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1 Introduction

The noncommutative residue found in [Gu] and [Wo| plays a prominent role in
noncommutative geometry. In [C1],Connes used the noncommutative residue to de-
rive a conformal 4-dimensional Polyakov action analogy. In [C2], Connes proved that
the noncommutative residue on a compact manifold M coincided with the Dixmier’s
trace on pseudodifferential operators of order —dimM. Several years ago, Connes
made a challenging observation that the noncommutative residue of the square of the
inverse of the Dirac operator was proportional to the Einstein-Hilbert action, which
was called Kastler-Kalau-Walze Theorem now. In [K]|, Kastler gave a brute-force
proof of this theorem. In [KW], Kalau and Walze proved this theorem by the normal
coordinates way simultaneously. In [A], Ackermann gave a note on a new proof of
this theorem by the heat kernal expansion way.

On the other hand, Fedosov etc. defined a noncommutative residue on Boutet de
Monvel’s algebra and proved that it was a unique continues trace in [FGLS]. In [S],
Schrohe gave the relation between the Dixmier trace and the noncommutative residue
for manifolds with boundary. In [Wal] and [Wa2], we generalized some results in [C1]
and [U] to the case of manifolds with boundary . In [H], the gravitational action for
manifolds with boundary was worked out (also see [B]). The motivation of this paper
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is to give an operator theoritic explaination of the gravitational action for manifolds
with boundary and prove a Kastler-Kalau-Walze type theorem for manifolds with
boundary.

Let us recall Kastler-Kalau-Walze Theorem in [K], [KW],[A]. Let M be a 4-
dimensional oriented spin manifold and D be the associated Dirac operator on the
spinor bundle S(T'M). Let s be the scalar curvature and Wres denote the noncommu-
tative residue (see [Wol,[FGV]). Then Kastler-Kalau-Walze Theorem gives a spectral
explaination of the gravitational action and says that there exists a constant ¢, such
that

Wres(D™?) = co/ sdvolyy. (1.1)
M

For an oriented spin manifold M* with boundary dM, we use Wres|(7+ D~1)?] instead
of Wres(D~?). Here Wres denotes the noncommutative residue for manifolds with
boundary in [FGLS] and 77 D~! is an element in Boutet de Monvel’s algebra (see
[Wal], Section 3).We hope to get the gravitational action for manifolds with boundary
by computing ms[(ﬂ+D_1)2] . For simplicity, we assume that the metric g™ on M
has the following form near the boundary,

1
M IM 2

where g2 is the metric on OM. h(zx,) € C>®([0,1)) = {?L|[0’1)|?L € C*®((—¢,1))} for
some € > 0 and satisfies h(x,) > 0, h(0) = 1 where z;,, denotes the normal directional
coordinate. Through the computation, we find that the boundary extra term which
we expect to get vanishes, so Wres[(7TD~1)?] is also proportional to [, sdvolys. For-
tunately, if we assume that OM is flat, then we can define [;,,resi1[(7TD7!)?] and
Jopnsresea[(mTD71)?] (see Section 2) and get the gravitational action for M is pro-
portional to [y, resi1[(7TD71)?] and [, resoq1[(7TD~1)?], which gives two kinds of
operator theoritic explainations of the gravitational action for boundary.

This paper is organized as follows: In Section 2, for the Dirac operator D, we com-
pute Wres[(7*D71)?]. In Section 3, we compute Wres[(7+D~1)?] for the signature
operator. Two kinds of operator theoritic explainations of the gravitational action for
boundary will be given in Section 4. In Appendix, the proof of two facts in Scetion
2 will be given.

2 The Dirac operator case

In this section, we compute Wres[(7+D~1)2] by the brute force way in [K] and the
normal coordinates way in [KW].

Let M be a 4-dimensional compact oriented spin manifold with boundary oM
and the metric g™ in (1.2). Let U C M be the collar neighborhood of M which is
diffeomorphic to 9M x [0,1). By the definition of C*°([0,1)) and h > 0, there exists
h € C°°((—¢,1)) such that }~L|[071) = h and h > 0 for some sufficiently small £ > 0.



