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Abstract. Let M be a compact Riemannian manifold of dimension n. The k-curvature,
for k = 1, 2, · · · , n, is defined as the k-th elementary symmetric polynomial of the eigenval-
ues of the Schouten tenser. The k-Yamabe problem is to prove the existence of a conformal
metric whose k-curvature is a constant. When k = 1, it reduces to the well-known Yamabe
problem. Under the assumption that the metric is admissible, the existence of solutions to
the k-Yamabe problem was recently proved by Gursky and Viaclovsky for k > n

2
. In this

paper we prove the existence of solutions for the remaining cases 2 ≤ k ≤ n
2
, assuming that

the equation is variational.

1. Introduction

In recent years the Yamabe problem for the k-curvature of the Schouten tensor, or
simply the k-Yamabe problem, has been extensively studied. Let (M, g0) be a compact
Riemannian manifold of dimension n. Denote by Riem, Ric, and R the Riemannian
curvature tensor, the Ricci tensor, and the scalar curvature, respectively. Then one has
the standard decomposition Riem = W + A ¯ g0, where W is the Weyl tensor, A is
the Schouten tensor given in (1.2) below, and ¯ denotes the Kulkarni-Nomizu product
[B]. As the Weyl curvature tensor is conformally invariant, the transformation of the
Riemannian curvature tensor under conformal changes of metrics is determined by that
of the Schouten tensor. Therefore it is of interest to study curvature functions of the
Schouten tensor under conformal deformation. A fundamental problem is the k-Yamabe
problem, to prove the existence of a conformal metric g = gv = v

4
n−4 g0 whose k-curvature

is equal to a constant, that is

σk(λ(Ag)) = 1, (1.1)

where 1 ≤ k ≤ n is an integer, λ = (λ1, · · · , λn) are the eigenvalues of Ag with respect
to the metric g, and

Ag =
1

n− 2
(Ricg − Rg

2(n− 1)
g) (1.2)
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is the Schouten tensor. As usual we denote by

σk(λ) =
∑

i1<···<ik

λi1 · · ·λik
(1.3)

the k-th elementary symmetric polynomial. When k = 1, we arrive at the well known
Yamabe problem.

When k ≥ 2, the k-Yamabe problem was initiated by Viaclovsky [V1] and also arose
in the study of the Paneitz operator [Br, CGY1]. Equation (1.1) is a fully nonlinear
partial differential equation. To work in the realm of elliptic operators, one assumes that
the eigenvalues λ(Ag) lie in the convex cone Γk [CNS], where

Γk = {λ ∈ Rn | σj(λ) > 0 for j = 1, · · · , k}. (1.4)

Under this assumption, the k-Yamabe problem has been solved in the cases when n = 4
and k = 2 [CGY1, CGY2], or when the manifold is locally conformally flat [LL1, GW2].
Very recently Gursky and Viaclovsky [GV2] solved the problem for k > n

2 , using the
positivity of the Ricci curvature in this case.

In this paper we employ a variational method to treat the problem for the cases
2 ≤ k ≤ n

2 . We prove that equation (1.1) has a solution as long as it is variational,
namely it is the Euler equation of a functional, which includes the cases when k = 2
and when M is locally conformally flat. In Section 2 we give a sufficient and necessary
condition for equation (1.1) to be variational.

When (1.1) is variational and k 6= n
2 , its solutions correspond to critical points of the

functional
J(g) =

n− 2
2(n− 2k)

∫

M
σk(λ(g))d volg − n− 2

2n

∫

M
d volg (1.5)

in the conformal class [g0] = {g | g = v
4

n−2 g0, v > 0}. When k = n
2 , the first integral

in (1.5) is a constant and we need to replace it by (2.32) below. We will find a min-max
(Mountain Pass Lemma) solution, as in the case k = 1. Note that in the case k > n

2 , the
coefficients are negative and the functional is negative.

The progressive resolution of the Yamabe problem (k = 1) by the second author,
Aubin and Schoen [Ya, Tr1, Au1, S1] was a milestone in differential geometry. Roughly
speaking, the overall proof consists of two parts. The first one is to show that the Yamabe
problem is solvable if the Yamabe constant Y1 satisfies the condition

Y1(M) < Y1(Sn), (1.6)

and the second one is to verify the condition (1.6) for manifolds not conformally diffeo-
morphic to the unit sphere Sn with standard metric. When M is locally conformally
flat, different proofs were found later [SY1, Ye].
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For the k-Yamabe problem, 2 ≤ k ≤ n
2 , our variational approach basically comprises

the same two steps. Namely one first shows that (1.1) has a solution when the k-Yamabe
constant Yk satisfies

Yk(M) < Yk(Sn), (1.7)

and then verify the condition (1.7) for manifolds not conformal to the unit sphere Sn.
But since equation (1.1) is fully nonlinear, our treatment is technically different and more
complicated. For the first step, we cannot apply the variational method directly, since
we need to restrict the functional (1.5) to a subset of the conformal class [g0], given by

[g0]k = {g | g = v
4

n−2 g0, v > 0, λ(Ag) ∈ Γk}, (1.8)

and the set of functions v with v
4

n−2 g0 ∈ [g0]k may not be convex. Through the functional
(1.5), we introduce a descent gradient flow, establish appropriate a priori estimates, and
prove the convergence of solutions to the flow under assumption (1.7). We need to choose
a particular gradient flow to obtain the a priori estimates, locally in time.

