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A Calabi-Yau manifold is a K�ahler manifold

with trivial canonical line bundle. However, we

shall focus on projective manifolds.

Examples: Elliptic curves, Abelian varieties,

K3, all have very rich arithmetic properties.

String theory predicts that 3-dimensional Calabi-

Yau is the hidden space of space-time. These

manifolds exhibit a mysterious mirror symme-

try and string duality that we shall discuss later.
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We will discuss the integrality and modularity

properties of the enumerative functions that

appeared in such manifolds.

Elliptic curves are one dimensional Calabi-Yau

which number theorists are very familiar with.

We will start from two dimension: counting

curves and points inside Calabi-Yau manifolds.
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Two dimension

Counting curves with nodes on an algebraic

surface was observed by Yau-Zaslow to be re-

lated to quasi-modular forms. Note that the

counting that we used is di�erent from the in-

stanton calculation in Calabi-Yau manifolds.

Notation: Let τ ∈ H the complex upper half

plane, and q = e2πiτ . Recall that a modular

form of weight k for SL(2,Z) is a holomorphic

function f on H satisfying

f

(
aτ + b

cτ + d

)
= (cτ+d)kf(τ),

(
a b
c d

)
∈ SL(2,Z)

and having a Fourier series f(τ) =
∑∞
n=0 anq

n.
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Writing σk(n) :=
∑
d|n d

k, the Eisenstein series

Gk(q) = −
Bk
2k

+
∑
n>0

σk−1(n)q
n,

are modular forms of weight k/2. Here Bk
is the k-th Bernoulli number, while G2(τ) is

a quasimodular form, with �τ appeared in the

modular transformation.

Let

�(q) = q
∏
k>0

(1− qk)24 = η(q)24

where η(q) is the Dedekind η function.
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Let M be an algebraic surface and C be a

holomorphic curve representing a primitive ho-

mology class. Let ng(r) be the number of

curves of geometric genus g with r nodes pass-

ing through g generic points in the linear sys-

tem [C].

Denote di�erential operator

D =
1

2πi

d

dτ
= q

d

d q
.

The ring of quasimodular forms is closed under

di�erentiation.
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For g = 0 Yau-Zaslow obtained the following

formula for K3 surfaces:

∞∑
r=0

ng(r)q
r =

(
DG2

)g
· q/�(q).

In our proof, we assume that rational curves

in a generic K3 surface have normal crossing

(The assumption was proved by X. Chen later).

The counting of rational curves on K3 was a

well-known question.
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Prior to the work of Yau-Zaslow, the �rst 6

numbers were obtained by Vainsencher with-

out knowing that it come from q/�(q). Yau-

Zaslow formula comes from understanding the

moduli space of (�g, L) where �g is an alge-

braic curve of genus g and L is 
at line bundle

over �g. The Euler number of the last moduli

space can be computed by the Euler number

of symmetric products of K3-surfaces.
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Goettsche generalized this theorem of Yau-Zaslow

to a conjecture over arbitrary algebraic sur-

faces.

Yau-Zaslow-Goettsche Conjecture:

Generating series of counting curve can be iden-

ti�ed with

(DG2(q)/q)
χ(L)B1(q)

K2
S B2(q)

L·KM

(�(q)D2G2(q)/q2)
χ(OS)

2

.

where B1 and B2 are the two power series de-

rived by G�ottsche starting as

B1(q) = 1− q − 5q2+30q3 − 345q4+2961q5+ · · · ,
B2(q) = 1+ 5q+2q2+35q3 − 140q4+986q5+ · · · .
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Here χ(L), χ(OS) are the Riemann-Roch num-

bers and K2
S and LKS are the intersection num-

bers of the canonical line bundle and the the

line bundle L.

It is not known how B1 and B2 look like exactly.
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Remarks:

1. Bryan-Leung proved the Yau-Zaslow con-

jecture for K3 when the cohomology class rep-

resented by the curves is primitive. The gen-

eral Goettsche-Yau-Zaslow conjecture was es-

tablished by Ai-Ko Liu by a rather complicated

arguments.

