
Global existence of the heat flow for H-systems in

higher dimensions

Min-Chun Hong
Department of Mathematics

University of Queensland
Brisbane, QLD 4072, Australia

Deliang Hsu
Department of Mathematics

Shanghai JiaoTong University
Shanghai, China

March 22, 2006

Abstract

In this paper we consider the heat flow for the H-system with vari-
able function H (·) in higher dimensions, and establish global existence
and uniqueness.

1 Introduction

Let Ω be a bounded smooth domain in Rn with n ≥ 2. We call u a (weak)
solution of the H-system if u ∈ W1,n

(
Ω,Rn+1

)
satisfies{

div
(
|∇u|n−2∇u

)
= H (u) ux1 ∧ · · · ∧ uxn . (1)

The H-system (1) comes from the following constrained variational prob-
lem: for a given η ∈ W1,n

(
Ω,Rn+1

)
and a constant c, we consider the

minimization problem

min
u|∂Ω=η
V (u)=c

∫
Ω
|∇u|n , (2)

where V (u) = 1
n+1

∫
Ω u · u1 ∧ · · · ∧ un is the well-defined (signed) volume

for u ∈ W 1,n and the boundary condition is to be interpreted in the usual
trace sense. A minimizer of the problem (2) is a solution of (1), which has
a natural geometric interpretation; namely, if u fulfills certain additional
conditions (conformality condition) then it represents a generalized hyper-
surface surface in Rn+1 whose mean curvature at the point u is H(u)√

nn see,
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e.g., [12], [14], [4] and [6]. Precisely, a map u : Ω → Rn+1 is called conformal
if

uxi · uxj = λ2 (x) δi,j

holds on Ω for some real-valued function λ (x). When n = 2, (1) becomes

∆u = Hux ∧ uy,

where u is the parametrization of a surface whose mean curvature at the the
point u (x, y) is H (u (x, y)): such surfaces have studied by many authors
(see e.g. [12] ).

For n ≥ 2, Mou and Yang [14] proved existence of multiple solutions
of the H-system (1) for constant H for prescribed a given boundary data.
Recently, Duzzer and Grotowski in [6] studied the existence of solutions
of the H-system (1) for non-constant functions H in higher dimensional
compact Riemannian manifolds without boundary.

In the case of n = 2, the H-system flow was introduced to prove existence
of the solution to the H-system by Struwe in [13] for constant function H
with a free boundary condition and studied by Rey in [16] for the case of
non-constant function H.

In this paper, we establish existence of the heat flow for H-systems in the
higher dimensional case. We assume the domain is a compact Riemannian
manifold M without boundary with dim M ≥ 2. For simplicity, we assume
that M is Rn or the torus Tn. More precisely, we study the following
evolution problem on M for prescribed initial data u0 ∈ W 1,n(M,Rn+1){

ut − div
(
|∇u|n−2∇u

)
= H (u) ux1 ∧ · · · ∧ uxn

u |t=0 = u0 .
(3)

The main result of this paper is

Theorem 1 Assume that u0 ∈ W1,n
(
M,Rn+1

)
∩L∞

(
Ω,Rn+1

)
, and M is

Rn or the torus Tn. Assume that u0 satisfies the conditions

‖u0‖L∞(M) ‖H‖L∞(Rn+1) <
√

nn (∗)

and
‖∇yH (y)‖L∞ ≤ C0, (∗∗)

where C0 is a positive constant. Then we have that (3) has unique global
weak solution u ∈ C1,α

(
(0,∞)×M,Rn+1

)
for some α ∈ (0, 1).
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In [9], Hungbühler established existence of a weak solution to the heat
flow for n-harmonic maps from an n-dimensional Riemannian manifold into
an arbitrary Riemannian manifold. The proof of Theorem 1 has similarities
to the one for the n-harmonic map flow in [9]. Indeed, the nonlinear term
which occurs in the right side of (3) is of the same order as the nonlinear
term which occurs in the case of n-harmonic map flow. However, we have not
any control on the W1,n-norm of the solution u to the flow (3) with respect
to t unless we impose the initial data satisfying condition (∗). Moreover, it
is difficult to handle the nonlinear term in (3) because the term involves a
nonlinear function H (u) and an exterior product term. In particular, there
is no direct, simple an analogue of the energy inequality for n-harmonic
map heat flow in the current setting. Fortunately, we can use a maximum
principle argument for equations of parabolic type to control the enrgy and
show that the condition (∗) is reserved along the flow and this gives us
the desired bound for the W1,n-norm of the solution. We finally apply an
interpolation type inequality to handle the nonlinear term H (u) ux1∧···∧uxn

and get comparable estimates to the case of the n-harmonic map heat flow.

2 Some inequalities and priori estimates

In this section we establish some useful estimates for the solution of H-
systems. First we need the following Nirenberg type inequality:

Lemma 2 Let M be a compact manifold without boundary or Rn. Then
there exist a constant C depending only on Ω such that for any measurable
function f : M×[0, T ] (T > 0 arbitrary), and BR (x0) ⊂ Ω, and any function
ϕ ∈ L∞ (BR (x0)) depending only on the distance from x0, i.e. ϕ (y) =
ϕ (|y − x0|), ϕ is non-increasing, the estimate∫ T

0

∫
M
|f |2n ϕdxdt (4)

≤ C sup
0≤t≤T

(∫
BR(x0)

|f |n dx

) 2
n ∫ T

0

∫
M

∣∣∣∇ |f |n−1
∣∣∣2 ϕdxdt

+
C

|BR (x0)|
sup

0≤t≤T

∫
BR(x0)

|f |n dx ·
∫ T

0

∫
M
|f |n ϕdxdt

holds, provided ϕ = 1 on BR
2

(x0).
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For the proof we refer to [9] Lemma 3.1. The two-dimensional case was
proved by Struwe in [11]. This inequality is also a key tool to get the higher
order integrability of the gradient of the solution.

