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1 Shimura curves

1.1 Arithmetic of quaternion algebras

Let B be a quaternion algebra over a field F' i.e. B is a central simple algebra
of dimension 4 over F. Let ' denote the main involution of B. Thus

tr(a) = a+d, Nm(a) = ad’
where tr and Nm denote the reduced trace and reduced norm.

Lemma 1.1 FEvery inner automorphism of B commutes with the main invo-
lution

Proof: Indeed o 'f'a = (a~!Ba) since aa’ € F and hence commutes with
3. 0O

Lemma 1.2 Let p € B,Nm(p) # 0. Let o* = p~'d/p. Then o — o is an
involution of B if and only if p> € F. In fact, every involution of B is obtained
i this way.



Proof: By the previous lemma, (a*)* = p~2ap?. Thus (a*)* = « for all a

<= p? € F. Conversely, a — (a*)" is an automorphism of B that preserves
the center, hence is inner. Thus there exists an invertible element p € B such
that (a*)’ = p~tap for all . Then o* = (p~tap)~! = p~1a/p. O

Let us now restrict to the case F' = Q. B is said to be indefinite if it

satisfies any one of the following equivalent conditions:

(i) B contains a real quadratic field.

(i) B® R ~ M>(R).

(iii) The norm form on B is an indefinite quadratic form /Q.

Of particular interest are involutions that are positive, i.e. that satisfy
tr(aa®) > 0 for a # 0. (Motivation: Later we will be interested in abelian
varieties A with multiplication by B and polarizations on A such that the
associated Rosati involution preserves B. It must then restrict to a positive
involution on B.)

Lemma 1.3 Let B be an indefinite quaternion algebra over Q, and x an in-
volution corresponding to an element p € B as in the previous lemma. Then x
is a positive involution <= p* < 0.

Proof: Suppose * is a positive involution. First note that if p € Q then o* = o’
and tr(aa*) = tr(ad’) = 2Nm(«). But this is impossible since tr(aa®) > 0
on the one hand while B is indefinite on the other. Thus p € Q. Since p? € Q,
o = —p and pp* = —p?. Now tr(pp*) > 0 = p? < 0. Conversely, suppose
p? < 0. Let K = Q(p), so that K is an imaginary quadratic field. Now we
can pick 7 € B such that 72 € Q and 77 'p7 = —p. Thus B = K + K7 and

77 lar =d' =a for a € K. Now, for a,b € K, a = a + br,
Na = (a+br)(a +br) = Nm(a) — Nm(b)r?

Since B is indefinite, 72 > 0. Now, tr(aa*) = tr(ap~ta/p) = 2(Nm(a) +
Nm(b)7?) > 0, so * is positive, as required. O

Definition 1.4 An order in B is a subring o which is a free Z module of rank
4. If 0 is an order, a left (resp. right) o-ideal is a Z-lattice a in B such that
oa=a (resp. a0 =a. )

An order is said to be maximal if it is not contained strictly in any other
order.

Proposition 1.5 (i) All maximal orders are conjugate in B.

(ii) Let o be a maximal order, and a a left (resp. right) o-ideal. Then a is a
principal o-ideal. i.e. a = o« (resp. a = ao) for some o € B.

(iii) Let o be a maximal order. Then there exists an element v € o, such that
Nm(y) = —1.



1.2 Abelian surfaces with multiplication by B

With these preliminaries we begin the study of abelian surfaces with multipli-
cation by B. Let us fix, once and for all, an isomorphism

O : BOR ~ My(R)
Let A be an abelian surface, i : B < End’(A) be an embedding and
0—-A—-T.(A) —-A—0

be the canonical complex uniformization of A. Now B acts faithfully on the
tangent space T.(A) which is a 2-dimensional C-vector space. By the Artin-
Wedderburn theorem, B®C has a unique simple module V' up to isomorphism,
which is of rank 2. Hence the representation of B on T.(A) is equivalent to @,
(tensored up to C.) In other words, we may pick a basis for T, (A) with respect
to which the matrix of @ € B is ®(a) € Ma(R). Let o = i~ *(End(B)), so

I

that o is an order in B. Now ®(0)A C A. Let z = [ € A and consider

Z2
the injective map

0:0— A 0(a) =Px(a)r

Y1

Set A’ =0(0). Also say that a vector y = [ y
2

] satisfies condition (V) if

(N) :y2 # 0 and Im(y1/y2) # 0

Lemma 1.6 A’ is a discrete subgroup of C? of rank 4 if and only if x satisfies
condition (N).

