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1 Introduction

These notes are meant to be an introduction to class field theory, the theory
of complex multiplication and some aspects of the theory of Shimura curves
for participants of a summer school in Hangzhou. There is absolutely nothing
original in these notes, either in terms of content or presentation. Indeed, we
have often simply copied from standard texts, notably Lang’s book for class
field theory, and Shimura’s books and articles for the rest of the notes. The
only virtue of these notes then is (hopefully) that they provide to a beginning
student clear statements of the main theorems and motivation to read the more
comprehensive books and articles cited.

2 Class field theory

2.1 Number fields and their completions

2.1.1 Number fields, prime ideals

A number field is a finite extension of Q. The ring of integers of L, oL is defined
to be the subring of L consisting of x ∈ L that satisfy a monic polynomial with
coefficients in Z. oL is an integrally closed integral domain of dimension 1 i.e.
all the nonzero prime ideals of oL are maximal. Let p be a nonzero prime ideal
of oL. Then p ∩ Z = (p) for some prime number p. The prime ideal p is said
to lie over p. Conversely, for any integer prime p, the set of prime ideals p of
oL that lie over p is finite. If {p1, p2, . . . , pr} denotes the set of these primes,
one has

poL =
∏

i

p
epi
i (1)

for some integers epi . If fpi := [o/pi : Z/pZ] is the degree of the finite field o/pi

over Fp, one has also

[L : Q] =
∑

i

epifpi
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More generally, let K/L be an extension of number fields, and p a prime
ideal in oL. Then the set of primes {p1, p2, . . . , pr} of oK lying over p (i.e. such
that pi ∩ oL = p) is finite. We have

poK =
∏

i

p
epi/p

i (2)

for some integers epi/p, generalising (1) above. If fpi/p := [oK/pi : oL/p] is the
degree of the finite field oK/pi over oL/p, one has also

[K : L] =
∑

i

epi/pfpi/p (3)

generalising (2) above.

Definition 2.1 A prime p in L is said to be ramified in K if epi/p > 1 for
some pi lying over p.

It is known that only finitely many primes of L ramify in K. In fact one
may define an ideal in L called the discriminant ideal dK/L such that p ramifies
in K if and only if p|dK/L. p is said to be unramified in K if it is not ramified.

2.1.2 Fractional Ideals

A fractional ideal a in L is an oL-submodule of L, such that xa ⊆ oL for some
x ∈ L×. If a and b are fractional ideals,

ab := {
∑

i

aibi, ai ∈ a, bi ∈ b} (4)

is also a fractional ideal. Likewise, if a 6= 0,

a−1 = {α ∈ L,αa ⊆ oL} (5)

is also a fractional ideal. The set of fractional ideals in L then forms a group
under the multiplication law (4), with inverses being defined as in (5). We
denote this group by the symbol IL or just by I if the field L is fixed. Associated
to every α ∈ L is the principal fractional ideal (α) := αo. Since (α)(β) = (αβ)
and (α)−1 = (α−1), the set of principal fractional ideals forms a subgroup P
of I.

Theorem 2.2 (Unique factorization) Every fractional ideal a factors uniquely
as

a =
∏

i

pni
i

for some set of distinct prime ideals pi and non-zero integers ni.

Theorem 2.3 The quotient group I/P is finite.

I/P is called the class group of L.

3



2.1.3 Completions

There are two kinds of completions that one wishes to study corresponding
to two different kinds of metrics (places) on L. Let us denote oL just by the
symbol o.
Non-archimedean places. Let p be a nonzero prime ideal in o. One may
define on L a norm | · |p in the following way:

|a|p = (
1

p1/ep
)vp(a) (6)

where vp(a) is defined to be the largest integer m such that a ∈ pm. Let Lp

denote the completion of L for the metric defined by |·|p. Then L ⊆ Lp and the
norm | · |p extends naturally to a norm on Lp, also denoted by the same symbol
| · |p. Lp is a topological field with respect to the associated metric. Let op and
piop denote the closures of o and pi in Lp respectively. Then op is a topological
ring in which pop is the unique nonzero prime ideal and piop = (pop)i. The
ideal pop is principal and every non-zero ideal in op is a power of pop. In other
words, op is a discrete valuation ring with maximal ideal pop. The formula (6)
continues to hold for a ∈ Lp, except that vp(a) must now be defined to be the
largest integer m such that a ∈ pmop.

The additive group (Lp, +) is locally compact, and the filtration of additive
subgroups . . . ⊆ pi+1op ⊆ piop ⊆ . . . gives a fundamental system of compact
open neighborhoods of 0. Let Up denote the units of op i.e. Up = op\pop. Define
Up,i = 1+piop. Each Up,i is a multiplicative subgroup of L×p . The multiplicative
group L×p is also locally compact, with the filtration . . . ⊆ Up,i+1 ⊆ Up,i ⊆ . . .
being a fundamental system of open neighborhoods of 1.
Archimedean places. These correspond to metrics obtained by embedding
L in C and restricting the usual absolute value on C. The number of distinct
embeddings of L in C is well known to equal the degree [L : Q]. An embedding
σ is said to be real if σ(L) ⊆ R and imaginary otherwise. The imaginary
embeddings clearly occur in pairs of complex conjugate embeddings that induce
the same absolute value. Thus if r is the number of real embeddings and 2s
the number of imaginary embeddings, there are r + s distinct metrics thus
obtained. Correspondingly the completions Lσ = R for the real embeddings
and = C for the imaginary ones.

We denote by ΣL,f (resp. ΣL,∞, resp. ΣL) the set of non-archimedean
places (resp. the set of archimedean places of L, resp. the set of all places) of
L.

2.1.4 Adeles and ideles

For many purposes it turns out to be useful to bundle together all the comple-
tions of a number field L into a single object, called the adele ring of L.
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Definition 2.4 The Adele ring of L, denoted AL, is defined to be the subring
of

∏
v∈ΣL

Lv consisting of those (av)v∈ΣL
such that ap ∈ op for almost all

p ∈ ΣL,f (i.e. for all but finitely many p.) We also denote by AL,f the subring
of AL consisting of those (av)v∈ΣL

such that aσ = 1 for all σ ∈ ΣL,∞ and
AL,∞ the subring of AL consisting of those (av)v∈ΣL

such that ap = 1 for all
p ∈ ΣL,f .

Addition and multiplication on AL is defined component-wise. It will also
be important to put a topology on AL in the following way. For each finite
subset S ⊆ ΣL containing ΣL,∞, define AL,S to be the subring of AL consisting
of those (av)v∈ΣL

such that ap ∈ op for p 6∈ S. Since AL,S =
∏

p6∈S op×
∏

v∈S Lv,
and each op is compact, we can make AL,S into a locally compact group by
giving it the product topology. Now we make AL into a topological group by
declaring each AL,S to be an open subgroup. One may check that with this
definition AL is a topological ring. Note that the topology on AL is not the
subspace topology inherited from

∏
v∈ΣL

Lσ.
Next we consider the unit group of AL. This is called the idele group of

L and is denoted A×L . Likewise we denote the unit group of AL,S by A×L,S .
Clearly

A×L = {(av) ∈
∏

v∈S

L×v : ap ∈ Up for almost all p ∈ ΣL,f} =
⋃

S

A×L,S , and

A×L,S =
∏

p6∈S

Up ×
∏

v∈S

L×v

We give A×L,S the product topology and make A×L into a topological group by
ordaining each A×L,S to be an open subgroup. Note that the topology on A×L is
not the subspace topology inherited from AL.