2. Ai-Ko Liu later also demonstrated the Harvey-

Moore conjecture which claimed that similar

formula holds for certain family of Calabi-Yau

manifolds with K3 �bration. They are also

given by modular forms.

3. Many mirror symmetry computations for

K3 or elliptic �bered Calabi-Yau manifolds are

given by modular forms and quasimodular forms.

(Klemm, Marino, Hasono, ....)
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The mirror manifold of an elliptic curve or a K3

surface is another elliptic curve or K3. This

may explain the modularity appeared in the

above counting functions. Depending on the

lattice H1,1 ∩H2(Z), the number of manifolds

mirror to a given K3 surface is related to the

class number.

Theorem (Hosono, Lian, Oguiso, Yau). Sup-

pose the Picard number of a K3 surface S is

two and the determinant of its Neron-Severi

lattice is −p where p is a prime number. Then

the number of the mirror K3 surface of S is

given by
h(p)+1

2 where h(p) is the class number

of Q(√p).
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Three dimension.

In dimension higher than two, the counting of

curves cannot be expressed by quasi-automorphic

forms alone. Some \quantum" perturbation is

required.

We start with discussions about the idea of

mirror symmetry which relates deformation of

complex structures of one CY manifold to count-

ing of curves in its mirror.
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B-model: Deformation of complex structures

via calculation of periods:

• X, a CY threefold

• 
, a holomorphic three form on X

• Fix a symplectic base αi, β
i of H3(X,Z),

i = 0,1, ...,m = h2,1(X).

• Periods of X:

ξi =
∫
αi

, ηi =

∫
βi
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• The ξi depends on the complex structure

of X holomorphically and form a set of pro-

jective coordinates on the moduli space of

X.

They satisfy the Picard-Fuchs equations which

can be solved by the Forbenius method,

where canonical expansions can be found

in the large radius limit.

• By local Torelli theorem for Calabi-Yau man-

ifold, there exists a homogeneous function

G(ξ) of degree 2 such that

ηi =
∂G

∂ξi
, G(λξ) = λ2G(ξ)
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• The degree zero function

F0(t) = G/ξ20, ti = ξi/ξ0, i ≥ 1

is the (IIB) prepotential of X. The ti are

called 
at coordinates.

• Making use of the relation
∫

∧
 = 0, one

can derive

(ξ0, · · · , ξm, η0, · · · , ηm)

= ξ0(1, t1, .., tm,
∂F0
∂t1

, ..,
∂F0
∂tm

,2F0 − ti
∂F0
∂ti

)

Hence F0 can be determined by the peri-

ods.

The prepotential F0 determines the B-model

of the Calabi-Yau manifold.
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Mirror Symmetry: The B-model prepotential

F0 is related to the A-model prepotential of

the mirror of the CY manifold, which counts

rational curves of the mirror manifold.

The quintic manifold was the �rst example

to demonstrate the power of mirror symme-

try through the striking work of Greene-Plesser

and Candelas et al.
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• Consider quintic hypersurfaces X ′z

a1x
5
1+ · · ·+ a5x

5
5+ a0x1 · · ·x5 = 0

where z = a1···a5
a50

. It has automorphisms

� = Z5
4. X ′z/� has a crepant resolution

Xz.

• X = Xz is a mirror of the quintic.

This CY threefold has h2,1 = 1 and h1,1 =

101.

(A quintic threefold Y has h2,1 = 101 and

h1,1 = 1.)
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Quintic Mirror Conjecture (Candelas et al):

For mirror quintics X, the prepotential de�ned

previously is given by

F0(t) = 5t3+
∑
d≥1

Kde
2πidt,

Kd = deg [ �M0,0(Y, d)]vir ∈ Q.

Here �M0,0(Y, d) is the degree d moduli space

of stable maps to Y (Kontsevich) and Kd is

the degree of its virtual fundamental class in

the Chow group A∗( �M0,0(Y, d)) (Jun Li et al.)
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• The proof based on conformal �eld theory

of the Gepner model was due to Greene-

Plesser and the calculation was due to Can-

delas et al. (The argument depends on

integration over in�nite dimensional space

and cannot be considered as mathematical

rigorous.)