Now, we introduce two functionals on W 1,n(M,Rn+1)

E (u) =
∫

M
|∇u|n

and

J (u) =
∫

M

(
|∇u|n +

n

n + 1
Q (u) · ux1 ∧ · · · ∧ uxn

)
, (5)

where

Q (u) =
(∫ u1

0
H (s, u2, · · ·, un+1) ds, · · ·,

∫ un+1

0
H (u1, u2, · · ·, un, s) ds

)
.

Note that a critical point of functional (5) is a solution of equation (1) (see
Appendix at the end of paper).

Now we give the energy estimate of the solution of (1).

Lemma 3 Let u ∈ C1,α
(
M × [0, T ],Rn+1

)
∩W1,2

(
[0, T ] ,W1,n (M)

)
be a

solution to (3) in the sense of distribution for some α with 0 < α < 1. Then
the following energy equality holds for all t1, t2 with 0 ≤ t1 ≤ t2 ≤ T∫ t2

t1

∫
M
|ut|2 ϕdxdt + J (u (t2)) = J (u (t1)) .

Proof. Multiplying (3) by ut and integrating on M × [t1, t2], we get the
results. Here we need to note in the calculation that

d

dt

∫
M

Q (u) · ux1 ∧ · · · ∧ uxn = (n + 1)
∫

M
H (u) ut · ux1 ∧ · · · ∧ uxn .

For convenience we give the proof of this formula in the Appendix.
The following lemma indicates that condition (∗) is preserved under the

flow (3).

Lemma 4 Assume that u0 ∈ W1,n
(
M,Rn+1

)
∩L∞

(
M,Rn+1

)
satisfies the

condition (∗), and u ∈ C1,α
(
M × [0, T ],Rn+1

)
∩W1,2

(
[0, T ] ,W1,n (M)

)
is

a solution of (3). Then
(i) ‖u‖L∞(M×[0,T ]) ≤ ‖u0‖L∞(M),
(ii) sup

[0,T ]
E (u) ≤ cJ (u0).
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Proof. Suppose k is any number which satisfies

‖u0‖L∞(M) ‖H‖L∞(M) < k ‖H‖L∞(M) ≤
√

nn.

For the map u, denote f = |u|2 and the operator ∆ng = div
(
|∇u|n−2∇g

)
for any function g. Then we have the following

(∂t −∆n) f = 2u · ut − 2u · div
(
|∇u|n−2∇u

)
− 2 |∇u|n (6)

= 2 (H (u) u · ux1 ∧ · · · ∧ uxn − |∇u|n)

≤ 2 |∇u|n
(
‖H‖L∞ max |u|√

nn
− 1
)

be satisfied in sense of distribution. By testing (6) with the function

ϕ = f −min
{
k2, f

}
,

we have

1
2
∂t

∫
M∩{f≥k2}

(
f − k2

)2 +
∫

M∩{f≥k2}
|∇u|n−2 |∇f |2

≤ 2
∫

M∩{f≥k2}
|∇u|n

(
‖H‖L∞ max |u|√

nn
− 1
)(

f − k2
)
≤ 0,

for t ∈ [0, T ]∩
{
‖H‖L∞ max|u|√

nn − 1 ≤ 0
}

. Since for t = 0, f < k, by a standard
argument of closed and open interval for t we get f ≤ k for all t ≥ 0. This
proves (i).

Concerning (ii), we remark that |Q (u)| ≤ ‖H (u)‖L∞ ‖u‖L∞ , so that
from (1) we have

|∇u|n +
n

n + 1
Q (u) · ux1 ∧ · · · ∧ uxn ≥ c (n) |∇u|n .

Here c (n) > 0 depends only on n. This completes a proof of (ii).

The following we give the L2n-estimate for |∇u|, which is a crucial step
to get higher regularity, and existence for the flow (3).

Lemma 5 There exists ε1 > 0 which only depends on dist (x0, ∂M) with
the following property:
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If u ∈ C2
(
B3R (x0)× [0, T ) ;Rn+1

)
with E (u) ≤ cE (u0) is a solution of

(3) on B3R (x0)× [0, T ) for some R ∈
(
0, 1

3dist (x0, ∂M)
)

and if

sup {E (u (t)) , BR (x) ; 0 ≤ t ≤ T, x ∈ B2R (x0)} < ε1

then we have for every x ∈ BR (x0)∫ T

0

∫
BR(x)

∣∣∇2u
∣∣2 |∇u|2n−4 < CE (u0)

(
1 +

T

Rn

)
(7)

and ∫ T

0

∫
BR(x)

|∇u|2n < CE (u0)
(

1 +
T

Rn

)
(8)

for some constant C which only depends on dist (x0, ∂M).

