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A Calabi-Yau manifold is a Kahler manifold
with trivial canonical line bundle. However, we
shall focus on projective manifolds.

Examples: Elliptic curves, Abelian varieties,
K3, all have very rich arithmetic properties.

String theory predicts that 3-dimensional Calabi-
Yau is the hidden space of space-time. These
manifolds exhibit a mysterious mirror symme-
try and string duality that we shall discuss later.



We will discuss the integrality and modularity
properties of the enumerative functions that
appeared in such manifolds.

Elliptic curves are one dimensional Calabi-Yau
which number theorists are very familiar with.

We will start from two dimension: counting
curves and points inside Calabi-Yau manifolds.



Two dimension

Counting curves with nodes on an algebraic
surface was observed by Yau-Zaslow to be re-
lated to quasi-modular forms. Note that the
counting that we used is different from the in-
stanton calculation in Calabi-Yau manifolds.

Notation: Let 7 € H the complex upper half
plane, and g = e2™T  Recall that a modular
form of weight k for SL(2,Z) is a holomorphic
function f on H satisfying

) = (er+d)*f(7), (‘CL Z) € SL(2,2)

at + b
f(CT—|-d

and having a Fourier series f(7) = >>Lanq".



Writing o (n) 1= de d*, the Eisenstein series

Grlq) = —— + > ok—1(n)q",

n>0
are modular forms of weight k/2. Here By
is the k-th Bernoulli number, while Go(7) is
a quasimodular form, with 7 appeared in the
modular transformation.

Let

Al =q [] Q- "% =n(g)?*
k>0

where n(q) is the Dedekind n function.



Let M be an algebraic surface and C be a
holomorphic curve representing a primitive ho-
mology class. Let ng(r) be the number of
curves of geometric genus g with » nodes pass-
ing through g generic points in the linear sys-
tem [C].

Denote differential operator
1 d d

T 2midr dq
The ring of quasimodular forms is closed under

differentiation.



For ¢ = O Yau-Zaslow obtained the following
formula for K3 surfaces:

oo

> ng(r)g" = (DG2)" - g/ A(g).

r=0

In our proof, we assume that rational curves
in @ generic K3 surface have normal crossing
(The assumption was proved by X. Chen later).
The counting of rational curves on K3 was a
well-known question.



Prior to the work of Yau-Zaslow, the first 6
numbers were obtained by Vainsencher with-
out knowing that it come from ¢/A(q). Yau-
Zaslow formula comes from understanding the
moduli space of (X4,L) where X, is an alge-
braic curve of genus g and L is flat line bundle
over 2 4. The Euler number of the last moduli
space can be computed by the Euler number
of symmetric products of K3-surfaces.



Goettsche generalized this theorem of Yau-Zaslow
to a conjecture over arbitrary algebraic sur-

faces.

Yau-Zaslow-Goettsche Conjecture:

Generating series of counting curve can be iden-
tified with
2
(DG2(q) /)X By (g)"5 Ba(q)L-Ku

(A (q) DG () /)" 2>

where B1 and B, are the two power series de-
rived by GoOttsche starting as

Bi(q) =1 —q—5¢* 4 30¢> — 345¢* +2961¢° + - - -,
Bs(q) =1+ 5¢ + 2¢° + 35¢> — 140¢* + 986¢° + - - - .



Here x(L), x(Og) are the Riemann-Roch num-
bers and Kg and LKg are the intersection num-
bers of the canonical line bundle and the the
line bundle L.

It is not known how B1 and B> look like exactly.



Remarks:

1. Bryan-Leung proved the Yau-Zaslow con-
jecture for K3 when the cohomology class rep-
resented by the curves is primitive. The gen-
eral Goettsche-Yau-Zaslow conjecture was es-
tablished by Ai-Ko Liu by a rather complicated
arguments.

2. Ai-Ko Liu later also demonstrated the Harvey-
Moore conjecture which claimed that similar
formula holds for certain family of Calabi-Yau
manifolds with K3 fibration. They are also
given by modular forms.

3. Many mirror symmetry computations for
K3 or elliptic fibered Calabi-Yau manifolds are
given by modular forms and quasimodular forms.
(Klemm, Marino, Hasono, ....)
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The mirror manifold of an elliptic curve or a K3
surface is another elliptic curve or K3. This
may explain the modularity appeared in the
above counting functions. Depending on the
lattice H1:1 N H2(Z), the number of manifolds
mirror to a given K3 surface is related to the
class number.