• Mathematical rigorous proof of Quintic Mir-

ror Conjecture was due independently to

Lian-Liu-Yau and Givental (cf. Pandhari-

pande, Bini et al for expositions.)
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• Constructions of pairs of toric complete in-
tersections were due to Batyrev and Borisov

who speculate them to be mirror pairs. That

they are indeed mirror pair was justi�ed by

the work of Strominger-Zaslow-Yau based

on M-theory.

• Period formula and generalizations of mir-

ror conjecture for CY complete intersec-

tion in nonnegative (c1 ≥ 0) toric mani-

folds conjectured by Hosono-Lian-Yau was

proved by Lian-Liu-Yau.
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Prepotentials

Integrality Conjecture:

F0 can be computed by the following general

recipe:

1. The 3rd derivatives of the (A model) prepo-

tential F0(t) of a CY threefold X, with mirror

Y , should have the form

∂i∂j∂kF0(t) =
∫
Y
γiγjγk+

∑
d∈H2(Y,Z)

nddidjdkq
d

1− qd

where γi is a suitable base of H2(Y,Z), where

the nd are integers.
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2. The integers nd counting the virtual number

of rational curves in homology class d = diγ
i

(γi dual to γi.)

• This implies that the GW invariants Kd ∈ Q

are related to the nd by the formula

Kd =
∑
k|d

k−3nd/k.

The denominator of Kd is related to au-

tomorphisms of genus zero stable maps to

Y . This formula implies that this denomi-

nator can't be too big: at worst N3 where

N is the largest integer such that d/N ∈
H2(Y,Z).

• The Integrality Conjecture also implies that
∂i∂j∂kF0(t) has q-series with integer coe�-

cients.
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• The integrality of ∂i∂j∂kF0(t) has been ver-
i�ed in some cases (e.g. Lian-Yau.)

• The q-series usually have small radii of con-
vergence. It is still not known if there is

always an analytic continuation to the unit

polydisk |qi| < 1.

• In many cases, one can show that F0(t)

satis�ed a system of nonlinear (polynomial)

PDE.

• For h2,1 = 1, this is a 10th order ODE.

The ODE determines F0 uniquely up to a

degree 3 polynomial in t.
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Example

• X Calabi-Yau manifolds which are com-

plete intersection.

• The ODE for X has the form

P (δ, χ, ρ) = 0.

• δ, χ, ρ are certain invariant di�erential poly-

nomials of F (t) of weights 15,10,4. P is

a quasi-homogeneous polynomial of weight

180. There are 37 terms in this polynomial

correspond to the 37 partitions of 180 by

15,10,4.

• One can use this ODE to prove that the

`number' of rational curves of degree d in

a generic quintic is divisible by 53 (at least

for 5|d), a conjecture of Clemens 1981.
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Large Radius Limit

Conjecture: If X is not rigid, then it can de-

generate into a union of smooth rational vari-

eties intersecting transversally, where the mon-

odromy is maximally unipotent.

• The SYZ �bration of X, whenever known,

supports this conjecture.

• Example: CY complete intersections in toric

varieties.

• This degeneration is called the large radius

limit (or large complex structure limit) of

X.
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• Their existence have been proved in many

cases (see Hosono-Lian-Yau, Lian-Todorov-

Yau.)

• In a neighborhood of the large radius limit,
periods of X are expected to have canon-
ical q-series expansions of the form (qi =
exp(2π

√
−1ti))

w0(t)


1
ti

1
2
K0
ijkt

jtk + bi+ ∂tiF
0
inst

−1
6
K0
ijkt

itjtk − biti+ c+ (2F 0
inst − ti∂tiF 0

inst)


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How do we compute the cubic polynomial ap-

peared in the above expression of the period?

This was proposed by Hosono-Klemm-Theisen-

Yau (HKTY). Its choice is based on the Frobe-

nius method. It is mathematically elegant and

is important for many later considerations of

mirror principle. (The formal variable in the

Frobenius method is later interpreted to be the

hyperplane class in the equivariant cohomology

in the proof of mirror conjecture.)
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There is a period which has power series ex-

pansion

w0(z) =
∑
n≥0

c(n)zn .

