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Outline: Joint works with D. Kong and W. Dai

♦ Motivation

♦ Hyperbolic geometric flow

♦ Local existence and nonlinear stability

♦ Wave Nature of Curvatures

♦ Exact solutions and Birkhoff theorem

♦ Dissipative hyperbolic geometric flow

♦ Riemann surfaces

♦ Some results related to HGF
- Time-periodic solutions of Einstein equations
- Hyperbolic mean curvature flow

♦ Open problems
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1. Motivation

- Ricci flow:

Geometric structure of manifolds

- Einstein equations and Penrose conjecture:

Singularities in manifold and space-time

- Applications of hyperbolic PDEs to differential geometry:

Wave character of metrics and curvatures

D. Christodoulou, S. Klainerman, M. Dafermos,

I. Rodnianski, H. Lindblad, N. Ziper · · · · · ·

J. Hong (Nonlinear Analysis, 1995)

Kong et al (Comm. Math. Phys.; J. Math. Phys. 2006)

http://www.scut.edu.cn
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2. Hyperbolic Geometric Flow

Let (M , gij) be n-dimensional complete Riemannian manifold.

The Levi-Civita connection

Γk
ij =

1

2
gkl

{
∂gil

∂xi
+
∂gil

∂xj
−
∂gij

∂xl

}
The Riemannian curvature tensors

Rk
ijl =

∂Γk
jl

∂xi
−
∂Γk

il

∂xj
+ Γk

ipΓ
p
jl − Γk

jpΓ
p
il, Rijkl = gkpR

p
ijl

The Ricci tensor

Rik = gjlRijkl

The scalar curvature

R = gijRij

http://www.scut.edu.cn
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Hyperbolic geometric flow (HGF)

∂2gij

∂t2
= −2Rij (1)

for a family of Riemannian metrics gij(t) on M .

General version of HGF

∂2gij

∂t2
+ 2Rij + Fij

(
g,
∂g

∂t

)
= 0 (2)

- Kong and Liu:
Wave Character of Metrics and Hyperbolic Geometric
Flow, 2006

http://www.scut.edu.cn
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Physical background

• Relation between Einstein equations and HGF

Consider the Lorentzian metric

ds2 = −dt2 + gij(x, t)dx
idxj

Einstein equations in vacuum, i.e., Gij = 0 become

∂2gij

∂t2
+ 2Rij +

1

2
gpq
∂gij

∂t

∂gpq

∂t
− gpq

∂gip

∂t

∂gjq

∂t
= 0 (3)

This is a special example of general version (2) of HGF.
Neglecting the terms of first order gives the HGF (1).

(3) is named as Einstein’s hyperbolic geometric flow

http://www.scut.edu.cn
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Three important types

- Hyperbolic geometric flow

∂2gij

∂t2
= −2Rij

Wave type equation

- Einstein’s hyperbolic geometric flow

∂2gij

∂t2
+ 2Rij +

1

2
gpq
∂gij

∂t

∂gpq

∂t
− gpq

∂gip

∂t

∂gkq

∂t
= 0

Wave type equation satisfying null condition

- Dissipative hyperbolic geometric flow

Wave type equation with dissipative terms

http://www.scut.edu.cn
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Laplace equation, heat equation and wave equation

- Laplace equation (elliptic equations)

4u = 0

- Heat equation (parabolic equations)

ut − 4u = 0

- Wave equation (hyperbolic equations)

utt − 4u = 0

http://www.scut.edu.cn
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Einstein manifold, Ricci flow, hyperbolic geometric flow

- Einstein manifold (elliptic equations)

Rij = λgij

- Ricci flow (parabolic equations)

∂gij

∂t
= −2Rij

- Hyperbolic geometric flow (hyperbolic equations)

∂2gij

∂t2
= −2Rij

Laplace equation, heat equation and wave equation on
manifolds in the Ricci sense

http://www.scut.edu.cn
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Geometric flows

αij
∂2gij

∂t2
+ βij

∂gij

∂t
+ γijgij + 2Rij = 0,

where αij, βij, γij are certain smooth functions on M

which may depend on t.

