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Abstract. We derive from Witten’s KdV equation a simple formula of the n-point
functions for intersection numbers on moduli spaces of curves, generalizing Dijkgraaf’s
two-point function and Zagier’s three-point function. This formula uncovers many new
identities about integrals of ψ classes and provides an elementary and more efficient
algorithm to compute intersection numbers other than the celebrated Witten-Kontsevich
theorem.

1. Introduction

We denote by Mg,n the moduli space of stable n-pointed genus g complex algebraic
curves. Let ψi be the first Chern class of the line bundle whose fiber over each pointed
stable curve is the cotangent line at the i-th marked point.

We adopt Witten’s notation in this paper,

〈τd1 · · · τdn〉g :=

∫

Mg,n

ψd1
1 · · ·ψdn

n .

These intersection numbers are the correlation functions of two dimensional topolog-
ical quantum gravity. In the famous paper [7], Witten made the remarkable conjecture
(proved by Kontsevich [4]) that the generating function of above intersection numbers are
governed by KdV hierarchy, which provides a recursive way to compute all these intersec-
tion numbers. Witten’s conjecture was reformulated by Dijkgraaf, Verlinde, and Verlinde
[DVV] in terms of the Virasoro algebra.

Definition 1.1. We call the following generating function

F (x1, . . . , xn) =
∞∑

g=0

∑
P

dj=3g−3+n

〈τd1 · · · τdn〉g
n∏

j=1

x
dj

j

the n-point function.

The n-point function encodes all information of the correlation functions of two dimen-
sional topological quantum gravity. Okounkov [6] obtained an analytic expression of the
n-point functions using n-dimensional error-function-type integrals. Brézin and Hikami
[1] apply correlation functions of GUE ensemble to find explicit formulae of n-point func-
tions.

The first key point is to consider the following “normalized” n-point function

G(x1, . . . , xn) = exp

(
−∑n

j=1 x3
j

24

)
· F (x1, . . . , xn).
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In particular, we have 1-point function G(x) = 1
x2 , Dijkgraaf’s 2-point function

G(x, y) =
1

x + y

∑

k≥0

k!

(2k + 1)!

(
1

2
xy(x + y)

)k

and Zagier’s 3-point function [8] which we learned from Faber,

G(x, y, z) =
∑
r,s≥0

r!Sr(x, y, z)

4r(2r + 1)!! · 2 ·
∆s

8s(r + s + 1)!
,

where Sr(x, y, z) and ∆ are the homogeneous symmetric polynomials defined by

Sr(x, y, z) =
(xy)r(x + y)r+1 + (yz)r(y + z)r+1 + (zx)r(z + x)r+1

x + y + z
∈ Z[x, y, z],

∆(x, y, z) = (x + y)(y + z)(z + x) =
(x + y + z)3

3
− x3 + y3 + z3

3
.

Although two and three point functions are found in the early 1990’s, it’s not obvious
at all that clean explicit formulae of general n-point functions should exist. Recall that
we only have closed formula of intersection numbers in genus zero and one. Now we state
the main theorem of this note.

Theorem 1.2. For n ≥ 2,

(1) G(x1, . . . , xn) =
∑
r,s≥0

(2r + n− 3)!!

4s(2r + 2s + n− 1)!!
Pr(x1, . . . , xn) ·∆(x1, . . . , xn)s,

where Pr and ∆ are homogeneous symmetric polynomials defined by

∆(x1, . . . , xn) =
(
∑n

j=1 xj)
3 −∑n

j=1 x3
j

3
,

Pr(x1, . . . , xn) =


 1

2 ·∑n
j=1 xj

∑

n=I
‘

J

(
∑
i∈I

xi)
2 · (

∑
i∈J

xi)
2 ·G(xI) ·G(xJ)




3r+n−3

=
1

2 ·∑n
j=1 xj

∑

n=I
‘

J

(
∑
i∈I

xi)
2 · (

∑
i∈J

xi)
2 ·

r∑

r′=0

Gr′(xI)Gr−r′(xJ),(2)

where I, J 6= ∅, n = {1, 2, . . . , n} and Gg(xI) denotes the degree 3g + |I| − 3 homogeneous
component of the normalized |I|-point function G(xk1 , . . . , xk|I|), where kj ∈ I.