For the second step, it seems impossible to find an explicit k-admissible test function.
The function

vε(x) =
( ε

ε2 + r2

)(n−2)/2
, (1.9)

which is the unique solution of (1.1) on the Euclidean space Rn for all 1 ≤ k ≤ n, is k-
admissible only when r ≤ Cε1/2 on a general manifold, where r is the geodesic distance.
Fortunately we found a simple way to deduce (1.7) directly from (1.6).

This paper is arranged as follows. In Section 2, we state the main results, specifically
in §2.1, while in §2.2 we outline the proof. In §2.3 we collect some related results on the
k-Hessian equation. In §2.4 we give a sufficient and necessary condition for a partial dif-
ferential equation to be variational. In Section 3 we study the regularity for the gradient
flow of the functional (1.5) for solutions with λ(Agv ) ∈ Γk, and give counterexamples to
interior regularity for solutions with λ(Agv ) ∈ (−Γk). In Section 4 we investigate the
asymptotic behavior of a descent gradient flow and prove the convergence of the flow
under condition (1.7). We then prove (1.7) for manifolds not conformal to Sn in Section
5. The final Section 6 contains some remarks.

The authors are grateful to Kaiseng Chou for useful discussions. This research was
largely carried out in the winter of 2004-05 while the third author was at the Nankai
Institute of Mathematics in China under a Yangtze River Fellowship. The other authors
are also grateful for the Nankai Institute for hospitality when we were all there together
in November 2004.
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2. The main results

2.1. The main results. Let (M, g0) be a Riemannian manifold. If g = v
4

n−2 g0 is a
solution of (1.1), then the Schouten tensor is given by Ag = 2

(n−2)v V , and v satisfies the
equation

L[v] := v(1−k) n+2
n−2 σk(λ(V )) = v

n+2
n−2 , (2.1)

where

V = −∇2v +
n

n− 2
∇v ⊗∇v

v
− 1

n− 2
|∇v|2

v
g0 +

n− 2
2

vAg0 . (2.2)

Equation (2.1) is a fully nonlinear equation of similar type to the k-Hessian equations
[CNS, CW2, I1, TW2]. For the operator L to be elliptic, we need to restrict to metrics
with eigenvalues λ(Ag) ∈ ∪(±Γk), which we will simply denote as g ∈ ±Γk. Therefore
equation (2.1) has two elliptic branches, one is when the eigenvalues λ ∈ Γk and the
other one is when λ ∈ (−Γk). In this paper we will mainly consider solutions with
eigenvalues in Γk. Accordingly we say v is k-admissible (that is v is strictly subharmonic
with respect to L) if g = v

4
n−2 g0 ∈ Γk. The set of all k-admissible functions will be

denoted by Φk = Φk(M, g0). In this paper we will always assume, unless otherwise
indicated, that 2 ≤ k ≤ n

2 and the following two conditions hold,

(C1) The set Φk(M, g0) 6= ∅;
(C2) The operator L is variational.

The condition (C1) ensures that the operator L is elliptic, and may be replaced by
Yj(M) > 0 for j = 1, · · · , k, as in the case when k = 2 and n = 4 [CGY1, GV1]. Note
that in condition (C1), we do not assume directly that the metric g0 ∈ Γk, rather we
assume that there exists a positive function v such that v

4
n−2 g0 ∈ Γk. Conditions (C1)

(C2) are automatically satisfied when k = 1.

As for the Yamabe problem, we introduce the k-Yamabe constant for 2 ≤ k ≤ n
2 ,

Yk(M) = inf{Fk(g) | g ∈ [g0]k,Vol(Mg) = 1}, (2.3)

where [g0]k is defined in (1.8), and

Fk(g) =
∫

M
σk(λ(Ag))d volg

=
∫

M
v

2n
n−2−k n+2

n−2 σk(λ(V )) d volg0 . (2.4)

Note that we have ignored a coefficient ( 2
n−2 )k in the second equality. The main result

of the paper is the following.
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Theorem 2.1. Assume 2 ≤ k ≤ n
2 and the conditions (C1) (C2) hold. Then the k-

Yamabe problem (1.1) is solvable.

As indicated in the introduction, the proof of Theorem 2.1 is divided into two parts.
The first part is the following lemma.

Lemma 2.1. If the critical inequality (1.7) holds, then the k-Yamabe problem (1.1) is
solvable.

The second part provides the condition for (1.7).

Lemma 2.2. The critical inequality (1.7) holds for any compact manifold which is not
conformal to the unit sphere Sn.

When k = n
2 , we prove that Fn/2(g) ≡ Yn/2(M), that is it is a constant for any

g ∈ [g0]k (Lemma 4.8). Hence (1.7) implies that Fn/2(g) < Yn/2(Sn) provided M is not
conformal to the unit sphere.

2.2. Strategy of the proof. A solution of the k-Yamabe problem is a min-max
type critical point of the corresponding functional. As we need to restrict ourselves to
k-admissible functions, we cannot directly use variational theory (such as the Ekeland
variational principle). Instead we study a descent gradient flow of the functional and
investigate its convergence. We need to choose a special gradient flow (similar to [CW2])
for which the necessary a priori estimates can be established.