In particular,

αij = 1, βij = γij = 0: hyperbolic geometric flow

αij = 0, βij = 1, γij = 0: Ricci flow

αij = 0, βij = 0, γij = const.: Einstein manifold

http://www.scut.edu.cn
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Birkhoff Theorem holds for geometric flows

- Fu-Wen Shu and You-Gen Shen:
Geometric flows and black holes, arXiv: gr-qc/0610030

(Locally) any solutions of the Einstein equation are also
the solutions of the Einstein hyperbolic geometric flow,
which is relatively easier to deal with.

http://www.scut.edu.cn
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Complex geometric flows

If the underlying manifold M is a complex manifold and
the metric is Kähler,

aij
∂2gij

∂t2
+ bij

∂gij

∂t
+ cijgij + 2Rij = 0,

where aij, bij, cij are certain smooth functions on M

which may also depend on t.

http://www.scut.edu.cn
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3. Local Existence and Nonlinear Stability

Local existence theorem (Dai, Kong and Liu, 2006)

Let (M , g0
ij(x)) be a compact Riemannian manifold. Then there

exists a constant h > 0 such that the initial value problem
∂2gij

∂t2
(x, t) = −2Rij(x, t),

gij(x, 0) = g0
ij(x),

∂gij

∂t
(x, 0) = k0

ij(x),

has a unique smooth solution gij(x, t) on M × [0, h], where

k0
ij(x) is a symmetric tensor on M .

Dai, Kong and Liu: Hyperbolic geometric flow (I): short-time ex-

istence and nonlinear stability

http://www.scut.edu.cn
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Method of proof: Two proofs.

• Strict hyperbolicity

Suppose ĝij(x, t) is a solution of the hyperbolic geometric flow

(1), and ψt : M → M is a family of diffeomorphisms of M . Let

gij(x, t) = ψ∗
t ĝij(x, t)

be the pull-back metrics. The evolution equations for the metrics

gij(x, t) are strictly hyperbolic.

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 15 of 51

Go Back

Full Screen

Close

Quit

• Symmetrization of hyperbolic geometric flow

Introducing the new unknowns

gij, hij =
∂gij

∂t
, gij,k =

∂gij

∂xk
,

we have 

∂gij

∂t
= hij,

gkl
∂gij,k

∂t
= gkl

∂hij

∂xk
,

∂hij

∂t
= gkl

∂gij,k

∂xl
+ H̃ij.

Rewrite it as

A0(u)
∂u

∂t
= Aj(u)

∂u

∂xj
+B(u),

where the matrices A0, Aj are symmetric.

http://www.scut.edu.cn
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Nonlinear stability

Let M be a n-dimensional complete Riemannian manifold.

Given symmetric tensors g0
ij and g1

ij on M , we consider
∂2gij

∂t2
(t, x) = −2Rij(t, x)

gij(x, 0) = gij(x) + εg0
ij(x),

∂gij

∂t
(x, 0) = εg1

ij(x),

where ε > 0 is a small parameter.

Definition: The Ricci flat Riemannian metric gij(x) possesses

the (locally) nonlinear stability with respect to (g0
ij, g

1
ij), if there

exists a positive constant ε0 = ε0(g
0
ij, g

1
ij) such that, for any

ε ∈ (0, ε0], the above initial value problem has a unique (local)

smooth solution gij(t, x);

http://www.scut.edu.cn
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gij(x) is said to be (locally) nonlinear stable, if it possesses the

(locally) nonlinear stability with respect to arbitrary symmetric

tensors g0
ij(x) and g1

ij(x) with compact support.

Nonlinear stability theorem (Dai, Kong and Liu, 2006)

The flat metric gij = δij of the Euclidean space Rn with n ≥ 5

is nonlinearly stable.

Remark: The proof uses general theory of nonlinear wave

equations.

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 18 of 51

Go Back

Full Screen

Close

Quit

Method of proof

Define a 2-tensor h

gij(x, t) = δij + hij(x, t).

Choose the elliptic coordinates {xi} around the origin in Rn.

