

Notes on Shimura curves

Kartik Prasanna
University of California, Los Angeles, CA

July 10, 2005

Disclaimer: These notes are in draft form and have not been carefully proofread. Please use at your own risk !

Contents

1 Shimura curves	1
1.1 Arithmetic of quaternion algebras	1
1.2 Abelian surfaces with multiplication by B	3
1.3 Families of abelian surfaces	6

1 Shimura curves

1.1 Arithmetic of quaternion algebras

Let B be a quaternion algebra over a field F i.e. B is a central simple algebra of dimension 4 over F . Let $'$ denote the main involution of B . Thus

$$tr(\alpha) = \alpha + \alpha', Nm(\alpha) = \alpha\alpha'$$

where tr and Nm denote the reduced trace and reduced norm.

Lemma 1.1 *Every inner automorphism of B commutes with the main involution*

Proof: Indeed $\alpha^{-1}\beta'\alpha = (\alpha^{-1}\beta\alpha)'$ since $\alpha\alpha' \in F$ and hence commutes with β' . \square

Lemma 1.2 *Let $\rho \in B, Nm(\rho) \neq 0$. Let $\alpha^* = \rho^{-1}\alpha'\rho$. Then $\alpha \rightarrow \alpha^*$ is an involution of B if and only if $\rho^2 \in F$. In fact, every involution of B is obtained in this way.*

Proof: By the previous lemma, $(\alpha^*)^* = \rho^{-2}\alpha\rho^2$. Thus $(\alpha^*)^* = \alpha$ for all $\alpha \iff \rho^2 \in F$. Conversely, $\alpha \rightarrow (\alpha^*)'$ is an automorphism of B that preserves the center, hence is inner. Thus there exists an invertible element $\rho \in B$ such that $(\alpha^*)' = \rho^{-1}\alpha\rho$ for all α . Then $\alpha^* = (\rho^{-1}\alpha\rho)^{-1} = \rho^{-1}\alpha'\rho$. \square

Let us now restrict to the case $F = \mathbb{Q}$. B is said to be indefinite if it satisfies any one of the following equivalent conditions:

- (i) B contains a real quadratic field.
- (ii) $B \otimes \mathbb{R} \simeq M_2(\mathbb{R})$.
- (iii) The norm form on B is an *indefinite* quadratic form $/\mathbb{Q}$.

Of particular interest are involutions that are *positive*, i.e. that satisfy $\text{tr}(\alpha\alpha^*) > 0$ for $\alpha \neq 0$. (Motivation: Later we will be interested in abelian varieties A with multiplication by B and polarizations on A such that the associated Rosati involution preserves B . It must then restrict to a positive involution on B .)

Lemma 1.3 *Let B be an indefinite quaternion algebra over \mathbb{Q} , and $*$ an involution corresponding to an element $\rho \in B$ as in the previous lemma. Then $*$ is a positive involution $\iff \rho^2 < 0$.*

Proof: Suppose $*$ is a positive involution. First note that if $\rho \in \mathbb{Q}$ then $\alpha^* = \alpha'$ and $\text{tr}(\alpha\alpha^*) = \text{tr}(\alpha\alpha') = 2Nm(\alpha)$. But this is impossible since $\text{tr}(\alpha\alpha^*) > 0$ on the one hand while B is indefinite on the other. Thus $\rho \notin \mathbb{Q}$. Since $\rho^2 \in \mathbb{Q}$, $\rho' = -\rho$ and $\rho\rho^* = -\rho^2$. Now $\text{tr}(\rho\rho^*) > 0 \Rightarrow \rho^2 < 0$. Conversely, suppose $\rho^2 < 0$. Let $K = \mathbb{Q}(\rho)$, so that K is an imaginary quadratic field. Now we can pick $\tau \in B$ such that $\tau^2 \in \mathbb{Q}$ and $\tau^{-1}\rho\tau = -\rho$. Thus $B = K + K\tau$ and $\tau^{-1}a\tau = a' = \bar{a}$ for $a \in K$. Now, for $a, b \in K$, $\alpha = a + b\tau$,

$$N\alpha = (a + b\tau)(a + b\tau)' = Nm(a) - Nm(b)\tau^2$$

Since B is indefinite, $\tau^2 > 0$. Now, $\text{tr}(\alpha\alpha^*) = \text{tr}(\alpha\rho^{-1}\alpha'\rho) = 2(Nm(a) + Nm(b)\tau^2) > 0$, so $*$ is positive, as required. \square

