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1 Shimura curves

1.1 Arithmetic of quaternion algebras

Let B be a quaternion algebra over a field F i.e. B is a central simple algebra
of dimension 4 over F . Let ′ denote the main involution of B. Thus

tr(α) = α + α′, Nm(α) = αα′

where tr and Nm denote the reduced trace and reduced norm.

Lemma 1.1 Every inner automorphism of B commutes with the main invo-
lution

Proof: Indeed α−1β′α = (α−1βα)′ since αα′ ∈ F and hence commutes with
β′. ¤

Lemma 1.2 Let ρ ∈ B,Nm(ρ) 6= 0. Let α∗ = ρ−1α′ρ. Then α → α∗ is an
involution of B if and only if ρ2 ∈ F . In fact, every involution of B is obtained
in this way.
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Proof: By the previous lemma, (α∗)∗ = ρ−2αρ2. Thus (α∗)∗ = α for all α
⇐⇒ ρ2 ∈ F . Conversely, α → (α∗)′ is an automorphism of B that preserves
the center, hence is inner. Thus there exists an invertible element ρ ∈ B such
that (α∗)′ = ρ−1αρ for all α. Then α∗ = (ρ−1αρ)−1 = ρ−1α′ρ. ¤

Let us now restrict to the case F = Q. B is said to be indefinite if it
satisfies any one of the following equivalent conditions:
(i) B contains a real quadratic field.
(ii) B ⊗ R ' M2(R).
(iii) The norm form on B is an indefinite quadratic form /Q.

Of particular interest are involutions that are positive, i.e. that satisfy
tr(αα∗) > 0 for α 6= 0. (Motivation: Later we will be interested in abelian
varieties A with multiplication by B and polarizations on A such that the
associated Rosati involution preserves B. It must then restrict to a positive
involution on B.)

Lemma 1.3 Let B be an indefinite quaternion algebra over Q, and ∗ an in-
volution corresponding to an element ρ ∈ B as in the previous lemma. Then ∗
is a positive involution ⇐⇒ ρ2 < 0.

Proof: Suppose ∗ is a positive involution. First note that if ρ ∈ Q then α∗ = α′

and tr(αα∗) = tr(αα′) = 2Nm(α). But this is impossible since tr(αα∗) > 0
on the one hand while B is indefinite on the other. Thus ρ 6∈ Q. Since ρ2 ∈ Q,
ρ′ = −ρ and ρρ∗ = −ρ2. Now tr(ρρ∗) > 0 ⇒ ρ2 < 0. Conversely, suppose
ρ2 < 0. Let K = Q(ρ), so that K is an imaginary quadratic field. Now we
can pick τ ∈ B such that τ2 ∈ Q and τ−1ρτ = −ρ. Thus B = K + Kτ and
τ−1aτ = a′ = ā for a ∈ K. Now, for a, b ∈ K, α = a + bτ ,

Nα = (a + bτ)(a + bτ)′ = Nm(a)−Nm(b)τ2

Since B is indefinite, τ2 > 0. Now, tr(αα∗) = tr(αρ−1α′ρ) = 2(Nm(a) +
Nm(b)τ2) > 0, so ∗ is positive, as required. ¤

Definition 1.4 An order in B is a subring o which is a free Z module of rank
4. If o is an order, a left (resp. right) o-ideal is a Z-lattice a in B such that
oa = a (resp. ao = a. )

An order is said to be maximal if it is not contained strictly in any other
order.