Then there exists a metric § on M which has the form on U Ugys M x (—e, 0]

1
G=——¢"M +da?, (2.2)
h(zxy)

such that g|ps = g. We fix a metric g on the M such that Jlm = g. We can get the spin
structure on M by extending the spin structure on M. Let D be the Dirac operator
associated to g on the spinor bundle S(TM). We want to compute Wres[(7+D~1)?]
(for the related definitions, see [Wal], Section 2, 3). Let S (S’) be the unit sphere
about ¢ (&) and o(&) (o(¢')) be the corresponding canonical n — 1 (n — 2) volume
form. Denote by o;(A) the I- order symbol of an operator A. By [Wal], (2.6), (3.7),
(3.14), (3.15) and p.10 line 2, we have,

Wies[(+ D~ 1)?2] = /M /lgl1traceS(TM)[a_4(D2)]o(£)d:c+ e, (2.1)

oM
+o0 00 )Ia\+3+k+1
= fo Ll X
l¢/)=1 —|— k+ 1)
xtraces(ran|04, 08 0F, o (D7)(@/, o,s',5n>xaﬁagjla’;namD—l)(xco,g',snﬂdgna( ¢)da
(22)
where the sum is taken over r — k — |a| +1—j— 1= —4, r,l< —1and o (D7) =
W;JT(D*I) (for the definition of 7T, see [Wal] (2.1)). By [K], [KW], [A], we have

n = —g sdvo
/M/lglltr[o_4(D Ho(€)dx = 3 /M dvolyy. (2.3)
27r2

where 2, = - So we only to compute [;,, ®
2

where

Firstly, we compute the symbol o(D~!) of D~ 1. Recall the definition of the Dirac
operator D (see [BGV], [Y]). Let V¥ denote the Levi-civita connection about g*. In
the local coordinates {z;;1 < i < n} and the fixed orthonormal frame {é1,---, ey},
the connection matrix (ws;) is defined by

Ve, ) = (€1, En)(Ws ) (2.4)

c(€;) denotes the Clifford action. The Dirac operator
n
D= Z c(é;)|e; — Zwst éi)c(és)c(ér)]. (2.5)
i=1

So we get,

o1(D) = vV—1c(€); 09 =—= Zwst éi)c(éi)c(es)c(er), (2.6)

zst



where £ = 3 i | {;dx; denotes the cotangent vector. Write
o
Dy = (—vV=1)02; o(D) =p1+po; o(D7H) = qj. (2.7)
j=1

By the composition formula of psudodifferential operators, then we have

=o(DoD™) = Y S Ro(D)DL (D7)

(0%
= (m+po)(g-1+g2+gs+t-)
+ > (O¢,p1 + O¢,p0) (Da;q—1 + Doyq—2 + Day,q—3 + -+ -)
J
= pig—1+ (P1q—2 + pog—1 + Y _ Oe,p1 Dy q1) + -+,
J
Thus, we get:
g-1=p1" g2 =—py popr ' + D 0, p1Da, (1 )]. (2.8)
J

By (2.6), (2.8) and a direct computation, we have

Lemma 2.1

V=Te(€) _ d&poc(e) | c(§) Z c(dz;)[0s

VT e T e HE

Se(ONIER = e(€)0a, (1€)]

(2.9)

Since ® is a global form on OM, so for any fixed point x¢g € M, we can choose
the normal coordinates U of 2y in OM (not M) and compute ®(xg) in the coordlnates
U=1Ux[0,1) C M and the metric )gaM + d22. The dual metric of g™ on U is

e
h(zp)g oM + dx2. Write gw =g (890 ,ax ); gj =g (dxi,da:j), then
1 oM - ()
My _ h(rn)[giJ U Y _ | Mxn)lgsn]) O
[gl,]] [ 0 1 ’ [gM] 0 1 ) (210)
and

00,90 (20) = 0,1 < 4,5 <n—1; g)(zo) = 6y (2.11)
Let {e1,---,en—1} be the orthonormal frame field in U about ¢"M which is