Definition 1.4 *An order in B is a subring \mathfrak{o} which is a free \mathbb{Z} module of rank 4. If \mathfrak{o} is an order, a left (resp. right) \mathfrak{o} -ideal is a \mathbb{Z} -lattice \mathfrak{a} in B such that $\mathfrak{o}\mathfrak{a} = \mathfrak{a}$ (resp. $\mathfrak{a}\mathfrak{o} = \mathfrak{a}$.)*

An order is said to be maximal if it is not contained strictly in any other order.

Proposition 1.5 (i) *All maximal orders are conjugate in B .*

(ii) *Let \mathfrak{o} be a maximal order, and \mathfrak{a} a left (resp. right) \mathfrak{o} -ideal. Then \mathfrak{a} is a principal \mathfrak{o} -ideal. i.e. $\mathfrak{a} = \mathfrak{o}\alpha$ (resp. $\mathfrak{a} = \alpha\mathfrak{o}$) for some $\alpha \in B$.*

(iii) *Let \mathfrak{o} be a maximal order. Then there exists an element $\gamma \in \mathfrak{o}$, such that $Nm(\gamma) = -1$.*

1.2 Abelian surfaces with multiplication by B

With these preliminaries we begin the study of abelian surfaces with multiplication by B . Let us fix, once and for all, an isomorphism

$$\Phi_\infty : B \otimes \mathbb{R} \simeq M_2(\mathbb{R})$$

Let A be an abelian surface, $i : B \hookrightarrow \text{End}^0(A)$ be an embedding and

$$0 \rightarrow \Lambda \rightarrow T_e(A) \rightarrow A \rightarrow 0$$

be the canonical complex uniformization of A . Now B acts faithfully on the tangent space $T_e(A)$ which is a 2-dimensional \mathbb{C} -vector space. By the Artin-Wedderburn theorem, $B \otimes \mathbb{C}$ has a unique simple module V up to isomorphism, which is of rank 2. Hence the representation of B on $T_e(A)$ is equivalent to Φ_∞ (tensored up to \mathbb{C} .) In other words, we may pick a basis for $T_e(A)$ with respect to which the matrix of $\alpha \in B$ is $\Phi_\infty(\alpha) \in M_2(\mathbb{R})$. Let $\mathfrak{o} = i^{-1}(\text{End}(B))$, so that \mathfrak{o} is an order in B . Now $\Phi_\infty(\mathfrak{o})\Lambda \subseteq \Lambda$. Let $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \Lambda$ and consider the injective map

$$\theta : \mathfrak{o} \rightarrow \Lambda, \theta(\alpha) = \Phi_\infty(\alpha)x$$

Set $\Lambda' = \theta(\mathfrak{o})$. Also say that a vector $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ satisfies condition (N) if

$$(N) : y_2 \neq 0 \text{ and } \text{Im}(y_1/y_2) \neq 0$$

Lemma 1.6 Λ' is a discrete subgroup of \mathbb{C}^2 of rank 4 if and only if x satisfies condition (N).