As with the original Yamabe paper [Ya], we first study the approximating problems

L(v) = vp, (2.5)

where 1 < p ≤ n+2
n−2 . Equation (2.5) is the Euler equation of the functional

Jp(v) = Jp(v;M) =
n− 2

2n− 4k

∫

(M,g0)

v
2n

n−2−k n+2
n−2 σk(λ(V ))− 1

p + 1

∫

(M,g0)

vp+1. (2.6)

Let ϕ1 = ε and ϕ2 = ε−1, where ε > 0 is a small constant. Then Jp(ϕ1) → 0 (when
k < n

2 ) and Jp(ϕ2) → −∞ as ε → 0. Let P denote the set of paths in Φk connecting ϕ1

and ϕ2, namely
P = {γ ∈ C([0, 1], Φk) | γ(0) = ϕ1, γ(1) = ϕ2}. (2.7)

Obviously Φk 6= ∅. Denote

cp[M] = inf
γ∈P

sup
s∈[0,1]

Jp(γ(s);M). (2.8)
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Then (1.7) is equivalent to

cp[M] < cp[Sn] (2.9)

with p = n+2
n−2 . We will prove that Jp has a min-max critical point vp with Jp(vp) = cp[M],

in the sub-critical case p < n+2
n−2 . By a blow-up argument, we prove furthermore that vp

converges to a solution of (2.1) under the assumption (2.9).

The descent gradient flow will be chosen so that appropriate a priori estimates can be
established. To simplify the computations, we will also use the conformal transformations
g = u−2g0 or g = e−2wg0. That is

u = ew = v−
2

n−2 . (2.10)

We say u or w is k-admissible if v is, and also denote u,w ∈ Φk if v ∈ Φk.

Our gradient flow is given by

F [w]− wt = µ(f(x,w)), (2.11)

where

F [w] := µ(σk(λ(Ag))) (2.12)

and g = e−2wg0. When f(x,w) = e−2kw, a stationary solution of (2.11) is a solution to
the k-Yamabe problem. The function µ is monotone increasing and satisfies

lim
t→0+

µ(t) = −∞. (2.13)

Condition (2.13) ensures the solution is k-admissible at any time t. For if u(·, t) is a
smooth solution, then (2.13) implies σk(λ) > 0 at any time t > 0. A natural candidate
for the choice of µ is the logarithm function µ(t) = log t [Ch1, W1, TW4]. However for
the flow (2.11), we need to choose a different µ to ensure appropriate a priori estimates.

In the case k = n
2 , Fn/2(g) is a constant less than Yn/2(Sn). Hence by the Liouville

theorem in [LL1], it is easy to prove that the set of solutions of (2.1) is compact. Hence
the existence of solutions can be obtained by a degree argument. When 2 ≤ k < n

2 ,
by the Liouville theorem in [LL2], one can also prove the set of solutions of (2.5) is
compact when p < n+2

n−2 . But to use the condition (1.7) in the blow-up argument, we
need a solution vp of (2.5) satisfying Jp(vp) = cp. This is the reason for us to employ the
gradient flow.

For the verification of (1.7), one cannot mimic the argument in the case k = 1, as the
test function (1.9) is in general not k-admissible in a geodesic ball Bρ0 . Instead we let
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v1 be the solution to the Yamabe problem (k = 1), and v be the k-admissible solution of
the equation

σk(λ(V )) = v
k n+2

n−2
1 .

We will verify (1.7) by using the solution v as the test function.

The idea of using a gradient flow was inspired by [CW2], where a similar problem for
the k-Hessian problem (see (2.22) below) was studied. However technically the argument
in this paper is different. For the k-Yamabe problem, the corresponding Sobolev type
inequality was not available, and the a priori estimates only allow us to get a local (in
time) solution. The argument in this paper is also self-contained, except we will use the
Liouville theorem in [LL1, LL2], proved by the moving plane method; see also [CGY3].

2.3. The k-Hessian equation. Equations (2.1) is closely related to the k-Hessian
equation

σk(λ(D2v)) = f(x) x ∈ Ω, (2.15)

where 1 ≤ k ≤ n, λ = (λ1, · · · , λn) denote the eigenvalues of the Hessian matrix (D2v),
Ω is a bounded domain in the Euclidean n-space Rn. For later applications we collect
here some elementary properties of the polynomial σk, and give a very brief summary of
related results for the equation (2.15).

We write σ0(λ) = 1, σk(λ) = 0 for k > n, and denote σk;i(λ) = σk(λ)∣∣λi=0
.

Lemma 2.3. Let λ ∈ Γk with λ1 ≥ · · · ≥ λn. Then

λk ≥ 0 (i)

σk(λ) = σk;i(λ) + λiσk−1;i(λ), (ii)

Σn
i=1σk−1;i(λ) = (n− k + 1)σk−1(λ), (iii)

σk−1;n(λ) ≥ · · · ≥ σk−1;1(λ) > 0, (iv)

σk−1;k(λ) ≥ Cn,kΣn
i=1σk−1;i(λ), (v)

σk−1(λ) ≥ k

n− k + 1
(n
k )1/k[σk(λ)](k−1)/k. (vi)

Moreover, the function [σk]1/k is concave on Γk.