It suffices to prove that the following Cauchy problem has a

unique global smooth solution
∂2hij

∂t2
(x, t) =

n∑
k=1

∂2hij

∂xk∂xk
+ H̄ij

(
hkl,

∂hkl

∂xp
,
∂2hkl

∂xp∂xq

)
,

hij(x, 0) = εg0
ij(x),

∂hij

∂t
(x, 0) = εg1

ij(x).

http://www.scut.edu.cn
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Einstein’s hyperbolic geometric flow

∂2gij

∂t2
+ 2Rij +

1

2
gpq∂gij

∂t

∂gpq

∂t
− gpq∂gip

∂t

∂gkq

∂t
= 0

satisfy the null condition. Existence and uniqueness for small

initial data hold.

Einstein hyperbolic flow has nonlinear stability for all dimen-

sions.

Global existence and nonlinear stability for small initial
data (Dai, Kong and Liu)

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 20 of 51

Go Back

Full Screen

Close

Quit

4. Wave Nature of Curvatures

Under the hyperbolic geometric flow (1), the curvature tensors

satisfy the following nonlinear wave equations

∂2Rijkl

∂t2
= ∆Rijkl + (lower order terms),

∂2Rij

∂t2
= ∆Rij + (lower order terms),

∂2R

∂t2
= ∆R+ (lower order terms),

where ∆ is the Laplacian with respect to the evolving metric,

the lower order terms only contain lower order derivatives of

the curvatures.

http://www.scut.edu.cn
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Evolution equation for Riemannian curvature tensor

Under the hyperbolic geometric flow (1), the Riemannian curva-

ture tensor Rijkl satisfies the evolution equation

∂2

∂t2
Rijkl = 4Rijkl + 2 (Bijkl −Bijlk −Biljk +Bikjl)

−gpq (RpjklRqi +RipklRqj +RijplRqk +RijkpRql)

+2gpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
,

where Bijkl = gprgqsRpiqjRrksl and 4 is the Laplacian with

respect to the evolving metric.

http://www.scut.edu.cn
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Evolution equation for Ricci curvature tensor

Under the hyperbolic geometric flow (1), the Ricci curvature ten-

sor satisfies

∂2

∂t2
Rik = 4Rik + 2gprgqsRpiqkRrs − 2gpqRpiRqk

+2gjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
−2gjpglq

∂gpq

∂t

∂

∂t
Rijkl + 2gjpgrqgsl

∂gpq

∂t

∂grs

∂t
Rijkl

http://www.scut.edu.cn
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Evolution equation for scalar curvature

Under the hyperbolic geometric flow (1), the scalar curvature

satisfies

∂2

∂t2
R = 4R+ 2|Ric|2

+2gikgjlgpq

(
∂

∂t
Γp

il

∂

∂t
Γq

jk −
∂

∂t
Γp

jl

∂

∂t
Γq

ik

)
−2gikgjpglq

∂gpq

∂t

∂

∂t
Rijkl

−2gipgkq
∂gpq

∂t

∂Rik

∂t
+ 4Rikg

ipgrqgsk
∂gpq

∂t

∂grs

∂t

http://www.scut.edu.cn
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5. Exact Solutions and Birkhoff theorem

5.1. Exact solutions with the Einstein initial metrics

Definition: (Einstein metric on manifold) A Riemannian metric gij

is called Einstein if Rij = λgij for some constant λ. A smooth

manifold M with an Einstein metric is called an Einstein mani-

fold.

If the initial metric gij(0, x) is Ricci flat, i.e., Rij(0, x) = 0,

then gij(t, x) = gij(0, x) is obviously a solution to the evolution

equation (1). Therefore, any Ricci flat metric is a steady solution

of the hyperbolic geometric flow (1).

http://www.scut.edu.cn
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If the initial metric is Einstein, that is, for some constant λ it

holds

Rij(0, x) = λgij(0, x), ∀ x ∈ M ,

then the evolving metric under the hyperbolic geometric flow (1)

will be steady state, or will expand homothetically for all time, or

will shrink in a finite time.

Note that we can choose suitable velocity to avoid singularity.

http://www.scut.edu.cn
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Let

gij(t, x) = ρ(t)gij(0, x)

By the definition of the Ricci tensor, one obtains

Rij(t, x) = Rij(0, x) = λgij(0, x)

Equation (1) becomes

∂2(ρ(t)gij(0, x))

∂t2
= −2λgij(0, x)

This gives an ODE of second order

d2ρ(t)

dt2
= −2λ

One of the initial conditions is ρ(0) = 1, another one is assumed

as ρ′(0) = v. The solution is given by

ρ(t) = −λt2 + vt+ 1

http://www.scut.edu.cn
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General solution formula is

gij(t, x) = (−λt2 + vt+ c)gij(0, x)

Remark: This is different from the Ricci flow!