The multiplicative group L× embeds diagonally (and discretely) in A×L ,
via α Ã (. . . , α, α, α, . . . , ). We will view L× as a subgroup of A×L via this
embedding.

Definition 2.5 Let x ∈ A×L . We associate to x a fractional ideal i(x) in L by
requiring that i(x)p = pn where vp(xp) = n.

Since x is an idele, vp(xp) = 0 for all but finitely many p, so this definition
makes sense. i is a surjective homomorphism from A×L to I.

2.1.5 Cycles

Definition 2.6 A cycle in L is a a formal product

c =
∏

p∈ΣL,f

pm(p) ×
∏

σ∈ΣL,∞

σm(σ)
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for integers m(p) and m(σ) where all but finitely many of the m(p) are 0 and
m(σ) = 0 or 1. Here m(p) (resp. m(σ)) is called the multiplicity of c at p

(resp. σ.) We say v | c if m(v) > 0 and v - c otherwise.

Suppose c is a cycle in L. For each place v ∈ ΣL, we define subgroups Uv

and Wc(v) of L×v as follows. For v = p non-archimedean, Up= the group of
units in op, Wc(p) = {α ∈ Up, α−1 ∈ pm(p)}. For v = σ archimedean, Uσ = L×σ ;
Wc(σ) = L×σ if mσ(c) = 0 or if σ is a complex embedding, Wc(σ) = R+ if σ is
real and mσ(c) ≥ 0. Finally we define Wc and A×L,c as follows:

Wc =
∏

v∈ΣL

Wc(v)

A×L,c = (
∏

v|c
Wc(v)×

∏

v-c
L×v ) ∩ A×L

Note that Wc is an open subgroup of A×L .
Define I(c) to be the subgroup of I consisting of fractional ideals a that are

prime to c i.e. p - a if p | c. Likewise, define Pc to be the subgroup of principal
fractional ideals (α) such that α ∈ A×L,c. Note that the map i defined in the
previous section maps A×L,c surjectively onto I(c).

Theorem 2.7 The quotient group I(c)/Pc is finite

I(c)/Pc may be called a generalized ideal class group.

2.1.6 The trace and the norm

For α ∈ L, the trace and norm of α, denoted tr(α) and N(α) are defined
respectively to be the trace and norm of the linear map α : L → L given
by left multiplication by α, where we think of L as a Q vector space. If
σ1, . . . , σn, n = [L : Q], denote the distinct embeddings of L in C, one has

Tr(α) =
n∑

i=1

σi(α), N(α) =
n∏

i=1

σi(α) (7)

More generally, if K/L is a finite extension and α ∈ K, we define TrK/L(α)
and NK/L(α) to be the trace and determinant of α : K → K, thinking of K as
an L-vector space. Similarly, if v is a place of L and w is a place of K lying
over v, one may define maps TrKw/Lv

: Kw → Lv and NKw/Lv
: Kw → Lv.

From the description (7) one sees that Tr is an additive homomorphism and
N is a multiplicative homomorphism on the multiplicative group of non-zero
elements. It is not hard to check then that the trace and norm extend to maps

TrK/L : AK → AL, NK/L : A×K → A×L
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that are respectively additive and multiplicative continuous homomorphisms.
Finally, let b be a fractional ideal in K. Then

NK/Lb := the ideal generated by {NK/L(x), x ∈ b}

is a fractional ideal in L. One has NK/L(b1b2) = NK/L(b1)NK/L(b2). It is easy
to check that if q is a prime of K, q ∩ L = p, then Nq = pfq/p .

2.2 Main theorems of class field theory

Let L be a number field. Class field theory concerns the study of abelian
extensions of L, i.e. extension fields K/L that are Galois over L with abelian
Galois group. The main theorems gives a description of the Galois groups of
such extensions purely in terms of objects attached to the base field, namely
certain subgroups of the idele group A×L or equivalently certain generalised
ideal class groups of L. As a consequence one also gets information on how
primes of L split in the extension K. Roughly speaking, the way an unramified
prime p of L splits in a finite abelian extension K (in other words the structure
of oK/poK) depends only on the class of p in a certain generalised ideal class
group of L. This consequence is thus a very general reciprocity law and is called
Artin reciprocity. Indeed all of the more familiar reciprocity laws (eg. quadratic
or cubic reciprocity) may be deduced as corollaries of Artin reciprocity (albeit
with some work in each case !)

Our description of the main theorems follows the approach (and some of
the notation) of [1], where the reader may also find proofs of all the theorems
stated. We start with a description of the Artin map. Suppose K/L is a finite
abelian extension with Galois group G. Let p be a prime of L that is unramified
in K, and q a prime of K lying over L. The decomposition group Gq := {σ ∈
G, σq = q} is canonically isomorphic to the Galois group Gal(Fq/Fp). This
latter group has a canonical generator σ̄ given by σ̄(x) = xNp. If σ is the
corresponding element of Gq ⊆ G, then σ is independent of the choice of q and
is denoted by the symbol (p,K/L) (also called the Artin symbol.) By extending
multiplicatively we get a homomorphism called the Artin map or reciprocity
map,

recL/K : I(dL/K) → G

where dK/L is the relative discriminant of K/L. For any fractional ideal a ∈
I(d), we write (a, L/K) for recL/K(a).

Definition 2.8 A cycle c in L is said to be admissible for the extension K/L
if Wc(v) ⊆ NKw/Lv

(K×
w ) for all places w of K lying over v.
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It is not hard to show that Uv ⊆ NKw/Lv
(K×

w ) if w is unramified over v.
Thus any c which is sufficiently divisible at the primes ramified in K/L will be
admissible for K/L.

Definition 2.9 Let c be a cycle in L and K/L a finite extension. We define
N(c) to be the group of fractional ideals in L which are obtained as N(b) for b

a fractional ideal in K, with b prime to c.