Note that the degree 3r + n− 3 polynomial Pr(x1, . . . , xn) ∈ Q[x1, . . . , xn] is expressed
by normalized |I|-point functions G(xI) with |I| < n. So we can recursively obtain an
explicit formula of the n-point function

F (x1, . . . , xn) = exp

(∑n
j=1 x3

j

24

)
·G(x1, . . . , xn),

thus we have an elementary algorithm to calculate all intersection numbers of ψ classes
other than the celebrated Witten-Kontsevich’s theorem [4, 7], which is the only feasible
way known before to calculate all intersection numbers of ψ classes.
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Since P0(x, y) = 1
x+y

, Pr(x, y) = 0 for r > 0, we get Dijkgraaf’s 2-point function. From

Pr(x, y, z) =
r!

2r(2r + 1)!
· (xy)r(x + y)r+1 + (yz)r(y + z)r+1 + (zx)r(z + x)r+1

x + y + z
,

we also easily recover Zagier’s 3-point function obtained more than ten years ago.
There is another slightly different formula of n-point functions. When n = 3, this has

also been obtained by Zagier [8].

Theorem 1.3. For n ≥ 2,

F (x1, . . . , xn) = exp
(
∑n

j=1 xj)
3

24

∑
r,s≥0

(−1)sPr(x1, . . . , xn) ·∆(x1, . . . , xn)s

8s(2r + 2s + n− 1)s!

where Pr and ∆ are the same polynomials as defined in theorem 1.2.

Theorem 1.3 follows from Theorem 1.2 and the following lemma.

Lemma 1.4. Let n ≥ 2 and r, s ≥ 0. Then the following identity holds,

(3)
(−1)s

8s(2r + 2s + n− 1)s!
=

s∑

k=0

(−1)k

8kk!
· (2r + n− 3)!!

4s−k(2r + 2s− 2k + n− 1)!!

Proof. Let p = 2r + n ≥ 2 and

f(p, s) =
s∑

k=0

(−1)k

2kk!(p + 2s− 2k − 1)!!
.

We have

f(p, s) =
s∑

k=0

(−1)k(p + 2s + 1)

2kk!(p + 2s− 2k + 1)!!
+

s∑

k=0

2k(−1)k−1

2kk!(p + 2s− 2k + 1)!!

= (p + 2s + 1)

(
f(p, s + 1)− (−1)s+1

2s+1(s + 1)!(p− 1)!!

)
+ f(p, s)− (−1)s

2ss!(p− 1)!!
.

So we have the following identity

f(p, s + 1) =
(−1)s+1

2s+1(p + 2s + 1)(s + 1)!(p− 3)!!
,

which is just the identity (3) if s + 1 is replaced by s. ¤

In Section 2 we give a proof of the main theorem. Section 3 contains many new identi-
ties of the intersection numbers of the ψ classes derived from our formula of the n-point
functions. In Section 4 we briefly discuss other applications of the n-point functions.

Acknowledgements. The authors would like to thank Professor Sergei Lando, Edward
Witten and Don Zagier for helpful comments and their interests in this work. We also
want to thank Professor Carel Faber for his wonderful Maple programm for calculating
Hodge integrals and for communicating Zagier’s three-point function to us.
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2. Proof of the main theorem

We can derive from Witten’s KdV equation the following coefficient equation (see [3, 7]),

(2d1 + 1)〈τd1τ
2
0

n∏
j=2

τdj
〉 =

1

4
〈τd1−1τ

4
0

n∏
j=2

τdj
〉

+
∑

{2,...,n}=I
‘

J

(
〈τd1−1τ0

∏
i∈I

τdi
〉〈τ 3

0

∏
i∈J

τdi
〉+ 2〈τd1−1τ

2
0

∏
i∈I

τdi
〉〈τ 2

0

∏
i∈J

τdi
〉
)

,

which is equivalent to the following differential equation of n-point functions F (x1, . . . , xn),

(
2x1

∂

∂x1

+ 1

) (
(

n∑
j=1

xj)
2 · F (x1, . . . , xn)

)
=

(
x1

4
(

n∑
j=1

xj)
4 + x1

n∑
j=1

xj

)
· F (x1, . . . , xn)

+
x1

2

∑

n=I
‘

J

(
(

n∑
i∈I

xi)(
n∑

i∈J

xi)
3 + 2(

n∑
i∈I

xi)
2(

n∑
i∈J

xi)
2

)
F (xI)F (xJ).