Theorem (Hosono, Lian, Oguiso, Yau). Sup-
pose the Picard number of a K3 surface S is
two and the determinant of its Neron-Severi
lattice is —p where p is a prime number. Then
the number of the mirror K3 surface of S is
given by % where h(p) is the class number

of Q(,/p).
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T hree dimension.

In dimension higher than two, the counting of
curves cannot be expressed by quasi-automorphic
forms alone. Some “quantum’ perturbation is
required.

We start with discussions about the idea of
mirror symmetry which relates deformation of
complex structures of one CY manifold to count-
ing of curves in its mirror.

12



B-model: Deformation of complex structures
via calculation of periods:

e X, a CY threefold
e (2, a holomorphic three form on X

e Fix a symplectic base «;, 3" of Hz(X,Z),
i=0,1,...m = h31(X).

e Periods of X:

=/ 9 o=@

o)
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e The ¢ depends on the complex structure
of X holomorphically and form a set of pro-
jective coordinates on the moduli space of
X.

They satisfy the Picard-Fuchs equations which
can be solved by the Forbenius method,
where canonical expansions can be found

in the large radius limit.

e By local Torelli theorem for Calabi-Yau man-
ifold, there exists a homogeneous function
G(&) of degree 2 such that

. 0G

) —\2
"= 5 G(AE) = A°G(E)
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e [ he degree zero function

Fo(t) = G/€3, t;=¢/¢0, i>1

is the (IIB) prepotential of X. The t; are
called flat coordinates.

e Making use of the relation [ Q2AQ2 = 0, one
can derive

(507"' 7€m77707'“ 777m)
oFy O0Fp 0 F
= 1,t1,..,tm, s ,2Fy — t;
§o(1,t1, . tm o, 9ty 20 Zati)
Hence Fp can be determined by the peri-

ods.

The prepotential Fy determines the B-model
of the Calabi-Yau manifold.
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Mirror Symmetry: The B-model prepotential
Fp is related to the A-model prepotential of
the mirror of the CY manifold, which counts
rational curves of the mirror manifold.

The quintic manifold was the first example
to demonstrate the power of mirror symme-
try through the striking work of Greene-Plesser

and Candelas et al.

16



e Consider quintic hypersurfaces X;

alaz‘?+---—|—a5xg—|-aocc1---x5=O

where z = "’1a—a5 It has automorphisms
0

I = Zs* X//I has a crepant resolution

X,.

e X = X, is a mirror of the quintic.
This CY threefold has h%1 =1 and w1l =
101.
(A quintic threefold Y has h%1 = 101 and
Rl =1)
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Quintic Mirror Conjecture (Candelas et al):
For mirror quintics X, the prepotential defined

previously is given by
Fo(t) =562+ Y Kge2™dt
d>1
K4 = deg [MO,O(Ya d)]vir € Q.
Here Mpo(Y,d) is the degree d moduli space

of stable maps to Y (Kontsevich) and K, is
the degree of its virtual fundamental class in

the Chow group A«(Mg o(Y,d)) (Jun Li et al.)
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e The proof based on conformal field theory
of the Gepner model was due to Greene-
Plesser and the calculation was due to Can-
delas et al. (The argument depends on
integration over infinite dimensional space
and cannot be considered as mathematical
rigorous.)

e Mathematical rigorous proof of Quintic Mir-
ror Conjecture was due independently to
Lian-Liu-Yau and Givental (cf. Pandhari-
pande, Bini et al for expositions.)
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e Constructions of pairs of toric complete in-
tersections were due to Batyrev and Borisov
who speculate them to be mirror pairs. That
they are indeed mirror pair was justified by
the work of Strominger-Zaslow-Yau based
on M-theory.

e Period formula and generalizations of mir-
ror conjecture for CY complete intersec-
tion in nonnegative (¢q; > 0) toric mani-
folds conjectured by Hosono-Lian-Yau was
proved by Lian-Liu-Yau.
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Prepotentials
Integrality Conjecture:

Fy can be computed by the following general
recipe:

1. The 3rd derivatives of the (A model) prepo-
tential Fp(t) of a CY threefold X, with mirror
Y, should have the form

nddidjqud
1 — g4

00,000 = | v+ 2
dEHQ(Yaz)

where ~; is a suitable base of H2(Y,Z), where
the n, are integers.
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2. The integers n,; counting the virtual number
of rational curves in homology class d = d;~°
(v* dual to ~;.)

e This implies that the GW invariants K; € Q
are related to the ng by the formula

Kg =) k™ ng.
k|d

The denominator of K, is related to au-
tomorphisms of genus zero stable maps to
Y. This formula implies that this denomi-
nator can't be too big: at worst N3 where
N is the largest integer such that d/N €
H>(Y,7Z).

e T helntegrality Conjecture also implies that
0;0;0,Fo(t) has g-series with integer coeffi-
cients.
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The integrality of 8,0;0,Fp(t) has been ver-
ified in some cases (e.g. Lian-Yau.)

The g-series usually have small radii of con-
vergence. It is still not known if there is
always an analytic continuation to the unit
polydisk |g;| < 1.

In many cases, one can show that Fp(t)
satisfied a system of nonlinear (polynomial)
PDE.

For h21 = 1, this is a 10th order ODE.
The ODE determines Fp uniquely up to a
degree 3 polynomial in t.
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Example

e X Calabi-Yau manifolds which are com-
plete intersection.

e The ODE for X has the form

P(5,x,p) = 0.

e ), x,p are certain invariant differential poly-
nomials of F(t) of weights 15,10,4. P is
a quasi-homogeneous polynomial of weight
180. There are 37 terms in this polynomial
correspond to the 37 partitions of 180 by
15,10,4.

e One can use this ODE to prove that the
‘number’ of rational curves of degree d in
a generic quintic is divisible by 53 (at least
for 5|d), a conjecture of Clemens 1981.
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Large Radius Limit

Conjecture: If X is not rigid, then it can de-
generate into a union of smooth rational vari-
eties intersecting transversally, where the mon-
odromy is maximally unipotent.

e [ he SYZ fibration of X, whenever known,
supports this conjecture.

e Example: CY complete intersections in toric
varieties.

e T his degeneration is called the large radius

limit (or large complex structure limit) of
X.

25



e [ heir existence have been proved in many
cases (see Hosono-Lian-Yau, Lian-Todorov-
Yau.)

e In a neighborhood of the large radius limit,
periods of X are expected to have canon-
ical g-series expansions of the form (q; =

exp(2myv/—1t;))

1
ti
wo(t) SKG Pt + b+ 0, FD,,

1 . . .
_gKZijtztjtk o bitz + c _I_ (2FZ(7)”LSt o tzatiﬂ%st)
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How do we compute the cubic polynomial ap-
peared in the above expression of the period?
T his was proposed by Hosono-Klemm-T heisen-
Yau (HKTY). Its choice is based on the Frobe-
nius method. It is mathematically elegant and
is important for many later considerations of
mirror principle. (The formal variable in the
Frobenius method is later interpreted to be the
hyperplane class in the equivariant cohomology
in the proof of mirror conjecture.)
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There is a period which has power series ex-
pansion

wo(z) = Y e(n)z".

n>0

It satisfies the generalized hypergeometric sys-
tem of Gilfand-Kapranov-Zilovauski.

HKTY used the Frobenius argument to solve
the Picard-Fuchs equation.
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When X is a hypersurface in products of weighted
projected space.

Let ¢(nq1,...,n,) be written as products of
(Li(ng,...,np)NTL when l; are linear forms with
integer coefficients.

We define c(p1,...,p;) by replacing (I;)! by

Let J; be the pull back of the Kahler form of

the :-th projective space. Then K, = [J; A
Jj N Jp..
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Let

1 0
Op; = > Do
7r7,8,02-
2
( ) = 5 zgkﬁpgapk
1
3)
D) = 5 i7k0pi0p;Opy,»

then we find

/(32 AJ; =—24DP) ¢(pq, ... e (0.....0)

/63 27 : D(3) (pla-'wpk)‘(o

¢(3) 0)
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From this formulae, we can calculate the cubic
polynomial in the expression of the period to
be:

1
b = 2—4/(;2 A J;
c = ZC(3) /c
273 3
This means that the Chern Class of a Calabi-

Yau manifold can be expressed in terms of the
period of the mirror manifold.
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This observation was generalized by A. Lib-
gober in higher dimension by finding