Theorem 2.10 (a) Let c be any cycle divisible by all the primes ramified in
L/K. Then the reciprocity map

recL/K : I(c) → G (8)

restricted to I(c) is surjective.
(b) (Artin reciprocity) There exists an admissible cycle c for L/K such

that Pc is contained in the kernel of the map (8). For such a c, one has an
isomorphism

recL/K : I(c)/PcN(c) ' G (9)

We now define a map ϕ : A×L → I(c)/PcN(c) as follows: for x ∈ A×L , pick (by
the approximation theorem) α ∈ L× such that αx ∈ A×L,c. Then i(αx) ∈ I(c).
We define ϕ(x) = the image of i(αx) in I(c)/PcN(c). If β ∈ L× is such that
βx ∈ A×L,c, then αβ−1 ∈ A×L,c ∩ L, hence i(αβ−1) ∈ Pc. Thus the class of i(αx)
in I(c)/PcN(c) is independent of the choice of α, so ϕ is indeed well defined.
Now composing the map recL/K of (9) with ϕ we get a map, also denoted

recL/K : A×L → G (10)

Theorem 2.11 The map (10) is surjective with kernel L×NK/L(A×K). We
thus get isomorphisms

I(c)/PcN(c)

A×L/L×NK/L(A×K)

i
'

66lllllllllllll recK/L

'
// Gal(K/L)

''

recK/L

'

OOOOOOOOOOOO

Further, if p is a prime ideal in L, unramified in K, π is a uniformiser at
p, and ξπ := (. . . , 1, 1, π, 1, 1, . . .) is the idele whose p component is π and all
whose other components are 1, then

recK/L(ξπ) = (p,K/L) (11)

As the field K varies, so does the cycle c and the group I(c). One reason the
idele group A×L is so useful is that we can use it to study all abelian extensions
K at one go (and in fact even infinite abelian extensions, as we shall see later.)
Further, formulated adelically, it is easy to compare the reciprocity map as the
base field L varies. The following two theorems serve to illustrate this point.
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Theorem 2.12 (Formal properties of the Artin map) (a) Suppose σ ∈ Gal(Q/Q).
Then the following diagram commutes

A×L/L×NK/L(A×K)
recK/L

'
//

σ

²²

Gal(K/L)

σ·σ−1

²²
A×Lσ/(Lσ)×NKσ/Lσ(A×Kσ)

recKσ/Lσ

'
// Gal(Kσ/Lσ)

(b) Suppose L ⊆ K ⊆ K ′. Then the following diagram commutes

A×L/L×NK′/L(A×K′)
recK′/L

'
//

proj

²²

Gal(K ′/L)

res

²²
A×L/L×NK/L(A×K)

recK/L

'
// Gal(K/L)

(c) Suppose K/L is abelian and L′/L is a finite extension. Let K ′ = KL′,
so that K ′/L′ is abelian. Then the following diagram commutes

A×L′/L′×NK′/L′(A×K′)
recK′/L′

'
//

NL′/L

²²

Gal(K ′/L′)

res

²²
A×L/L×NK/L(A×K)

recK/L

'
// Gal(K/L)

Theorem 2.13 Let HK := L×NK/L(A×K). The assignment K Ã HK gives a
bijection between finite abelian extensions K of L and open subgroups of A×L
containing L×. We say that HK belongs to K or that K is the class field
corresponding to HK . This assignment has the following properties (analogous
to the main theorem of Galois theory):

(a) HK ⊇ HK′ ⇐⇒ K ⊆ K ′

(b) HKK′ = HK ∩HK′

(c) HK∩K′ = HKHK′

Definition 2.14 (Ray class fields) The class field corresponding to the sub-
group L×Wc is called the ray class field of conductor c.

Note that any open subgroup H of A×L contains Wc for some c. Since
Wc1 ∩ Wc2 = Wmin(c1,c2), there is always a smallest cycle c (or equivalently,
largest subgroup Wc) such that H ⊇ Wc. In this case c is called the conductor
of the Abelian extension K/L corresponding to H.

Definition 2.15 (Hilbert class field) The ray class field of conductor (1) is
called the Hilbert class field of L.

The Hilbert class field is usually denoted by the symbol H. It is the max-
imal everywhere unramified Abelian extension of L. From Thm. 2.11 we see
that Gal(H/L) ' I/P , the class group of L.
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By Thm. 2.12, part (b), we get a well defined homomorphism

recL : A×L → Gal(Lab/L) (12)

where Lab denotes the maximal abelian extension of L.

Theorem 2.16 The homomorphism (12) is surjective. In fact we have an
exact sequence

1 → L×(L×∞)+ → A×L
recL−−−→ Gal(Lab/L) → 1 (13)

2.3 Examples

2.3.1 Cyclotomic fields and the Kronecker-Weber theorem

Let m be a positive integer, ζm a primitive mth root of unity and K = Q(ζm).
Without loss we may assume that m is either odd or a multiple of 4 (since for
odd m, Q(ζm) = Q(ζ2m). In what follows we omit the subscript m and write
just ζ for ζm. It is well known that Gal(K/Q) ' (Z/mZ)×. Indeed one has
a natural map from ψ : (Z/mZ)× → Gal(K/Q) given by ψ([n])(ζ) = ζn for
any integer n coprime to m, and this map is an isomorphism. Thus K is an
abelian extension of Q. We show now that HK = Q×Wmσ∞ , where σ∞ is the
unique archimedean place of Q. In other words, Q(ζ) is the ray class field of
conductor mσ∞.

We recall some well-known facts about cyclotomic fields that may be found
in any basic book on algebraic number theory. The ring of integers oK = Z[ζ].
A prime p is ramified in K if and only if p | m. If p - m, fp is equal to the
smallest integer f such that pf ≡ 1( mod m) i.e. the order of [p] as an element
of (Z/mZ)×.

Let p be a prime unramified in K. Since (p,K/Q) can be characterised
as the unique σ ∈ Gal(K/Q) such that σp = p and σζ ≡ ζp mod p for any
prime p in K over p, and since ψ([p]) also has this property (why ?), we must
have (p, K/Q) = ψ([p]). We now show that Wmσ∞ is contained in the kernel
of the Artin map. Let x = (xv) ∈ Wmσ∞ . Pick a positive integer a such that
for all p | m, axp ≡ 1(pmax(np,vp(m))) where

∏
p|m pnp is the conductor of K/Q.

By the definition of the Artin map, rec(x) = ψ([a]). Since xp ≡ 1(pvp(m)),
we have a ≡ 1(pvp(m)). Thus a ≡ 1(m) and ψ([a]) = 1 as required, so indeed
Q×Wmσ∞ ⊆ HK .

Since Wmσ∞ =
∏

p-m Z×p ×
∏

p|m(1 + pvp(m)Zp) × (R+)× and since A×Q =
Q× · (∏p Z×p × (R+)×), we see that the index of Q×Wmσ∞ in A×Q is exactly
φ(m), the cardinality of

∏
p|m Z×p /(1 + pvp(m)Zp) ' (Z/mZ)×. On the other

hand [A×Q : Q×Wmσ∞ ] ≥ [A×Q : HK ] = #Gal(K/Q) = φ(m) by Thm. 2.11.
Thus HK = Q×Wmσ∞ .
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Now let K ′ be any abelian extension of q. We may pick an integer m such
that HK′ ⊇ Wmσ∞ . By Thm. 2.13, we must have K ′ ⊆ Q(ζm). This yields
the celebrated

Theorem 2.17 (Kronecker-Weber theorem) Every abelian extension of Q is
contained in a cyclotomic extension.

