Arithmetic Moduli of Elliptic Curves, An Introduction

Chunlei Liu

July 20, 2005

Remark This note is based on a one-hour talk at a summer school on Shimura varieties in Hanzhou. It follows the book p-adic automorphic forms on Shimura varieties by Haruzo Hida.

1 Moduli of elliptic curves of level 1

Let R be a commutative ring with identity in which 2 and 3 are invertible. So R is a $\mathbb{Z}\left[\frac{1}{6}\right]$-algebra. We shall classify all pairs (E, ω), where E is elliptic curve over R and ω is a nowhere vanishing holomorphic form on E over R.

Definition 1.1 A proper smooth curve over R whose geometric fibres are connected and of genus 1 , together with an R-point O, is called an elliptic curve over R.

Example 1.1 Let $c_{2}, c_{3} \in R$ such that $c_{2}^{3}-27 c_{3}^{2} \in R^{\times}$. Let

$$
E: Y^{2} Z=4 X^{3}-c_{2} X Z^{2}-c_{3} Z^{3}
$$

be the gluing together of

$$
E_{0}: y^{2}=4 x^{3}-c_{2} x-c_{3}
$$

and

$$
E_{1}: w=4 z^{3}-c_{2} z w^{2}-c_{3} w^{3}
$$

along

$$
E_{0} \cap E_{1}:\left\{\begin{array}{l}
y^{2}=4 x^{3}-c_{2} x-c_{3}, \\
x=y z, \\
y w=1 .
\end{array}\right.
$$

Then E, together with the R-point O on E_{1} defined by $z=w=0$, is an elliptic curve over R. We call it a Weierstrass form over R. In particular,

$$
\boldsymbol{E}: Y^{2} Z=4 X^{3}-g_{2} X Z^{2}-g_{3} Z^{3}
$$

is an elliptic curve over $\mathfrak{R}=\mathbb{Z}\left[\frac{1}{6}\right]\left[g_{2}, g_{3}, \frac{1}{g_{2}^{3}-27 g_{3}^{2}}\right]$, where g_{2}, g_{3} are algebraically independent variables over $\mathbb{Z}\left[\frac{1}{6}\right]$.

The following lemma in some sense reduces the theory of elliptic curve to a theory of Weierstrass forms.

Lemma 1.2 Every elliptic curve over R admitting a nowhere vanishing holomorphic form over R is isomorphic to a Weierstrass form over R.

Remark In the CMS talk, the false statement that every elliptic curve over R is isomorphic to a Weierstrass form over R was made. Brian Conrad helps the author a lot in correcting that misunderstanding.

By that lemma,

$$
\varphi \mapsto\left[\left(\mathbf{E} \otimes_{\mathfrak{R}, \varphi} R, \frac{d x}{y}\right)\right]
$$

gives a one-to-one correspondence between $(\operatorname{Spec} \Re)(R):=\operatorname{Hom}_{\mathbb{Z}\left[\frac{1}{6}\right]}(\mathfrak{R}, R)$ and the set $\{[(E, \omega) / R]\}$ of isomorphism classes of all pair (E, ω) over R. Moreover, if $\alpha \in \operatorname{Hom}_{\mathbb{Z}\left[\frac{1}{6}\right]}\left(R, R^{\prime}\right)$, then, the diagram

$$
\begin{array}{ccc}
(\mathrm{Spec} \mathfrak{R})(R) & \rightarrow & \{[(E, \omega) / R]\} \\
\downarrow \\
(\mathrm{Spec} \mathfrak{R})\left(R^{\prime}\right) & \rightarrow & \left\{\left[(E, \omega) / R^{\prime}\right]\right\}
\end{array}
$$

commutes, where the vertical arrows are the morphisms induced by α. In that situation, we say that Spec \mathfrak{R} and the classifying functor $R \mapsto\{[(E, \omega) / R]\}$ are isomorphic over $\mathbb{Z}\left[\frac{1}{6}\right]$.
Proposition 1.3 The functor Spec凡 and the classifying functor of all pair (E, ω) are isomorphic over $\mathbb{Z}\left[\frac{1}{6}\right]$.

2 Moduli of Elliptic curves of level $\Gamma_{0}(N)$

Let R be a commutative $\mathbb{Z}\left[\frac{1}{6}\right]$-algebra with identity, and (E, O) an elliptic curve over R.
Proposition 2.1 There is a unique group scheme structure on E over R making E a group scheme over R with identity O.

After classifying all triples $(E, \omega . P)$, we shall classify all pairs (E, P), where ω ia a nowhere vanishing holomorphic differential form on E over R, and P is an R-point on E of exact order N. We assume that $N>3$.

Since closed immersions are stable under base change, $\mathbf{E}[N]:=\operatorname{ker}\{N: \mathbf{E} \rightarrow \mathbf{E}\}$ is a closed sub-scheme of \mathbf{E}. It follows that

$$
\mathfrak{M}_{\Gamma_{1}(N)}:=\mathbf{E}[N]-\bigcup_{d \mid N, d<N} \mathbf{E}[d]
$$

is a closed sub-scheme of \mathbf{E}_{0}. So we can write $\mathfrak{M}_{\Gamma_{1}(N)}=\operatorname{Spec} \mathfrak{R}_{\Gamma_{1}(N)}$.
Proposition 2.2 The correspondence

$$
\varphi \mapsto\left[\left(\boldsymbol{E} \otimes_{\mathfrak{R}, \phi} R, \frac{d x}{y}, \varphi \otimes i d_{R}\right)\right],
$$

where ϕ is the composition of φ and the structure morphism of \boldsymbol{E} over \mathfrak{R}, gives an isomorphism over $\mathbb{Z}\left[\frac{1}{6}\right]$ between $\mathfrak{M}_{\Gamma_{1}(N)}$ and the classifying functor of all triples (E, ω, P).