Proposition 1.5 (i) All maximal orders are conjugate in B.
(ii) Let o be a maximal order, and a a left (resp. right) o-ideal. Then a is a
principal o-ideal. i.e. a = oα (resp. a = αo) for some α ∈ B.
(iii) Let o be a maximal order. Then there exists an element γ ∈ o, such that
Nm(γ) = −1.
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1.2 Abelian surfaces with multiplication by B

With these preliminaries we begin the study of abelian surfaces with multipli-
cation by B. Let us fix, once and for all, an isomorphism

Φ∞ : B ⊗ R ' M2(R)

Let A be an abelian surface, i : B ↪→ End0(A) be an embedding and

0 → Λ → Te(A) → A → 0

be the canonical complex uniformization of A. Now B acts faithfully on the
tangent space Te(A) which is a 2-dimensional C-vector space. By the Artin-
Wedderburn theorem, B⊗C has a unique simple module V up to isomorphism,
which is of rank 2. Hence the representation of B on Te(A) is equivalent to Φ∞
(tensored up to C.) In other words, we may pick a basis for Te(A) with respect
to which the matrix of α ∈ B is Φ∞(α) ∈ M2(R). Let o = i−1(End(B)), so

that o is an order in B. Now Φ∞(o)Λ ⊆ Λ. Let x =
[

x1

x2

]
∈ Λ and consider

the injective map

θ : o → Λ, θ(α) = Φ∞(α)x

Set Λ′ = θ(o). Also say that a vector y =
[

y1

y2

]
satisfies condition (N) if

(N) : y2 6= 0 and Im(y1/y2) 6= 0

Lemma 1.6 Λ′ is a discrete subgroup of C2 of rank 4 if and only if x satisfies
condition (N).

Proof: Let {α1, α2, α3, α4} be a basis of o over Z. Set βi = Φ∞(αi). Suppose
x satisfies condition (N). We claim that the vectors βix are linearly indepen-
dent over R, which will imply that Λ′ generates C2 over R. Indeed, suppose∑

i riβix = 0 for some ri ∈ R. Then Cx = 0 where C =
∑

i riβi ∈ M2(R). But
now the conditions x2 6= 0, Im(x1/x2) 6= 0 force C = 0. Now the vectors βi are
certainly linearly independent over R (in fact even over C) hence each ri = 0,
as required.

Conversely, suppose either x2 = 0 or x2 6= 0 and Im(x1/x2) = 0. Then we
can find a non-zero matrix R ∈ M2(R) satisfying Rx = 0. Expand R in terms
of the βi : R =

∑
i riβi. Then

∑
i riβix = 0, whence the vectors βix are not

R-linearly independent. Thus RΛ′ 6= C2 in this case. ¤
Of course, since RΛ = C2, we can pick a vector x ∈ Λ satisfying x2 6= 0

and Im(x1/x2) 6= 0. Then Λ′, being a lattice, has finite index in Λ. Pick a
positive integer m such that mΛ ⊆ Λ′. Now define a mapping

θ′ : Λ → o, θ′(y) = θ−1(my)
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Let m denote the image of this map. Then m is a left ideal in o. Further, if
αm ⊆ m for some α ∈ B, then Φ∞(α)Λ ⊆ Λ, hence α ∈ o. Thus m is a proper
left o-ideal and θ(m) = mΛ i.e. Λ = {Φ∞(α)y|α ∈ m} where y = 1

mx. We
summarize these in the following proposition.

Proposition 1.7 Suppose A is an abelian surface and i : B ↪→ End0(A) is an
embedding. Let o = i−1(End(B)). Then o is an order in B. Also there exists
a proper left o-ideal m, a vector y ∈ C2 satisfying condition (N) and a complex
analytic isomorphism

C2/Φ∞(m)y ' A

commuting with the action of B (by Φ∞ on the left and by i on the right.)

In fact the converse is also true, namely every CM torus of the form
C2/Φ∞(m)y with y satisfying condition (N) is an abelian variety. But to
prove that we will need to construct a Riemann form on C2/Φ∞(m). Thus we
begin by studying polarizations on A.

Suppose λ : A → Â be a polarization. We assume that the associated
Rosati involution preserves i(B). Thus it restricts to an involution ∗ on B.
Note that Tr(α) = 2tr(α) where Tr denotes the trace of α on the l-adic Tate
module (or rational homology), and tr denotes the reduced trace in B. Since
the Rosati involution is positive, it follows that ∗ is a positive involution on
B. By a previous proposition, there exists an element ρ ∈ B, ρ2 ∈ Q, ρ2 < 0,
such that

α∗ = ρ−1α′ρ

where α → α′ is the main involution of B. Set

E0(α, β) = E(Φ∞(α)y, Φ∞(β)y)

where E is the Riemann form associated to λ. Thus E0 is integer valued on
m. Since ξ → E0(ξ, 1) is a Q-linear map of B into Q, there exists a unique
element τ ∈ B such that E0(ξ, 1) = tr(τξ).