2.3.2 Quadratic fields and quadratic reciprocity

Let K = Q(
√

m) where m is a square-free integer. The primes ramified in K are
exactly those dividing m if m ≡ 1(4) and those dividing 4m if m ≡ 2, 3(4). We
may identify Gal(K/Q) with the group {±1}; then for p any prime unramified
in K, it is easy to see that (p,K/Q) =

(
m
p

)
.

We now show how one might derive (some cases of) quadratic reciprocity
from Artin reciprocity. For instance, let us suppose that m = q, a prime,
≡ 1(4). Let K ′ = Q(ζq). Since [K ′ : Q] = q−1, K ′ contains a unique quadratic
subfield. This subfield, being unramified outside q (since K ′ is unramified
outside q) must be K. Thus cond(K) = q. Now Artin reciprocity tells us that
(p,K/Q) depends only on p modulo the conductor of K, i.e. only on p mod q.
Thus the Artin symbol gives a surjective homomorphism rec : (Z/qZ)× →
{±1}, with rec([a]) =

( q
a

)
. If a ≡ b2 mod q, we have rec(a) = rec(b)2 = 1.

Hence the kernel of rec must consist exactly of the square classes mod q. In
other words

(
a
q

)
=

( q
a

)
for all (a, q) = 1.

3 Complex Multiplication

3.1 Introduction

In the last section we saw how one can generate class fields of Q and even the
maximal abelian extension by adjoining roots of unity. Now one might think
of roots of unity as being special values of the exponential function (z Ã e2πiz)
at points of finite order on the unit circle group. A natural question then is
whether one can generate abelian extensions of other fields in a similar man-
ner, by suitable special values of transcendental functions. By the early 20th
century, due to the efforts of many mathematicians, this was essentially accom-
plished for imaginary quadratic fields. In the latter half of the 20th century,
beginning with work of Shimura and Taniyama, this theory was generalized
to a wider class of fields, called CM fields. It also became the foundation on
which the theory of Shimura varieties was built. Our goal now is to describe
the statements of main theorems and their consequences, first in the imagi-
nary quadratic case (CM elliptic curves) and then in the general CM case. In
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the next section we shall apply these to study the simplest kinds of Shimura
varieties, namely Shimura curves.

3.2 Imaginary quadratic fields

3.2.1 Elliptic curves

We refer the reader to Brian Conrad’s talks for the basics of the analytic
and algebraic theory of elliptic curves (and later, abelian varieties.) We shall
however recall some facts about elliptic curves below, which will also serve the
purpose of fixing notation.

We will only be concerned with elliptic curves over fields of characteristic
zero and even among those, only fields that can be embedded in the complex
numbers. (This is okay since we are only interested in statements of the main
results and not proofs. The proofs very much require working over fields of
finite characteristic.)

Definitions: Recall that an elliptic curve over C can be equally thought of in
any one of the following ways:
A. As C/Λ for Λ a lattice in C i.e. Λ is a discrete subgroup of C of rank 2 over
Z.
B. As being the projective curve associated to the affine curve

y2 = 4x3 − g2x− g3, g2, g3 ∈ C (14)

with ∆ := g3
2 − 27g2

3 6= 0.
C. As being a projective algebraic curve E/C that also has the structure of a
group variety.

Here is how one goes between these descriptions. To go from A to B, one
considers the Weierstrass functions

℘(u) : =
1
u2

+
∑

ω∈Λ,ω 6=0

[
1

(u− ω)2
− 1

ω2
]

℘′(u) : =
d

du
℘(u) = − 2

u3
−

∑

ω∈Λ,ω 6=0

1
(u− ω)3

These are periodic functions with respect to Λ with poles of order 2 and 3
respectively at points in Λ, that satisfy a relation of the form

℘′2 = 4℘3 − g2(L)x− g3(L) (15)

Then one associates to C/Λ the projective curve EL associated to the affine
curve y2 = 4x3 − g2(L)x − g3(L) in C2. The map u Ã (℘(u), ℘′(u)) gives
a complex analytic isomorphism from C/Λ to EL sending 0 to the point at
infinity, [0, 1, 0], on EL.

12



To go from B to C, one must define a group law on E, given by the equation
(14). Let O be the point at infinity, [0, 1, 0], on E. Given points P and Q on
E, construct the line joining P and Q (or if P = Q, take the tangent line to E
at P .) This line meets E at exactly one other point, say R. Next construct the
line through O and R, which meets E again at exactly one other point, which
we define to be the sum P ⊕ Q. Then one may verify that ⊕ is a group law
on E with O as the identity element. The constructions involved being clearly
algebraic, E is then a group variety.

Finally, to go from C to A, one may consider the tangent space V at the
origin O of E, and the exponential map exp : V → E since E has the structure
of a compact complex Lie group. One shows that exp is surjective with kernel
equal to a lattice U in V . Now picking an isomorphism of V with C, U
corresponds to a lattice Λ in C and E ' C/Λ.

Homomorphisms, isogenies and endomorphisms: Given two elliptic
curves E1 = C/Λ1 and E2 = C/Λ2, a homomorphism from E1 to E2 is any
complex analytic map from E1 to E2 that is a group homomorphism. It turns
out that any complex analytic map from E1 to E2 sending OE1 to OE2 is
given by a linear map u Ã µu such that µΛ1 ⊆ Λ2. Equivalently, in terms of
definitions B and C, a homomorphism from E1 to E2 is an algebraic map that
is a group homomorphism. Again, it turns out that any algebraic map that
sends the identity to the identity is automatically a group homomorphism.

An isogeny is a homomorphism from E1 to E2 that equivalently, (i) is a
non-zero map, (ii) has finite kernel, and (iii) is surjective.

An endomorphism of E is a homomorphism from E to itself. Let End(E)
denote endomorphism ring of E, where we add endomorphisms by (φ+ψ)(x) =
φ(x) + ψ(x), and multiply endomorphisms by (φ · ψ)(x) = (φ ◦ ψ)(x). Also let
End0(E) = End(E)⊗Z Q. If E = C/Λ,

End(E) = {µ ∈ C, µΛ ⊆ Λ}
End0(E) = {µ ∈ C, µ · (QΛ) ⊆ (QΛ)}

where QΛ denotes the Q-linear span of Λ.

3.2.2 Elliptic curves with complex multiplication

Clearly, Z ⊆ End(E) for any elliptic curve E.

Definition 3.1 An elliptic curve E/C is said to have complex multiplication
(or simply CM) if End(E) 6= Z.

Now suppose E = C/Λ, Λ = Zω1 +Zω2, ω1 and ω2 being chosen such that
ω1/ω2 ∈ H, the complex upper half plane. Set z = ω1/ω2.

13



Proposition 3.2 E has CM if and only if Q(z) is an imaginary quadratic
field.