Proof: Let $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ be a basis of \mathfrak{o} over \mathbb{Z} . Set $\beta_i = \Phi_\infty(\alpha_i)$. Suppose x satisfies condition (N). We claim that the vectors $\beta_i x$ are linearly independent over \mathbb{R} , which will imply that Λ' generates \mathbb{C}^2 over \mathbb{R} . Indeed, suppose $\sum_i r_i \beta_i x = 0$ for some $r_i \in \mathbb{R}$. Then $Cx = 0$ where $C = \sum_i r_i \beta_i \in M_2(\mathbb{R})$. But now the conditions $x_2 \neq 0, \text{Im}(x_1/x_2) \neq 0$ force $C = 0$. Now the vectors β_i are certainly linearly independent over \mathbb{R} (in fact even over \mathbb{C}) hence each $r_i = 0$, as required.

Conversely, suppose either $x_2 = 0$ or $x_2 \neq 0$ and $\text{Im}(x_1/x_2) = 0$. Then we can find a non-zero matrix $R \in M_2(\mathbb{R})$ satisfying $Rx = 0$. Expand R in terms of the β_i : $R = \sum_i r_i \beta_i$. Then $\sum_i r_i \beta_i x = 0$, whence the vectors $\beta_i x$ are not \mathbb{R} -linearly independent. Thus $\mathbb{R}\Lambda' \neq \mathbb{C}^2$ in this case. \square

Of course, since $\mathbb{R}\Lambda = \mathbb{C}^2$, we can pick a vector $x \in \Lambda$ satisfying $x_2 \neq 0$ and $\text{Im}(x_1/x_2) \neq 0$. Then Λ' , being a lattice, has finite index in Λ . Pick a positive integer m such that $m\Lambda \subseteq \Lambda'$. Now define a mapping

$$\theta' : \Lambda \rightarrow \mathfrak{o}, \theta'(y) = \theta^{-1}(my)$$

Let \mathfrak{m} denote the image of this map. Then \mathfrak{m} is a left ideal in \mathfrak{o} . Further, if $\alpha\mathfrak{m} \subseteq \mathfrak{m}$ for some $\alpha \in B$, then $\Phi_\infty(\alpha)\Lambda \subseteq \Lambda$, hence $\alpha \in \mathfrak{o}$. Thus \mathfrak{m} is a *proper* left \mathfrak{o} -ideal and $\theta(\mathfrak{m}) = m\Lambda$ i.e. $\Lambda = \{\Phi_\infty(\alpha)y \mid \alpha \in \mathfrak{m}\}$ where $y = \frac{1}{m}x$. We summarize these in the following proposition.

Proposition 1.7 *Suppose A is an abelian surface and $i : B \hookrightarrow \text{End}^0(A)$ is an embedding. Let $\mathfrak{o} = i^{-1}(\text{End}(B))$. Then \mathfrak{o} is an order in B . Also there exists a proper left \mathfrak{o} -ideal \mathfrak{m} , a vector $y \in \mathbb{C}^2$ satisfying condition (N) and a complex analytic isomorphism*

$$\mathbb{C}^2/\Phi_\infty(\mathfrak{m})y \simeq A$$

commuting with the action of B (by Φ_∞ on the left and by i on the right.)

In fact the converse is also true, namely every CM torus of the form $\mathbb{C}^2/\Phi_\infty(\mathfrak{m})y$ with y satisfying condition (N) is an abelian variety. But to prove that we will need to construct a Riemann form on $\mathbb{C}^2/\Phi_\infty(\mathfrak{m})$. Thus we begin by studying polarizations on A .

Suppose $\lambda : A \rightarrow \hat{A}$ be a polarization. We assume that the associated Rosati involution preserves $i(B)$. Thus it restricts to an involution $*$ on B . Note that $\text{Tr}(\alpha) = 2\text{tr}(\alpha)$ where Tr denotes the trace of α on the l -adic Tate module (or rational homology), and tr denotes the reduced trace in B . Since the Rosati involution is positive, it follows that $*$ is a positive involution on B . By a previous proposition, there exists an element $\rho \in B$, $\rho^2 \in \mathbb{Q}$, $\rho^2 < 0$, such that

$$\alpha^* = \rho^{-1}\alpha'\rho$$

where $\alpha \rightarrow \alpha'$ is the main involution of B . Set

$$E_0(\alpha, \beta) = E(\Phi_\infty(\alpha)y, \Phi_\infty(\beta)y)$$

where E is the Riemann form associated to λ . Thus E_0 is integer valued on \mathfrak{m} . Since $\xi \rightarrow E_0(\xi, 1)$ is a \mathbb{Q} -linear map of B into \mathbb{Q} , there exists a unique element $\tau \in B$ such that $E_0(\xi, 1) = \text{tr}(\tau\xi)$.