So in order to prove Theorem 1.2, we need to check that

E(x1, . . . , xn) := (
n∑

j=1

xj) ·G(x1, . . . , xn)

satisfies the following differential equation,

(
2x1

n∑
j=1

xj

)
∂

∂x1

E(x1, . . . , xn) +

(
x1 +

x3
1

4

n∑
j=1

xj +
n∑

j=1

xj − x1

4
(

n∑
j=1

xj)
3

)
E(x1, . . . , xn)

=
x1

2

∑

n=I
‘

J

(
(
∑
i∈J

xi)
2 + 2(

∑
i∈I

xi) · (
∑
i∈J

xi)

)
E(xI)E(xJ).(4)

The verification is straightforward from the definition of G(x1, . . . , xn) in Theorem 1.2.
We now prove the following initial value condition of G(x1, . . . , xn), thus conclude the

proof of Theorem 1.2.

G(x1, . . . , xn, 0) = (
n∑

j=1

xj) ·G(x1, . . . , xn).

Let

Mr(x1, . . . , xn) :=
∑

n=I
‘

J

(
∑
i∈I

xi)
3 · (

∑
i∈J

xi)
2 ·

r∑

r′=0

Gr′(xI)Gr−r′(xJ).
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For the left hand side, we have

(
n∑

j=1

xj) · LHS

=
∑
r,s≥0

(2r + n− 2)!!

4s(2r + 2s + n)!!
·
(

Mr + (
n∑

j=1

xj)
2Gr(x1, . . . , xn)

)
·∆(x1, . . . , xn)s

=
∑
r,s≥0

(2r + n− 2)!!

4s(2r + 2s + n)!!
Mr∆

s +
∑
r,s≥0

(2r + n− 2)!!

4s(2r + 2s + n)!!

∑
p+q=r

(2p + n− 3)!!

4q(2r + n− 1)!!
Mp∆

q+s

=
∑
r,s≥0

(
(2r + n− 2)!!

4s(2r + 2s + n)!!
+

r+s∑

k=r

(2k + n− 2)!!(2r + n− 3)!!

4s(2r + 2s + n)!!(2k + n− 1)!!

)
Mr∆

s,

where in the last equation we have used change of variables.
While for the right hand side,

(
n∑

j=1

xj) · RHS =
∑
r,s≥0

(2r + n− 3)!!

4s(2r + 2s + n− 1)!!
·Mr ·∆s.

So we need only prove the following combinatorial identity

(2r + n− 2)!!

4s(2r + 2s + n)!!
+

r+s∑

k=r

(2k + n− 2)!!(2r + n− 3)!!

4s(2r + 2s + n)!!(2k + n− 1)!!
=

(2r + n− 3)!!

4s(2r + 2s + n− 1)!!

i.e.
(2r + n− 2)!!

(2r + n− 3)!!
+

r+s∑

k=r

(2k + n− 2)!!

(2k + n− 1)!!
=

(2r + 2s + n)!!

(2r + 2s + n− 1)!!

for all n ≥ 2 and r, s ≥ 0. It follows easily from the following identity

(p + 1)!!

p!!
+

(p + 1)!!

(p + 2)!!
=

(p + 3)!!

(p + 2)!!
.

It is typical that from the formula of n-point functions in Theorem 1.2, many assertions
about intersection numbers will be reduced to combinatorial identities.

3. New properties of the n-point functions

In this section we derive various new identities about the intersection numbers of the
ψ classes by using our simple formula of the n-point functions.

Lemma 3.1. Let n ≥ 2.