parallel along geodesics and e;(zg) = %(xo), then {1 = h(zp)er, - ,en_1 =
Vh(zy)en— 1,6n = dx,} is the orthonormal frame field in U about gM. Locally
S(ITM)|z = U x AC( ). Let {f1,---, fa} be the orthonormal basis of AG(%). Take the
spin frame field o : U — Spin(M) such that 7o = {é1,- - -, e, } where 7 : Spin(M) —
O(M) is a double covering, then {[(o, fi)], 1 < i < 4} is the orthonormal frame of
S(TM) - In the following, since the global form @ is independent of the choice of
the local frame, so we can compute trgry) in the frame {[(o, f;)], 1 <4 < 4}. Let
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{E1,---, E,} be the canonical basis of R" and ¢(E;) € clg(n) = Hom(AG(5), Ae(5))
be the Clifford action. By [Y], then
c(€) = [(o,c(E))]; e(ei)l(o, fi)] = [(o, c(Ei) [i)]; % = [(o, (98:131-)]’ (2.12)

i
then we have in the above frame, a%ic(e]) =0

Lemma 2.2 9, ([¢[%:)(z0) = 0, if j <n; =N (0)¢2on, i j=n.  (2.13)

O, [c(§)](x0) = 0, if j <n; = Oy, [c(§)](w0), if j =n, (2.14)

where &€ = &' + & dx,.

Proof. By the equality Oy, (€2, )(z0) = By, (h()gl ()61 + €2) and (2.11), then

(2.13) is correct. By Lemma A.1 in Appendix, (2.14) is correct. O
In order to compute po(zo), we need to compute ws+(€;)(xo).

Lemma 2.3 When i < n, wy;i(6)(z0) = $h/(0); and w;n(&)(zo) = —31'(0), In
other cases, ws(€;)(xg) =0

Proof. See Appendix. O

Lemma 2.4 po(z) = coc(dzy,), where ¢ = —21'(0).

Proof. This comes from (2.6), Lemma 2.3 and the relation c(€;)c(é;) + c(€5)c(€;) =

*251‘,]'. O
Now we can compute P, since the sum is taken over —r—I+k+j+|a| = =3, r,1 <

—1, then we have the following five cases:
casea) ) r=-1,l=-1k=5j=0, || =1

By (2.2), we get

—+o00
case a) T) = — /m—l /_ S traceldgm g1 x 9%, q1](20)deno (€)da’, (2.14)

=1

By Lemma 2.2, for i < n, then

=0, (L0 o) YO0 _ YT
s case a) 1) vanishes.
case a) IT) r= —1, = —1k=la|=0, j =1
By (2.2), we get
resy [+ D7 o= L./ " traceldn, 7 a1 % 08,110 (€)',
(2.15)



By Lemma 2.1 and Lemma 2.2, we have

c(dz, c(€& 2.
0 .q-1=vV-1 <—6€” (d |€)|4+ 2(8) - 85[2‘6(55)) ; (2.16)
/7 &Nz /e 127

By [Wal] (2.1) and the Cauchy integral formula, then

c(&') + §nc(dmn)}
(1+&2)2
(&) +nnc(dzy)

L (1 +0)2 (En+iu—1n)
= — lim,_ - , d
omi 0 /r+ (N — 1)? i

- | (&) + me(dan) ]<”| .
(1 + )% (§n — 1) e

w2 ] @lem = 7

ic(¢) c(&) +ic(dxy)

TG A (2.18)
Similarly,
\/jlaa:nc ! 8g;n c(EN(x
e, lw(f)] (@o)ljgrj=1 = m (2.19)

By (2.17), (2.18), (2.19), then

O, [c(€)](20) { ic(d) | c(f) +ic(dxy)

+ — ZnlT\S JINTU) _1p/

T O a(mollieim = o oy HVEIO) g T o e
(2.20)

By the relation of the Clifford action and trAB = trBA, then we have the equalities:

trfe(€)e(dwn)] = 05 tr[e(dea)’] = —4; tr[e(€)?](20)lje1=1 = —4;
tr[0a,, (&) e(dwn)] = 03 [0y, c(§)e(§)] (x0)]j¢r1=1 = —21'(0). (2.21)
By (2.21) and a direct computation ,we have
, ic(€ c(&") +ic(dxy, 6&nc(dxy) + 2¢(€ 8¢2(c(¢! neldzy,
“m“ﬂqg?n+(ii—%2qxlgEL&%2@L‘€H?:§¢ )W}@WWﬂ

—2i6y — &n + i
(&n — )" (& +1)*

= —41'(0) (2.22)

Similarly, we have

0y, [c(€](w0)] _ [66nc(dan) +2¢(€))  SE2[c(E') + Encldzy)]
‘“”“{[%@—@0}{ a+&2 (1+2)3 ]}@Mmﬂ