We just listed a few basic formulae, there are many other useful ones, see for example
[CNS, CW2, LT]. For our investigation of equation (2.1) and its parabolic counterpart,
Lemma 2.1 will be sufficient. These formulas can be extended to σk(λ(r)), regarded as
functions of n×n symmetric matrices r. In particular [σk(λ(r))]1/k is concave in r [CNS].
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We say a function v ∈ C2(Ω) is k-admissible (relative to equation (2.15)) if the eigen-
values λ(D2v) ∈ Γk. Equation (2.15) is elliptic if v is k-admissible. The existence
of k-admissible solutions to the Dirichlet problem for (2.15) was proved by Caffarelli-
Nirenberg-Spruck [CNS], see also Ivochkina [I].

Relevant to the k-Yamabe problem is the variational property of the k-Hessian equa-
tion (2.15), investigated in [CW2, TW4, W1]. It is well known that the k-Hessian
equation is the Euler equation of the functional

Ik(v) =
1

k + 1

∫

Ω

(−v)σk(λ(D2v)). (2.16)

The Sobolev-Poincaré type inequality, for k-admissible functions vanishing on the bound-
ary,

I
1/(l+1)
l (v) ≤ CI

1/(k+1)
k (v), (2.17)

was established in [W1] for the case l = 0 and k ≥ 1, and in [TW4] for the case k > l ≥ 1,
where 0 ≤ l ≤ k ≤ n,

I0(v) =
[ ∫

Ω

|v|k∗dx
]1/k∗

, (2.18)

and

k∗ = n(k + 1)/(n− 2k) if k < n/2, (2.19)

k∗ < ∞ if k = n/2,

k∗ = ∞ if k > n/2.

The best constant in the inequality (2.17) is attained by

v(x) = (1 + |x|2)(2k−n)/2k (2.20)

when l = 0, k < n
2 , and Ω = Rn; and by the unique solution of

σk

σl
(λ(D2v)) = 1 in Ω (2.21)

for 1 ≤ l < k ≤ n.

From the inequalities (2.17), it was proved in [CW2] that the Dirichlet problem

σk(λ(D2v)) = |v|p + f(v) in Ω, (2.22)

v = 0 on ∂Ω,

admits a nonzero k-admissible solution, where 1 ≤ k ≤ n
2 , 1 < p < k∗ − 1, f is a lower

order term of |v|p. The existence result was proved for the problem with more general
right hand side.
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Remark 2.1. The 1996 preprint [CW1] also contains the existence of solutions to the
Dirichlet problem (2.22) in the critical growth case p = k∗ − 1. The result was obtained
by a blow-up argument and the symmetrization of functions, see Theorem 9.1 in [CW1].

2.4. A necessary and sufficient condition for an equation to be variational.

The following proposition was communicated to the authors by Kaiseng Chou several
years ago.

Proposition 2.1. Let M be a compact manifold without boundary, v ∈ C4(M). An
operator F [v] = F [∇2v,∇v, v, x] is variational if and only if its linearized operator is
self-adjoint. The functional is given by

I[v] =
∫

G[v], (2.23)

except when F is homogeneous of degree -1, where

G[v] =
∫ 1

0

vF [λv]. (2.24)

This proposition can be found in [O]. We give a proof of the “if” part, as we need
some related formulae.

Proof. The linearized operator of F [v] is given by

L(ϕ) = F ijϕij + Fpj ϕj + Fvϕ. (2.25)

We have ∫

M
v L(ϕ) =

∫

M
[v∇i(F ij∇jϕ) + vϕFv]−A

=
∫

M

[−viϕjF
ij + vϕFv]−A

=
∫

M
ϕ[F ijvij + Fpivi + Fvv]−A + B

=
∫

M
ϕL(v)−A + B,

where

A =
∫

M
vϕj(∇iF

ij − Fpj ),

B =
∫

M
viϕ(∇jF

ij − Fpi),

−A + B = −
∫

M
(
ϕ

v
)iv

2(∇jF
ij − Fpi)

=
∫

M

ϕ

v
∇i[v2(∇jF

ij − Fpi)]
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Hence L is self-adjoint if and only if

n∑

i,j=1

∇i[v2(∇jF
ij − Fpi)] = 0. (2.26)

If L is self-adjoint,

〈I ′[v], ϕ〉 =
∫

M
ϕ

∫ 1

0

F [λv] +
∫ 1

0

∫

M
λv[F ij [λv]ϕij + Fpi

ϕi + Fvϕ]

=
∫

M
ϕ

∫ 1

0

F [λv] +
∫ 1

0

∫

M
λϕ[F ij [λv]vij + Fpi

vi + Fvv]

=
∫

M
ϕ

∫ 1

0

F [λv] +
∫

M
ϕ

∫ 1

0

λ
d

dλ
F [λv]dλ

=
∫

M
ϕF [v].

Hence F is the Euler equation of the functional I. ¤
Conversely if the operator F is the Euler operator of the functional I, from the above

argument we must have −A+B = 0, namely (2.26) holds. In other words, F is the Euler
operator of I if and only if (2.26) holds. Observe that if

∑

i

∇iF
ij = Fpj ∀ j, (2.27)

then (2.26) holds.

