauchy问题(3.14)-

(3.15)的球对称形式的解。

球平均法是受上面事实启发而得出的。它的核心思想是
::
利

:::
用

:::
球

::
平

:::
均

::
函

:::
数

:::
技

::
巧

:::
将

:::
原

::
来

:::
高

::
维

:::
波

:::
动

::
方

:::
程

::::::::::::::
的Cauchy问

::
题

:::
化

:::
为

::
一

:::
个

:::
一

::
维

:::
波

:::
动

::
方

:::
程

:::
相

::
应

::::::::::::::
的Cauchy问

:::::
题，

:::
利

:::
用

::
一

:::
维

:::
情

::
形

:::
的

::
知

:::
识

::
求

:::
出

:::
相

::
应

:::
的

:::::
解，

:::
进

::
而

:::
得

:::
到

::
原

:::
高

:::
维

::
波

:::
动

::
方

:::
程

::::::::::::::
的Cauchy问

::
题

:::
的

::
解。

下面我们介绍球平均方法。

考虑Cauchy问题(3.1)和(3.13)，即

utt − c24u = 0, (3.18)

u(0, x) = ϕ(x), ut(0, x) = ψ(x). (3.19)

首先引入球平均函数。对于Rn上的连续函数h(x) = h(x1, x2, · · · , xn)我们通常用它在

以x为中心r为半径的球面上的平均值

Mh(x, r) =
1

ωnrn−1

∫

|y−x|=r

h(y)dSy (3.20)
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与之对应。令y = x + rξ, |ξ| = 1，得

Mh(x, r) =
1

ωn

∫

|ξ|=1

h(x + rξ)dSξ. (3.21)

原来仅对r > 0用(3.20)定义Mh(x, r)。现在利用(3.21)可把它的定义推广到所有的实

数 r。所得到的Mh(x, r) 是 r的偶. 函. 数. ，因为在(3.21)中用−r替换 r被以−ξ替换积分变

量ξ所抵消。从(3.21) 还可以看出，当h ∈ Cs(Rn)时，成立Mh ∈ Cs(Rn+1)，因为我们可

在积分号下微分，对于h ∈ C2(Rn)，利用
:::
散

::
度

:::
定

::
理有

∂

∂r
Mh(x, r) =

1

ωn

∫

|ξ|=1

n∑
i=1

hxi
(x + rξ)ξidSξ

=
r

ωn

∫

|ξ|<1

4xh(x + rξ)dξ

=
r1−n

ωn

4x

∫

|y−x|<r

h(y)dy

=
r1−n

ωn

4x

∫ r

0

dρ

∫

|y−x|=ρ

h(y)dSy

= r1−n4x

∫ r

0

ρn−1Mh(x, ρ)dρ.

上式两端乘以rn−1并关于 r微分得

∂

∂r

(
rn−1 ∂

∂r
Mh(x, r)

)
= 4xr

n−1Mh(x, r). (3.22)

这样，任意函数h ∈ C2(Rn)的球面平均Mh(x, r)满足偏微分方程
(

∂2

∂r2
+

n− 1

r

∂

∂r

)
Mh(x, r) = 4xMh(x, r), (3.23)

它就是所谓
:::::::::::::
Darboux方

::
程。利用(3.23)的解Mh(x, r)是 r的偶函数这一事实，我们找到它

的相应的初值

Mh(x, 0) = h(x),

(
∂

∂r
Mh(x, r)

)

r=0

= 0. (3.24)

上面的讨论可以看出，作球面平均，能把波动方程的初值问题(3.18)-(3.19)变换为两

个自变量的双曲型方程的初值问题。设u(x, t)是(3.18)-(3.19)的在半空间x ∈ Rn, t > 0上

属于C2类的解。把u看作x的函数作它的球面平均：

Mu(x, r, t) =
1

ωn

∫

|ξ|=1

u(x + rξ, t)dSξ. (3.25)

显然从Mu能重新得到u，因为

Mu(x, 0, t) = u(x, t). (3.26)
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由(3.23)

4xMu =

(
∂2

∂r2
+

n− 1

r

∂

∂r

)
Mu.

另一方面，由(3.18)，(3.25)得

4xMu =
1

ωn

∫

|ξ|=1

4xu(x + rξ, t)dSξ

=
1

c2

∂2

∂t2
1

ωn

∫

|ξ|=1

u(x + rξ, t)dSξ

=
1

c2

∂2

∂t2
Mu.

因此，对于固定的x，Mu(x, r, t)作为两个标量变量 r和 t的函数是偏微分方程

∂2

∂t2
Mu = c2

(
∂2

∂r2
+

n− 1

r

∂

∂r

)
Mu (3.27)

的解。依赖于参数n(在这里是x空间的维数)的偏微分方程(3.27)称为
::::::::::::::::
Euler-Poission-

::::::::::::
Darboux方

:::
程。由于(3.19)，(3.25)，Mu作为r和t的参数是方程(3.27)的当t = 0时有已知

初值

Mu = Mϕ(x, r),
∂

∂t
Mu = Mψ(x, r) (3.28)

的解。

当空间的维数n = 3时，Cauchy问题(3.27)-(3.28)最容易解。事实上，根据(3.27)有

∂2

∂t2
(rMu) = c2

(
r

∂2

∂r2
Mu + 2

∂

∂r
Mu

)
= c2 ∂2

∂r2
(rMu).