(1) We have the following recursion relation for normalized n-point functions

Gg(x1, . . . , xn) =
1

(2g + n− 1)
Pg(x1, . . . , xn) +

∆(x1, . . . , xn)

4(2g + n− 1)
Gg−1(x1, . . . , xn).

(2) The following identity holds

∆(x1, . . . , xn) = x2
1(

n∑
j=2

xj) + x1(
n∑

j=2

xj)
2 + ∆(x2, . . . , xn).
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Proof. We have

Gg(x1, . . . , xn) =
∑

r+s=g

(2r + n− 3)!!

4s(2g + n− 1)!!
Pr(x1, . . . , xn) ·∆(x1, . . . , xn)s

=
1

2g + n− 1
Pg(x1, . . . , xn) +

∑
r+s=g−1

(2r + n− 3)!!

4s+1(2g + n− 1)!!
Pr(x1, . . . , xn)∆(x1, . . . , xn)s+1

=
1

(2g + n− 1)
Pg(x1, . . . , xn) +

∆(x1, . . . , xn)

4(2g + n− 1)
Gg−1(x1, . . . , xn).

The proof of (2) is easy. ¤

Let C
(∏n

j=1 x
dj

j , P (x1, . . . , xn)
)

denotes the coefficient of
∏n

j=1 x
dj

j in a polynomial or

formal power series P (x1, . . . , xn). From the inductive structure in the definition of n-
point functions, we have the following basic properties of n-point functions, their proofs
are purely combinatorial.

First consider the normalized (n + 1)-point function G(z, x1, . . . , xn). Here we use the
variable z to distinguish one point. We have the following theorem about the coefficients
of G(z, x1, . . . , xn).

Theorem 3.2. Let 2g − 2 + n ≥ 0.

(1) If k > 2g − 2 + n, dj ≥ 0 and
∑n

j=1 dj = 3g − 2 + n− k, then

C
(

zk

n∏
j=1

x
dj

j , Gg(z, x1, . . . , xn)

)
= 0,

C
(

zk

n∏
j=1

x
dj

j , Pg(z, x1, . . . , xn)

)
= 0.

(2) Let dj ≥ 0,
∑n

j=1 dj = g and a = #{j | dj = 0}. Then

C
(

z2g−2+n

n∏
j=1

x
dj

j , Gg(z, x1, . . . , xn)

)
=

1

4g ·∏n
j=1(2dj + 1)!!

,

C
(

z2g−2+n

n∏
j=1

x
dj

j , Pg(z, x1, . . . , xn)

)
=

a

4g ·∏n
j=1(2dj + 1)!!

.

(3) Let dj ≥ 0,
∑n

j=1 dj = g + 1, a = #{j | dj = 0} and b = #{j | dj = 1}. Then

C
(

z2g−3+n

n∏
j=1

x
dj

j , Gg(z, x1, . . . , xn)

)
=

2g2 + (2n− 1)g + n2−n
2
− 3 + 5a−a2

2

4g ·∏n
j=1(2dj + 1)!!

,

C
(

z2g−3+n

n∏
j=1

x
dj

j , Pg(z, x1, . . . , xn)

)
=

a(2g2 + 2ng − g + n2−n−a2+5a
2

+ 3b− 3)− 3b

4g ·∏n
j=1(2dj + 1)!!

.
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Proof. (1) is obvious from theorem 1.2. We now prove (2) inductively.

C
(

z2g−2+n

n∏
j=1

x
dj

j , Pg(z, x1, . . . , xn)

)
=

n∑
j=1

C
(

z2g−2+n

n∏
j=1

x
dj

j , Gg(z, x1, . . . , x̂j, . . . , xn)

)

=
a

4g ·∏n
j=1(2dj + 1)!!

,

where a = #{j | dj = 0}.

C (
z2g−2+n, Gg(z, x1, . . . , xn)

)

=
∑

r+s=g

(2r + n− 2)!!

4s(2g + n)!!