From Proposition (2.5) we can recover the results on the variational structure of (2.1)
in [V1]. First, if locally M is Euclidean, one verifies directly that (2.26) holds, as it is
a pointwise condition. The locally conformally flat case is equivalent to the Euclidean
case by a conformal deformation to the Euclidean metric. Finally if k = 2, we note
that to verify (2.26) for arbitrary v with a fixed background metric g0 is equivalent to
verify it for v ≡ 1 with respect to an arbitrary conformal metric g = v̂

4
n−2 g0. However

when v ≡ 1, condition (2.26) becomes
∑n

i,j=1∇i∇jF
ij = 0, where F ij = ∂

∂rij
σk(λ(r))

at r = Ag. But we have

∇iF
ij =

1
2(n− 2)

(R,j −2Rij,i) = 0 (2.28)

by the second Bianchi identity.

When k ≥ 3, it is easy to find metrics for which (2.26) does not hold (at v ≡ 1). So
equation (2.1) need not be variational. As an example, let k = n = 3, and in a local
coordinate system, let the metric g = {gij} be given by

g11 = 1, g22 = 1 + x, g33 = 1 + y2 + z2, gij = δij for i 6= j. (2.29)
10



Then ∇i∇jF
ij 6= 0.

By (2.23) we also see that (2.6) is the functional of (2.5). When k = n
2 , the integral

(2.24) may not exist. We may consider v as a composite function v = ϕ(w) and write
equation (2.5) in the form

F [w] =: ϕ′(w)L(ϕ(w)) = ϕp(w)ϕ′(w). (2.30)

If the operator L in (2.1) satisfies (2.26) with respect to v, the operator F in (2.30)
satisfies (2.26) with respect to w. Hence the corresponding functional is given by

En/2(w) =
∫

(M,g0)

∫ 1

0

wF [tw]. (2.31)

In particular if v = e−
n−2

2 w, then we obtain the functional in [BV],

En/2(w) = −
∫

(M,g0)

∫ 1

0

wσn/2(λ(Agt)), (2.32)

where gt = e−2twg0.
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3. The a priori estimates

In this section we study the regularity of k-admissible solutions (2 ≤ k ≤ n) to equation
(2.1) and its parabolic counterpart (2.11). The global a priori estimates for the elliptic
equation (2.1) (for solutions with eigenvalues in Γk) have already been established by J.
Viaclovsky [V2], with interior estimates by P. Guan and G. Wang [GW1]. We will provide
a simpler proof for the elliptic equation (2.1), and extend the estimates to the parabolic
equation (2.11) on general manifolds, which is necessary for our proof of Theorem 2.1.
Previously the estimates for the parabolic equation were proved on locally conformally
flat manifolds [Ye, GW2, GW3]. Regularity has also been studied in many other papers
[CGY1,LL1].

We will also present an example showing that the interior a priori estimates do not
hold for solutions with eigenvalues in the negative cone −Γk.

3.1. A priori estimates for equation (2.1). For the regularity of (2.1), we will
use the conformal changes g = u−2g0. For function u, equation (2.1) becomes

σk(λ(U)) = u−k, (3.1)

where

U = ∇2u− |∇u|2
2u

g0 + uAg0 .

Lemma 3.1. [GW1] Let u ∈ C3 be a k-admissible positive solution of (3.1) in a geodesic
ball Br(0) ⊂M. Suppose Ag0 = (aij) ∈ C1(Br(0)). Then we have

|∇u|
u

(0) ≤ C, (3.2)

where C depends only on n, k, r, inf u, and ‖Ag0‖C1 , ∇ denotes the covariant derivative
with respect to the initial metric g0.

Proof. Let µ be a smooth, monotone increasing function. Write equation (3.1) in the
form

F [u] = µ[f(x, u)], (3.3)

where F [u] = µ[σk(λ(U))]. We will prove (3.2) for more general function f . Moreover the
constant C is independent of supBr

u if f = κu−p for some constant p > 0 and smooth,
positive function κ.

Let z = |∇u|2ϕ2(u)ρ2, where ϕ(u) = 1
u , and ρ(x) = (1 − |x|2

r2 )+ is a cut-off function,
|x| denotes the geodesic distance from 0. Suppose z attains maximum at x0 ∈ B1(0),
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and |∇u(x0)| = u1(x0). Then at x0, in an orthonormal frame,

1
2
(log z)i =

u1i

u1
+

ϕ′

ϕ
ui +

ρi

ρ
= 0, (3.4)

1
2
(log z)ij =

u1ij

u1
+

∑
α>1

uαiuαj

u2
1

− u1iu1j

u2
1

+
ϕ′

ϕ
uij + (

ϕ′′

ϕ
− ϕ′2

ϕ2
)uiuj + (

ρij

ρ
− ρiρj

ρ2
).

(3.5)

Differentiating equation (3.3) gives

F ij [uij1 + (
u3

1

2u2
− u1u11

u
)δij ] = ∆, (3.6)

where for a matrix r = (rij), F ij(r) = ∂
∂rij

µ[σk(λ(r))] = µ′ ∂
∂rij

σk(λ(r)),

∆ = ∇1µ(f)− F ij∇1(aiju).