/Qk(cla"' 7ck)/\‘]i1/\"'/\‘]in_k

0%c(p1,- -+, pr)
— Zkl Kjla"'ajkaily'"ain—k

9pjy 9P (o, 0)
where ) is the Hirzebruch multiplicative se-

: 1
quence associated to T(1d2)"

32



Mirror Maps

e X, CY complete intersection (correspond-
ing to the line bundles L1,.., L € Pic(M))
in a toric manifold M with ¢;(M) > 0.

e In [Hosono-Lian-Yau 1995], we define the
cohomology valued B-series

_ [T M (er (L) + er(L) -d+1) o0,
By= 3 (Dot Da-d+ 1) e

deH,(M,Z), D,
The sum is over the classes d in the Mori
cone of M.

The D, are the toric divisors of M.
z is a vector parameter in H2(X, C).

The I functions should be expanded as
power series in the cohomology valued pa-
rameters c1(L;), Dq.
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e It was shown that B(x) computes the pe-
riods of the mirror CY manifold X, gener-
alizing the classical Frobenius method.

e This generalizes all previously found pe-
riod formulas for toric CY (Candelas-de la
Ossa-Font-Katz-Morrizon, Hosono-Kleem-
Theisen-Yau, Batyrev-Vau Straten, Hosono-
Lian-Yau)
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e B(t) is a solution to a GKZ hypergeometric
PDE system.

e Example: for X quintic 3-fold, this reduces
to the familiar series (Candelas et al)

_ FGHA+d+1) 44m
PO= 2ttt dt s °

where H is the hyperplane class and z =
6331, r — :131H.
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e In general, the periods of the mirror CY X
are recovered by expanding the function

B(zx) = B(x1H1+ -+ zmHm)

where the H;, independent vectors in H2(X),
are the expansion parameters (Frobenius
parameters.)

The zq,..,zm are interpreted as coordinates
on the moduli space of X.

e One finds

B(z) = [X] (fo(2) + gi(2) H; + O(H?))

where z; = €%, and fp(z) is a holomorphic
function, and g;(z) = fo(2)log z; + O(z).
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e Put

C— ean(Dm/ 1t . 9i(2)
q; -— p(2 \/—1tz)7 tz . fO(Z)

Inverting this relations:
2 = z(q) = ¢; + O(q?).

These are the g-series of the mirror map;
the t; are interpreted as flat coordinates on
the moduli space of X.

e [ hese g-series can be thought of as some
higher dimensional analogue of the elliptic
modular function j5(q).

Example: X, quintic 3-fold.

2(q) = q— 770q¢% 4+ 1715253 — 81623000¢%
— 35423171250¢° — 545728183401544° — - - -
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Conjecture: The g-series of the mirror map
are series with integer coefficients.

e T his conjecture is known to hold for many
toric CY.

e For many toric CYs, this can be seen as a
consequence of Dwork’s p-adic ODE the-
ory (see Lian-Yau 1994.)

e It can also be shown that the 5th root
2(q)Y/5 of 2(q) above also has integer co-
efficients.
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Schwarzian Equations for Mirror Maps

e \We restrict to CY 3-fold X with one mod-
uli, i.e. h21(X) =1.

e We construct a nonlinear ODE for the g¢-
series z(q), generalizing the classical Schwarzian
ODE for the elliptic modular function:

(5,1} = Q) ()2,

where Q(j) is a rational function of j.

e Since h%1(X) = 1, Transversality implies
that the periods of X satisfies a 4th or-
der homogeneous ODE, the Picard-Fuchs
equation.

39



e Special Geometry implies that the PF equa-
tion can be transformed into the special
form:

/"t eaf" + Sl + f =0

where
(3)
Co ::az(z)z’z ( )2 z _ a22/2 4+ 5{Z(t),t}
3d 3 135 n4
Co Z=CLO(Z)Z + _2 /22// _ ZCLQZ//Q B 16;/4
—|—3 (3) + 752// 2(3) 152(3)2 152"2(4) 32(5)
arz'z — _
2 i 42" 422 222 22
where ' := £, and ap(z),ap(z) are some

functions of z.
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e [ he differential equation above is equiva-
lent to the following pair of coupled ODESs:

2K" 5 K',
?=% 2%

—35 K" B5KPK' B5K'"? 2K'K® K®
©=Text T K3 4Kz K2 2K

where K(t) = F}'(t), and Fy =prepotential
function of X.
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e By elimination technique, we can explicitly
decouple the equations into two nonlinear
ODEs for z(t) and K(t) separately.