Proposition 1.8

$$\tau = c\rho$$

for some $c \in \mathbb{Q}$.

Proof: Notice that

$$E_0(\alpha, \beta) = E_0(\beta^*\alpha, 1) = \text{tr}(\tau\beta^*\alpha) = \text{tr}(\tau\rho^{-1}\beta'\rho\alpha)$$

Since E is skew-symmetric,

$$\begin{aligned} \text{tr}(-\tau\beta) &= E_0(-\beta, 1) = E_0(1, \beta) = \text{tr}(\tau\rho^{-1}\beta'\rho) \\ &= \text{tr}(\rho^{-1}\beta\rho\tau') (\text{since } \text{tr}(ab') = \text{tr}(ba')) \\ &= \text{tr}(\rho\tau'\rho^{-1}\beta) \end{aligned}$$

Thus $\rho\tau'\rho^{-1} = -\tau$, hence $(\rho^{-1}\tau)' = -\tau'\rho^{-1} = \rho^{-1}\tau$, whence $\rho^{-1}\tau \in \mathbb{Q}$, as required. \square

This yields the following

Proposition 1.9 *In the setting of Prop. 1.7, any Riemann form on $\mathbb{C}^2/\Phi_\infty(\mathfrak{m})y$ is of the form*

$$E(\Phi_\infty(\alpha)y, \Phi_\infty(\beta)y) = c \cdot \text{tr}(\rho\alpha\beta')$$

for all $\alpha, \beta \in B$.

Conversely, given an isomorphism $\Phi_\infty : B \otimes \mathbb{R} \rightarrow M_2(\mathbb{R})$, a lattice \mathfrak{m} in \mathfrak{o} , and a vector $y \in \mathbb{C}^2$ satisfying condition (N), set

$$\Lambda = \{\Phi_\infty(\alpha)y \mid \alpha \in \mathfrak{m}\}$$

From a previous proposition, Λ is a lattice in \mathbb{C}^2 . We shall now show that the complex torus \mathbb{C}^2/Λ is an abelian variety. Pick $\rho \in B$, with $\rho^2 \in \mathbb{Q}$ and $\rho^2 < 0$. Consider the form

$$E(\Phi_\infty(\alpha)y, \Phi_\infty(\beta)y) = c \cdot \text{tr}(\rho\alpha\beta') \quad (1)$$

for a non-zero rational number c . Note that this defines E on $\mathbb{C}^2 \times \mathbb{C}^2$ since $\alpha \mapsto \Phi_\infty(\alpha)y$ gives an isomorphism $\Phi_\infty(B_{\mathbb{R}}) \simeq \mathbb{C}^2$.

Proposition 1.10 *For c a suitable integer, (1) gives a Riemann form on \mathbb{C}^2/Λ .*

Proof: We need to check that E is skew-symmetric, integer valued on Λ and that the associated Hermitian form is positive definite (equivalently that the \mathbb{R} -bilinear form $(y_1, y_2) \mapsto E(y_1, iy_2) > 0$ is symmetric and positive definite.) First note that there is a unique $\mu \in B_{\mathbb{R}}$ such that

$$iy = \Phi_\infty(\mu)y$$

We must have $\mu^2 = -1$ and $\mu' = -\mu$. Suppose $\rho^2 = -s$ and set $\rho_1 = \rho/\sqrt{s}$. Then $\rho_1^2 = -1$ and $\text{tr}(\rho_1) = 0$. By the Skolem-Noether theorem, there exists $\gamma \in GL_2(\mathbb{R})$ such that