这样，rMu(x, r, t)作为r, t的函数是一维波动方程的在t = 0时有初值

rMu = rMϕ(x, r),
∂

∂t
rMu = rMψ(x, r)

的解。根据D’Alembert公式，有

rMu(x, r, t) =
1

2
[(r + ct)Mϕ(x, r + ct) + (r − ct)Mϕ(x, r − ct)] +

1

2c

∫ ct+r

ct−r

ξMψ(x, ξ)dξ.

利用Mϕ(x, r)和Mψ(x, r)是r的偶函数这一事实，我们得到

Mu(x, r, t) =
(ct + r)Mϕ(x, ct + r)− (ct− r)Mϕ(x, ct− r)

2r
+

1

2rc

∫ ct+r

ct−r

ξMψ(x, ξ)dξ.

令r趋于零并把关于r的微分换成关于ct的微分，根据(3.26)得

u(x, t) = tMψ(x, ct) +
∂

∂t
(tMϕ(x, ct))

=
1

4πc2t

∫

|y−x|=ct

ψ(y)dSy +
∂

∂t

(
1

4πc2t

∫

|y−x|=ct

ϕ(y)dSy

)
.

(3.29)
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(3.29)式通常称为
::::::::
Poisson公式。

当空间维数n = 3时，Cauchy问题(3.18)-(3.19)的任何当t > 0时属于C2类的解u必

定由公式(3.29) 表示，因此是唯. 一. 的. 。反之，对于任何ϕ ∈ C3(R3)和ψ ∈ C2(R3)，

由(3.29)定义的u(x, t)属于C2类并满足(3.18)，(3.19)。

事实上，利用(3.24)通过直接验算便得(3.19)。进一步根据n = 3和r = ct时的

式(3.23)有

∂2

∂t2
(tMψ(x, ct)) = c

∂2

∂r2
(rMψ(x, r)) = cr4xMψ(x, r) = c24x(tMψ(x, ct)).

这样，tMψ(x, ct)，类似地
∂

∂t
(tMϕ(x, ct))均满足波动方程(3.18)。

当n 6= 3时，Cauchy问题(3.27)-(3.28)的求解更为困难。下面我们介绍用
::::::::::::::
Hadamard的

:::
降

::
维

:::
法来求解二维波动方程的Cauchy问题。

3.4 Hadamard降维法

下面我们讨论二维波动方程的Cauchy问题

utt − c2(ux1x1 + ux2x2) = 0, (3.30)

u(0, x1, x2) = ϕ(x1, x2), ut(0, x1, x2) = ψ(x1, x2). (3.31)

我们用Hadamard的降维思想来求解Cauchy问题(3.30)-(3.31)。

这个方法的核心思想是
:::
把

::
所

:::
求

:::
偏

:::
微

:::
分

:::
方

::
程

:::
的

:::
解

:::
看

:::
作

::
是

:::
另

:::
一

:::
个

:::
有

:::
更

::
多

:::
变

:::
元

:::
但

:::
是

::
可

:::
解

::
的

:::
方

:::
程

:::
的

:::
特

:::::
解，

:::
从

:::
而

:::
得

:::
到

:::
它

::
们。特别的，当n = 2时，Cauchy问题(3.30)-(3.31)的

解u(t, x1, x2)可以看成是n = 3时问题(3.18)-(3.19) 与x3无关的解。于是，对于x3 = 0和

ψ(y) = ψ(y1, y2), ϕ(y) = ϕ(y1, y2),

公式(3.29)给出u(t, x1, x2)的表示式，其中面积分是在球面

|y − x| =
√

(y1 − x1)2 + (y2 − x2)2 + y2
3 = ct

上作的。由于在这个球面上

dSy =

√
1 + (

∂y3

∂y1

)2 + (
∂y3

∂y2

)2 dy1dy2 =
ct

|y3| dy1dy2,

并且点(y1, y2, y3)和(y1, y2,−y3)对积分有相同的贡献，我们得到

u(t, x1, x2) =
1

2πc

∫∫

r<ct

ψ(y1, y2)√
c2t2 − r2

dy1dy2 +
∂

∂t

1

2πc

∫∫

r<ct

ϕ(y1, y2)√
c2t2 − r2

dy1dy2, (3.32)
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其中

r =
√

(x1 − y1)2 + (x2 − y2)2. (3.33)

我们看到点(t, x1, x2)关于初始数据的依赖区域现在是y1y2平面上的实. 心. 的圆域r 6 ct。

同样的方法也适用于其他低维方程。例如考虑n = 3时(3.1)，(3.13)的具有特殊形式

的解u：

u(t, x1, x2, x3) = eiλx3v(t, x1, x2).