Proof: Let {a1,as,as,as} be a basis of 0 over Z. Set 3; = (). Suppose
x satisfies condition (N). We claim that the vectors §;x are linearly indepen-
dent over R, which will imply that A’ generates C? over R. Indeed, suppose
>, rifix = 0 for some r; € R. Then Cx = 0 where C' = ), 7;6; € M>(R). But
now the conditions xy # 0, Im(z1/x2) # 0 force C = 0. Now the vectors 3; are
certainly linearly independent over R (in fact even over C) hence each r; = 0,
as required.

Conversely, suppose either x9 = 0 or z3 # 0 and I'm(z1/x2) = 0. Then we
can find a non-zero matrix R € M(R) satisfying Rz = 0. Expand R in terms
of the 8; : R =73 ,r;f. Then ), r;f;x = 0, whence the vectors 3;x are not
R-linearly independent. Thus RA’ # C? in this case. ([l

Of course, since RA = C2, we can pick a vector = € A satisfying x5 # 0
and Im(x1/z2) # 0. Then A’, being a lattice, has finite index in A. Pick a
positive integer m such that mA C A’. Now define a mapping

0 :A—o0,0(y) =01 (my)



Let m denote the image of this map. Then m is a left ideal in 0. Further, if
am C m for some a € B, then @, (a)A C A, hence a € 0. Thus m is a proper
left o-ideal and f(m) = mA ie. A = {Px(a)yla € m} where y = Lz, We
summarize these in the following proposition.

Proposition 1.7 Suppose A is an abelian surface and i : B — End°(A) is an
embedding. Let o = i~1(End(B)). Then o is an order in B. Also there exists
a proper left o-ideal m, a vector y € C? satisfying condition (N) and a complex
analytic 1somorphism

C?/®oo(m)y =~ A
commuting with the action of B (by ®o on the left and by i on the right.)

In fact the converse is also true, namely every CM torus of the form
C?/®(m)y with y satisfying condition (N) is an abelian variety. But to
prove that we will need to construct a Riemann form on C2/®..(m). Thus we
begin by studying polarizations on A.

Suppose A : A — A be a polarization. We assume that the associated
Rosati involution preserves i(B). Thus it restricts to an involution * on B.
Note that Tr(«) = 2tr(«) where T'r denotes the trace of a on the l-adic Tate
module (or rational homology), and ¢r denotes the reduced trace in B. Since
the Rosati involution is positive, it follows that * is a positive involution on
B. By a previous proposition, there exists an element p € B, p? € Q, p? < 0,
such that

Oé* :p—la/p

where a@ — &' is the main involution of B. Set

Eo(a, B) = E(Poo(@)y, Poo(B)y)

where E is the Riemann form associated to A. Thus Ej is integer valued on
m. Since £ — FEp(&,1) is a Q-linear map of B into Q, there exists a unique
element 7 € B such that Ey(&, 1) = tr(7€).

Proposition 1.8

for some ¢ € Q.
Proof: Notice that
Eo(a, 8) = Eo(8*a, 1) = tr(r8*a) = tr(tp~ ' ' pa)
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Since F is skew-symmetric,

tr(=78) = Eo(=B,1) = Eo(1,8) = tr(rp™"5'p)
= tr(p 'Bpr’)( since tr(ab’) = tr(ba’))
= tr(pr'p™'0)
Thus pr/p~! = —7, hence (p~17) = —7/p~! = p~
required. O
This yields the following

L7, whence p~'7 € Q, as

Proposition 1.9 In the setting of Prop. 1.7, any Riemann form on C?/®(m)y
is of the form

E(®os()y, Poo(B)y) = ctr(paf’)
for all a, B € B.

Conversely, given an isomorphism @, : B ® R — M3(R), a lattice m in o,
and a vector y € C? satisfying condition (IV), set

A= {(I)oo(a)y’a € m}

From a previous proposition, A is a lattice in C?. We shall now show that the
complex torus C2/A is an abelian variety. Pick p € B, with p? € Q and p? < 0.
Consider the form

E(®oo()y, ®oo(B)y) = c - tr(paf’) (1)

for a non-zero rational number ¢. Note that this defines F on C2 x C? since
a +— @ (a)y gives an isomorphism @, (Bg) ~ C2.