$$\mu = \gamma\rho_1\gamma^{-1}$$

Now

$$E(\Phi_\infty(\alpha)y, i\Phi_\infty(\beta)y) = c \cdot \text{tr}(\rho\alpha\mu'\beta')$$

and

$$\text{tr}(\rho\alpha\mu'\beta') = \text{tr}(\beta\mu\alpha'\rho') = \text{tr}(\rho'\beta\mu\alpha) = \text{tr}(\rho\beta\mu'\alpha)$$

whence $E(y_1, iy_2)$ is symmetric. Next we compute

$$\begin{aligned} E(\Phi_\infty(\alpha)y, i\Phi_\infty(\alpha)y) &= c \cdot \text{tr}(\rho\alpha\mu'\alpha') \\ &= -c \cdot \text{tr}(\rho\alpha\gamma\rho_1\gamma^{-1}\alpha') \\ &= -\frac{c}{\sqrt{s}} \cdot \text{tr}(\alpha\gamma'^{-1}\rho'\gamma'\alpha'\rho') \quad (\text{using } \text{tr}(x) = \text{tr}(x')) \\ &= \frac{c}{\sqrt{s}} Nm(\gamma)^{-1} \cdot s \cdot \text{tr}(\alpha\gamma\rho^{-1}\gamma'\alpha'\rho) \\ &= c\sqrt{s}Nm(\gamma)^{-1} \cdot \text{tr}((\alpha\gamma)(\alpha\gamma)^*) \end{aligned}$$

Now all we need to do is pick c a sufficiently divisible integer so that $\text{tr}(\rho\alpha\beta')$ is integer valued on \mathfrak{m} and the sign of c equal to the sign of $Nm(\gamma)$. \square

NOTE: If we replace ρ by $-\rho$, $Nm(\gamma)$ will change sign and so will c . Thus by picking ρ such that $\gamma \in GL_2(\mathbb{R})^+$, we may ensure that $c > 0$.

Finally, note that if we set $\mathfrak{o} = \{x \in B, x\mathfrak{m} \subseteq \mathfrak{m}\}$, $\Phi_\infty(\alpha)$ preserves Λ and gives an endomorphism of $A = \mathbb{C}^2/\Lambda$. Denoting this endomorphism by $i(\alpha)$, we get an embedding $i : \mathfrak{o} \hookrightarrow \text{End}(A)$. Since

$$\text{tr}(\rho\alpha(\xi\beta)') = \text{tr}(\rho\alpha\beta'\xi') = \text{tr}(\xi'\rho\alpha\beta') = \text{tr}(\rho(\rho^{-1}\xi'\rho)\alpha\beta') = \text{tr}(\rho\xi^*\alpha\beta)$$

we see that the Rosati involution restricts to $*$ on B .

1.3 Families of abelian surfaces

Let us specialize the discussion of the previous section to the case $\mathfrak{o} =$ the maximal order in B . Since every left \mathfrak{o} -ideal \mathfrak{m} is principal, we may pick μ such that $\mathfrak{m} = \mathfrak{o}\mu$. Then

$$\Lambda = \{\Phi_\infty(\alpha)\tilde{y} \mid \alpha \in \mathfrak{o}\}$$

where $\tilde{y} = \Phi_\infty(\mu)y$. Set $\tilde{y} = \begin{bmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{bmatrix}$. We may assume that $\tilde{y}_2 \neq 0$, $\text{Im}(\tilde{y}_1/\tilde{y}_2) > 0$, replacing \tilde{y} if necessary with $\Phi_\infty(\gamma)\tilde{y}$ for some $\gamma \in \mathfrak{o}^\times$ with $Nm(\gamma) = -1$. Now put $\tau = \tilde{y}_1/\tilde{y}_2$ and set

$$\Lambda_\tau = \{\Phi_\infty(\alpha) \begin{bmatrix} \tau \\ 1 \end{bmatrix} \mid \alpha \in \mathfrak{o}\}$$