Proof. The proof is close to the one in [9], but for completeness, we
give details for the terms requiring a different treatment. here. Since we do
not consider the estimate at boundary, for simplicity we consider the case
of a flat torus M = Rn/Zn. Let ϕ ∈ C∞

0 (B2R (x0)) be a cutoff function
satisfying 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on BR (x0) and |∇ϕ| ≤ 2

R . We now test (3)

by the function div
(
|∇u|n−2∇u

)
ϕn. Using condition (∗) and determinant

inequality (see for example [14] P. 1195) we have∣∣∣ut∆nuϕn − (∆nu)2 ϕn
∣∣∣ ≤ c |∇u|n |∆nu|ϕn

with a constant cdepending only on ‖H (u)‖L∞ and n. Integrating over
B2R (x0)× [0, T ) we obtain∫ T

0

∫
B2R(x)

(
1
n

d

dt
|∇u|n ϕn + |∆nu|2 ϕn

)
(9)

=
∫ T

0

∫
B2R(x)

[(
−div

(
ϕn |∇u|n−2∇u

))
ut + |∆nu|2 ϕn

]
=
∫ T

0

∫
B2R(x)

[
−ϕnut∆nu− nϕn−1 |∇u|n−2 ut∇ϕ∇u + |∆nu|2 ϕn

]
≤
∫ T

0

∫
B2R(x)

[
C |∇u|n |∆nu|ϕn + nϕn−1 |∆nu| |∇u|n−1 |∇ϕ|

]
+ C

∫ T

0

∫
B2R(x)

nϕn−1 |∇u|2n−1 |∇ϕ| ,
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where we use the condition (∗). By Young’s inequality we estimate the last
line in (9) by∫ T

0

∫
B2R(x)

[
1
4
|∆nu|2 ϕn + Cϕn |∇u|2n + Cϕn−2 |∇ϕ|2 |∇u|2n−2

]
(10)

+ C

∫ T

0

∫
B2R(x)

nϕn−1 |∇u|2n−1 |∇ϕ|

≤
∫ T

0

∫
B2R(x)

[
1
4
|∆nu|2 ϕn + Cϕn |∇u|2n + Cϕn−2 |∇ϕ|2 |∇u|2n−2

]
.

On the other hand, integrating by parts twice we have∫ T

0

∫
B2R(x)

|∆nu|2 ϕn ≥ 1
2

∫ T

0

∫
B2R(x)

∣∣∇2u
∣∣2 |∇u|2n−2 ϕn (11)

− c

∫ T

0

∫
B2R(x)

ϕn−2 |∇ϕ|2 |∇u|2n−2

for some constant c only depending on n. Plugging (10) and (11) into (9),
we obtain∫ T

0

∫
B2R(x)

∣∣∇2u
∣∣2 |∇u|2n−2 ϕn (12)

≤ c

∫
B2R(x0)

|∇u0|n + c

∫ T

0

∫
B2R(x)

(
ϕn |∇u|2n + ϕn−2 |∇ϕ|2 |∇u|2n−2

)
.

The second term on the right hand of (12) may be estimated separately by
Hőlder’s and Young’s inequality:∫ T

0

∫
B2R(x)

ϕn−2 |∇ϕ|2 |∇u|2n−2 ≤ c

∫ T

0

∫
B2R(x)

(
ϕn |∇u|2n + |∇ϕ|n |∇u|n

)
.

(13)
Combining (12) with (13) we have∫ T

0

∫
B2R(x)

∣∣∇2u
∣∣2 |∇u|2n−2 ϕn (14)

≤ c

∫
B2R(x0)

|∇u0|n + c

∫ T

0

∫
B2R(x)

(
ϕn |∇u|2n + |∇ϕ|n |∇u|n

)
.
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It follows from Lemma (2.1) that∫ T

0

∫
B2R(x)

ϕn |∇u|2n (15)

≤ C sup
x∈B2R(x0)

(∫
BR(x)

|∇u|n dx

) 2
n ∫ T

0

∫
B2R(x0)

∣∣∇2u
∣∣2 |∇u|2n−4 ϕndxdt

+
C

Rn
sup

0≤t≤T,x∈B2R(x0)

∫
BR(x)

|∇u|n dx

∫ T

0

∫
B2R(x0)

|∇u|n ϕndxdt.

Hence, for sufficiently small ε1 > 0, the assumption

sup
0≤t≤T,x∈B2R(x0)

∫
BR(x)

|∇u|n < ε1

used in (15) and (14) implies the estimates (7) and (8).

3 Local Existence

In this section we prove local existence for the heat flow of the H-system
(1). As in [9], we consider the regularized nonlinear parabolic problem ut − div

((
|∇u|2 + ε

)n−2
2 ∇u

)
= H (u) ux1 ∧ · · · ∧ uxn

u |t=0 = u0 .
(16)

By using semigroup theory in Banach space, Lunardi’s Theorem (see [10])
yields:

Lemma 6 For any ε > 0, problem (16) has a unique solution uε in the sense
of Lunardi [10] on a time interval [0, Tε], and uε ∈ C1

(
[0, Tε] ,L2 (M)

)
∩

C0
(
[0, Tε] ,W2,2 (M) ∩C1,α (M)

)
.

For the proof of Lemma 6 we refer to Section 4 of [9].
Next, we need to prove that Tε ≥ µ > 0, as ε → 0. Before proving the

local existence theorem, we give the following quantity which describe how
much the energy is concentrated.

Definition 7 For a map u : M×[t1, t2] → Rn+1, u ∈ L∞
(
[t1, t2] ;W1,n (M)

)
,

ε > 0 and Q ⊂ M × [t1, t2] let

R∗ (ε, u, Q) = sup

{
R : sup

(x,t)∈Q
(E (u (t) , BR (x))) < ε

}
.
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Theorem 8 Let u ∈ C1
(
[0, Tε] ,L2 (M)

)
∩C0

(
[0, Tε] ,W2,2 (M) ∩C1,α (M)

)
be a solution of (16) under the condition (∗) with initial value u0. Assume
that ε ≤ 1, then we have the following

(i) sup
[0,T ]

Eε (u) ≤ cJ (u0), here we denotes Eε (u) =
∫
M

(
ε + |∇u|2

)n
2 .