Proposition 1.8

τ = cρ

for some c ∈ Q.

Proof: Notice that

E0(α, β) = E0(β∗α, 1) = tr(τβ∗α) = tr(τρ−1β′ρα)

4



Since E is skew-symmetric,

tr(−τβ) = E0(−β, 1) = E0(1, β) = tr(τρ−1β′ρ)
= tr(ρ−1βρτ ′)( since tr(ab′) = tr(ba′))
= tr(ρτ ′ρ−1β)

Thus ρτ ′ρ−1 = −τ , hence (ρ−1τ)′ = −τ ′ρ−1 = ρ−1τ , whence ρ−1τ ∈ Q, as
required. ¤

This yields the following

Proposition 1.9 In the setting of Prop. 1.7, any Riemann form on C2/Φ∞(m)y
is of the form

E(Φ∞(α)y, Φ∞(β)y) = ctr(ραβ′)

for all α, β ∈ B.

Conversely, given an isomorphism Φ∞ : B ⊗ R→ M2(R), a lattice m in o,
and a vector y ∈ C2 satisfying condition (N), set

Λ = {Φ∞(α)y|α ∈ m}

From a previous proposition, Λ is a lattice in C2. We shall now show that the
complex torus C2/Λ is an abelian variety. Pick ρ ∈ B, with ρ2 ∈ Q and ρ2 < 0.
Consider the form

E(Φ∞(α)y, Φ∞(β)y) = c · tr(ραβ′) (1)

for a non-zero rational number c. Note that this defines E on C2 × C2 since
α 7→ Φ∞(α)y gives an isomorphism Φ∞(BR) ' C2.

Proposition 1.10 For c a suitable integer, (1) gives a Riemann form on
C2/Λ.

Proof: We need to check that E is skew-symmetric, integer valued on Λ and
that the associated Hermitian form is positive definite (equivalently that the
R-bilinear form (y1, y2) 7→ E(y1, iy2) > 0 is symmetric and positive definite.)
First note that there is a unique µ ∈ BR such that

iy = Φ∞(µ)y

We must have µ2 = −1 and µ′ = −µ. Suppose ρ2 = −s and set ρ1 = ρ/
√

s.
Then ρ1

2 = −1 and tr(ρ1) = 0. By the Skolem-Noether theorem, there exists
γ ∈ GL2(R) such that

µ = γρ1γ
−1
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Now

E(Φ∞(α)y, iΦ∞(β)y) = c · tr(ραµ′β′)

and

tr(ραµ′β′) = tr(βµα′ρ′) = tr(ρ′βµα) = tr(ρβµ′α)

whence E(y1, iy2) is symmetric. Next we compute

E(Φ∞(α)y, iΦ∞(α)y) = c · tr(ραµ′α′)
= −c · tr(ραγρ1γ

−1α′)

= − c√
s
· tr(αγ′−1

ρ′γ′α′ρ′)( using tr(x) = tr(x′))

=
c√
s
Nm(γ)−1 · s · tr(αγρ−1γ′α′ρ)

= c
√

sNm(γ)−1 · tr((αγ)(αγ)∗)

Now all we need to do is pick c a sufficiently divisible integer so that tr(ραβ′)
is integer valued on m and the sign of c equal to the sign of Nm(γ). ¤
NOTE: If we replace ρ by −ρ, Nm(γ) will change sign and so will c. Thus by
picking ρ such that γ ∈ GL2(R)+, we may ensure that c > 0.