∑
P

dj=r

a ·∏n
j=1 x

dj

j

4r
∏n

j=1(2dj + 1)!!
(

n∑
j=1

xj)
s

=
1

2g + n

∑
P

dj=g

a ·∏n
j=1 x

dj

j

4g
∏n

j=1(2dj + 1)!!
+

∑n
j=1 xj

4(2g + n)

∑
P

dj=g−1

∏n
j=1 x

dj

j

4g−1
∏n

j=1(2dj + 1)!!

=
1

2g + n


 ∑
P

dj=g

a ·∏n
j=1 x

dj

j

4g
∏n

j=1(2dj + 1)!!
+

∑
P

dj=g

(2g + n− a)
∏n

j=1 x
dj

j

4g
∏n

j=1(2dj + 1)!!




=
∑
P

dj=g

∏n
j=1 x

dj

j

4g
∏n

j=1(2dj + 1)!!
.

The statement (3) can be proved similarly. ¤
Now consider the normalized special (n + 2)-point function G(y,−y, x1, . . . , xn). We

have the following theorem about the coefficients of G(y,−y, x1, . . . , xn).

Theorem 3.3. Let g ≥ 0 and n ≥ 1.

(1) If k > 2g, dj ≥ 0 and
∑n

j=1 dj = 3g + n− k, then

C

yk

n∏
j=1

x
dj

j ,
∑

n=I
‘

J

(y +
∑
i∈I

xi)
2 · (−y +

∑
i∈J

xi)
2 ·G(y, xI) ·G(−y, xJ)


 = 0,

or equivalently,

∑

n=I
‘

J

k∑
j=0

(−1)j〈τjτ
2
0

∏
i∈I

τdi
〉g′〈τk−jτ

2
0

∏
i∈J

τdi
〉g−g′ = 0.

(2) If dj ≥ 1 and
∑n

j=1 dj = g + n, then

C

y2g

n∏
j=1

x
dj

j ,
∑

n=I
‘

J

(y +
∑
i∈I

xi)
2 · (−y +

∑
i∈J

xi)
2 ·G(y, xI) ·G(−y, xJ)




=
(2g + n + 1)!

4g(2g + 1)! ·∏n
j=1(2dj − 1)!!

.
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or equivalently,

∑

n=I
‘

J

2g∑
j=0

(−1)j〈τjτ
2
0

∏
i∈I

τdi
〉g′〈τ2g−jτ

2
0

∏
i∈J

τdi
〉g−g′ =

(2g + n + 1)!

4g(2g + 1)! ·∏n
j=1(2dj − 1)!!

.

(3) If dj ≥ 1 and
∑n

j=1 dj = g + n, then

C

y2g

n∏
j=1

x
dj

j ,
∑

n=I
‘

J

(
∑
i∈I

xi)
2 · (

∑
i∈J

xi)
2 ·G(y,−y, xI) ·G(xJ)


 = 0.

or equivalently,

∑

n=I
‘

J

2g∑
j=0

(−1)j〈τjτ2g−jτ
2
0

∏
i∈I

τdi
〉g′〈τ 2

0

∏
i∈J

τdi
〉g−g′ = 0.

(4) If dj ≥ 0 and
∑n

j=1 dj = g + n, then

∑

n=I
‘

J

2g∑
j=0

(−1)j

(
〈τjτ

2
0

∏
i∈I

τdi
〉〈τ2g−jτ

2
0

∏
i∈J

τdi
〉+ 〈τjτ2g−jτ

2
0

∏
i∈I

τdi
〉〈τ 2

0

∏
i∈J

τdi
〉
)

= (2g + n + 1) ·
2g∑

j=0

(−1)j〈τ0τjτ2g−jτd1 · · · τdn〉g

(5) If k > 2g, dj ≥ 0 and
∑n

j=1 dj = 3g − 1 + n− k, then

C
(

yk

n∏
j=1

x
dj

j , Gg(y,−y, x1, . . . , xn)

)
= 0,

C
(

yk

n∏
j=1

x
dj

j , Pg(y,−y, x1, . . . , xn)

)
= 0.