Case I: The initial metric is Ricci flat, i.e., λ = 0.

In this case,

ρ(t) = vt+ 1. (4)

If v = 0, then gij(t, x) = gij(0, x). This shows that gij(t, x) =

gij(0, x) is stationary.

http://www.scut.edu.cn
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If v > 0, then gij(t, x) = (1 + vt)gij(0, x). This means that

the evolving metric gij(t, x) = ρ(t)gij(0, x) exists and expands

homothetically for all time, and the curvature will fall back to

zero like −1
t
.

Notice that the evolving metric gij(t, x) only goes back in time

to −v−1, when the metric explodes out of a single point in a “big

bang”.

If v < 0, then gij(t, x) = (1 + vt)gij(0, x). Thus, the evolving

metric gij(t, x) shrinks homothetically to a point as t ↗ T0 =

−1
v

. Note that, when t ↗ T0, the scalar curvature is asymptotic

to 1
T0−t

. This phenomenon corresponds to the “black hole” in

physics.

http://www.scut.edu.cn
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Case II: The initial metric has positive scalar curvature, i.e.,

λ > 0.

In this case, the evolving metric will shrink (if v < 0) or first

expands then shrink (if v > 0) under the hyperbolic flow by a

time-dependent factor.

http://www.scut.edu.cn
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Case III: The initial metric has a negative scalar curvature, i.e.,

λ < 0.

In this case, we divide into three cases to discuss:

Case 1: v2 + 4λ > 0.

(a) v < 0: the evolving metric will shrink in a finite time under

the hyperbolic flow by a time-dependent factor;

(b) v > 0: the evolving metric gij(t, x) = ρ(t)gij(0, x) exists

and expands homothetically for all time, and the curvature

will fall back to zero like − 1
t2 .

http://www.scut.edu.cn
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Case 2: v2 + 4λ < 0.

In this case, the evolving metric gij(t, x) = ρ(t)gij(0, x) exists

and expands homothetically (if v > 0) or first shrinks then ex-

pands homothetically (if v < 0) for all time.

The scalar curvature will fall back to zero like − 1
t2 .

Case 3: v2 + 4λ = 0.

If v > 0, then evolving metric gij(t, x) = ρ(t)gij(0, x) exists

and expands homothetically for all time. In this case the scalar

curvature will fall back to zero like 1
t2 . If v < 0, then the evolving

metric gij(t, x) shrinks homothetically to a point as t ↗ T∗ =
v
2λ
> 0 and the scalar curvature is asymptotic to 1

T∗−t
.

http://www.scut.edu.cn
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Remark: A typical example of the Einstein metric is

ds2 =
1

1 − κr2
dr2 + r2dθ2 + r2 sin2 θdϕ2,

where κ is a constant taking its value −1, 0 or 1. It is easy to

see that

ds2 = R2(t)

{
1

1 − κr2
dr2 + r2dθ2 + r2 sin2 θdϕ2

}
is a solution of the hyperbolic geometric flow (1), where

R2(t) = −2κt2 + c1t+ c2

in which c1 and c2 are two constants. This metric has interesting

meaning in cosmology.

http://www.scut.edu.cn
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5.2. Exact solutions with axial symmetry

Consider

ds2 = f(t, z)dz2 −
t

g(t, z)

[
(dx− µ(t, z)dy)2 + g2(t, z))dy2

]
,

where f, g are smooth functions with respect to variables.

Since the coordinates x and y do not appear in the preceding

metric formula, the coordinate vector fields ∂x and ∂y are Killing

vector fields. The flow ∂x (resp. ∂y) consists of the coordinate

translations that send x to x + ∆x (resp. y to y + ∆y), leaving

the other coordinates fixed. Roughly speaking, these isometries

express the x-invariance (resp. y-invariance) of the model. The

x-invariance and y-invariance show that the model possesses

the z-axial symmetry.

http://www.scut.edu.cn
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Hyperbolic geometric flow gives

gt = µt = 0

f =
1

2g2

[
g2

z + µ2
z

]
+

1

g4
µ2

z(c1t+ c2),

where gz and µz satisfy

gg2
z − ggzµzzµ

−1
z + g2

z + µ2
z = 0

Birkhoff Theorem holds for axial-symmetric solutions!