则v是二维方程

vtt = c2(vx1x1
+ vx2x2

− λ2c2v) (3.34)

的解。在公式(3.29)中取

ϕ(x1, x2, x3) = eiλx3ϕ̃(x1, x2), ψ(x1, x2, x3) = eiλx3ψ̃(x1, x2),

最后再令x3 = 0就得到(3.34)的t = 0时有初值

v = ϕ̃(x1, x2), vt = ψ̃(x1, x2) (3.35)

的解v。

3.5 非齐次波动方程Cauchy问题的解

利用叠加原理知，非齐次波动方程Cauchy问题

utt = c2(ux1x1
+ ux2x2

+ ux3x3
) + f(t, x1, x2, x3), (3.36)

u(0, x) = ϕ(x), ut(0, x) = ψ(x) (3.37)

总可以分解成两个问题来解决：第一个问题是求齐次方程(3.14)满足非齐次初始条

件(3.19)的解，这个解的求法已由前面的Poisson公式(3.29)给出；第二个问题是求非齐

次方程(3.36)满足齐次初始条件

u(0, x) = 0, ut(0, x) = 0 (3.38)

的解。

和一维的情况一样，上述的第二个问题可以利用
::
齐

:::
次

:::
化

::
原

:::
理求解，即先求齐次方程

的下述Cauchy问题

wtt = c2(wx1x1
+ wx2x2

+ wx3x3
), (3.39)
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w|t=τ = 0, wt|t=τ = f(τ, x1, x2, x3), (3.40)

的解w(t, x1, x2, x3; τ)，然后关于参数τ积分，得到

u(t, x1, x2, x3) =

∫ t

0

w(t, x1, x2, x3; τ)dτ, (3.41)

它就是Cauchy问题(3.36)、(3.38)的解。我们同样可以像一维情况一样给以物理上的解

释，现在我们仅从数学上进行验证。

首先验证由(3.41)式给出的函数u满足初始条件(3.38)。条件u|t=0 = 0的满足是显然

的。今验证ut|t=0 = 0。由于

∂u

∂t
= w(t, x1, x2, x3; t) +

∫ t

0

∂w(t, x1, x2, x3; τ)

∂t
dτ,

利用w所满足的初始条件w|t=τ = 0，上式右端第一项等于零，从而

∂u

∂t
=

∫ t

0

∂w

∂t
dτ,

因此ut|t=0 = 0。

再验证函数u满足方程(3.36)。为此，将上面最后一式再关于t求导一次，并注意到方

程(3.39)及条件(3.40) 的第二式，得

∂2u

∂t2
=

∂w(t, x1, x2, x3; τ)

∂t

∣∣∣∣
τ=t

+

∫ t

0

∂2w(t, x1, x2, x3; τ)

∂t2
dτ

= f(t, x1, x2, x3) + c24
∫ t

0

wdτ = c24u + f,

其中4 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

. 这就是说函数u满足方程(3.36)。这样就证明了(3.41)式确实

给出Cauchy问题(3.36)、(3.38)的解。

现在我们把这个解明显地表示出来。根据Poisson公式，有

w(t, x1, x2, x3; τ) =
1

4πc

∫∫

|y−x|=a(t−τ)

[
f(τ, ξ, η, ζ)

r

]

r=c(t−τ)

dSy,

因此

u(t, x1, x2, x3) =
1

4πc

∫ t

0

∫∫

|y−x|=a(t−τ)

[
f(τ, ξ, η, ζ)

r

]

r=c(t−τ)

dSydτ

=
1

4πc2

∫ ct

0

∫∫

|y−x|=r

f(t− r
c
, ξ, η, ζ)

r
dSydr (τ = t− r

c
)

=
1

4πc2

∫∫∫

r6at

f(t− r
c
, ξ, η, ζ)

r
dV,

(3.42)
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其中dV表示体积微元，积分在以(x1, x2, x3)为中心、以ct为半径的球体中进行。因此在

时刻t、位于M(x1, x2, x3) 处解u的数值由函数f在时刻τ = t − r

c
处的值在此球中的体积

积分表出，称这样的积分为
:::
推

:::
迟

::
势。

在二维的情况，我们可以进行类似的讨论。

习 题

1. 利用poisson公式求解波动方程的Cauchy问题：

(1)





utt = c2(uxx + uyy + uzz),

u|t=0 = 0, ut|t=0 = x2 + yz;

(2)





utt = c2(uxx + uyy + uzz),

u|t=0 = x3 + y2z, ut|t=0 = 0.

2. 求解下面波动方程的Cauchy问题





utt = c2(uxx + uyy),

u|t=0 = x2(x + y), ut|t=0 = 0.

3. 求二维波动方程的轴对称解(即二维波动方程的形如u = u(r, t)的解，其中r =
√

x2 + y2).

4. 试用齐次化原理导出平面非齐次波动方程

utt = c2(uxx + uyy) + f(t, x, y)

在齐次初始条件

u|t=0 = 0, ut|t=0 = 0

下的求解公式。
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