It satis�es the generalized hypergeometric sys-

tem of Gilfand-Kapranov-Zilovauski.

HKTY used the Frobenius argument to solve

the Picard-Fuchs equation.
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When X is a hypersurface in products of weighted

projected space.

Let c(n1, . . . , nk) be written as products of

(li(n1, . . . , nk)!)
±1 when lj are linear forms with

integer coe�cients.

We de�ne c(ρ1, . . . , ρk) by replacing (lj)! by

�(lj(· · · , ρj, · · · ) + 1).

Let Ji be the pull back of the K�ahler form of

the i-th projective space. Then Kijk =
∫
Ji ∧

Jj ∧ Jk.
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Let

∂ρi =
1

2πi

∂

∂ρi

D
(2)
i =

1

2
Kijk∂ρj∂ρk

D(3) = −
1

6
Kijk∂ρi∂ρj∂ρk,

then we �nd∫
c2 ∧ Ji = −24D(2) c(ρ1, . . . , ρk)|(0,...,0)∫

c3 = i
2π3

ζ(3)
D(3)c(ρ1, . . . , ρk)

∣∣∣
(0,...,0)
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From this formulae, we can calculate the cubic

polynomial in the expression of the period to

be:

bi =
1

24

∫
c2 ∧ Ji

c = i
ζ(3)

2π3

∫
c3

This means that the Chern Class of a Calabi-

Yau manifold can be expressed in terms of the

period of the mirror manifold.
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This observation was generalized by A. Lib-

gober in higher dimension by �nding∫
Qk(c1, · · · , ck) ∧ Ji1 ∧ · · · ∧ Jin−k

=
∑

k!
∂kc(ρ1, · · · , ρk)
∂ρj1 · · · ∂ρjk

∣∣∣∣∣
(0,··· ,0)

Kj1,··· ,jk,i1,··· ,in−k

where Q is the Hirzebruch multiplicative se-

quence associated to 1
�(1+z)

.
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Mirror Maps

• X, CY complete intersection (correspond-

ing to the line bundles L1, .., Lk ∈ Pic(M))

in a toric manifold M with c1(M) ≥ 0.

• In [Hosono-Lian-Yau 1995], we de�ne the
cohomology valued B-series

B(x) =
∑

d∈H2(M,Z)+

∏
i�(c1(Li) + c1(Li) · d+1)∏

Da
�(Da+Da · d+1)

ex·d+x.

The sum is over the classes d in the Mori

cone of M .

The Da are the toric divisors of M .

x is a vector parameter in H2(X,C).

The � functions should be expanded as

power series in the cohomology valued pa-

rameters c1(Li), Da.
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• It was shown that B(x) computes the pe-

riods of the mirror CY manifold X, gener-

alizing the classical Frobenius method.

• This generalizes all previously found pe-

riod formulas for toric CY (Candelas-de la

Ossa-Font-Katz-Morrizon, Hosono-Kleem-

Theisen-Yau, Batyrev-Vau Straten, Hosono-

Lian-Yau)
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• B(t) is a solution to a GKZ hypergeometric

PDE system.

• Example: for X quintic 3-fold, this reduces

to the familiar series (Candelas et al)

B(x) =
∑
d≥0

�(5H + d+1)

�(H + d+1)5
zd+H

where H is the hyperplane class and z =

ex1, x = x1H.
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• In general, the periods of the mirror CY X

are recovered by expanding the function

B(x) = B(x1H1+ · · ·+ xmHm)

where the Hi, independent vectors in H
2(X),

are the expansion parameters (Frobenius

parameters.)

The x1, .., xm are interpreted as coordinates

on the moduli space of X.

• One �nds

B(x) = [X]
(
f0(z) + gi(z)Hi+O(H2)

)
where zi = exi, and f0(z) is a holomorphic

function, and gi(z) = f0(z)log zi+O(z).
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• Put

qi := exp(2π
√
−1ti), ti :=

gi(z)

f0(z)
.