3¢ -1

= —2V=1KH(0) E T (2.23)
By (2.16), (2.20), (2.22), (2.23), then
el o = - [ [ R e s e
= W00 [ s
= —ih’(O)Qg,Qm[(gn }r Z,)g](l)kn:idanl
_ —gﬂh/(O)di:U’.
case a) III) r=—1, [=—1j=|a| =0, k=1
By (2.2), we get
_% / - /_ ;OO tracelde, m¢ g1 X D, 0, q1)(w0)dEuo (¢)da’,  (2.24)

By Lemma 2.2, we have

B, 0 41 (2011 = —/—TH(0) {C(ET:) B 4gnc(§’) +| gﬁc(dm]2£"ﬁ|ag|ic(£/)($0)-
(2.25)
e, e q-1(w0)|jgr)=1 = W (2.26)
Similar to (2.22), (2.23), we have
oG o [ O]
= 21/ (0) C. _iz,)—4?§:+ 7 (2.27)
and
o lc(&’) +ic(dr,) zfnﬁaxnc@’)(xo)]
2(&n —)? €14
= —2h'(0)v/~1 Sn (2.28)

(En = )4 (& +1)%
So we get case a) III)= 37h’(0)Qzdz’.

caseb)r=-2l=-1, k=j=|a|=0



By (2.2), we get
+oo
resg 1 [(mTD71)?) = —i/ / tmce[wgr q—2 X O, q-1](z0)d&no (& )da', (2.29)
|§'|=1 J—o0 "

By Lemma 2.1 and Lemma 2.2, we have

c(§)po(zo)e(§) | c(§)

q-2(z0) = BE M c(dn) [0z, [e(€))(x0) [E* — ()R’ (0)[€[Fns]-  (2:30)
Then
c To)c c(&)e(dry,) 0y, [c(EN)](z
0 sl = o, L)+ ()0 €
, c(&)ce(dxy)c(€

—h'(0)m, M} := By — Bs. (2.31)

Similar to (2.18), we have
B, = — A A (2.32)

A& —i) A —1)*
where

Ay = ic(§)poc(E') + ic(dxn)poc(diy,) + ic(€)c(drn) Dy, [c(€)];
Ay = [c(&) + ic(dxy)|polc(&) + ic(dxy)] + (&) e(dxy,) O, c(&) — iy, [c(€))].  (2.33)

/ —&ac(den)® = 26,e() + c(dwn)
By = O | i+ ey |
W () [—nzcwxn) ~ 2,e(€) + c(dm] e
2 (1n + )3 (&n — 1) "
_ R'(0) [ c(dxy,) N c(dxy) —ic(&)  3&, —Ti
4

fie(¢) — c(dxn)]] (2.34)

2 4i(&, — 1) 8(&n —1)? 8(&n — )3
e e
By (2.34), (2.35), we have
t2[Ba % De, g1 (0] = \/;Th/(O)trace
st =9 " ste =i~ ste ) "+ s~ + e =) )

L 26, %n
: {[H&% ) (1+gg)2] clden) = mwc@)}}



_26721 B En + 44
> " OiE S i

tr[id]. (2.36)
Note that

Bi = 4(5;1.)2[(2 + i&n) (€ )poc(€) + i&ne(dan )poc(day)

+(2 + &) (&) e(dxy) O, (&) + ic(dzy)poc(€) + ic(€)poc(dxy) — 10, c(€)]. (2.37)

By (2.21), (2.35), (2.37), Lemma 2.4 and tr(AB) = tr(BA), considering for i < n
Ji¢rj=1{odd number product of &;}o(¢’) = 0, then

—2i / 57% - gn -2
tr[B1 % B, q-1(20)]|je1j=1 = ﬁ O3 5(1 oy (2.38)
By (2.31), (2.36) and (2.38), we have
2¢0(&n — i) +ih'(0 P9 /
case b) = —Q 5 (02,5 r ;()én er i§2)d§ndx = o (0)Qsda’. (2.39)
casec)r=—-1,1=-2 k=j=|a|=0
By (2.2), we get
=—1 /IE’Il /_;OO trace[W;q_l X ¢, q—2)(x0)d&no () da’. (2.40)
By .
e g-1(20)|jerj=1 = ol&) +icldrn), (2.41)