(ii) There exist constants c1, c2, ε > 0, depending only on n, M (not
on ε and u0) and a positive T0 > 0 depending on additional E1 (u0) and
R∗ (ε, u, M × {0}), such that the condition

sup
x∈M

E1 (u0, B2R (x)) < ε

implies

Eε (u (t) , BR (x)) ≤ c1E1 (u0, B2R (x)) + c2E1 (u0)
1− 1

n
t

Rn
,

for all (x, t) ∈ M × [0,min {Tε, T0}].
(3) There exists a constant ε2 > 0 depending only on M (but not on ε

and u0) such that

R∗ = R∗ (ε2, u,M × [0, Tε]) > 0

implies for every Q ⊂ M × [0, Tε] with dist (Q,M × {0}) > 0

‖∇u‖L∞(Q) ≤ C

where constant C depends only on n, E1 (u0), M , R∗ and dist (Q,M × {0}).
Moreover if we assume that u0 ∈ W1,∞ (M), then we have

‖∇u‖L∞(M×[0,Tε])
≤ C

where C is a constant that depends on n, E1 (u0), M , R∗ and ‖∇u0‖L∞(M).

Proof. The proof of (i) is the same as that of Lemma 3 and Lemma 4
of [9].

Now we prove (ii). Let ϕ ∈ C∞
0 (B2R (x)) be a cut off function which

satisfies: 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on BR (x), and |∇ϕ| ≤ 2
R , here x ∈ M is an

arbitrary point. Then we test (16) by the function utϕ
2 and obtain∫ T

0

∫
B2R(x)

(
utϕ

2 +
(
ε + |∇u|2

)n−2
2 ∇u

(
∇utϕ

2 + 2ϕ∇ϕut

))
=
∫ T

0

∫
B2R(x)

ϕ2utH (u) ux1 ∧ · · · ∧ uxn .
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Thus ∫ T

0

∫
B2R(x)

(
u2

t +
1
n

d

dt

(∣∣∣ε + |∇u|2
∣∣∣n

2

))
ϕ2 (17)

+
∫ T

0

∫
B2R(x)

1
n + 1

ϕ2Q (u) · ux1 ∧ · · · ∧ uxn

= −2
∫ T

0

∫
B2R(x)

∇u |∇u|n−2 ϕ∇ϕut.

This implies

Jε (u (T ) , BR (x))− Jε (u0, B2R (x)) (18)

≤
∫ T

0

∫
B2R(x)

d

dt

(∣∣∣ε + |∇u|2
∣∣∣n

2 +
1

n + 1
Q (u) · ux1 ∧ · · · ∧ uxn

)
ϕ2

= −n

∫ T

0

∫
B2R(x)

u2
t ϕ

2 − 2n

∫ T

0

∫
B2R(x)

∇u |∇u|n−2 ϕ∇ϕut

≤ c

∫ T

0

∫
B2R(x)

|∇u|2n−2 |∇ϕ|2 ,

where we denote

Jε (u (T ) , BR (x)) =
∫

BR(x)

((
ε + |∇u|2

)n
2 +

1
n + 1

Q (u) · ux1 ∧ · · · ∧ uxn

)
.

So from (18) we get

Jε (u (T ) , BR (x))− Jε (u0, B2R (x)) (19)

≤ c

R2

∫ T

0

∫
B2R(x)

|∇u|2n−2

≤ c
T

1
n

R2

(∫ T

0

∫
B2R(x)

|∇u|2n

)n−2
n

,

By the result in (i), it follows from (19) that

Eε (u (T ) , BR (x))− c1Eε (u0, B2R (x)) ≤ c
T

1
n

R2

(∫ T

0

∫
B2R(x)

|∇u|2n

)n−2
n

.

(20)
By the well-known covering lemma, there exists a number L only depending
on the geometry of M but not on R such that every ball B2R (x) may be
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covered by at most L balls BR (xi). Now recall from Lemma 5 that there is
a constant ε1 > 0 such that

sup {Eε (u (t)) , B2R (x) ; 0 ≤ t ≤ T, x ∈ B4R (x0)} < ε1.

Then we have for every x ∈ B4R (x0)∫ T

0

∫
B2R(x)

(
ε + |∇u|2

)n
2

< CEε (u0)
(

1 +
T

2nRn

)
. (21)

Now we choose
ε =

ε1
4Lc1

and suppose that R0 is a number such that there holds

sup
x∈M

Eε (u0, B2R0 (x)) < ε.

Then we can choose T0 as

T0 = min

{
1,

(
ε1R0

4Lc (2cEε (u0))
n−2

n

)n}
.

Now we claim: for all (x, t) ∈ M × [0, T0] and all R ≤ R0 there hold∫ t

0

∫
B2R(x)

(
ε + |∇u|2

)n
2 ≤ CEε (u0)

(
1 +

t

2nRn

)
and

sup
0≤τ≤t

∫
B2R(x)

(
ε + |∇u|2

)n
2 ≤ ε.

To see this let T < T0 such that for all t ∈ [0, T ] the above two inequalities
hold. Then it follows from (21), (20) and particular choice of ε, T0 that

sup
(x,t)∈M×[0,T ]

Eε (u (t) , B2R0 (x))

≤ L sup
(x,t)∈M×[0,T ]

Eε (u (t) , BR0 (x))

≤ L

(
sup
x∈M

Eε (u0, B2R0 (x)) + c
T

1
n

R0

(
cEε (u0)

(
1 +

T

2nRn

))n−2
n

)
≤ ε

2
.
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Thus these two inequalities hold on some larger interval [0, T + δ]. On the
other hand the interval where the claimed inequalities hold is closed and
nonempty. Hence we get the proof of the claim. This claim combined with
(21) easily yields the result (2).