e T he Schwarzian equation in three dimen-
sion is therefore perturbed by K(t):

2 1
2 12 t :_//__/27
Q(2)z'< + {z,t} LAY
where y = log K(t) and @ can be written

as a rational function of z.
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Counting curves of higher genus

The prepotentials Fp can be generalized to Fy
to count curves of genus g. It can be de-
fined through the Gromov-Witten invariants
for higher genus in the following way:

Assume:

X is a smooth Calabi-Yau threefold
6 e Hy(X,Z), and

M4(X,3) has virtual dimension 0

Then the Gromov-Witten invariants can be
defined to be

Kg(X) = 1

/[Mg(Xﬁ)]W
It is a rational number.
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Let
Fy = 3 K§e?™ 0.
0#£BeH>(X,Z)
where w is the Kahler class of X.

Conjecture (Gopakumar-Vafa): There exist
integral invariants n% such that

= 2qg—2
Z Fgu J
g=0

g
_ %O: 3 %O: @(ql/z _q—1/2)29_262k:7rw-[3,
g=08£0k=1 ¥
where q = ¢e%, B € Hy(X,Z).
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e Gopakumar-Vafa conjecture is based on the
compactification of M-theory on Calabi-Yau
threefold.

It reveals how a BPS state in type IIA com-
pactification on Calabi-Yau threefold con-
tributes to topological string theory.

e In mathematics, there are no commonly ac-
cepted definition of these invariants.
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Verification of GV conjecture for local
Calabi-Yau geometry

Let S be a toric, Fano surface inside a Calabi-
Yau threefold X. Then the tubular neighbor-
hood of S in X can be approximated by canon-
ical bundle Kg — S.

Consider the following diagram:

eV  Kg Kg
o B !
Mg(Saﬁ) L Mg,l(Saﬁ) ﬂ) S

Local Gromov-Witten invariant:

Kg(S) = Ctop(Rlﬂ'*e’U*Ks)

/[Wg(S,B)]”’”
(Lian, Liu, Yau, Vafa et al.)
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Theorem (Peng). For any local toric Calabi-
Yau threefold Kg — S,

o Pg(x) = ZSO:O n%(S)a:g c Z[x].

e The degree of Pg is the arithmetic genus
of the curve representing the given class
B € HQ(S, Z).

e T he leading coefficient of Pﬁ iIs equal to
the Euler Characteristics of the holomor-
phic line bundle corresponding to devisor
B in S except for a possible negative sign
depending on (3.

Multi-cover contribution and p-adic argument
IS combined in the proof of the above theorem.
The similar argument is used later in the work
of Kontsevich-Schwarz-Vologodksy on study-
ing the integrality of instanton number on the
quintic manifold.
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Polynomial relation between Fj

The computation of Fy, the topological string
partition function, is of fundamental impor-
tance.

However, in general, the complexities of com-
putation is growing rapidly as genus grows higher
and higher. How to effectively reduce the com-
plexity of computation to a computable level
Is really a challenging problem.

Except for noncompact Calabi-Yau manifolds,
Fg has not been computed for any compact
Calabi-Yau manifolds. On the other hand, they
have many properties similar to modular forms.
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‘The method of computations for Iy depend on
the work of BCOV on holomorphic anomaly
equation. They are determined only up to a
polynomial and this polynomial is fixed by di-
rect calculation and the method is not satis-
factory.

A great deal more need to be done. In compar-
iIson with the fact that modular forms form a
ring and can be written as quasi-homogeneous
polynomial of Eisentein series F, and Eg, we
look into the ring structure of Fy.

Yamaguchi-Yau found polynomial relation among
Fg. This ring structure was used by Huang,
Klemm, Quackenbush to compute Fy for g <
51.
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Algorithm (Yamaguchi-Yau)
Step 1

Show genus g partition function Fy can be writ-
ten as a polynomial of a set of generators by
Yukawa coupling

(29~1)° 42
OpCpp = 53 1 _ 45

1 correspond to the one family parameter of
Quintic Calabi-Yau threefold whose mirror man-
ifold is expressed by

:c‘;’—l—xg—l—---+azg—5¢x1:c2---a:3=O

F, are actually sections of L?~29 where L is the
holomorphic line bundle defined by the holo-
morphic 3-forms.
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Step 2

Use Yukawa coupling and Picard-Fuchs equa-
tion, we find five power series and a recursive
formula to define polynomial of five generators
of degree 3g — 3 by appropriately assigning de-
grees of these five generators. The relation
greatly reduced the complexity of computa-
tion of Gromov-Witten invariants to polyno-
mial complexity.