Inverting this relations:

zi = zi(q) = qi+O(q2).

These are the q-series of the mirror map;

the ti are interpreted as 
at coordinates on

the moduli space of X.

• These q-series can be thought of as some

higher dimensional analogue of the elliptic

modular function j(q).

Example: X, quintic 3-fold.

z(q) = q − 770q2+171525q3 − 81623000q4

− 35423171250q5 − 54572818340154q6 − · · ·
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Conjecture: The q-series of the mirror map

are series with integer coe�cients.

• This conjecture is known to hold for many

toric CY.

• For many toric CYs, this can be seen as a

consequence of Dwork's p-adic ODE the-

ory (see Lian-Yau 1994.)

• It can also be shown that the 5th root

z(q)1/5 of z(q) above also has integer co-

e�cients.
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Schwarzian Equations for Mirror Maps

• We restrict to CY 3-fold X with one mod-

uli, i.e. h2,1(X) = 1.

• We construct a nonlinear ODE for the q-

series z(q), generalizing the classical Schwarzian

ODE for the elliptic modular function:

{j, t} = Q(j)j′(t)2.

where Q(j) is a rational function of j.

• Since h2,1(X) = 1, Transversality implies

that the periods of X satis�es a 4th or-

der homogeneous ODE, the Picard-Fuchs

equation.
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• Special Geometry implies that the PF equa-

tion can be transformed into the special

form:

f ′′′′+ c2f
′′+ c′2f

′+ f = 0

where

c2 :=a2(z)z
′2 −

15

2
(
z′′

z′
)2+5

z(3)

z′
= a2z

′2+5{z(t), t}

c0 :=a0(z)z
′4+

3

2

da2

dz
z′
2
z′′ −

3

4
a2z

′′2 −
135z′′4

16z′4

+
3

2
a2z

′z(3)+
75z′′2z(3)

4z′3
−
15z(3)

2

4z′2
−
15z′′z(4)

2z′2
+

3z(5)

2z′

where ′ := d
dt, and a2(z), a0(z) are some

functions of z.
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• The di�erential equation above is equiva-
lent to the following pair of coupled ODEs:

c2 =
2K ′′

K
−
5

2
(
K ′

K
)2

c0 =
−35K ′4

16K4
+

5K ′2K ′′

K3
−
5K ′′2

4K2
−
2K ′K(3)

K2
+
K(4)

2K

where K(t) = F ′′′0 (t), and F0 =prepotential
function of X.
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• By elimination technique, we can explicitly

decouple the equations into two nonlinear

ODEs for z(t) and K(t) separately.

• The Schwarzian equation in three dimen-

sion is therefore perturbed by K(t):

2Q(z)z′2+ {z, t} =
2

5
y′′ −

1

10
y′2,

where y = logK(t) and Q can be written

as a rational function of z.
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Counting curves of higher genus

The prepotentials F0 can be generalized to Fg

to count curves of genus g. It can be de-

�ned through the Gromov-Witten invariants

for higher genus in the following way:

Assume:

X is a smooth Calabi-Yau threefold

β ∈ H2(X,Z), and
Mg(X,β) has virtual dimension 0

Then the Gromov-Witten invariants can be

de�ned to be

K
g
β(X) =

∫
[Mg(X,β)]vir

1

It is a rational number.
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Let

Fg =
∑

06=β∈H2(X,Z)
K
g
βe

2πω·β .

where ω is the K�ahler class of X.

Conjecture (Gopakumar-Vafa): There exist

integral invariants n
g
β such that

∞∑
g=0

Fgu
2g−2

=
∞∑
g=0

∑
β 6=0

∞∑
k=1

n
g
β

k

(
q1/2 − q−1/2

)2g−2
e2kπω·β ,

where q = eu, β ∈ H2(X,Z).
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• Gopakumar-Vafa conjecture is based on the
compacti�cation of M-theory on Calabi-Yau

threefold.

It reveals how a BPS state in type IIA com-

pacti�cation on Calabi-Yau threefold con-

tributes to topological string theory.