Finally, note that that if we set o = {x ∈ B, xm ⊆ m}, Φ∞(α) preserves
Λ and gives an endomorphism of A = C2/Λ. Denoting this endomorphism by
i(α), we get an embedding i : o ↪→ End(A). Since

tr(ρα(ξβ)′) = tr(ραβ′ξ′) = tr(ξ′ραβ′) = tr(ρ(ρ−1ξ′ρ)αβ′) = tr(ρξ∗αβ)

we see that the Rosati involution restricts to ∗ on B.

1.3 Families of abelian surfaces

Let us specialize the discussion of the previous section to the case o= the
maximal order in B. Since every left o-ideal m is principal, we may pick µ such
that m = oµ. Then

Λ = {Φ∞(α)ỹ|α ∈ o}

where ỹ = Φ∞(µ)y. Set ỹ =
[

ỹ1

ỹ2

]
. We may assume that ỹ2 6= 0, Im(ỹ1/ỹ2) >

0, replacing ỹ if necessary with Φ∞(γ)ỹ for some γ ∈ o× with Nm(γ) = −1.
Now put τ = ỹ1/ỹ2 and set

Λτ = {Φ∞(α)
[

τ
1

]
|α ∈ o}
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The linear map C2 → C2, x 7→ ỹ−1
2 x gives an isomorphism of complex tori

C2

Φ∞(o)
[

ỹ1

ỹ2

] ' C2

Φ∞(o)
[

τ
1

] =
C2

Λτ

that commutes with the o action.
Now, we let τ vary in the upper half plane H. In this way we obtain an

analytic family of Abelian varieties Aτ on H. More precisely, one takes the
quotient A of C2 × H for the equivalence relation

(z1, τ1) ≡ (z2, τ2) ⇐⇒ τ1 = τ2, and z1 − z2 ∈ Λτ1 = Λτ2

and shows the following:
(i) A admits a structure of a complex analytic manifold such that the

projection map to H and the ”zero-section” τ 7→ [(0, τ)] are analytic maps, the
former being a proper submersion.

(ii) The fibre over τ , Aτ is identified with C2/Λτ and thus has the structure
of a complex torus; the group operations on Aτ vary analytically with τ .

(iii) The action of α ∈ o on Aτ varies analytically with τ .
One can do more: fixing a ρ and c as in the previous section, one can

construct a relative polarization L → A ×H A, such that on the fibre over
τ , L restricts to a polarization Lτ which via the identification Aτ = C2/Λτ

corresponds to the polarization on the latter torus with associated Riemann
form

E

(
Φ∞(α)

[
τ
1

]
, Φ∞(β)

[
τ
1

])
= c · tr(ραβ′)

Of particular interest is the case ρ2 = −D. Then taking c = 1
D gives a

principal polarization on Aτ . Thus each fibre (Aτ ,Lτ , iτ ) has a structure of an
abelian surface with principal polarization and endomorphisms such that the
Rosait involution restricts to the involution ∗. There is the natural notion of
equivalence or isomorphism of two such structures.

Proposition 1.11 Let τ1, τ2 ∈ H. Then (Aτ1 ,Lτ1 , iτ1) and (Aτ2 ,Lτ2 , iτ2) are
isomorphic ⇐⇒ τ1 = γ · τ2 for some γ ∈ o1.

Proof: Suppose λ : Aτ1 → Aτ2 is an isomorphism. λ corresponds to a linear
mapping from C2 to C2 sending Λτ1 isomorphically onto λτ2 . Since λ commutes
with the action of o (which is irreducible), λ must be a scalar. Set r1 =[

τ1

1

]
, r2 =

[
τ2

1

]
. Since λr1 ∈ Λτ2 , we have λr1 = Φ∞(γ)r2 for some γ ∈ o.