By (3.4)-(3.6) we have, at x0,

0 ≥ 1
2
F ij(log z)ij =

1
u1

[
u1u11

u
− u3

1

2u2
]F +

∑
α>1

F ij uαiuαj

u2
1

− F ij(
ϕ′

ϕ
ui +

ρi

ρ
)(

ϕ′

ϕ
uj +

ρj

ρ
)

+
ϕ′

ϕ
F ij(uij − |∇u|2

2u
δij) +

u2
1

2u

ϕ′

ϕ
F + (

ϕ′′

ϕ
− ϕ′2

ϕ2
)F 11u2

1 + F ij(
ρij

ρ
− ρiρj

ρ2
) +

∆
u1

+ ∆′,

where F =
∑

F ii, ∆′ arises in the exchange of derivatives, with |∆′| ≤ CF . Note that

F ij(uij − |∇u|2
2u

δij) = kµ′σk(λ)− uF ijaij ≥ −CauF ,

where Ca = 0 if Ag0 = (aij) = 0. By (3.4) and since ϕ(u) = 1
u ,

[
u11

u
− u2

1

2u2
] +

u2
1

2u

ϕ′

ϕ
= −u1ρ1

uρ
,

−F ij(
ϕ′

ϕ
ui +

ρi

ρ
)(

ϕ′

ϕ
uj +

ρj

ρ
) + (

ϕ′′

ϕ
− ϕ′2

ϕ2
)F 11u2

1 = −F ij(
2ϕ′uiρj

ϕρ
+

ρiρj

ρ2
)

Hence we obtain

0 ≥
∑
α>1

F ij uαiuαj

u2
1

− C(
1

r2ρ2
+

u1

u

1
rρ

+ Ca)F +
∆
u1

+ ∆′. (3.7)

Denote b = |∇u|2
2u (x0). We claim

∑
α>1

F ijuαiuαj ≥ Cb2F − C ′u2F (3.8)

13



for some positive constant C,C ′ (C ′ = 0 if aij = 0). Note that by Lemma 2.3 (iii) (vi),
F ≥ Cn,kµ′σ(k−1)/k

k . From (3.8) we have

|∇u|
u

ρ ≤ C1

r
+ C2 (3.9)

at x0, where C1 is independent of f and C2 independent of r. Hence z(0) ≤ z(x0) ≤ C,
namely (3.2) holds.

Denote ũij = uij + uaij . For any two unit vectors ξ, η, we denote formally ũξη =∑
ξiηj ũij . Then to prove (3.8) it suffices to prove

A =:
∑
α>1

F ij ũαiũαj ≥ Cb2F . (3.10)

By a rotation of the coordinates we suppose {ũij} is diagonal at x0. Then

λ1 = ũ11 − b, · · · , λn = ũnn − b

are the eigenvalues of the matrix {ũij − |Du|2
2u δij}. Suppose λ1 ≥ · · · ≥ λn. At x0 we

have |Du(x0)| = uξ(x0) for some unit vector ξ. In the new coordinates we have

A =
∑

i

(F iiũ2
ii − F iiũ2

ξi).

If there exists a small δ0 > 0 such that 〈ei, ξ〉 < 1 − δ0 for all unit axial vectors ei,
then A ≥ δ0F

iiũ2
ii. Since λ = (λ1, · · · , λn) ∈ Γ+

k , we have λk > 0 and so ũkk > b. Hence
by Lemma 2.3(v), A ≥ δ0b

2F kk ≥ δ1b
2F . We obtain (3.8).

If there is i∗ such that 〈ei∗ , ξ〉 ≥ 1 − δ0, then we have A ≥ 1
2

∑
i6=i∗ F iiũ2

ii. If there
exists j ≥ k, j 6= i∗ such that ũjj ≥ αb for some α > 0, then by Lemma 2.3(iv)(v),
A ≥ 1

2F jj(αb)2 ≥ δ2b
2F and the claim holds. Otherwise we have i∗ = k since ũkk =

λk + b ≥ b.

Case 1: k ≤ n − 2. Observing that ∂
∂λ1

· · · ∂
∂λk−1

σk(λ) = λk + · · · + λn ≥ 0, we have
λk ≥ −(λk+1 + · · ·+ λn). Since ũjj ≤ αb for j ≥ k + 1, we have λj ≤ −(1− α)b. Hence
λk ≥ (n− k)(1− α)b ≥ 2(1− α)b.

On the other hand, by (3.4), we may suppose at x0, |ρξ

ρ | ≤ α
uξ

u , for otherwise we
have the required estimate (3.2). Hence ũξξ ≤ (2 + α)b for a different small α > 0.
By the relation ũξξ =

∑
i ξ2

i ũii ≥
∑

i≤k ξ2
i ũii − nαb where ξ = (ξ1, · · · , ξn), we have

ũkk ≤ (1+α)ũξξ ≤ (2+2α)b. Hence λk = ũkk− b ≤ (1+2α)b. We reach a contradiction
when α is sufficiently small.

Case 2: k = n− 1. We have

∂σk

∂λk−1
λk−1 = σk(λ)− λ1 · · ·λn

λk−1
≥ −λ1 · · ·λn

λk−1
.

14



Since λn = ũnn − b ≤ −(1 − α)b and by ∂
∂λ1

· · · ∂
∂λn−2

σk(λ) = λn−1 + λn ≥ 0, we have

λn−1 ≥ (1 − α)b and so λi ≥ (1 − α)b for any 1 ≤ i ≤ n − 1. Hence ∂σk

∂λk−1
λk−1 ≥

(1− α)2b2λ1 · · ·λn−3. Note that µ′ ∂σk

∂λi
(λ) = F ii. It follows that

A ≥ 1
2
µ′

∂σk

∂λk−1
ũ2

k−1 k−1 ≥
1
2
µ′

∂σk

∂λk−1
λ2

k−1 (3.11)

≥ 1
2
µ′(1− α)2b2λ1 · · ·λn−2 ≥ Cb2F .