• In mathematics, there are no commonly ac-
cepted de�nition of these invariants.
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Veri�cation of GV conjecture for local

Calabi-Yau geometry

Let S be a toric, Fano surface inside a Calabi-

Yau threefold X. Then the tubular neighbor-

hood of S in X can be approximated by canon-

ical bundle KS → S.

Consider the following diagram:

π∗ev∗KS KS
↓ ↓

Mg(S, β)
π←− Mg,1(S, β)

ev−→ S

Local Gromov-Witten invariant:

K
g
β(S) =

∫
[Mg(S,β)]vir

ctop(R
1π∗ev∗KS)

(Lian, Liu, Yau, Vafa et al.)
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Theorem (Peng). For any local toric Calabi-

Yau threefold KS → S,

• Pβ(x) =
∑∞
g=0 n

g
β(S)x

g ∈ Z[x].

• The degree of Pβ is the arithmetic genus

of the curve representing the given class

β ∈ H2(S,Z).

• The leading coe�cient of Pβ is equal to

the Euler Characteristics of the holomor-

phic line bundle corresponding to devisor

β in S except for a possible negative sign

depending on β.

Multi-cover contribution and p-adic argument

is combined in the proof of the above theorem.

The similar argument is used later in the work

of Kontsevich-Schwarz-Vologodksy on study-

ing the integrality of instanton number on the

quintic manifold.
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Polynomial relation between Fg

The computation of Fg, the topological string

partition function, is of fundamental impor-

tance.

However, in general, the complexities of com-

putation is growing rapidly as genus grows higher

and higher. How to e�ectively reduce the com-

plexity of computation to a computable level

is really a challenging problem.

Except for noncompact Calabi-Yau manifolds,

Fg has not been computed for any compact

Calabi-Yau manifolds. On the other hand, they

have many properties similar to modular forms.
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The method of computations for Fg depend on

the work of BCOV on holomorphic anomaly

equation. They are determined only up to a

polynomial and this polynomial is �xed by di-

rect calculation and the method is not satis-

factory.

A great deal more need to be done. In compar-

ison with the fact that modular forms form a

ring and can be written as quasi-homogeneous

polynomial of Eisentein series E4 and E6, we

look into the ring structure of Fg.

Yamaguchi-Yau found polynomial relation among

Fg. This ring structure was used by Huang,

Klemm, Quackenbush to compute Fg for g ≤
51.
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Algorithm (Yamaguchi-Yau)

Step 1

Show genus g partition function Fg can be writ-

ten as a polynomial of a set of generators by

Yukawa coupling

∂ψCψψψ =
(2ψ−1)3

53
ψ2

1− ψ5

ψ correspond to the one family parameter of

Quintic Calabi-Yau threefold whose mirror man-

ifold is expressed by

x51+ x52+ · · ·+ x55 − 5ψx1x2 · · ·x3 = 0

Fg are actually sections of L2−2g where L is the

holomorphic line bundle de�ned by the holo-

morphic 3-forms.
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Step 2

Use Yukawa coupling and Picard-Fuchs equa-

tion, we �nd �ve power series and a recursive

formula to de�ne polynomial of �ve generators

of degree 3g− 3 by appropriately assigning de-

grees of these �ve generators. The relation

greatly reduced the complexity of computa-

tion of Gromov-Witten invariants to polyno-

mial complexity.

Theorem (Yamaguchi-Yau 2004) The gener-

ating function of genus g Gromov-Witten in-

variants FA−modelg is a degree (3g − 3) quasi-

homogeneous polynomial of �ve generators.
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example: Quintic Calabi-Yau threefold

Genus two partition function can be written as

3125

144
−
15625

288
v1+

125

24
v21 −

5

24
v31

−
3125

36
v2+

25

6
v1v2+

350

9
v3 −

28795

144
X

−
835

144
v1X +

5

6
v2X −

2375

12
v2X +

205

144
X2

−
325

288
v1X

2+
25

48
X3.

where Vi and X can be computed in terms of

Yukawa couplings.
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This theorem works in general for one param-

eter family of Calabi-Yau threefolds.