Thus

Φ∞(o)r2 = Λτ2 = λΛτ1 = Φ∞(oγ)r2
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which implies that o = oγ, whence γ ∈ o×. Clearly, τ1 = γ ·τ2, hence Nm(γ) >
0. This implies that γ ∈ o1. Conversely, suppose τ1 = γ · τ2 with γ ∈ o1. If

Φ∞(γ) =
(

a b
c d

)
, set λ = cτ2 + d, so that λτ1 = aτ1 + b. Then λ gives

an isomorphism Aτ1 ' Aτ2 commuting with the action of o. The polarization
L2 must correspond via this isomorphism to a principal polarization on Aτ1

whose associated Rosati involution restricts to ∗ on B. But there is a unique
such polarization, namely L1. Thus λ indeed gives an isomorphism between
(Aτ1 ,Lτ1 , iτ1) and (Aτ2 ,Lτ2 , iτ2). ¤

Now let Γ = o1. Using the previous proposition, one may show that the
natural action of Γ on H (via Φ∞) extends to an action of Γ on A; taking the
quotient gives us a family of abelian surfaces with PE structure over X = H/Γ.
We denote this family by AX → X. X is a compact (if B 6= M2(Q)) complex
manifold of dimension 1, hence has the unique structure of an algebraic curve
/C. It is a theorem of Shimura that X admits a canonical model over Q.
We shall not prove this fact - instead we explain how one might construct
canonical models for some related Shimura curves, namely those with added
level structure.

Let N be an integer coprime to D. Pick a primitive Nth root of unity ζ.
This is equivalent to fixing an isomorphism µN ' Z/NZ. Now define a level-N
structure on (A, i,L) to be an isomorphism

φ : o/No ' A[N ] (2)

commuting with the action of o and such that the Weil pairing on A[N ] ×
A[N ] → µN ' Z/NZ associated to L goes over to the pairing (x, y) 7→ ζE(α,β),
where E(α, β) = 1

D tr(ραβ′). A level N -structure on an analytically varying
family is the choice of a level N -structure φs on each fibre varying analytically
with the parameters s on the base space. The family A → H carries a canonical
level N -structure

φτ : o/No ' Aτ [N ] = Φ∞(
1
N

o)rτ/Φ∞(o)rτ

given by φτ (1) = 1
N rτ =

[
τ/N
1/N

]
. Here rτ =

[
τ
1

]
. It is easy to check that

(Aτj , iτj ,Lτj , φτj ) for j = 1, 2 are isomorphic structures if and only if τ1 = γ ·τ2

for some γ ∈ ΓN , where

ΓN = {γ ∈ o1, γ ≡ 1 mod No}
Thus taking the quotient by ΓN gives a PEL family AN → XN where XN =
H/ΓN .

Our next goal is to construct a model for XN over Q(ζ). Let W denote the
symplectic Shimura variety classifying abelian surfaces equipped with principal
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polarization, and level N -structure (defined as in (2) above but without the
action of o.) We get then a canonical map

f : XN → W

coming from forgetting the o-action on the fibres of XN . It is not hard to show
that for N large enough, this map is generically injective. If X̃N denotes its
image, XN is the normalisation of X̃N . Suppose x = (A, i,L, φ) is a point on
XN , and let y = (A,L, φ) be the image f(x) of x in X̃N . Let σ ∈ Aut(C/Q(ζn)).
Then yσ = (Aσ,Lσ, φσ) is the image f(xσ) of xσ. This shows that X̃N is
preserved by Aut(C/Q(ζ)) - further, if x and y are CM points, it is clear that
yσ is another CM point on X̃N . Now setting T = the set of CM points on
X̃N and applying the descent criterion Thm. 6.2.10 of [1] we see that X̃N

and hence XN descend to curves Ỹ and Y respectively over Q(ζ). (Note that
CM points in W are known to be algebraic.) Further, for any t ∈ TK ⊂ T
(TK being the CM points corresponding to any quartic CM type (K ′, Φ) with
reflex field = K imaginary quadratic), the main theorem of CM describes the
action of Aut(C/K) (and hence of Aut(C/K ·Q(ζ))) on t. By Thm. 6.2.9 and
Thm. 6.2.11 of [1], the models Ỹ and Y are uniquely characterised by this last
property. The curve Y is the canonical model of XN/Q(ζ).
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