(6) If dj ≥ 0 and
∑n

j=1 dj = g − 1 + n, then

C
(

y2g

n∏
j=1

x
dj

j , Pg(y,−y, x1, . . . , xn)

)
= (2g+n+1)C

(
y2g

n∏
j=1

x
dj

j , Gg(y,−y, x1, . . . , xn)

)
.

If moreover we have dj ≥ 1, then

C
(

y2g

n∏
j=1

x
dj

j , Gg(y,−y, x1, . . . , xn)

)
=

(2g + n− 1)!

4g(2g + 1)! ·∏n
j=1(2dj − 1)!!

.

Proof. We first show that (1) and (2) imply the statements (3)-(6).
(3) is obvious, since for di ≥ 1, we have

〈τ 2
0

∏
i∈J

τdi
〉0 = 0.

(4), (5) and the first identity of (6) follow easily from Theorem 1.2.
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Let d1 ≥ d2 ≥ · · · ≥ dn ≥ 1. We prove the second identity of (6) by inducting on d1,
the maximum index.

2g∑
j=0

(−1)j〈τ2g−jτjτd1 · · · τdn〉g

=

2g∑
j=0

(−1)j〈τ0τ2g−jτjτd1+1τd2 · · · τdn〉g −
n∑

k=2

2g∑
j=0

(−1)j〈τ2g−jτjτd1+1τd2 · · · τdk−1 · · · τdn〉g

=
(2g + n)!

4g(2g + 1)! ·∏n
j=1(2dj − 1)!!(2d1 + 1)

−
n∑

k=2

(2g + n− 1)!(2dk − 1)

4g(2g + 1)! ·∏n
j=1(2dj − 1)!!(2d1 + 1)

=
(2g + n− 1)!

4g(2g + 1)! ·∏n
j=1(2dj − 1)!!

,

where we have used (4). In fact the above identity still holds if there is only one dj = 0.
By explicitly writing down the n-point functions, we give a proof of (1) and (2) in the

case n = 2, the general case can be proved similarly. Note also that it is easy to prove
Theorem 3.3 for g = 0 since G0(x1, . . . , xn) = (x1 + · · · + xn)n−3 (see Lemma 4.3 and
Corollary 4.4).

It is easy to prove the following identity by inducting on g.

0 = C

y2g+2,

∑

2=I
‘

J

(y +
∑
i∈I

xi)
2 · (−y +

∑
i∈J

xi)
2 ·

g∑

g′=0

Gg′(y, xI)Gg−g′(−y, xJ)




= 2
∑

r+s=g

(
(2r)!!

4s(2g + 2)!!

1

4r(2r + 1)!!
(xr

1 + xr
2)(x1 + x2)

s − 1

4r(2r + 1)!!

1

4s(2s + 1)!!
xr

1x
s
2

)
.

Because we have

C

y2g,

∑

2=I
‘

J

(y +
∑
i∈I

xi)
2 · (−y +

∑
i∈J

xi)
2 ·

g∑

g′=0

Gg′(y, xI)Gg−g′(−y, xJ)




=2
∑

r+s=g

(
(2r)!!

4s(2g + 2)!!

1

4r(2r + 1)!!

(
s(xr

1 + xr
2)(x1 + x2)

sx1x2 +
s2 + s

2
(xr

1 + xr
2)(x1 + x2)

s+2

+(s + 1)(r + 1)(xr+1
1 + xr+1

2 )(x1 + x2)
s+1 +

r2 + r

2
(xr+2

1 + xr+2
2 )(x1 + x2)

s

)

+
1

4r(2r + 1)!!

1

4s(2s + 1)!!

(
(r + 1)(s + 1)xr+1

1 xs+1
2 − s2 + s

2
xr

1x
s+2
2 − r2 + r

2
xr+2

1 xs
2

))

+
1

4g(2g)!!
(x1 + x2)

g+2,

the proof of (2) is also easy. ¤

It is easy to see that the statements (5) and (6) of Theorem 3.3 imply the following
identities of intersection numbers which we have announced in [5]. They are related to
Faber’s intersection number conjecture.
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Corollary 3.4.