Proposition 1.10 For ¢ a suitable integer, (1) gives a Riemann form on

C2/A.

Proof: We need to check that E is skew-symmetric, integer valued on A and
that the associated Hermitian form is positive definite (equivalently that the
R-bilinear form (y1,y2) — E(y1,iy2) > 0 is symmetric and positive definite.)
First note that there is a unique p € B such that

iy = Poo(1)y

We must have p? = —1 and g/ = —u. Suppose p? = —s and set p1 = p/+/s.
Then p12 = —1 and tr(p;) = 0. By the Skolem-Noether theorem, there exists
v € GL2(R) such that

pw="yp1y "



Now

E(®oo(a)y, i®uoo(B)y) = ¢ - tr(pap’ ()

and

tr(pap'f') = tr(Bud’p’) = tr(p'Bua) = tr(pBu'a)

whence E(y1,1ys2) is symmetric. Next we compute

E(@o()y,iPoo(a)y) = c¢-tr(pap'a’)
= —c-tr(payp1y td)
_ —% “tr(ay' " 'y o/ p) (using tr(x) = tr(z))

= %Nm(v)’l -5 - tr(aypy'a'p)

= cV/sNm(y)™" - tr((ay)(e)")

Now all we need to do is pick ¢ a sufficiently divisible integer so that tr(pas’)
is integer valued on m and the sign of ¢ equal to the sign of Nm(7). U
NOTE: If we replace p by —p, Nm(v) will change sign and so will ¢. Thus by
picking p such that v € GL2(R)", we may ensure that ¢ > 0.

Finally, note that that if we set 0 = {x € B,am C m}, & () preserves
A and gives an endomorphism of A = C2/A. Denoting this endomorphism by
i(a), we get an embedding i : 0 — End(A). Since

tr(pa(¢B)) = tr(paf'e) = tr(€'paB’) = tr(p(p~'¢ p)aB) = tr(p¢*ap)

we see that the Rosati involution restricts to * on B.

1.3 Families of abelian surfaces

Let us specialize the discussion of the previous section to the case o= the
maximal order in B. Since every left o-ideal m is principal, we may pick p such
that m = op. Then

A= {(I)oo(a)mo‘ € 0}
where § = ®oo(p)y. Set g = [ gl ] . We may assume that g # 0, Im(91/92) >
2

0, replacing 7 if necessary with ®()y for some v € 0* with Nm(y) = —1.
Now put 7 = g1 /92 and set

A= (0@ | | [laca)
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The linear map C? — C?, 2 +— Yoy L2 gives an isomorphism of complex tori

(0 ] A
i) ” P
IR
that commutes with the o action.

Now, we let 7 vary in the upper half plane $). In this way we obtain an
analytic family of Abelian varieties A, on $. More precisely, one takes the
quotient A of C? x § for the equivalence relation

(21,7’1) = (22,7'2) <~ T1 = T9, and 21— %9 € Aq—1 = AT2

and shows the following:

(i) A admits a structure of a complex analytic manifold such that the
projection map to $ and the ”zero-section” 7+ [(0, )] are analytic maps, the
former being a proper submersion.

(ii) The fibre over 7, A is identified with C?/A, and thus has the structure
of a complex torus; the group operations on A, vary analytically with .

(iii) The action of « € 0 on A; varies analytically with 7.

One can do more: fixing a p and ¢ as in the previous section, one can
construct a relative polarization £ — A xg A, such that on the fibre over
7, L restricts to a polarization £, which via the identification A, = C2/A,
corresponds to the polarization on the latter torus with associated Riemann
form

T T

E <<boo(a) [ . ] , O (B) [ . D =c-tr(paf’)

Of particular interest is the case p?> = —D. Then taking ¢ = % gives a
principal polarization on A,. Thus each fibre (A;, £;,i,) has a structure of an
abelian surface with principal polarization and endomorphisms such that the
Rosait involution restricts to the involution *. There is the natural notion of
equivalence or isomorphism of two such structures.

Proposition 1.11 Let 71,70 € 9. Then (A, Ly ir) and (A, Loy, i) are
isomorphic <= T =Ty for some y € o'.

Proof: Suppose A : A, — A, is an isomorphism. A corresponds to a linear
mapping from C? to C? sending A, isomorphically onto A,,. Since A commutes
with the action of o (which is irreducible), A must be a scalar. Set t; =

1
Thus

[ n ] ,tg = [ 7;2 ] Since Aty € A,,, we have At; = ®(y)r2 for some v € o.