Case 3: k = n. As in Case 1, we assume that |ρξ

ρ | ≤ α
uξ

u . Then by (3.4), ũξξ ≥ (2−α)b.
Note that when k = n, λi > 0 for all i. Hence ũii = λi + b > b. Recall that when k = n,
we have i∗ = n. It follows that ũnn ≥ (2 − α)b for a different small α > 0. Hence
λn ≥ (1− α)b and

A ≥ 1
2
Σi 6=i∗F

iiũ2
ii ≥

1
2
F iiλ2

i =
1
2
λiλnFnn ≥ Cb2F . (3.12)

This completes the proof. ¤
We remark that in our proof of (3.10), we didn’t use the equation (3.3). Hence we

can also use (3.10) for the corresponding equation (3.21) below. We also note that the
gradient estimate is independent of the choice of µ. From Lemma 3.1, we obtain the
following Liouville theorem.

Corollary 3.1. Let u ∈ C3 be an entire k-admissible positive solution of

σk

(
λ(∇2u− |∇u|2

2u
I)

)
= 0. (3.13)

Then u ≡ constant.

Proof. For equation (3.13), the constant C2 in (3.9) vanishes. Letting r → ∞, by (3.9),
we see that either |∇u|

u ≡ 0, or F = 0. In the former case, u is a constant. In the latter
case, u satisfies σk−1(λ) = 0 and so it is also a constant by induction. ¤

By approximation as in [MTW,W2] one can show that Corollary 3.1 holds for contin-
uous positive viscosity solutions. The proof of the interior gradient estimate (3.2) can
be simplified if one allows the estimate to depend on both infB(0,r) u and supB(0,r) u.
Indeed, let ϕ(u) = 1

u−δ in the auxiliary function z, where δ = 1
2 infB(0,r) u. Then one

obtains the extra good term δu2
1

(u−δ)u2F on the right hand side of (3.7). The proof after
(3.8) is not needed.

For the k-Yamabe problem, f(u) = u−k. The constant C in (3.2) is independent of
sup u. Therefore we have the Harnack inequality [GW1].
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Corollary 3.2. Let u ∈ C3 be a positive solution of (3.1). If inf u ≥ C0 > 0, then
sup u ≤ C1.

Next we prove the second order derivative estimate.

Lemma 3.2. Let u ∈ C4 be a k-admissible positive solution of (3.1) in a geodesic ball
Br(0) ⊂M. Suppose A ∈ C2(Br(0)). Then we have

|∇2u|(0) ≤ C, (3.14)

where C depends only on n, k, r, inf u, supu, and ‖Ag0‖C2 .

Proof. Again we will consider the more general equation (3.3). Choose µ(t) = t1/k such
that equation (3.3) is concave in Uij . Differentiating (3.3) we get

F ijUij,kk = −∂2µ(σk(λ(U)))
∂Uij∂Urs

Uij,kUrs,k +∇2
kµ(f) ≥ ∇2

kµ(f), (3.15)

where Uij,k = ∇kUij . As above denote ũij = uij + uaij . Let T denote the unit tangent
bundle of Br(0) with respect to g0. Assume the auxiliary function z on T , z(x, ep) =
ρ2∇2ũ(ep, ep), attains its maximum at x0 and in direction e1 = (1, 0, · · · , 0), where
ρ(x) = (1− |x|2

r2 )+. In an orthonormal frame at x0, we may assume by a rotation of axes
that {Uij} is diagonal at x0. Then at x0, F ij is diagonal and

0 = (log z)i =
2ρi

ρ
+

ũ11,i

ũ11
, (3.16)

0 ≥ (log z)ii = (
2ρii

ρ
− 6ρ2

i

ρ2
) +

ũ11,ii

ũ11
. (3.17)

By (3.16), the gradient estimate, and the Ricci identities,

Uij,11 = uij11 − u2
k1

u
δij + O(

1 + u11

ρ
) = u11ij − u2

k1

u
δij + O(

1 + u11

ρ
). (3.18)

Hence we obtain

0 ≥
∑

i

F ii(log z)ii ≥ −C

ρ2
F + F ii ũ11,ii

ũ11

≥ −C

ρ2
F +

u2
11

2uũ11
F +

1
ũ11

∇2
kµ(f).

Since µ(t) = t1/k, we have F ≥ C > 0. Hence (3.14) holds. ¤
The second order derivative estimate (3.14) was established in [GW1]. As the proof

is straightforward, we included it here for completeness. The estimate is also similar to
that in [GW4] for the equation

det
(∇2u− |∇u|2

2u
I +

u

2
I
)

= f(x, u,∇u) in Ω ⊂ Sn (3.19)
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which arises in the design of a reflector antenna, where I is the unit matrix. See also
[W2] for n = 2.

By Lemma 3.2, equation (3.1) becomes a uniformly elliptic equation. By the Evans-
Krylov estimates and linear theory [GT], we have the following interior estimates.