The linear map $\mathbb{C}^2 \rightarrow \mathbb{C}^2, x \mapsto \tilde{y}_2^{-1}x$ gives an isomorphism of complex tori

$$\frac{\mathbb{C}^2}{\Phi_\infty(\mathfrak{o}) \begin{bmatrix} \tilde{y}_1 \\ \tilde{y}_2 \end{bmatrix}} \cong \frac{\mathbb{C}^2}{\Phi_\infty(\mathfrak{o}) \begin{bmatrix} \tau \\ 1 \end{bmatrix}} = \frac{\mathbb{C}^2}{\Lambda_\tau}$$

that commutes with the \mathfrak{o} action.

Now, we let τ vary in the upper half plane \mathfrak{H} . In this way we obtain an analytic family of Abelian varieties A_τ on \mathfrak{H} . More precisely, one takes the quotient \mathcal{A} of $\mathbb{C}^2 \times \mathfrak{H}$ for the equivalence relation

$$(z_1, \tau_1) \equiv (z_2, \tau_2) \iff \tau_1 = \tau_2, \text{ and } z_1 - z_2 \in \Lambda_{\tau_1} = \Lambda_{\tau_2}$$

and shows the following:

(i) \mathcal{A} admits a structure of a complex analytic manifold such that the projection map to \mathfrak{H} and the "zero-section" $\tau \mapsto [(0, \tau)]$ are analytic maps, the former being a proper submersion.

(ii) The fibre over τ , \mathcal{A}_τ is identified with $\mathbb{C}^2/\Lambda_\tau$ and thus has the structure of a complex torus; the group operations on \mathcal{A}_τ vary analytically with τ .

(iii) The action of $\alpha \in \mathfrak{o}$ on \mathcal{A}_τ varies analytically with τ .

One can do more: fixing a ρ and c as in the previous section, one can construct a relative polarization $\mathcal{L} \rightarrow \mathcal{A} \times_{\mathfrak{H}} \mathcal{A}$, such that on the fibre over τ , \mathcal{L} restricts to a polarization \mathcal{L}_τ which via the identification $\mathcal{A}_\tau = \mathbb{C}^2/\Lambda_\tau$ corresponds to the polarization on the latter torus with associated Riemann form

$$E\left(\Phi_\infty(\alpha) \begin{bmatrix} \tau \\ 1 \end{bmatrix}, \Phi_\infty(\beta) \begin{bmatrix} \tau \\ 1 \end{bmatrix}\right) = c \cdot \text{tr}(\rho \alpha \beta')$$

Of particular interest is the case $\rho^2 = -D$. Then taking $c = \frac{1}{D}$ gives a principal polarization on \mathcal{A}_τ . Thus each fibre $(\mathcal{A}_\tau, \mathcal{L}_\tau, i_\tau)$ has a structure of an abelian surface with principal polarization and endomorphisms such that the Rosait involution restricts to the involution $*$. There is the natural notion of equivalence or isomorphism of two such structures.

Proposition 1.11 *Let $\tau_1, \tau_2 \in \mathfrak{H}$. Then $(\mathcal{A}_{\tau_1}, \mathcal{L}_{\tau_1}, i_{\tau_1})$ and $(\mathcal{A}_{\tau_2}, \mathcal{L}_{\tau_2}, i_{\tau_2})$ are isomorphic $\iff \tau_1 = \gamma \cdot \tau_2$ for some $\gamma \in \mathfrak{o}^1$.*