Proof: Any non zero element of End(E) is given by µ ∈ C, µ 6= 0 such that
µΛ ⊆ Λ. Then there exist integers a, b, c, d, such that

µω1 = aω1 + bω2

µω2 = cω1 + dω2

with A :=
(

a b
c d

)
being an invertible matrix. Thus µz = az + b, µ = cz +d,

and µ̄z = az + b, µ̄ = cz + d. We can write these equations as a single matrix
equation

(
z z
1 1

) (
µ 0
0 µ̄

)
=

(
a b
c d

)(
z z
1 1

)

or equivalently
(

µ 0
0 µ̄

)
=

(
z z
1 1

)−1 (
a b
c d

)(
z z
1 1

)

Now two possibilities may occur: if A is a diagonal matrix, then µ = µ̄ and
necessarily µ ∈ Z. If A is not diagonal, then either c 6= 0 or b 6= 0. In either
case, µ 6= µ̄, since µ = cz + d = a + b/z and hence in fact both b, c 6= 0. Thus
µ 6∈ R. Since µ satisfies the polynomial (X − µ)(X − µ̄) = char. polynomial
of A, µ generates an imaginary quadratic field K over Q, and Q(z) = Q(µ) =
K. This proves one direction, namely, if E has CM, then Q(z) is imaginary
quadratic.

In the other direction, suppose Q(z) is imaginary quadratic. Then QΛ =
Q(Zω1 + Zω2) = ω2(Qz +Q) = ω2K. Thus

End0(E) = {µ ∈ C, µω2K ⊆ ω2K} = K

Hence End(E) 6= Z and E has CM. ¤
We see then that to any CM elliptic curve E/C, we have associated an

imaginary quadratic field K along with an embedding i : K ↪→ C. Abstractly,
K = End0(E) and i is the embedding induced by the action of K on the
tangent space at the origin.

Conversely, let us now start with an imaginary quadratic field K and de-
scribe all isomorphism classes of CM elliptic curves E/C with End0(E) ' K.
To begin with, we will need some definitions.

Definition 3.3 Let L be a number field. A Z-lattice (or simply lattice) in L
is a free Z-submodule of L of rank = [L : Q]. Equivalently, a lattice is a free
Z-submodule of L that generates L over Q. An order in L is a lattice that is
also a subring (containing 1.)
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The ring of integers oL is clearly an order. In fact every order in L must be
contained in oL (Why?). One can construct other orders in L in the following
way. Start with a, a lattice in L, and consider o := {µ ∈ L, µa ⊆ a}. Then o is
an order in L. We say that o is the order of a or that a is a proper o-ideal.
Of course, in the case o = oL, the proper oL ideals are just the usual fractional
ideals in L. It turns out that for an arbitrary order o in L, one can define an
analog of the class group by taking the group of proper o-ideals a modulo the
equivalence relation a1 ∼ αa2 for α ∈ L×. The group so obtained is called the
class group of o and can be shown to be finite.

We now return to the discussion about CM elliptic curves E with End0(E) '
K. We have seen before that E ' C/Λ = C/(Zω1 +Zω2) ' C/(Zz +Z). Since
K ' End0(E) = Q(z), we see that E ' C/a for some lattice a in K and
some embedding i : K ↪→ C. If o := {µ ∈ K, µa ⊆ a} is the order of a, we
have End(E) ' o. Of course, a will depend on the choice of isomorphism
ϕ : K ' End0(E). However, since for any x ∈ o, tr(x) = x + x̄ ∈ Z ⊂ o, we
have ō = o and the order o associated to E is independent of the choice of
isomorphism ϕ.

Conversely, let o be any order in K, a a proper o-ideal and i : K ↪→ C
an embedding of K in C. Then C/a is an elliptic curve with End(E) ' o. It
is easy to see that if b is another proper o-ideal, the curves C/a and C/b are
isomorphic iff a ∼ b. Thus we have

Proposition 3.4 Let o be any order in K. There is a bijection between iso-
morphism classes of E/C with End(E) ' o, and equivalence classes of proper
o-ideals a in K. Thus the number of isomorphism classes of elliptic curves E
with End(E) ' o is equal to the class number of the order o. In particular,
the number of isomorphism classes of elliptic curves E with End(E) ' oK is
equal to the class number of K.

Proposition 3.5 Let E1 and E2 be two CM elliptic curves over C. Then E1

is isogenous to E2 ⇐⇒ End0(E1) ' End0(E2).

Indeed, if E1 ' C/a and E2 ' C/b for some embedding i : K ↪→ C, a ∩ b

is also a lattice in K and both E1 and E2 are isogenous to C/(a ∩ b).

3.2.3 Idelic actions on lattices

In this section we explain some generalities on lattices and idelic actions on
lattices that will be necessary to formulate the main theorem. In the last
section we defined Z-lattices in a number field. More generally,

Definition 3.6 Let V be a finite dimensional vector space over a number field
Q. An Z-lattice (or simply lattice) in V is a finitely generated Z-submodule of
V that generates V over Q.
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Note: More generally, one could consider oL lattices in vector spaces V over
a number field L. All the propositions stated below can then be generalized in
the obvious way to this situation.

Proposition 3.7 Suppose a and b are two lattices in V . Then a+b, a∩b and
ab are lattices in V .

Proof: Exercise.

If a is a lattice we define ap to be the closure of a in Vp := V ⊗ Qp. i.e.
ap = a⊗ Zp.

Proposition 3.8 Suppose a and b are two lattices in V . Then
(i) If a ⊆ b and ap = bp for all p, then a = b.
(ii) a ⊆ b ⇐⇒ ap ⊆ bp for all primes p.
(iii) a = b ⇐⇒ ap = bp for all p

Proof: (i) Consider the exact sequence

0 → a → b → (b/a) → 0

Since ap = bp, (b/a)p = 0 for all p, hence a/b = 0 and a = b.
(ii) One implication is obvious. In the other direction, let c = a + b. Then
b ⊆ c and bp = cp for all p, hence by part (i) b ⊆ c. i.e. b = c, so a ⊂ b as
required.
(iii) Apply part (ii) to the inclusions a ⊆ b and b ⊆ a. ¤

Proposition 3.9 Suppose a and b are two lattices in V . Then ap = bp for
almost all p, i.e. for all but finitely many p. Converely, suppose a is a lattice
and we are given for each p, a lattice cp in Vp (i.e. a finitely generated sub-Zp

module that generates Vp over Zp) such that for almost all p, cp = ap. Then
there exists a unique lattice b in V , with b in V with bp = cp for all p.

Proof: For the first part, let c = a + b. Then a ⊆ c, and c/a has finite order,
hence (c/a)p = 0 for all but finitely many p. Thus for all but finitely many p,
ap = cp and likewise bp = cp, whence ap = bp.

For the second part, we may assume without loss that cp ⊆ ap for all p (by
multiplying a by a scalar.) Now we can pick an integer n such that (na)p ⊆ cp

for all p. Thus (na)p ⊆ cp ⊆ ap for all p. Now there is a natural isomorphism

ψ : a/na ' ⊕p|nap/(na)p

Let b = {x ∈ a, ψ([x])p ∈ cp for all p}. Then it is clear that b is a lattice with
the required property. ¤
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Let us now apply the above in the following situation. Let K be an imag-
inary quadratic field and consider K as a vector space over Q. Suppose a is
a lattice in K. Let x ∈ A×K . We wish to define a new lattice which will be
called xa. For each rational prime p, consider the p component xp ∈ (Kp)×.
Then xpap is a Zp-lattice in Kp. For almost all p, xp is a unit in K×

p , hence
xpap = ap. Then by Prop. 3.9 above, there exists a unique lattice b in K with
bp = xpap for all p. We denote such a b by the symbol xa.