Do (0)ta = Ary = A, = P (07)12



which implies that 0 = o0y, whence v € 0*. Clearly, 71 = 772, hence Nm(vy) >
0. This implies that v € o!. Conversely, suppose 71 = v - 7 with v € o!. If

Doo(y) = < Z Z ), set A = ¢m9 + d, so that Ay = am; +b. Then A gives

an isomorphism A; =~ A;, commuting with the action of 0. The polarization
Lo must correspond via this isomorphism to a principal polarization on A,
whose associated Rosati involution restricts to * on B. But there is a unique
such polarization, namely £1. Thus A indeed gives an isomorphism between
(Ar, Lryyir) and (Ary, Lryyiry)- O

Now let I' = o'. Using the previous proposition, one may show that the
natural action of I on §) (via ) extends to an action of I" on A; taking the
quotient gives us a family of abelian surfaces with PE structure over X = /I
We denote this family by Ax — X. X is a compact (if B # M>(Q)) complex
manifold of dimension 1, hence has the unique structure of an algebraic curve
JC. It is a theorem of Shimura that X admits a canonical model over Q.
We shall not prove this fact - instead we explain how one might construct
canonical models for some related Shimura curves, namely those with added
level structure.

Let N be an integer coprime to D. Pick a primitive Nth root of unity (.
This is equivalent to fixing an isomorphism py ~ Z/NZ. Now define a level-N
structure on (A, 4, L) to be an isomorphism

¢:0/No~ A[N] (2)

commuting with the action of o and such that the Weil pairing on A[N] x
A[N] — pun ~ Z/NZ associated to £ goes over to the pairing (z,y) — ¢(F(@®5)
where E(a, ) = %tr(paﬁ’ ). A level N-structure on an analytically varying
family is the choice of a level N-structure ¢, on each fibre varying analytically
with the parameters s on the base space. The family A — $) carries a canonical
level N-structure

6r :0/No ~ A[N] = @m(%o)@ [ (o)t
given by 0.(1) = e = | 1/

(ATJ. sy s [,Tj, ngj) for j = 1,2 are isomorphic structures if and only if 7, = v- 79
for some v € 'y, where

]. Here ¢, = [ I ] It is easy to check that

I'y={y€co,y=1 mod No}

Thus taking the quotient by I'y gives a PEL family Ay — Xy where Xy =
$H/In.

Our next goal is to construct a model for X over Q(¢). Let W denote the
symplectic Shimura variety classifying abelian surfaces equipped with principal



polarization, and level N-structure (defined as in (2) above but without the
action of 0.) We get then a canonical map

f:XN—>W

coming from forgetting the o-action on the fibres of X . It is not hard to show
that for N large enough, this map is generically injective. If Xy denotes its
image, X is the normalisation of Xn. Suppose z = (A,i,L,¢) is a point on
Xy, and let y = (A, £, ¢) be the image f(x) of zin Xy. Let o0 € Aut(C/Q(Cn)).
Then y° = (A%,L£%,¢7) is the image f(z%) of . This shows that Xy is
preserved by Aut(C/Q(()) - further, if z and y are CM points, it is clear that
y? is another CM point on Xy. Now setting 7 = the set of CM points on
Xy and applying the descent criterion Thm. 6.2.10 of [1] we see that Xy
and hence Xy descend to curves Y and Y respectively over Q(¢). (Note that
CM points in W are known to be algebraic.) Further, for any t € T C T
(Tk being the CM points corresponding to any quartic CM type (K, ®) with
reflex field = K imaginary quadratic), the main theorem of CM describes the
action of Aut(C/K) (and hence of Aut(C/K -Q(¢))) on t. By Thm. 6.2.9 and
Thm. 6.2.11 of [1], the models Y and Y are uniquely characterised by this last
property. The curve Y is the canonical model of Xy /Q(().

References

[1] Conrad, Brian Abelian varieties: geometry, parameter spaces and arithmetic.

[2] Shimura, Goro Introduction to the arithmetic theory of automorphic functions.

[3] Shimura, Goro On the theory of automorphic functions, Ann. of Math., 70 (1959),
101-144.

[4] Shimura, Goro On the zeta functions of the algebraic curves uniformized by certain
automorphic functions, Journal of the Math. Soc. of Japan, 13 (1961), 275-331.