(1) Let dj ≥ 0, #{j | dj = 0} ≤ 1 and
∑n

j=1 dj = g + n− 1. Then

2g∑
j=0

(−1)j〈τ2g−jτjτd1 · · · τdn〉g =
(2g + n− 1)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!
.

If #{j | dj = 0} = 2 and a = #{j | dj = 1}, then the right hand side becomes

(2g + n− 1)!

4g(2g + 1)!
∏n

j=1(2dj − 1)!!
· 2g + n− a

2g + n− 1− a
.

(2) Let k > 2g, dj ≥ 0 and
∑n

j=1 dj = 3g − 1 + n− k. Then

k∑
j=0

(−1)j〈τk−jτjτd1 · · · τdn〉g = 0.

We also have the following generalization of statements (1) and (2) of Theorem 3.3.
The proof is similar.

Theorem 3.5. Let g ≥ 0, n ≥ 1 and r, s ≥ 0.

(1) If k > 2g + r + s, dj ≥ 0 and
∑n

j=1 dj = 3g + r + s + n− k, then

C

yk

n∏
j=1

x
dj

j ,
∑

n=I
‘

J

(y +
∑
i∈I

xi)
2+s · (−y +

∑
i∈J

xi)
2+r ·G(y, xI) ·G(−y, xJ)


 = 0,

or equivalently,

∑

n=I
‘

J

k∑
j=0

(−1)j〈τjτ
2+r
0

∏
i∈I

τdi
〉g′〈τk−jτ

2+s
0

∏
i∈J

τdi
〉g−g′ = 0.

(2) If dj ≥ 1 and
∑n

j=1 dj = g + n, then

C

y2g+r+s

n∏
j=1

x
dj

j ,
∑

n=I
‘

J

(y +
∑
i∈I

xi)
2+s · (−y +

∑
i∈J

xi)
2+r ·G(y, xI) ·G(−y, xJ)




=
(−1)r(2g + n + r + s + 1)!

4g(2g + r + s + 1)! ·∏n
j=1(2dj − 1)!!

.

or equivalently,

∑

n=I
‘

J

2g+r+s∑
j=0

(−1)j〈τjτ
2+r
0

∏
i∈I

τdi
〉g′〈τ2g+r+s−jτ

2+s
0

∏
i∈J

τdi
〉g−g′

=
(−1)r(2g + n + r + s + 1)!

4g(2g + r + s + 1)! ·∏n
j=1(2dj − 1)!!

.
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4. Other applications of n-point functions

From the new identities in Section 3 and their derivations, we can see that the simple
formula of n-point functions may be used to prove the following equivalent statement of
the Faber’s intersection number conjecture:

Conjecture 4.1. Let dj ≥ 0 and
∑n

j=1 dj = g + n− 2. Then

〈τd1 · · · τdnτ2g〉g =
n∑

j=1

〈τd1 · · · τdj−1
τdj+2g−1τdj+1

· · · τdn〉g

−1

2

∑

n=I
‘

J

2g−2∑
j=0

(−1)j〈τj

∏
i∈I

τdi
〉g′〈τ2g−2−j

∏
i∈J

τdi
〉g−g′ .

It is clear that our explicit formula of n-point functions should also shed light on the
following conjectural identity as stated in [5] where the case of n = 1 has been proved.

Conjecture 4.2. Let g ≥ 2, dj ≥ 1 and
∑n

j=1(dj − 1) = g. Then

(2g − 3 + n)!

22g+1(2g − 3)!
∏n

j=1(2dj − 1)!!

= 〈τd1 · · · τdnτ2g−2〉g −
n∑

j=1

〈τd1 · · · τdj−1
τdj+2g−3τdj+1

· · · τdn〉g

+
1

2

∑

n=I
‘

J

2g−4∑
j=0

(−1)j〈τj

∏
i∈I

τdi
〉g′〈τ2g−4−j

∏
i∈J

τdi
〉g−g′

If we have dj ≥ 0, #{j | dj = 0} = 1 and a = #{j | dj = 1} in the above conjecture,
then the left hand side becomes

(2g − 3 + n)!

22g+1(2g − 3)!
∏n

j=1(2dj − 1)!!
· 2g + n + 1− a

2g + n− 3− a
.