Theorem (Yamaguchi-Yau 2004) The gener-
ating function of genus g Gromov-Witten in-
variants Fi=model js a degree (3g — 3) quasi-
homogeneous polynomial of five generators.
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example: Quintic Calabi-Yau threefold

Genus two partition function can be written as

3125 15625 125 , 5 3
— vl + —v] — —Vj
144 288 24 24

3125 350 28795

~ 36 2+—102+—3— 44
835 5 2375 205

— a1 X T v2X — v X + =X
144 12 144
325 3

_ > x
288"l +48

where V; and X can be computed in terms of
Yukawa couplings.
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This theorem works in general for one param-
eter family of Calabi-Yau threefolds.

It has been used by Huang, Klemm, Quacken-
bush to make explicit computations for count-

ing higher genus curves in Calabi-Yau three-
folds.

Modular forms have appeared in the computa-
tions.
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Formal toric Calabi-Yau threefold

J. Li-C.-C. Liu-K. Liu-J. Zhou introduced the
notion of formal Calabi-Yau threefolds.

A formal toric Calabi-Yau threefold X contains
an algebraic torus (C*)3 as its open dense sub-
set and (C*)3-action can naturally extend to
X.
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e X1: one-dimensional (C*)3-orbit closures (as-
sume connected)

o X0: (C*)3 fixed points

p € X0, the action of (C*)3 on A3T,X gives an
irreducible character o : (C*)3 — C*.

« IS independent of choice of p due to Calabi-
Yau condition and connectedness of X!.
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o T = Kera = (C*)2.

e T = U(1)? is the maximal compact sub-
group of T.

e t is the dual of the Lie algebra of Tg.

X — t]YR be the moment map of the Ti-
action on X.

The image of x1 gives a planar trivalent graph
[, called toric diagram of X.
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Topological vertex theory:

This is a theory developed by string theorists
Aganagic-Klemm-Marino-Vafa, and by mathe-
maticians J. Li, C.-C. Liu, K. Liu, J. Zhou.

e Degenerate X along some devisor related
to its toric diagram until all pieces are in-
decomposable

e Each piece is a topological vertex whose
generating functions of (open) Gromov-Witten
invariants are by duality equal to some Chern-
Simons invariants.
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e A gluing algorithm can be used to compute
Gromov-Witten invariants of toric Calabi-
Yau threefold.

e T he theory gives complete closed formulas
for the generating series of all genera and
all degree in terms of Chern-Simons knot
invariants, or symmetric functions.
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By studying degeneration/gluing algorithm in
topological vertex theory, combine multi-cover
contribution and p-adic argument

Theorem (Peng). Gopakumar-Vafa conjec-
ture holds for any formal toric Calabi-Yau three-
fold and Gopakumar-Vafa invariants vanish at
large genera.

The theorem is not known for compact Calabi-
Yau manifolds.
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Mirror symmetry and rational points over
finite fields.

Let

5 5
P(z,y) =Y a7 —5¢ [[ 2, =0
1=1 J

1=1
be a family of Calabi-Yau quintics. Let N,(1))
be the number of rational points in F,r, and
the generating series

C(t) = exp (3 Ne)").

r=1
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e Candelas et al developed a method to express
C(t,v) in terms of the periods of the mirror
family.

e D. Wan made some interesting congruence
conjectures about ((¢,v) and the correspond-
ing generating function of the mirror family.
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In order to really understand mirror symmetry
for Calabi-Yau manifolds over number field, it
seems that the mirror of Frobenius action has
to be understood. We know that H3(X) is
mapped to HO (XN H2(X e H*(X")® Ho(X)
and special lagrangian cycles of X are mapped
to algebraic vector bundles V over X’. The
latter is then mapped to cohomology by

ch(V)\/Tod(X").

It is therefore interesting to see whether there
IS an action mirror to Frobenius action on the
algebraic K-groups.
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Modularity of Calabi-Yau threefold

There is a general modularity conjecture for

rigid Calabi-Yau manifolds, generalizing the Shimura-
Taniyama conjecture. Many interesting works

have been done along this direction.