Angle speed µ is independent of t!

http://www.scut.edu.cn
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6. Dissipative hyperbolic geometric flow

Let M be an n-dimensional complete Riemannian manifold with

Riemannian metric gij. Consider the hyperbolic geometric flow

∂2gij

∂t2
= −2Rij + 2gpq

∂gip

∂t

∂gjq

∂t
+

(
d− 2gpq

∂gpq

∂t

)
∂gij

∂t
+(

c+
1

n− 1

(
gpq

∂gpq

∂t

)2

+
1

n− 1

∂gpq

∂t

∂gpq

∂t

)
gij

for a family of Riemannian metrics gij(t) on M , where c and d

are arbitrary constants.

This equation also has strong feature of Ricci flow.

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 36 of 51

Go Back

Full Screen

Close

Quit

By calculations, we obtain the following evolution equation of

the scalar curvature R with respect to the metric gij(x, t),

∂2R

∂t2
= 4R+ 2|Ric|2 +

(
d− 2gpq

∂gpq

∂t

)
∂R

∂t
−(

c+
1

n− 1

(
gpq

∂gpq

∂t

)2

+
1

n− 1

∂gpq

∂t

∂gpq

∂t

)
R+

2gikgjlgpq

∂Γp
ij

∂t

∂Γq
kl

∂t
− 2gikgjlgpq

∂Γp
ik

∂t

∂Γq
jl

∂t
+

8gik
∂Γq

ip

∂t

∂Γp
kq

∂t
− 8gik

∂Γp
ip

∂t

∂Γq
kq

∂t
− 8gik

∂Γq
pq

∂t

∂Γp
ik

∂t

http://www.scut.edu.cn
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Introduce

y
4
= gpq∂gpq

∂t
= Trg

{
∂gpq

∂t

}
and

z
4
= gpqgrs∂gpr

∂t

∂gqs

∂t
=

∣∣∣∣∂gpq

∂t

∣∣∣∣2 .
Then we have proved the following

∂y

∂t
= −2R−

n− 2

n− 1
y2 + dy −

1

n− 1
z + cn

Dissipative Hyperbolic Geometric Flow

- Dai, Kong and Liu, 2006
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7. Riemann surfaces

7.1. Global existence

Consider the evolution of a Riemannian metric gij on a complete

non-compact surface M under the hyperbolic geometric flow

equation
∂2gij

∂t2
= −2Rij.

Let us consider the case R2 with the following initial metric

t = 0 : ds2 = u0(x)(dx2 + dy2),

where u0(x) is a smooth function with bounded C2 norm and

satisfies

0 < m 6 u0(x) 6 M < ∞,

in which m,M are two positive constants.
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Theorem 1: (Kong and Liu, 2007) Given the above initial metric,

for any smooth function u1(x) satisfying

(1) u1(x) has bounded C1 norm;

(2) it holds that

u1(x) >
|u′

0(x)|√
u0(x)

, ∀x ∈ R,

the Cauchy problem
∂2gij

∂t2
= −2Rij (i, j = 1, 2),

t = 0 : gij = u0(x)δij,
∂gij

∂t
= u1(x)δij (i, j = 1, 2)

has a unique smooth solution for all time, and the solution met-

ric gij possesses the form gij = u(t, x)δij. �
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Theorem 2: (Kong and Liu, 2007) Under the assumptions men-

tioned in Theorem 1, suppose that there exists a small positive

constant ε such that

u1(x) >
|u′

0(x)|√
u0(x)

+ ε, ∀ x ∈ R,

then the Cauchy problem has a unique smooth solution with the

above form for all time, moreover the solution metric gij con-

verges to flat metric at an algebraic rate
1

(1 + t)k
, where k 6 2

is a positive constant depending on ε,M , theC2 norm of u0 and

C1 norm of u1. �
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Method of proof.