Proof: Suppose $\lambda : \mathcal{A}_{\tau_1} \rightarrow \mathcal{A}_{\tau_2}$ is an isomorphism. λ corresponds to a linear mapping from \mathbb{C}^2 to \mathbb{C}^2 sending Λ_{τ_1} isomorphically onto $\lambda \Lambda_{\tau_2}$. Since λ commutes with the action of \mathfrak{o} (which is irreducible), λ must be a scalar. Set $\mathfrak{r}_1 = \begin{bmatrix} \tau_1 \\ 1 \end{bmatrix}, \mathfrak{r}_2 = \begin{bmatrix} \tau_2 \\ 1 \end{bmatrix}$. Since $\lambda \mathfrak{r}_1 \in \Lambda_{\tau_2}$, we have $\lambda \mathfrak{r}_1 = \Phi_\infty(\gamma) \mathfrak{r}_2$ for some $\gamma \in \mathfrak{o}$. Thus

$$\Phi_\infty(\mathfrak{o}) \mathfrak{r}_2 = \Lambda_{\tau_2} = \lambda \Lambda_{\tau_1} = \Phi_\infty(\mathfrak{o} \gamma) \mathfrak{r}_2$$

which implies that $\mathfrak{o} = \mathfrak{o}\gamma$, whence $\gamma \in \mathfrak{o}^\times$. Clearly, $\tau_1 = \gamma \cdot \tau_2$, hence $Nm(\gamma) > 0$. This implies that $\gamma \in \mathfrak{o}^1$. Conversely, suppose $\tau_1 = \gamma \cdot \tau_2$ with $\gamma \in \mathfrak{o}^1$. If $\Phi_\infty(\gamma) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, set $\lambda = c\tau_2 + d$, so that $\lambda\tau_1 = a\tau_1 + b$. Then λ gives an isomorphism $\mathcal{A}_{\tau_1} \simeq \mathcal{A}_{\tau_2}$ commuting with the action of \mathfrak{o} . The polarization \mathcal{L}_2 must correspond via this isomorphism to a principal polarization on \mathcal{A}_{τ_1} whose associated Rosati involution restricts to $*$ on B . But there is a unique such polarization, namely \mathcal{L}_1 . Thus λ indeed gives an isomorphism between $(\mathcal{A}_{\tau_1}, \mathcal{L}_{\tau_1}, i_{\tau_1})$ and $(\mathcal{A}_{\tau_2}, \mathcal{L}_{\tau_2}, i_{\tau_2})$. \square

Now let $\Gamma = \mathfrak{o}^1$. Using the previous proposition, one may show that the natural action of Γ on \mathfrak{H} (via Φ_∞) extends to an action of Γ on \mathcal{A} ; taking the quotient gives us a family of abelian surfaces with PE structure over $X = \mathfrak{H}/\Gamma$. We denote this family by $\mathcal{A}_X \rightarrow X$. X is a compact (if $B \neq M_2(\mathbb{Q})$) complex manifold of dimension 1, hence has the unique structure of an algebraic curve / \mathbb{C} . It is a theorem of Shimura that X admits a *canonical model* over \mathbb{Q} . We shall not prove this fact - instead we explain how one might construct canonical models for some related Shimura curves, namely those with added level structure.

Let N be an integer coprime to D . Pick a primitive N th root of unity ζ . This is equivalent to fixing an isomorphism $\mu_N \simeq \mathbb{Z}/N\mathbb{Z}$. Now define a level- N structure on (A, i, \mathcal{L}) to be an isomorphism

$$\phi : \mathfrak{o}/N\mathfrak{o} \simeq A[N] \tag{2}$$

commuting with the action of \mathfrak{o} and such that the Weil pairing on $A[N] \times A[N] \rightarrow \mu_N \simeq \mathbb{Z}/N\mathbb{Z}$ associated to \mathcal{L} goes over to the pairing $(x, y) \mapsto \zeta^{E(\alpha, \beta)}$, where $E(\alpha, \beta) = \frac{1}{D} \text{tr}(\rho\alpha\beta')$. A level N -structure on an analytically varying family is the choice of a level N -structure ϕ_s on each fibre varying analytically with the parameters s on the base space. The family $\mathcal{A} \rightarrow \mathfrak{H}$ carries a canonical level N -structure