We would also like to associate to x a canonical isomorphism from K/a to
K/xa. Since

K/a ' ⊕pKp/ap,

and K/xa ' ⊕pKp/(xa)p

it suffices to construct a canonical isomorphism from Kp/ap to Kp/(xa)p for
each p. But multiplication by xp gives such an isomorphism, so we are done.
We denote the isomorphism just constructed by the symbol x. If u ∈ K, then
x([u]) = [v] in K/xa where v ∈ K satisfies v ≡ xpu mod (xa)p for all p.

3.2.4 Main theorem for CM elliptic curves

We are now in a position to state the main theorem. Let E/C be an elliptic
curve with CM by K, an imaginary quadratic field. By the discussion in a
previous section, we can find a Z-lattice a in K and an embedding i : K ↪→ C
such that E ' C/a. Let us fix an isomorphism ξ : C/a → E. Clearly, ξ
restricts to an isomorphism ξ : K/a → Etors.

Let σ ∈ Aut(C/Q) and consider the curve Eσ (obtained for instance by
applying σ to the coefficients of any Weierstrass model of E.) If ϕ ∈ End(E),
then ϕσ ∈ End(Eσ) (where ϕσ may be defined by applying σ to the coefficients
of the polynomials involved in the description of ϕ) and the assignment ϕ Ã ϕσ

gives an isomorphism End(E) ' End(Eσ). Thus Eσ also has CM by K. Hence
Eσ also admits a description as ξ′ : C/a′ ' Eσ for a lattice a′ in K. The main
theorem is motivated by the following question: can one find such a ξ′, in terms
of which the action of σ on the torsion subgroup admits a particularly simple
description ? The following theorem solves this problem for certain σ, namely
those that fix K.

Theorem 3.10 Suppose σ ∈ Aut(C/K). Let s ∈ A×K be any element such that
rec(s) = σ|Gal(K̄/K). Then there exists a unique complex analytic uniformiza-
tion ξ′ : C/s−1a → Eσ such that σ(ξ(u)) = ξ′(s−1u) for all u ∈ K/a i.e. the
following diagram commutes
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K/a
ξ //

s−1

²²

Etors ⊂ E

σ

²²
K/s−1a

ξ′ // Eσ
tors ⊂ Eσ

3.2.5 The j-invariant, automorphisms and Weber functions

Before we derive consequences of the main theorem, we need to digress a little
and review some more basic facts about elliptic curves. We begin with the
following proposition for which the reader can find a proof in [2], Prop. 3.1.

Proposition 3.11 Suppose E and E′ are two elliptic curves given by Weier-
strass equations

E : y2 = 4x3 − g2x− g3 and E′ : y2 = 4x3 − g′2x− g′3

Suppose E and E′ are isomorphic, and λ : E → E′ is an isomorphism. Then
there exists an element µ ∈ C, such that

g′2 = µ4g2, g
′
3 = µ6g3, and λ(x, y) = (µ2x, µ3y)

The following is an immediate corollary to the proposition.

Corollary 3.12 For E given by y2 = 4x3 − g2x− g3, define

j(E) :=
1728g3

2

g3
2 − 27g2

3

Then j(E) depends only on the isomorphism class of E. Further j(E) =
j(E′) ⇐⇒ E ' E′.

Next we consider the automorphism group of E. Since Aut(E) = group of
units in End(E), if E has no CM, Aut(E) = {±1}. Even if E has CM by an
order o in an imaginary quadratic field K, the only cases in which Aut(E) = o×

has more than two elements are the following:
(i) K = Q(i), o = oK , o× = {±1,±i}
(ii) K = Q(ω), ω a primitive cube root of unity, o = oK , o× = {±1,±ω,±ω2}.
In each of these cases, the order o is the maximal order, which happens to

have class number 1. Thus there is a unique curve up to isomorphism of each
of the two types (i) and (ii).
Exercise: Write down a Weierstrass model in each of the cases (i) and (ii) and
identify the extra automorphisms. What are the corresponding j-invariants ?
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Now define for any elliptic curve given in Weierstrass form, a function on
the points of E as follows.

h(x, y) =
g2g3

∆
x, if E is not of the type (i) or (ii) above

=
g2
2

∆
x2 if E is of type (i)

=
g3

∆
x3 if E is of type (ii)

The proof of the following proposition is left as an exercise for the reader.

Proposition 3.13 (a) Let E be an elliptic curve given in Weierstrass form.
If t and t′ are points on E, h(t) = h(t′) ⇐⇒ t′ = λ(t) for λ ∈ Aut(E).

(b) Let E and E′ be two elliptic curves given in Weierstrass form and
λ : E → E′ an isomorphism. Then hE = hE′ ◦ λ.

The function h(x, y) is called a Weber function.

3.2.6 Class fields of imaginary quadratic fields as an application of
the main theorem

As an application of the main theorem, we now discuss how one can generate
abelian extensions of imaginary quadratic fields.

Theorem 3.14 Let E,K, a, ξ be as in the main theorem, and h the Weber
function defined on a Weierstrass model of E. Let u ∈ K/a(so that ξ(u) ∈
Etors.) Also let W be the open subgroup of A×K defined by

W = {s ∈ A×K , sa = a, su = u} (16)

Then the field K(j(E), h(ξ(u))) is the class field corresponding to the subgroup
K×W of A×K .

Proof (of Thm. 3.14): Let F be the class field corresponding to the open
subgroup K×W and L the field K(j(E), h(ξ(u))). Let σ ∈ Aut(C/K). We
show that σ|F = 1 ⇐⇒ σ|L = 1, which in turn implies F = L.
(i) σ|F = 1 ⇒ σ|L = 1.

Since σ|F = 1, we may pick s ∈ W such that σ|Kab = rec(s). Thus
sa = a and also s−1a = a. By the main theorem, there is an isomorphism
ξ′ : C/s−1a = C/a → Eσ making the following diagram commute:

K/a
ξ //

s−1

²²

Etors ⊂ E

σ

²²
K/a

ξ′ // Eσ
tors ⊂ Eσ
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Since Eσ ' C/s−1a = C/a ' E, we have j(E) = j(Eσ) = j(E)σ. Now
let λ : Eσ → E be the unique isomorphism making the following diagram
commute:

C/a
ξ′

||zz
zz

zz
zz ξ

!!B
BB

BB
BB

B

Eσ λ // E

Then h(ξ(u))σ = h((ξ(u))σ) = h(ξ′(s−1u)) = h(ξ′(u)) = h(λ(ξ′(u))) =
h(ξ(u)) by two applications of Prop. 3.13 (b). Thus σ|L = 1.