Once we have the L2n-estimate (Lemma 5) and localized energy mono-
tonicity inequality (result (2)) in hand, we can get the higher regularity of
the solution in the standard way as in [9] and [2]. However because of the
particular nonlinear term in right-hand side of (16), the method in [9] cannot
be directly applied in the current setting. Hence in the following calculation
we outline the analysis of the right-hand side of (16). Now we give the proof
of (3). Here we just sketch the proof for the case ‖∇u0‖L∞(M) < ∞, the
other case can be handled analogously by choosing a suitable time-dependent
cutoff function. First let us fix some notation:

For (x0, t0) ∈ M × (0, T ) let

PR = PR (x0, t0) = BR (x0)× (0, t0)
PR (σ) = BR−σR (x0)× (0, t0) ,

here σ ∈ (0, 1). For R small enough such that PR ⊂ M × (0, Tε), we take a
cutoff function ζ with

ζ = 1, on BR−σR (x0)
ζ = 0, when x /∈ BR (x0)

and
0 ≤ ζ ≤ 1, |∇ζ| ≤ 2

σR
.

Using −div

((
ε + |∇u|2

)l
ζ2∇u

)
as a test function in the equation (16), we

have ∫
PR

−utdiv

((
ε + |∇u|2

)l
ζ2∇u

)
+
∫

PR

div

((
ε + |∇u|2

)l
ζ2∇u

)
div

((
ε + |∇u|2

)n−2
2 ∇u

)
= −

∫
PR

div

((
ε + |∇u|2

)l
ζ2∇u

)
H (u) ux1 ∧ · · · ∧ uxn . (22)

For simplicity, we set v =
(
ε + |∇u|2

)
. A technical calculation (two terms

in the left-hand side are treated by a similar argument as that found in [9])

12



yields

1
2 (l + 1)

∫
BR(x0)

ζ2vl+1 (x, t0) dx− 1
2 (l + 1)

∫
BR

(
vl+1ζ2

)
(x, 0) dx (23)

+
∫

PR

ζ2

(
l (n− 2)

2
v

n+2l−6
2 |∇v∇u|2 +

l + n− 2
2

v
n+2l−4

2 |∇v|2
)

+
∫

PR

ζ∇ζ
(
v

n+2l−2
2 ∇v + (n− 2) v

n+2l−3
2 ∇u∇v

)
+
∫

PR

v
n+2l−2

2 |∆u|2 ζ2

=
∫

PR

vlζ2∇u · ∇ (H (u) ux1 ∧ · · · ∧ uxn) .

By Lemma 2.3 and the condition (∗∗), the term on the right hand is esti-
mated by∣∣∣∣∫

PR

vlζ2∇u · ∇ (H (u) ux1 ∧ · · · ∧ uxn)
∣∣∣∣ (24)

≤ c

∫
PR

vlζ2 |∇u|n+2 + c

∫
PR

vlζ2
∣∣∇2u

∣∣ |∇u|n

≤ c

∫
PR

v
n+2l+2

2 ζ2 + δ

∫
PR

v
n+2l−2

2 ζ2
∣∣∇2u

∣∣2 + C (δ)
∫

PR

v
n+2l+2

2 ζ2,

where we use Young’s inequality, and C (δ) is a positive constant depending
only on δ.

Plugging (24) into (23), interpolating the third term in the left-hand
side, which involve ∇ζ, and using Young’s inequality again, we have

1
4 (l + 1)

ess sup
0<t<t0

∫
BR(x0)

ζ2vl+1 (x, t) dx (25)

+
(

n + l − 2
8

− δ

)∫
PR

v
n+2l−4

2 |∇v|2 dxdt

≤ 1
2 (l + 1)

∫
BR

ζ2vl+1 (x, 0) dx + C (n, δ)
∫

PR

v
n+2l+2

2 ζ2

+ 2
(

1
l + n− 2

+
n− 2

l

)∫
PR

v
n+2l

2 |∇ζ|2 dxdt.

13



Using Lemma 5, it follows from a standard argument as in [2] or [9] that

1
4 (l + 1)

sup
0<t<t0

∫
BR(x0)

ζ2vl+1 (x, t) dx (26)

+ c (n, ε, ε1)
∫ t0

t0−Rn

∥∥∥v n+2l
4 ζ
∥∥∥

L2∗ (BR)
dt

≤ 1
2 (l + 1)

∫
BR

ζ2vl+1 (x, 0) dx + c1 (n, l)
∫

PR

v
n+2l

2 |∇ζ|2 dxdt.

The standard iteration yields∫
PR

vqdxdt ≤ C,

where C depends on the initial datum and q, n and ε. To get the L∞

estimate, we use the Moser iteration method as in [9] and [1]. By the Hölder
inequality and the Sobolev inequality, it follows from (26) that∫

PR(σ)
v(l+n

2 )(1+ 2
n

2+2l
n+2l)dxdt (27)

≤ c

(∫
BR

ζ2vl+1 (x, 0) dx +
∫

PR

v
n+2l

2 |∇ζ|2 dxdt + l

∫
PR

v
n+2l+2

2 ζ2dxdt

)1+ 2
n

.

Iterating (27) implies
‖∇u‖L∞(PR( 1

2))
≤ C,

where C depends on the initial data u0. This completes a proof of Theorem
8.