$$\phi_\tau : \mathfrak{o}/N\mathfrak{o} \simeq \mathcal{A}_\tau[N] = \Phi_\infty\left(\frac{1}{N}\mathfrak{o}\right)\mathfrak{r}_\tau / \Phi_\infty(\mathfrak{o})\mathfrak{r}_\tau$$

given by $\phi_\tau(1) = \frac{1}{N}\mathfrak{r}_\tau = \begin{bmatrix} \tau/N \\ 1/N \end{bmatrix}$. Here $\mathfrak{r}_\tau = \begin{bmatrix} \tau \\ 1 \end{bmatrix}$. It is easy to check that $(\mathcal{A}_{\tau_j}, i_{\tau_j}, \mathcal{L}_{\tau_j}, \phi_{\tau_j})$ for $j = 1, 2$ are isomorphic structures if and only if $\tau_1 = \gamma \cdot \tau_2$ for some $\gamma \in \Gamma_N$, where

$$\Gamma_N = \{\gamma \in \mathfrak{o}^1, \gamma \equiv 1 \pmod{N\mathfrak{o}}\}$$

Thus taking the quotient by Γ_N gives a PEL family $\mathcal{A}_N \rightarrow X_N$ where $X_N = \mathfrak{H}/\Gamma_N$.

Our next goal is to construct a model for X_N over $\mathbb{Q}(\zeta)$. Let W denote the symplectic Shimura variety classifying abelian surfaces equipped with principal

polarization, and level N -structure (defined as in (2) above but without the action of \mathfrak{o} .) We get then a canonical map

$$f : X_N \rightarrow W$$

coming from forgetting the \mathfrak{o} -action on the fibres of X_N . It is not hard to show that for N large enough, this map is generically injective. If \tilde{X}_N denotes its image, X_N is the normalisation of \tilde{X}_N . Suppose $x = (A, i, \mathcal{L}, \phi)$ is a point on X_N , and let $y = (A, \mathcal{L}, \phi)$ be the image $f(x)$ of x in \tilde{X}_N . Let $\sigma \in \text{Aut}(\mathbb{C}/\mathbb{Q}(\zeta_n))$. Then $y^\sigma = (A^\sigma, \mathcal{L}^\sigma, \phi^\sigma)$ is the image $f(x^\sigma)$ of x^σ . This shows that \tilde{X}_N is preserved by $\text{Aut}(\mathbb{C}/\mathbb{Q}(\zeta))$ - further, if x and y are CM points, it is clear that y^σ is another CM point on \tilde{X}_N . Now setting $T =$ the set of CM points on \tilde{X}_N and applying the descent criterion Thm. 6.2.10 of [1] we see that \tilde{X}_N and hence X_N descend to curves \tilde{Y} and Y respectively over $\mathbb{Q}(\zeta)$. (Note that CM points in W are known to be algebraic.) Further, for any $t \in T_K \subset T$ (T_K being the CM points corresponding to any quartic CM type (K', Φ) with reflex field $= K$ imaginary quadratic), the main theorem of CM describes the action of $\text{Aut}(\mathbb{C}/K)$ (and hence of $\text{Aut}(\mathbb{C}/K \cdot \mathbb{Q}(\zeta))$) on t . By Thm. 6.2.9 and Thm. 6.2.11 of [1], the models \tilde{Y} and Y are uniquely characterised by this last property. The curve Y is the *canonical* model of $X_N/\mathbb{Q}(\zeta)$.

References

- [1] Conrad, Brian *Abelian varieties: geometry, parameter spaces and arithmetic*.
- [2] Shimura, Goro *Introduction to the arithmetic theory of automorphic functions*.
- [3] Shimura, Goro *On the theory of automorphic functions*, Ann. of Math., 70 (1959), 101-144.
- [4] Shimura, Goro *On the zeta functions of the algebraic curves uniformized by certain automorphic functions*, Journal of the Math. Soc. of Japan, 13 (1961), 275-331.