26—
0, 0-2(20) 11 = 7 gzyal(26n — 2€Deldna)poc(da,) + (1 = 3E2)eld Joc€)

+(1 - 35721)0(5/)p00(dxn) —4&,c(& )poc(€’) + (35121 = 1), (&) —4€nc(€)c(dn)Or,, c(€)

(§)e(dan)c(E)

+2h/(0)c(£,) + 2h/(0)§nc(dmn)] + 6£nh/(0)c (1 + {2)4 ) (2'42)

then similar to the computation of the case b), we have

3h'(0)(i&2 + &, — 2i) 12R/(0)i€,

(En =2+ (Gn—i)3 &+ i)t
So case ¢) = —37h/(0)Q3dz’. Now @ is the sum of the case a), b) and c), so is zero.
Then we get

trace[wgnq,l X ¢, q—2](70)|jgr)=1 = (2.43)

Theorem 2.5 Let M be a 4-dimensional compact spin manifold with the boundary
OM and the metric g™ as above and D be the Dirac operator, then
Q4

Wres|(rTD1)?] = —3 [, sdvolur. (2.44)
M



3 The signature operator case

Let M be a 4-dimensional compact oriented Riemannian manifold with boundary
OM and the metric in Section 2. D =d+3d: A*(T*M) — A*(T*M) is the signature
operator. Take the coordinates and the orthonormal frame as in Section 2. Let
e(e;x), t(ej*) be the exterior and interior multiplications respectively. Write

c(€j) = e(ej*) — ulejx); e(ez) = e(ejx) + vej¥). (3.1)

We'll compute trp«(7=p7) in the frame {dzijy, N---Ndz | 1 <ip <--- < i <4}. By
[Y], we have

n

D=d+é=7) c@)é+ Zwst (€)]e(es)e(er) — eles)elen)]]. (3.2)

=1 s,t

So

p1 = o1(d+6) = V—1c(€); po o(d+9) = Zwst éi)c(€)]e(es)e(er) —c(és)e(er))-

(3.3)
Lemma 2.1-2.3 is also correct, by Lemma 2.3, then

n—1

po(o) = Foliro) — S (O)eldrn); Bolwo) = {H'(0) Y e(@)e@nel@)(mo).  (3.4)
1

.
I

For the signature operator case,
tr(id] = 16; tr[e(¢')a, c(§)](20)ljer=1 = —8R(0); (3.5)

trle(€)poc(€)e(dn)] (wo) = trlpoc(€’)e(dzn)e(€)](xo) = €' Ptr[poc(dzn)].  (3.6)

n—1
c(dzn)po(zo) = —%h’(o)ZC(ez)C(el)C(en)é(en)
i=1
n—1
= —%h'(O)Z[E(ez Jueix) — v(eix)e(esx)][e(enx)(ent) — tlenx)e(en)]
=1

By [U] Theorem 4.3,
tram (e Ay {le(eix)e(eix) — teix)e(eix)][e(en)i(enx) — tlen*)e(en*)]}

= Apm < €%, Ep* >2 +bn,m|€i * ’2|6n * |2 = bn,mv (37)

Wherebff:< 5_2>+< TZ)—Q( Ti_1>.80
tras(reary{e(eix)e(eix) — tleix)e(ex)][e(enx)i(enx) — tlen*)e(enx)]} = Z bym = 0.
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Then
trpx (7o) [e(dan)po(@o)] = 0. (3.8)
By (3.4), (3.5), (3.6) and (3.8), then @y = 4Ppirac = 0. So we get

Theorem 3.1 Let M be a 4-dimensional compact oriented Riemaniann manifold
with the boundary OM and the metric g™ as above and D be the signature operator,
then

Q
_ 8k sdvolyy. (3.9)
M

Wres|(r " D™')?]