We will discuss the relation of the above conjectures with our simple formula of the n-
point functions in a forthcoming paper. Here as the first step we only prove two interesting
combinatorial identities.

Lemma 4.3. Let n ≥ 2.

(1) Assume that if I = ∅, then (
∑

i∈I xi)
|I| = 1. We have

∑

{2,...,n}=I
‘

J

(x1 +
∑
i∈I

xi)
|I|(−x1 +

∑
i∈J

xi)
|J | =

∑

{2,...,n}=I
‘

J

(
∑
i∈I

xi)
|I|(

∑
i∈J

xi)
|J |

(2) We have

(5)
∑

n=I
‘

J
I,J 6=∅

(
∑
i∈I

xi)
|I|−1(

∑
i∈J

xi)
|J |−1 = 2(n− 1)(

n∑
j=1

xj)
n−2
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Proof. Let
∏n

j=1 x
dj

j be any monomial of

(6)
∑

{2,...,n}=I
‘

J

(x1 +
∑
i∈I

xi)
|I|(−x1 +

∑
i∈J

xi)
|J |.

Since
∑n

j=1 dj = n− 1, so if d1 > 0, then their must exist some j > 1 such that dj = 0.

The statement (1) means that the polynomial (6) does not contain x1, so we need only
prove that after substitute xn = 0 in (6), the resulting polynomial does not contain x1.

∑

{2,...,n−1}=I
‘

J

(
(x1 +

∑
i∈I

xi)
|I|+1(−x1 +

∑
i∈J

xi)
|J | + (x1 +

∑
i∈I

xi)
|I|(−x1 +

∑
i∈J

xi)
|J |+1

)

= (
n−1∑
j=2

xj)
∑

{2,...,n−1}=I
‘

J

(x1 +
∑
i∈I

xi)
|I|(−x1 +

∑
i∈J

xi)
|J |.

So statement (1) follows by induction.
We prove statement (2) by induction. Regard the LHS and RHS of the identity (5) as

polynomials in xn with degree n− 2, we need to prove the equality of (5) when substitute
xn = −xi for i = 1 . . . n− 1. It’s sufficient to check the case xn = −xn−1.

LHS = 2
∑

n−2=I
‘

J

(
(xn−1 +

∑
i∈I

xi)
|I|(−xn−1 +

∑
i∈J

xi)
|J | + (

∑
i∈I

xi)
|I|+1(

∑
i∈J

xi)
|J |−1

)

= 2
∑

n−2=I
‘

J

(
(
∑
i∈I

xi)
|I|(

∑
i∈J

xi)
|J | + (

∑
i∈I

xi)
|I|+1(

∑
i∈J

xi)
|J |−1

)

= 4(
n−2∑
j=1

xj)
n−2 + (

n−2∑
j=1

xj)
2

∑
n−2=I

‘
J

I,J 6=∅

(
∑
i∈I

xi)
|I|−1(

∑
i∈J

xi)
|J |−1

= 2(n− 1)(
n−2∑
j=1

xj)
n−2 = RHS.

Note that if a term has power |J | − 1, then J 6= ∅ is assumed. ¤

Finally as an interesting exercise we give a proof of the following well-known formula
by using our formula of the n-point functions.

Corollary 4.4. Let n ≥ 3, dj ≥ 0 and
∑n

j=1 dj = n− 3. Then

〈τd1 · · · τdn〉0 =

(
n− 3

d1, . . . , dn

)
.
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Proof. It’s equivalent to prove that for n ≥ 3

(
n∑

j=1

xj)
n−3 = G0(x1, . . . , xn)

=
1

2(n− 1)
∑n

j=1 xj

∑

n=I
‘

J

(
∑
i∈I

xi)
2(

∑
i∈J

xi)
2G0(xI)G0(xJ)

=
1

2(n− 1)
∑n

j=1 xj

∑

n=I
‘

J

(
∑
i∈I

xi)
|I|−1(

∑
i∈J

xi)
|J |−1.

This is just the Lemma 4.3 (2). ¤
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