Once we have ‖∇u‖L∞ in hand, we can get high regularity estimate of
solution of (16) in a standard way as in [9]. Note that these estimates do
not depend on the parameter ε. In particular we use Theorem 8 to obtain
the following theorem on an ε-independent existence interval.

Theorem 9 There exists a constant ε0 > 0 depending on M with the fol-
lowing property:

For arbitrary u0 ∈ C1,α
(
M,Rn+1

)
∩ W2,2

(
M,Rn+1

)
there exists a

time T0 > 0 only depending on E0 (u0), R∗ (ε0, u0,M × {0}) and the ge-
ometry of M such that for every ε ∈ (0, 1) there exists a solution u ∈

14



C0
(
[0, T0] ,W2,2 (M) ∩C1,α1 (M)

)
∩ C1

(
[0, T0] ,L2 (M)

)
of (16) with ini-

tial value u0. Moreover there hold the following ε-independent estimates:

‖ut‖L2(M×[0,T0]) ≤ C (u0)

‖∇u‖L∞(M×[0,T0]) ≤ C (‖∇u0‖L∞)

‖∇u‖C0,α1 (M×[0,T0]) ≤ C
(
‖∇u0‖C0,α(M)

)
.

where the constant also depend on n and M , and the constant α1 ≤ α
depends on α and ‖∇u0‖L∞.

The proof of Theorem 9 is almost parallel to the case of n-harmonic map
flow as in [9]: in this case the right hand term do not cause any trouble in
obtaing high regularity estimates. We refer to [9] Section 4. Combining
Theorem 8 and Theorem 9, now we can prove local existence theorem of
solution for the problem (3) by passing to the limit of ε → 0.

Theorem 10 There exists a constant ε0 > 0 depending on M with the
following property:

For arbitrary u0 ∈ C1,α
(
M,Rn+1

)
∩W2,2

(
M,Rn+1

)
there exists a time

T0 > 0 only depending on E0 (u0), R∗ (ε0, u0,M × {0}) and the geometry of
M such that there exists a weak solution u : M × [0, T0] → Rn+1 of (3).
Furthermore u satisfies the inequalities as in Theorem 9.

Proof. Let uε be the solution of (16) corresponding to a given ε on the
time interval [0, T0], where T0 is constructed as in Theorem 8 and Theorem
9. The aim is to pass a limit on the distributional form of (16) on [0, T0].
From the ε-independent estimates in Theorem 9 we know that at least {uε}
is bounded in W1,n (M × [0, T0]). Thus, we choose a sequence εk → 0 such
that

uεk
⇀ u weakly in W1,2 (M × [0, T0]) .

However from Theorem 9 we have ‖∇uεk
‖C0,α1 (M×[0,T0]) ≤ C

(
‖∇u0‖C0,α(M)

)
,

so we know that

∇uεk
→ ∇u strongly in C0,

α1
2 (M × [0, T0]) .

Now for any C∞
0 test function ϕ we pass the limit εk → 0 in∫ T0

0

∫
M

(
∂tuεϕ +

(
ε + |∇uε|2

)n−2
2 ∇uε∇ϕ

)
dxdt

=
∫ T0

0

∫
M

ϕH (uε) (uε)x1
∧ · · · ∧ (uε)xn

,

15



which implies that u is a weak solution of (3). To prove that u satisfy
the bounds as in Theorem 9, we notice that the estimates in Theorem 9 is
independent on ε.

In fact we can prove the local existence result of (3) in a more general
case of initial values u0 ∈ W1,n (M) by a approximation argument. We give
the following as a corollary from Theorem 10.

Corollary 11 There exists a constant ε0 > 0 depending on M with the fol-
lowing property: For given initial value u0 : M → Rn+1, u0 ∈ W1,n

(
M,Rn+1

)
there exists a time T0 > 0 only depending on E0 (u0), R∗ (ε0, u0,M × {0})
and the geometry of M such that there exists a weak solution u : M ×
[0, T0] → Rn+1 of (3). Moreover for any open set Q with

dist (Q, (M × {0}) ∪ Σ) = µ > 0,

there holds ‖∇u‖C0,β(Q) ≤ C for some constant C and β ∈ (0, 1) depending
on n, u0, M and µ.

We refer the proof to [9] Section 4.

4 Global existence and proof of Theorem 1

In this section, we study the global existence of the solution of (3). Let us
first give a result which characterizes finite time blow up phenomenon of the
solution.

Theorem 12 For a given initial value u0 ∈ W1,n (M) with conditions (∗)
and (∗∗), there exists a global weak solution u of (3) which satisfies the
following: There exists a set of finite points Σ = ∪K

k=1Σk × {Tk}, 0 < T1 <
··· < TK ≤ ∞, such that on every open set Q with dist (Q, (M × {0}) ∪ Σ) =
µ > 0 there holds ‖∇u‖C0,β(Q) ≤ C for some constant C and β ∈ (0, 1)
depending on n, u0, M and µ. The number K of singular times is bounded
by

K ≤ ε−1
0 cE (u0)

and the singular points
(
xk

i , Tk

)
∈ Σ are characterized by the condition

lim supt↗Tk
E
(
u (t) , BR

(
xk

i

))
≥ ε0 for any R > 0. Furthermore at least

a nonconstant, C1,α (Rn) solution of (1) in entire space Rn separates in the
sense that for sequence Rm → 0, tm ↗ Tk, xm → xk

i as m →∞

um (x) ≡ u (Rm (x− xm) , tm) → u in W1,n
loc

(
Rn,Rn+1

)
.