(ii) σ|L = 1 ⇒ σ|F = 1.
Let s ∈ A×K such that rec(s) = σ|Kab , and ξ′ be given by the main theorem

so that the following diagram commutes.

K/a
ξ //

s−1

²²

Etors ⊂ E

σ

²²
K/s−1a

ξ′ // Eσ
tors ⊂ Eσ

Since j(Eσ) = j(E)σ = j(E), Eσ is isomorphic to E. Hence we can pick
an element µ ∈ K× such that µs−1a = a. Let λ be the unique isomorphism
making the following diagram commute:

C/s−1a
ξ′ //

µ

²²

Eσ

λ

²²
C/a

ξ // E

Now h(λ(ξ(u)σ)) = h(ξ(u)σ) = (h(ξ(u)))σ = h(ξ(u)). Hence there exists
α ∈ o× such that i(α) · λ(ξ(u)σ) = ξ(u) where i(α) denotes the endomorphism
defined by α. But now, λ(ξ(u)σ) = λ(ξ′(s−1u)) = ξ(µs−1u). Thus αµs−1u = u.
Now setting s′ = αµs−1, we see that s′a = a and s′u = u. Hence s′ ∈ W an
consequently s ∈ K×W = HF . Thus σ|F = 1 as required. ¤

Corollary 3.15 Suppose that E above is chosen to have CM by oK .
(i) Let c be an integral ideal in K and let E[c] denote the c-torsion subgroup of
E. Then the field K(j(E), h(E[c])) is the ray class field of K of conductor c.
(ii) K(j(E), h(Etors)) is the maximal abelian extension of K.

Proof: (i) We may assume that E ' C/a for a fractional ideal a in K. Let
u ∈ c−1a/a be such that {α ∈ oK , αu = 0} = c. Then it is easy to check
that the group W of (16) is nothing but Wc. Thus Kc = K(j(E), h(ξ(u))) ⊆
K(j(E), h(E[c])). On the other hand, for every v ∈ c−1a/a,

Wc ⊆ {s ∈ A×K , sa = a, sv = v}

20



hence Kc ⊇ K(j(E), h(ξ(v))). since this is true for all v ∈ c−1a/a, Kc ⊇
K(j(E), h(E[c])). Thus Kc = K(j(E), h(E[c])) as required.
(ii) Follows immediately from (i).

For E as in the previous corollary we write j(a) for j(E).

Corollary 3.16 For every fractional ideal a in K, the field K(j(a)) is the
maximal everywhere unramified abelian extension of K i.e. is equal to the
Hilbert class field H of K. Further for σ ∈ Gal(H/K), if σ = (b,H/K) for
some fractional ideal b, then

j(a)σ = j(b−1a)

3.3 CM fields

In this section we explain how the results of the previous section may be
generalized to the higher dimensional case.

3.3.1 Abelian Varieties

Again, we refer the reader to Brian Conrad’s lectures for more details. Here
we simply provide a brief overview.

An abelian variety over C may be thought of equally in any one of the two
ways:

(i) As a projective group variety, i.e. a projective variety A equipped with
maps m : A×A → A and i : A → A satisfying the usual group axioms.

(ii) As a complex torus V/U , where V is a g dimensional C-vector space, U
is a lattice in V (i.e. a subgroup of rank 2g) such that there exists a positive
definite Hermitian form H : V × V → C that is integral valued on U . In this
case, we write E = Im(H). E is said to be a Riemann form on V/U .

Notice two differences from the definition in the elliptic curve case: firstly in
the case g = 1, a Hermitian form H with the required properties always exists
on any complex torus, but this is not the case for g > 1. Secondly, for higher
dimensional abelian varieties, there is no nice description using equations unlike
the Weierstrass equation for elliptic curves.

The existence of the form positive definite form H is equivalent to the
existence of an ample line bundle on V/U . Indeed we have

Proposition 3.17 For any complex torus V/U , there is a bijection between
isomorphism classes of line bundles L on V/U and collections of data consisting
of a Hermitian form H : V × V → C, such that E = Im(H) is Z-valued on U
and a map α : U → S1 = {z ∈ C×}, |z| = 1, α(u1+u2) = α(u1)α(u2)eπiE(u1,u2).
We denote the line bundle associated to H and α by the symbol L(H, α).
L(H,α) is ample ⇐⇒ H is positive definite. L(H,α) is topologically trivial
⇐⇒ H = 0.
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Now let us assume that A = V/U is an abelian variety. There is associated
to A another abelian variety Â called the dual abelian variety, whose points
parametrize isomorphism classes of line bundles on A that are topologically
trivial. Â is isogenous to A and ˆ̂

A is canonically isomorphic to A. To every
line bundle L on A, one may attach a map φL : A → Â, which at the level of
points is x Ã T ∗xL ⊗ L−1, where Tx denotes translation by x. L is said to be
non-degenerate if φL is an isogeny. Any ample line bundle is non-degenerate.

Definition 3.18 A polarization λ on A is an isogeny λ : A → Â such that
λ = φL for some choice of ample L.

Of course L and L′ could be non-isomorphic line bundles such that φL =
φL′ . This happens precisely when LL′−1 ∈ Pic0(A), the group of topologically
trivial line bundles.

A polarization on A gives rise to an involution on End0(A), via φ Ã λ−1φλ.
This involution is called the Rosati involution, and we denote it by the symbol
′. If λ = φL with L ample and E is the Riemann form associated to L, then
E(φx, y) = E(x, φ′y). Note that, by the remarks above, the Riemann form E
depends only on the polarization, not the choice of L.

3.3.2 CM fields and CM Abelian varieties

Definition 3.19 A CM field is a totally imaginary quadratic extension of a
totally real number field.

Let K be a CM field of degree 2g over Q and F its maximal totally real
subfield. Denote by ρ the non trivial element of Gal(K/F ).

Definition 3.20 An abelian variety A of dimension g is said to have CM by
K if there exists an embedding i : K ↪→ End0(A).

It can be shown that in such a case, i(K) is its own centralizer in End0(A).
Suppose now that A has CM by K and fix an embedding i : K ↪→ End0(A).

Let σ denote the representation of K on the tangent space of A at the origin.
Then σ ⊕ σ̄ is equivalent to the representation of K on H1(A,C). Since this
last representation is defined /Q and has dimension equal to the degree [K :
Q], it must equal the regular representation of K (tensored up to C.) Thus
σ = σ1 ⊕ . . .⊕ σg, for some collection Φ = {σ1, . . . , σg} of embeddings of K in
Q (or C) such that {σ1, . . . , σg, σ1ρ, . . . , σgρ} is the complete set of embeddings
of K in C. We call such a Φ a CM type of K, and in the situation above we
say that Φ is the CM type of the pair (A, i).