It has been used by Huang, Klemm, Quacken-

bush to make explicit computations for count-

ing higher genus curves in Calabi-Yau three-

folds.

Modular forms have appeared in the computa-

tions.

53



Formal toric Calabi-Yau threefold

J. Li-C.-C. Liu-K. Liu-J. Zhou introduced the

notion of formal Calabi-Yau threefolds.

A formal toric Calabi-Yau threefold X contains

an algebraic torus (C∗)3 as its open dense sub-

set and (C∗)3-action can naturally extend to

X.
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• X1: one-dimensional (C∗)3-orbit closures (as-
sume connected)

• X0: (C∗)3 �xed points

p ∈ X0, the action of (C∗)3 on ∧3TpX gives an

irreducible character α : (C∗)3 → C∗.

α is independent of choice of p due to Calabi-

Yau condition and connectedness of X1.
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• T = Kerα ∼= (C∗)2.

• TR
∼= U(1)2 is the maximal compact sub-

group of T .

• t∨R is the dual of the Lie algebra of TR.

µ : X −→ t∨R be the moment map of the TR-
action on X.

The image of X1 gives a planar trivalent graph

�, called toric diagram of X.
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Topological vertex theory:

This is a theory developed by string theorists

Aganagic-Klemm-Marino-Vafa, and by mathe-

maticians J. Li, C.-C. Liu, K. Liu, J. Zhou.

• Degenerate X along some devisor related

to its toric diagram until all pieces are in-

decomposable

• Each piece is a topological vertex whose

generating functions of (open) Gromov-Witten

invariants are by duality equal to some Chern-

Simons invariants.
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• A gluing algorithm can be used to compute

Gromov-Witten invariants of toric Calabi-

Yau threefold.

• The theory gives complete closed formulas

for the generating series of all genera and

all degree in terms of Chern-Simons knot

invariants, or symmetric functions.
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By studying degeneration/gluing algorithm in

topological vertex theory, combine multi-cover

contribution and p-adic argument

Theorem (Peng). Gopakumar-Vafa conjec-

ture holds for any formal toric Calabi-Yau three-

fold and Gopakumar-Vafa invariants vanish at

large genera.

The theorem is not known for compact Calabi-

Yau manifolds.
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Mirror symmetry and rational points over

�nite �elds.

Let

P (x, ψ) =
5∑
i=1

x5i − 5ψ
5∏
i=1

xi = 0

be a family of Calabi-Yau quintics. Let Nr(ψ)

be the number of rational points in Fpr, and

the generating series

ζ(t, ψ) = exp (
∞∑
r=1

Nr(ψ)
tr

r
).
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• Candelas et al developed a method to express
ζ(t, ψ) in terms of the periods of the mirror

family.

• D. Wan made some interesting congruence

conjectures about ζ(t, ψ) and the correspond-

ing generating function of the mirror family.
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In order to really understand mirror symmetry

for Calabi-Yau manifolds over number �eld, it

seems that the mirror of Frobenius action has

to be understood. We know that H3(X) is

mapped to H0(X ′)⊕H2(X ′)⊕H4(X ′)⊕H6(X ′)
and special lagrangian cycles of X are mapped

to algebraic vector bundles V over X ′. The

latter is then mapped to cohomology by

ch(V )
√
Tod(X ′).

It is therefore interesting to see whether there

is an action mirror to Frobenius action on the

algebraic K-groups.
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Modularity of Calabi-Yau threefold

There is a general modularity conjecture for

rigid Calabi-Yau manifolds, generalizing the Shimura-

Taniyama conjecture. Many interesting works

have been done along this direction.

Theorem(Dieulefait-Manoharmayum) Every rigid

(h3 = 2) Calabi-Yau threefold with good re-

duction at 3 or at 5 is modular. Probably any

rigid CY threefold is modular.
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Examples of nonrigid Calabi-Yau manifolds

Let F ⊂ P4 be the quintic threefold

5∑
i=1

(x3i xi+1xi+4+x3i xi+2xi+3−xix2i+1x2i+4−xix2i+2x2i+3) = 0

F is the total space of a pencil of abelian

surfaces cut out by sections of the Horrocks-

Mumford bundle on P4.
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(E. Lee) There is a desingularization F̂ of F
such that its middle cohomology, up to semisim-

pli�cation, has the form

H3(F̂ ) = V ⊕ IndGQ
GQ(i)

H1(E)(−1)

E is an elliptic curve de�ned over Q(i).