Here u is a solution of (1) in entire space Rn.
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Proof. We extend the local solution of Theorem 10 or Corollary 11
by a standard way to a global weak solution to (3). This technique was
used in the two dimensional case for harmonic map flow by Struwe [11]
and n-dimensional case for n-harmonic map flow by Hungerbühler in [9]. In
the follows, we describe the characterization of the blowing-up points Σ. Let(
xk

i , Tk

)
∈ Σ be any point of Σ. For simplicity, we assume

(
xk

i , Tk

)
= (x0, T1)

and, when t = T1, and assume that only one blowing-up point x0 occurs.
Denote

QT = [δ, T ] , and
θT = max

QT

|∇u| ,

where T1
2 > δ > 0. It is obvious that θT is an increasing function. By the

definition of Tk, we know that limT↗T1 θT = ∞. Let T l be an increasing
sequence with limit T1 and (al) a sequence in M, where l →∞, such that

θT l =
∣∣∣∇u

(
al, T

l
)∣∣∣ .

Up to a subsequence, we assume that al → x0. Let U be a neighborhood of
x0 in M and set

Ul =
{

ζ ∈ Rn

∣∣∣∣al +
ζ

θT l

∈ U

}
,

Il =
[
−θn

T lT
l, θn

T l

(
T1 − T l

)]
and

vl (ζ, τ) = u

(
al +

ζ

θT l

, T l +
τ

θn
T l

)
in Ul × Il.

A simple calculation yields

∂τv
l −∆nvl = H

(
vl
)

vl
ζ1 ∧ · · · ∧ vl

ζn
(28)

and
max
Ul×Il

∣∣∣∇vl
ζ (ζ, τ)

∣∣∣ ≤ 1. (29)

Let
hl (τ) =

∫
Ul

∣∣∣∂τv
l
∣∣∣2 dζ.
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Then for any τ0 > 0∫ 0

−τ0

hl (τ) dτ ≤
∫ T l

T l− τ0
θn
Tl

(∫
M
|ut (x, t)|2 dx

)
dt

= J

(
u

(
·, T l − τ0

θn
T l

))
− J

(
u
(
·, T l

))
→ 0 as l →∞.

Thus, as l →∞, up to a subsequence, we assume that for a.e. τ ∈ [−τ0, 0]∫
Ul

∣∣∣∂τv
l (ζ, τ)

∣∣∣2 dζ → 0. (30)

Because M is without boundary, Ul → Rn as l → ∞ (in the following
sense: for any R > 0, there exist l0 > 0 such that for any l ≥ l0, we have
B (0, R) ⊂ Ul). By the estimate in Theorem 3.4 and (29), we have

sup
τ∈[−τ0,0]

‖∇v (τ, ·)‖C0,α1 (BR(0)) ≤ C (R, ε, α1) , (31)

for any R > 0 and some α1 > 0 in Section 3, where α1 could depend on R,
but it does not cause trouble for us to pass to the limit. On the other hand,
from (30) we have that

vl (ζ, τ) → 0 in L2 (BR (0)) (32)

for any R > 0 and a.e. τ ∈ [−τ0, 0]. Combining (31) with (32) and using a
diagonal argument we have that as l →∞, up to a subsequence

vl (ζ, τ∗) → v0 (ζ) in C1 (Rn) ,

vl (ζ, τ∗) → v0 (ζ) in C1,α1 (BR (0)) ,

for any R > 0 and τ∗ in some dense countable subset of [−τ0, 0].
v0 (ζ) satisfies

∆nv0 = H
(
v0
)
v0
ζ1 ∧ · · · ∧ v0

ζn
in Rn, (33)∥∥v0

∥∥
L∞(M)

∥∥H (
v0
)∥∥

L∞(M)
≤
√

nn,

in the weak sense. Let us show that v0 is non-constant. We know that∣∣∣∇vl (0, 0)
∣∣∣ = 1

θT l

∣∣∣∇u
(
al, T

l
)∣∣∣ = 1.
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From (29), (28), and the estimate in Theorem 9 Theorem 10 and Corollary
11 that ∥∥∥∇ζv

l (τ, ς)
∥∥∥

C0,α1 ([−τ0,0]×Bδ(0))
≤ C

and therefore ∣∣∣∇ζv
l (0, τ∗)−∇ζv

l (0, 0)
∣∣∣ ≤ C |τ∗|α1 .

So we choose |τ∗| sufficiently small so that
∣∣∇ζv

l (0, τ∗)
∣∣ ≥ 1

2 , for any
l > 0, this prove that v0 is not constant. Repeating the above argument to
every point

(
xk

i , Tk

)
we can get the conclusion of theorem. This completes

the proof.
To complete the proof of Theorem 1, we need the following lemma, which

indicate that under the condition (∗), blow-up can not occur.

Lemma 13 If v0 is a solution of

∆nv0 = H
(
v0
)
v0
ζ1 ∧ · · · ∧ v0

ζn
in Rn

and satisfies ∥∥v0
∥∥

L∞(M)
<
√

nn, (34)

then v0 must be a constant.

Proof. Following [15] or [16], we argue it by contradiction.
Assume that v0 is not a constant. Let ϕ : Rn → R be a smooth radial

symmetric function such that

ϕ (x) = 1 for |x| ≤ 1,

ϕ (x) = 0 for |x| ≥ 2.

Denoting by
ϕk (x) = ϕ

(x

k

)
,

we have∫
Rn

ϕkv
0∆nv0dx = −

∫
Rn

ϕk

∣∣∇v0
∣∣n dx−

∫
Rn

∣∣∇v0
∣∣n−2

v0∇ϕk∇v0dx.