4 The gravitational action for manifolds with boundary

Firstly, we recall the Einstein-Hilbert action for manifolds with boundary (see [H]
or [B]),

1
Ior = - /M sdvolys + 2 /6 | Kdvolgy, i= Tari + Larb, (4.1)
where N
K= Y Koy Kij=-Ti, (4.2)
1<ij<n—1

and Kj;; is the second fundamental form, or extrinsic curvature. Take the metric in
Section 2, then by Lemma A.2, K; j(zo) = —I'7};(x0) = —11/(0), when i = j < n,
otherwise is zero. Then

3
i 3
K(xo) = ZKi.j(xo)ga’fw(ﬂfo) = ZK“(%O) = —ih'(O),
i i=1
So
IGr,b = —3h/(0)V013M. (43)

Now, we assume OM is flat , then {dz; = e;}, gf;‘/l = 0ij, &Esgfé\/l = 0. So
res1 1[(mTD71)?] and resy[(7TD71)?] are two global forms locally defined by the
aboved oriented orthonormal basis {dz;}. By case a) II) and case b), then we have:

Theorem 4.1 Let M be a 4-dimensional compact spin manifold with the boundary
OM and the metric g™ as above and D be the Dirac operator. Assume OM is flat,
then

/ resy 1 [(mt D7) = zQ:’Jc;r,b; (4.4)
oM 8
_ 3T
[ ressal(mt D712 = = ulny, (4.5)
oM 8

11



Theorem 4.2 Let M be a 4-dimensional compact oriented Riemaniann manifold
with the boundary OM and the metric g™ as above and D be the signature operator.
Assume OM 1is flat, then

/ resy1[(7t D% = SQ30600; (4.6)
OM 2

3
[ resaal(et D) = =Tl (4.7)
oM 2

Remark 1: We take N is a flat 3-dimensional oriented Riemannian manifold and
M = N x [0,1], then OM = N @ N. Let g™ = h(in)gN + dx?, where h(z,) =
1 —ay(xn — 1) > 0 for , € [0,1] and h(0) = h(1) = 1. The (M, gM) satisfies the
condition in Theorem 4.2. Similar construction is correct for Theorem 4.1. When
OM is not connected, we still define the noncommutative residue with the loss of the

unique property.

Remark 2: The reason that the extra term does not appear is perhaps that we ignore
boundary conditions. We hope to compute the noncommutative residue Wres[(7+D~1)?]
under certain boundary condition to get the extra term in the future. Grubb and
Schrohe got the noncommutative residue for manifolds with boundary through asymp-
totic expansions in [GS]. Another problem is to compute Wres[(7+D~1)2] by asymp-
totic expansions.

Appendix
In this appendix, we will prove a fact used in Lemma 2.2 and Lemma 2.3.

Lemma A.1
Oy, c(dxj)(x0) = 0, when | < n; Oyc(dzy,) =0

Proof. The fundamental setup is as in Section 2. Write < 0,_,€; > gom = H; ,, then
by [Y] or [BGV], 05, H; s(x9) = 0. Define dz} € TM|z by < dz},v >= (dz;,v) for
v e TM. For j <n,

c(dxj) = c(dx}) = C(Z <dzj,e; > ¢)

. 1 . S
= 9% < Op,, € >, m c(€) = 9*7 Hg ic(€;) + g™ c(en).
zz,s: J ISZZ,S:<7L \ h(mn) z:;n
So for i < n, Oy c(dx;)(zo) = 0. O

The proof of Lemma 2.3:

12



Recall, let V¥ be the Levi-Civita connection about ¢ and

k=1
then .
Tiy = 59" (Ou;01i + Or,01 — O, 935)- (A.2)
Let N
Ou, = 3 haei & =Y hid,. (A.3)
k k

then the matrix [h] and [hy] are invertible, and Ay (z0) = 6% By (A.1) and (A.3),
then

VEe(zo) = V5 (3 hudn)
k

= > 0, (i) Oy + > by L0,
k

k,l
= Z[Z axz (ﬂ)hks + Z @Fékhls]gs'
sk k.l
By (2.4), then
Wt (€)(x0) = Dy (s) (w0) + Tip(wo) = =B, hus(w0) + Ty (o). (A.4)

By (A.2) and the choices of g™ and the normal coordinate of z¢ in M, then

Lemma A.2 When i < n, then
n L, i L, i L,
L% (z0) = §h (0); Ihilzo) = —§h (0); Iin(z0) = _§h (0),

in other cases, I'.,(zo) = 0.
By his = gM (0y,, 65) = \/ﬁHw’ (1 <t,s <n), then we have
Lemma A.3 Wheni = n, t = s < n, —0p,hs(zg) = 3K(0). In other cases,
—Bxihts (l‘o) =0.
By Lemma A.2 and A.3 , (A.4), then we prove Lemma 2.3. O
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