V is a rank 2 motive which is modular: the L-
series of V (up to Euler factors at bad primes)

is the Mellin transform of the unique normal-

ized cusp form f of weight 4, level 5

f = q − 4q2+2q3+8q4 − 5q5 − 8q6+6q7+ ...

The term Ind
GQ
GQ(i)

H1(E)(−1) comes from a

complex-conjugate pair of elliptic ruled sur-

faces embedded in F̂ de�ned over Q(i).

Proof is by counting points on F̂ and apply-

ing the Lefschetz �xed-point theorem to the

Frobenius automorphism.
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Other examples of nonrigid modular CY 3folds:

van Geemen-Nygaard, Hulek-Verrill, Livne-Yui,

Schuett, Cynk-Meyer and others. In each case

H3 = sum of two-dimensional pieces whose

modular forms are known. In general higher-

dimensional Galois representations and more

complicated automorphic forms might be in-

volved.
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Motives and mirror symmetry of a pair of

Calabi-Yau threefolds

An admissible weight Q = (q1, q2, q3, q4, q5) is a

5-tuple of positive integers such that gcd(qi) =

1, each qi divides m = q1 + q2 + q3 + q4 + q5.

Consider the family of degree m Calabi-Yau hy-

persurfaces X in the weighted projective space

P4(Q).

There is the Fermat-type hypersurface

V (Q) : x
m1
1 + x

m2
2 + x

m3
3 + x

m4
4 + x

m5
5 = 0

where mi =
m
qi
.
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To get the mirror family ~X (Greene-Plesser),
take a family of deformations of the Fermat
hypersurface, quotient out by a group G of au-
tomorphisms which preserves the holomorphic
3-form, and desingularize:

G = {g = (g1, g2, g3, g4, g5)|gmi

i = 1,
∏
i

gi = 1}/{g, g, g, g, g}

In the (1,1,1,1,1) case

~X = {x51+x
5
2+x

5
3+x

5
4+x

5
5−ψx1x2x3x4x5 = 0}/(Z35)

The mirror ~X 
ips the Hodge numbers of X:

hi,j(X) = h3−i,j( ~X).
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Consider also the dual group Ĝ and a subset

A(Q) ⊂ Ĝ:

Ĝ = {a = (a1, a2, a3, a4, a5)|ai ∈ qi(Z/m),
∑

ai = 0}

(g, a) =
∏
i

g
ai
i

A(Q) = {(a1, a2, a3, a4, a5) ∈ Ĝ| each ai 6= 0}
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For each a ∈ Ĝ de�ne A = [a] to be the (Z/m)∗

orbit of a.

Each g ∈ G de�nes a cycle on V × V given by

its graph. For each a de�ne the cycles

pa =
1

|Ĝ|
∑
g∈G

(g, a)−1g ∈ A∗(V × V )

pA =
∑
a∈A

pa

The {pA} form an orthogonal set of projectors.

If A = [a] ⊂ A(Q) it de�nes a Fermat motive.
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Theorem. (N. Yui and S. Kadir) Let (X, ~X)
be a mirror pair of Calabi-Yau orbifolds of ad-
missible weight Q. If p is a good prime and

q = pk, then the zeta function of ~X at the
Fermat point is given by

Z( ~XFq
, t) =

P3( ~XFq
, t)

(1− t)(1− qt)h2,1(X)(1− q2t)h1,2(X)(1− q3t)

P3( ~XFq, t) =
∏
A

P3(MA, t)
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Here the product runs over all Fermat motives

A with (G,A) = 1. MA is the image H3(X)pA

of H3(X) under the projector pA, and P3 is

the characteristic polynomial of the Frobenius

action.

This relation between the zeta-functions of X

and ~X leads to a correspondence between mono-

mial types of X (periods) and Fermat motives.
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