Note that
∣∣∇v0

∣∣n ∈ L1 (Rn) and
∣∣v0∆nv0

∣∣ ≤ ∥∥v0
∥∥

L∞
‖H‖L∞

√
nn
∣∣∇v0

∣∣n ∈
L1 (Rn). From Lebesgue’s theorem we have

lim
k→∞

∫
Rn

ϕk

∣∣∇v0
∣∣n dx =

∫
Rn

∣∣∇v0
∣∣n dx,

lim
k→∞

∫
Rn

ϕkv
0∆nv0dx =

∫
Rn

v0∆nv0dx.
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On the other hand∣∣∣∣∫
Rn

∣∣∇v0
∣∣n−2

v0∇ϕk∇v0dx

∣∣∣∣ ≤ ∥∥v0
∥∥

L∞

(∫
Rn

∣∣∇v0
∣∣n dx

)n−1
n

(∫
|x|≥k

|∇ϕk|n
) 1

n

which goes to zero as k goes to infinity. This implies∫
Rn

v0∆nv0dx = −
∫

Rn

∣∣∇v0
∣∣n dx.

So by multiplying (33) by v0 and integrating over Rn we obtain∫
Rn

∣∣∇v0
∣∣n dx = −

∫
Rn

H
(
v0
)
v0v0

x1
∧ · · · ∧ v0

xn

≤
√

nn ‖H‖L∞

∥∥v0
∥∥

L∞

∫
Rn

∣∣∇v0
∣∣n dx,

which gives ∥∥v0
∥∥

L∞(M)

∥∥H (
v0
)∥∥

L∞(M)
≥
√

nn. (35)

(35) contradicts with (34).
Now we complete the proof of Theorem 1.
Proof of Theorem 1. Combining Theorem 12, Lemma 4 and Lemma

13 we can easily get the global existence of solution of (3). Now we sketch
the proof of uniqueness for the solution. By Lemma 13 we know that there
is no blow-up point of the flow, which means there is no energy concen-
tration. So by the estimate in Theorem 9 or Theorem 10 we know that
u ∈ L∞

(
(0, T ) ;W 1,∞ (M)

)
. By a similar argument to that of [9] Chapter

5, we know that the solution must be unique.

5 Appendix

In this appendix, we give the proof of following formula which is used in
Lemma 3 and elsewhere in this paper.

d

dt

∫
M

Q (u) · ux1 ∧ · · · ∧ uxn = (n + 1)
∫

M
H (u) ut · ux1 ∧ · · · ∧ uxn .
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For sake of clarity we denote uxi = ∂u
∂xi

= ui, ut = ∂u
∂t ; u = (uα), Q (u) =

(Qα), and Quα = ∂Q
∂uα , 1 ≤ α ≤ n + 1.

Q (u) · ux1 ∧ · · · ∧ uxn = det


Q1 Q2 · · Qn+1

u1
1 u2

1 · · un+1
1

· · · · ·
· · · · ·

u1
n u2

n · · un+1
n

 .

So we have

d

dt

∫
M

Q (u) · ux1 ∧ · · · ∧ uxndV

=
∫

M
Quαuα

t · ux1 ∧ · · · ∧ uxndV +
n∑

i=1

∫
M

Q (u) · ux1 ∧ · · (uxi)t · · ∧ uxndV

=
∫

M
Quαuα

t · ux1 ∧ · · · ∧ uxndV +
n∑

i=1

∫
M

ut · ∂xi

(
ux1 ∧ · ·Q (u)

i
· · ∧ uxn

)
dV

=
∫

M
Quαuα

t · ux1 ∧ · · · ∧ uxndV +
n∑

i=1

∫
M

ut ·
(

ux1 ∧ · · ∂xiQ (u)
i

· · ∧ uxn

)
dV

+
∑
i6=k

n∑
i=1

∫
M

ut ·
(

ux1 ∧ · · ∧uxkxi ∧ · ·Q (u)
i

· · ∧ uxn

)
dV.

Use integration by parts, it is easy to see that

∑
i6=k

n∑
i=1

∫
M

ut ·
(

ux1 ∧ · · ∧uxkxi ∧ · ·Q (u)
i

· · ∧ uxn

)
dV = 0.

Noting that
∂xiQ (u) = Quαuα

xi
, (36)

(here summation convention is used), we obtain

d

dt

∫
M

Q (u) · ux1 ∧ · · · ∧ uxndV

=
∫

M
Quαuα

t · ux1 ∧ · · · ∧ uxndV +
n∑

i=1

∫
M

uα
xi

ut ·
(

ux1 ∧ · ·Quα

i
· · ∧ uxn

)
dV

=
∫

M
Qt · ux1 ∧ · · · ∧ uxndV +

n∑
i=1

∫
M

ut ·
(

ux1 ∧ · ·Qxi
i
· · ∧ uxn

)
dV.
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Now we claim that

Qt · ux1 ∧ · · · ∧ uxn +
n∑

i=1

ut ·
(

ux1 ∧ · ·Qxi
i
· · ∧ uxn

)
(37)

= div (Q) ut · ux1 ∧ · · · ∧ uxn .

In fact, (37) is a result of linear algebra. Let A be a (n+1)× (n+1) matrix.
Let a1,..., an+1 be arbitrary independent vectors in Rn+1. Then we have

a1 ∧ · · · an ·Aan+1 +
∑

l

n∑
i=1

(
a1 ∧ · ·Aai

i
· · ∧ an

)
· an+1

= trace(A)a1 ∧ · · · an · an+1 (38)

Note that both sides of (38) is linear in a1, ..., an+1. It is easy to check (38)
choosing ai = ei, where {ei} is the standard basis of Rn+1.
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