Now let 0 → U → V → A → 0 be the analytic uniformization of A. We
may pick a basis of V such that the action of K is by a Ã d(aσ1 , aσ2 , . . . , aσg),
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so that V is now identified with Cg and U with a lattice L in Cg. Since the
action of K on QL is equivalent to the regular representation of K, we may
pick w ∈ QL such that QL = i(K)w. Since RL = Cg, no coordinate of w is 0.
Then changing coordinates on Cg again, we may assume that QL = i(K). If
Φ : K ⊗Q R ' Cg is the isomorphism given by Φ and a = Φ−1(L), we have a
commutative diagram

0 // a //

²²

K ⊗Q R //

²²

(K ⊗Q R)/a //

²²

0

0 // L // Cg
ξ // A // 0

that realises A as a quotient (K ⊗Q R)/a for a lattice a in K. Conversely,
given a CM type Φ and a lattice a in K, the complex torus (K ⊗Q R)/a is
algebraizable. In fact one has

Proposition 3.21 Let ζ ∈ K be such that −ζ2 ∈ F and is a totally positive
element of F , and such that Im(ζσi) > 0 for all i. Define for z, w ∈ Cg,

E′(z, w) =
∑

i

ζσi(ziw̄i − z̄iwi)

Then for some integer g, E := gE′ is a Riemann form on Cg/Φ(a) satisfying

E(ax, y) = E(x, aρy) (17)

for all a ∈ K, and whose associated Hermitian form is positive definite. Con-
versely all Riemann forms on Cg/Φ(a) satisfying (17) and whose associated
Hermitian form is positive definite arise in this way.

The proposition above shows the existence of (and even classifies) polar-
izations on A such that the associated Rosati involution on End0(A) restricts
to the involution ρ on K. Note that the form E′ defined above satisfies

E′(Φ(x), Φ(y)) = TrK/Q(ζxyρ)

for all x, y ∈ K.
To summarize, suppose we are given an abelian variety A with CM by K,

an embedding i : K ↪→ End0(A) and a polarization λ on A whose associated
Rosati involution preserves K and acts as ρ on K. Then we may associate to
such data (A, i, λ) a CM type Φ, an analytic uniformization ξ : Cg → A, a
lattice a in K and an element ζ ∈ K such that ξ : Cg/Φ(a) ' A and via this
isomorphism one has
(i) the embedding i : K ↪→ End0(A) corresponds to the action of K on Cg by
Φ, and
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(ii) the Riemann form E associated to λ satisfies

E(Φ(x),Φ(y)) = TrK/Q(ζxyρ)

for all x, y ∈ K.
We say then that (A, i, λ) is of type (K, Φ, a, ζ) with respect to ξ. Clearly

the type determines A up to isomorphism. Note that while K and Φ are
uniquely determined by the data (A, i, λ), a, ξ and ζ are not. However, since
K is its own centralizer in End0(A), the indeterminacy is only up to changing
basis in Cg by the action of an element of K× i.e. for any α ∈ K×, we could
replace a, ξ and ζ by a′ = α−1a, ξ′ = ξ ◦ Φ(α), ζ ′ = (ααρ)ζ.

3.3.3 Properties of CM fields : the reflex field

We begin with the following useful proposition.

Proposition 3.22 Let K ⊂ C be a number field. Then K is a CM field if and
only if
(i) ρ induces a non-trivial automorphism of K (here ρ is complex conjugation.)
(ii) ρτ = τρ for all embeddings τ : K ↪→ C. (Here ρτ is defined to be τ ◦ ρ.)

Proof: Suppose K satisfies (i) and (ii). Let F be the subfield of K fixed by ρ.
Then K/F is a quadratic extension. The condition (ii) implies that for every
embedding τ : K ↪→ C, τ(K) 6⊂ R and τ(F ) ⊂ R. Thus F is totally real and
K is totally imaginary, so K is a CM field. Conversely, if K is a CM field,
(i) is obviously true and (ii) follows easily by using that K = F (α) for some
element α with α2 ∈ F . ¤

Corollary 3.23 The composite of two (and hence finitely many) CM fields is
a CM field. In particular, the Galois closure of a CM field is a CM field.

Proof: Indeed suppose K, L are CM fields in C. Then (i) and (ii) follow for
the field KL since they hold separately for K and for L, so KL is a CM field.
¤

Now suppose Φ = {σ1, . . . , σr} is a CM type attached to a CM field K of
degree 2r over Q. Define

NΦ(x) =
∏

i

xσi , T rΦ(x) =
∑

i

xσi

Then define the reflex field of (K, Φ) to be the field K∗ generated by TrΦ(x)
for all x ∈ K. For any τ ∈ Gal(Q/Q),

Proposition 3.24 K∗ is a CM field.
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Proof: We check that K∗ satisfies (i) and (ii) of Prop. 3.22. Firstly, if
τ ∈ Gal(Q/Q),

TrΦ(x)τρ =
∑

i

xσiτρ =
∑

i

xρσiτ =
∑

i

xσiρτ = TrΦ(x)ρτ

so (ii) is satisfied. Next, note that since (TrΦ(x))ρ = TrΦ(xρ), ρ induces an
involution of K∗. If this involution is trivial, then (TrΦ(x))ρ = TrΦ(x)ρ for
all x, which is impossible by linear independence of Φ ∪ Φρ. Thus ρ induces a
non-trivial involution of K∗ as required. ¤

Next we construct a CM type of K∗ called the reflex type. First let K ′ be
the Galois closure of K and let G denote the group Gal(K ′/K). Let H and H∗

denote the subgroups of G corresponding to K and K∗ respectively. Extend
each σi to an embedding of K ′ in C and consider union of cosets S := ∪Hσi.
By linear independence of characters,

H∗ = {γ ∈ G,Sγ = S}
Since for all γ ∈ H∗, γS−1 = S−1, S−1 is a union of cosets of H∗, say S−1 =
∪jH

∗τj . Now one can check that Φ∗ = {τ1, . . . , τm} is a CM type of the CM
field K∗, and we call it the reflex type associated to (K, Φ). Now, since

H = {γ ∈ G,S−1γ = S−1}
it follows that NΦ∗(x) ∈ K for every x ∈ K∗. In fact, one can show that NΦ∗

can be extended to a continuous homomorphism

NΦ∗ : A×K∗ → A×K

3.3.4 Examples

3.3.5 The main theorem for CM Abelian varieties

We can now state the main theorem as originally given by Shimura and Taniyama.

Theorem 3.25 Suppose (A, i, λ) is of type (K, Φ, a, ζ) with respect to ξ : Cg →
A. Let σ ∈ Aut(C/K∗) and suppose that s ∈ A×K∗ is such that rec(s) = σ|K∗.
Then there exists a unique analytic uniformization ξ′ : Cg → Eσ satisfying

(i) (Aσ, iσ, λσ) is of type (K, Φ, NΦ∗(s)−1a, NK∗/Q(so)ζ) with respect to ξ′ (where
o denotes the ring of integers of K∗.)
(ii) (ξ(Φ(u)))σ = ξ′(Φ(NΦ(s)−1u)) for all u ∈ K/a. i.e. the following diagram
commutes

K/a
ξ◦Φ //

NΦ∗ (s)−1

²²

Ators ⊂ A

σ

²²
K/NΦ∗(s)−1a

ξ′◦Φ // Aσ
tors ⊂ Aσ
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