Theorem(Dieulefait-Manoharmayum) Every rigid
(h3 = 2) Calabi-Yau threefold with good re-
duction at 3 or at 5 is modular. Probably any
rigid CY threefold is modular.
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Examples of nonrigid Calabi-Yau manifolds

Let ' C P% be the quintic threefold

5
3 3 2 2 2 2 N _

E (%7 Tit1Ti4a + X7 TiqgoTig3 — LT 1T 44 — TiTi4 2T 43) = O

i=1

F is the total space of a pencil of abelian
surfaces cut out by sections of the Horrocks-
Mumford bundle on P4,
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(E. Lee) There is a desingularization F of F
such that its middle cohomology, up to semisim-
plification, has the form

H3(F) =V @Ind gg(_)Hl(E)(—l)

E is an elliptic curve defined over Q(z7).

V is a rank 2 motive which is modular: the L-
series of V' (up to Euler factors at bad primes)
iIs the Mellin transform of the uniqgue normal-
ized cusp form f of weight 4, level 5

f=1q-4¢+2¢° +8¢" — 54> — 8¢° +6¢" + ...

G
The term Inng(-)Hl(E)(—l) comes from a

complex-conjugate pair of elliptic ruled sur-
faces embedded in F defined over Q(3).

Proof is by counting points on F and apply-
ing the Lefschetz fixed-point theorem to the
Frobenius automorphism.
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Other examples of nonrigid modular CY 3folds:
van Geemen-Nygaard, Hulek-Verrill, Livhe-Yui,
Schuett, Cynk-Meyer and others. In each case
H3 = sum of two-dimensional pieces whose
modular forms are known. In general higher-
dimensional Galois representations and more
complicated automorphic forms might be in-
volved.
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Motives and mirror symmetry of a pair of
Calabi-Yau threefolds

An admissible weight Q = (q1,92,93,94,¢q5) iS a
5-tuple of positive integers such that ged(g;) =

1, each ¢; divides m = q1 + g2 + g3 + g4 + g5.
Consider the family of degree m Calabi-Yau hy-
persurfaces X in the weighted projective space

PHQ).
There is the Fermat-type hypersurface

V(Q) izt +z3?% + xgn’3 + x4 + xgnf’ =

m
)

where m; =

o7



To get the mirror family X (Greene-Plesser),
take a family of deformations of the Fermat
hypersurface, quotient out by a group G of au-
tomorphisms which preserves the holomorphic
3-form, and desingularize:

G ={g=(91,92,93,94,95)9/" =1, [ 9 = 1}/{9.9,9.9.9}

7

In the (1,1,1,1,1) case

X = {23+ 23+23+23+22 Yz 70737475 = 0}/(Z3)

The mirror X flips the Hodge numbers of X:
I (X)) = k3761 (X).
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Consider also the dual group G and a subset
A(Q) C G:

~~

G = {a — (a17a27a37a47a’5)|a’i S QZ(Z/m)a Za’i — O}

(g,a) =[] g
')

A(Q) = {(a1,ap,a3,a4,as) € G| each a; # 0}
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For each a € G define A = [a] to be the (Z/m)*
orbit of a.

Each g € GG defines a cycle on V x V given by
its graph. For each a define the cycles

1 _
Pa = Tl Z(gaa) 19 € AN(V x V)
PA — Z Pa

acA

The {p4} form an orthogonal set of projectors.
If A= [a] C A(Q) it defines a Fermat motive.
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Theorem. (N. Yui and S. Kadir) Let (X, X)
be a mirror pair of Calabi-Yau orbifolds of ad-
missible weight Q. If p is a good prime and

g = pF, then the zeta function of X at the
Fermat point is given by

P3(Xp,, t)
(1 —t)(1 — gt) (1 — g2t)"* (X (1 — ¢3¢)

Z(X'Fq, t) =

P3(Xp,,t) = ][ P3(M 4, 1)
A
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Here the product runs over all Fermat motives
A with (G, A) = 1. M, is the image H3(X)PA
of H3(X) under the projector p4, and Pj is
the characteristic polynomial of the Frobenius
action.

This relation between the zeta-functions of X
and X leads to a correspondence between mono-
mial types of X (periods) and Fermat motives.
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