In fact, suppose that we are given an elliptic curve E over R, an R-point P of exact order N, and a nowhere-vanishing holomorphic differential form ω over R. We can assume that E is a Weierstrass form $Y^{2} Z=4 X^{3}-c_{2} X Z^{2}-c_{3} Z^{3}$ and $\omega=\frac{d x}{y}$. Then $E=\mathbf{E} \otimes_{\mathfrak{R}, \phi} R$, and P lies in $\mathfrak{M}_{\Gamma_{1}(N)} \otimes_{\mathfrak{R}, \phi} R$, where ϕ is the R-point of Spec \mathfrak{R} sending g_{2} to c_{2} and g_{3} to c_{3}. Let φ be the composition of P and the projection of $\mathfrak{M}_{\Gamma_{1}(N)} \otimes_{\mathfrak{R}, \phi} R$ to $\mathfrak{M}_{\Gamma_{1}(N)}$. Then $P=\varphi \otimes \operatorname{id}_{R}$, and ϕ is the composition of φ and the structure morphism of \mathbf{E} over \mathfrak{R}.

The group $\mathbb{G}_{m}(R):=R^{\times}$acts on the set of isomorphism classes of all triples (E, ω, P) over R as follows:

$$
\lambda \circ[(E, \omega, p)]=[(E, \lambda \omega, p)] .
$$

That action gives rise to an action of $\mathbb{G}_{m}(R)$ on $\mathfrak{M}_{\Gamma_{1}(N)}(R)$. Moreover, if $\alpha \in \operatorname{Hom}_{\mathbb{Z}\left[\frac{1}{6}\right]}\left(R, R^{\prime}\right)$, then, for every $\lambda \in \mathbb{G}_{m}(R)$, the diagram

$$
\begin{array}{ccc}
\mathfrak{M}_{\Gamma_{1}(N)}(R) & \xrightarrow{\lambda} & \mathfrak{M}_{\Gamma_{1}(N)}(R) \\
\downarrow & & \downarrow \\
\mathfrak{M}_{\Gamma_{1}(N)}\left(R^{\prime}\right) & \xrightarrow{\alpha(\lambda)} & \mathfrak{M}_{\Gamma_{1}(N)}\left(R^{\prime}\right)
\end{array}
$$

commutes, where the vertical arrows are the morphism induced by α. In that situation, we say that \mathbb{G}_{m} acts on $\mathfrak{M}_{\Gamma_{1}(N)}$ over $\mathbb{Z}\left[\frac{1}{6}\right]$.

Lemma 2.3 Let M be an A-algebra, and \mathbb{G}_{m} acts on SpecM over A. Then M is a graded A algebra.

In fact, since the $M \otimes_{A} A\left[t, t^{-1}\right]$-points of \mathbb{G}_{m} acts on the $M \otimes_{A} A\left[t, t^{-1}\right]$-points of $\operatorname{Spec} M$, there are endomorphisms $p_{k} \in \operatorname{End}_{A}(M), k \in \mathbb{Z}$, such that

$$
t \circ\left(\mu \mapsto \mu \otimes_{A} 1\right)=\left(\mu \mapsto \sum_{k \in \mathbb{Z}} p_{k}(\mu) \otimes_{A} t^{k}\right) .
$$

Moreover, for each A-algebra $B, \mathbb{G}_{m}(B)$ acts on $(\operatorname{Spec} M)(B)$ as follows:

$$
\lambda \circ \varphi=\left(\mu \mapsto \sum_{k \in \mathbb{Z}} \varphi\left(p_{k}(\mu)\right) \lambda^{k}\right) .
$$

Set $B=M \otimes_{A} A\left[t, t^{-1}\right] \otimes_{A} A\left[t, t^{-1}\right]$. On one hand, we have

$$
\begin{gathered}
\left(t \otimes_{A} t\right) \circ\left(\mu \mapsto \mu \otimes_{A} 1 \otimes_{A} 1\right)=\left(t \otimes_{A} 1\right) \circ\left(\mu \mapsto \sum_{k \in \mathbb{Z}} p_{k}(\mu) \otimes_{A}\left(1 \otimes_{A} t\right)^{k}\right) \\
=\left(\mu \mapsto \sum_{k, l \in \mathbb{Z}} p_{l}\left(p_{k}(\mu)\right) \otimes_{A} t^{l} \otimes_{A} t^{k}\right) .
\end{gathered}
$$

On the other hand, we have

$$
\left(t \otimes_{A} t\right) \circ\left(\mu \mapsto \mu \otimes_{A} 1 \otimes_{A} 1\right)=\left(\mu \mapsto \sum_{k \in \mathbb{Z}} p_{k}(\mu) \otimes_{A}\left(t \otimes_{A} t\right)^{k}\right) .
$$

It follows that $p_{l} \circ p_{k}=\delta_{l k} p_{k}$, where $\delta_{l k}$ is Kronecker's δ function. Hence $M=\oplus_{k \in \mathbb{Z}} p_{k}(M)$ is a graded A-algebra.

By that lemma, $\mathfrak{R}_{\Gamma_{1}(N)}=\oplus_{k \in \mathbb{Z}} \mathfrak{R}_{\Gamma_{1}(N), k}$ is a graded $\mathbb{Z}\left[\frac{1}{6}\right]$-algebra. Write $Y_{1}(N):=\operatorname{Spec} \mathfrak{R}_{\Gamma_{1}(N), 0}$.
Proposition 2.4 For $N \geq 4, Y_{1}(N)$ and the classifying functor of all pairs (E, P) are isomorphic over $\mathbb{Z}\left[\frac{1}{6}\right]$.