(1) Cauchy problem for a kind of nonlinear wave equation{
utt − 4 lnu = 0,

t = 0 : u = u0(x), ut = u1(x)

In the present situation,{
utt − (lnu)xx = 0,

t = 0 : u = u0(x), ut = u1(x)

Let φ = lnu, then the equation is reduced to

φtt − e−φφxx = −φ2
t .
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(2) Quasilinear hyperbolic system

Let

v = φt, w = φx.

Then 
φt = v,

wt − vx = 0,

vt − e−φwx = −v2

Introduce

p = v + e−φ
2w, q = v − e−φ

2w.

Lemma: p, q satisfy
pt − λpx = −

1

4
{p2 + 3pq},

qt + λqx = −
1

4
{q2 + 3pq},

where

λ = e−φ
2 .
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Lemma: It holds that{
pt − (λp)x = pq,

qt + (λq)x = pq. �

Let

r = px, s = qx.

Lemma: r and s satisfy{
rt − λrx = −1

4
[(2q + 3p)r + 3ps] ,

st + λsx = −1
4
[(2p+ 3q)s+ 3qr] . �
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(3) Uniform estimates on p, q and r, s

“Maximum principle” for hyperbolic systems

(4) Global existence of HGF.

(5) Estimate on R

R =
(lnu)xx

u
=

1

2

{
(r − s)e−φ

2 +

(
p− q

2

)2
}
.

⇓

|R(t, x)| 6 C
1

(1 + t)min{2,C} , ∀(t, x) ∈ R+ × R.
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7.2. Formation of singularities

Consider the metric

t = 0 : ds2 = u0(x)(dx2 + dy2).

Without loss of generality, we assume that there exists a point

x0 ∈ R such that

u′
0(x0) < 0.

We choose

u1(x) ≡
u′

0(x)√
u0(x)

, ∀ x ∈ R.

http://www.scut.edu.cn


Home Page

Title Page

JJ II

J I

Page 46 of 51

Go Back

Full Screen

Close

Quit

Theorem 3: For the initial data u0(x) and u1(x) mentioned

above, the Cauchy problem has a unique smooth solution only

in [0, T̃max) × R, where

T̃max = −
4

infx∈R {p0(x)}

where

p0(x) = 2u′
0(x)u

−3
2

0 (x).

Moreover, there exists some point (T̃max, x∗) such that the

scalar curvature R(t, x) satisfies

R(t, x) → ∞ as (t, x) → (T̃max, x∗). �

By choosing suitable velocity, we may avoid doing surgery!

We have precise control on

♣ Blowup set.

♣ Solution character close to blowup point.
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8. Some results related to HGF

8.1. Time-periodic solutions of Einstein equations

Einstein equation:

Gµν , Rµν −
1

2
gµνR = 0

♣ A new solution: Breather

(1) time periodic space-time,

(2) asymptotically flat in space.

♣ Physical characters: Time periodic solution, asymptotical

flatness of t-sections, naked singularity (r = 0).
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8.2. Hyperbolic mean curvature flow for hypersurfaces

∂2X

∂t2
= −H~n

where X = X(t, x1, · · · , xn), H — mean curvature, ~n out nor-

mal vector.

Our recent results: (He-Kong-Liu)

♣ Extrinsic flow: short time existence, nonlinear stability, re-

lations between the HGF and the HMCF flow equations for ex-

tremal hypersurfaces in space-time.

♣ Intrinsic HGF flow and extrinsic HMCF flow, both have inter-

esting physical meaning.
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9. Open Problems

♦ Yau has several conjectures about complete noncom-

pact manifolds with nonnegative curvature. HGF may provide a

promising way to approach these conjectures. Hyperbolic PDE

has advantage in dealing with noncompact manifolds.

♦ Given initial metric g0
ij and symmetric tensor kij, study the

singularity of the Einstein HGF with these initial data.

Singularities of Einstein equation belong to these singularities.

This should be related to the Penrose cosmic censorship con-

jecture.
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♦ HGF on general manifolds, global existence and singular-

ity. HGF has global solution for small initial data.

Choosing velocity to avoid surgery to get geometric structure.

♦ There was an approach of geometrization by using Einstein

equation which is too complicated to use. May HGF shed some

light on this approach, by adjusting speed to avoid surgery?

♦ Hyperbolic Yang-Mills flow?
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Thank You All!
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