Theorem 3.1. Let u ∈ C3,1 be a positive solution of (3.1) in a geodesic ball Br(0) ⊂M.
Suppose f > 0,∈ C1,1. Then for any α ∈ (0, 1),

‖u‖C3,α(Br/2(0)) ≤ C, (3.20)

where C depends only on n, k, r, infM u, and g0.

Theorem 3.1 also holds for equation (3.3) with f = κu−p for a constant p > 0 and a
smooth, positive function κ.

3.2. The parabolic equation. It is more convenient to study the parabolic equation
for the function w = log u. In this section we will extend the a priori estimates in §3.1
to the parabolic equation

F [w]− wt = µ(f), (3.21)

where F [w] = µ[σk(λ(W ))], and

W = ∇2w +∇w ⊗∇w − 1
2
|∇w|2g0 + Ag0 .

When f = e−2kw, a stationary solution of (3.21) satisfies the equation

σk(λ(W )) = e−2kw,

which is equivalent to (3.1).

We choose a monotone increasing function µ such that F is concave in D2w and

µ(t) =
{

t1/k t ≥ 10,

log t t ∈ (0, 1
10 ),

and furthermore
(t− s)(µ(t)− µ(s)) ≥ c0(t− s)(t1/k − s1/k) (3.22)

for some constant c0 > 0 independent of t. Condition (3.22) will be used in the next
section.

We say w is k-admissible if for any fixed t, w is k-admissible as a function of x. Denote
Qr = Br(0) × (0, r2]. In the following lemmas we establish interior (in both time and
spatial variables) a priori estimates for w,
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Lemma 3.3. Let w be a k-admissible solution of (3.21) on Qr. Then we have the
estimates

|∇xw(0, r2)| ≤ C, (3.23)

where C is independent of sup w, if f = κ(x)e−pw for some constant p > 0 and smooth,
positive function κ.

Proof. The proof is similar to that of Lemma 3.1. We outline the proof here. Let u = ew.
Then u satisfies the equation

F̃ [u]− ut

u
= µ(f), (3.24)

where

F̃ [u] = µ
[ 1
uk

σk

(
λ(∇2u− |∇u|2

2u
g0 + uAg0)

)]
.

Let z =
( |∇u|

u

)2
ρ2 be the auxiliary function as in the proof of Lemma 3.1. Here we choose

ρ(x, t) =
t

r2
(1− |x|2

r2
)+.

Suppose z attains its maximum at (x0, t0). Then t0 > 0. By a rotation of axes we assume
|∇u| = u1. Then at (x0, t0), zi = 0, {zij} ≤ 0, and zt ≥ 0. Hence we have (3.4), (3.5)
and

u1t

u
− u1ut

u2
+

ρt

ρ
≥ 0. (3.25)

Differentiating equation (3.24) we obtain (3.6) with F ij and ∆ replaced by

F̃ ij(r) =
∂

∂rij
µ[

1
uk

σk(λ(r))] =
µ′

uk

∂

∂rij
σk(λ(r)),

∆ = [
u1t

u
− u1ut

u2
] +

ku1µ
′

uk+1
σk(λ) + [∇1µ(f)− F̃ ij∇1(aiju)]

≥ −ρt

ρ
+∇1µ(f)− F̃ ij∇1(aiju).

By Lemma 2.3 and our choice of µ, F̃ =
∑

F̃ ii has a positive lower bound,

F̃ ≥ µ′(u−kσk(λ))
uk

σ
(k−1)/k
k (λ(U)) ≥ C

u

for some C > 0 depending only on n, k. Hence similarly as the proof of Lemma 3.1 we
have (3.7). From (3.8), we obtain estimate (3.23). ¤

Since the constant C in (3.23) is independent of sup w, hence we have a similar Harnack
type inequality as Corollary 3.2.
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Lemma 3.4. Let w be a k-admissible solution of (3.21) on Qr. Then we have the
estimate

|∇2
xw(0, r2)| ≤ C, (3.26)

where C depends only on n, k, r, µ, inf w, supw, and ‖Ag0‖C2 .

Proof. Differentiating equation (3.21) twice, we get

F ijWij,k = wtk +∇kµ(f), (3.27)

F ijWij,kk = −F ij,rsWij,kWrs,k + wtkk +∇2
kµ(f) ≥ wtkk +∇2

kµ(f).
(3.28)

where F ij = ∂F
∂Wij

, Wij,k = ∇kWij , and F ij,rs = ∂2µ(σk(λ(W )))
∂Wij∂Wrs

. Denote w̃ij = wij + aij ,
aij = (Ag0)ij . Let T denote the unit tangent bundle of M with respect to g0. Consider
the auxiliary function z defined on T × [0, r2], given by z = ρ2

(∇2w̃ + (∇w)2
)
(ep, ep),

where ρ is the cut-off function in the proof of Lemma 3.3. Assume that z attains its
maximum at (x0, t0) and in direction e1 = (1, 0, · · · , 0). We choose an orthonormal
frame at (x0, t0), such that after a rotation of axes, {Wij} is diagonal. Then F ij is
diagonal and at (x0, t0),

0 = (log z)i =
2ρi

ρ
+

w̃11,i + 2w1w1i

w̃11 + w2
1

, (3.29)

0 ≤ (log z)t =
2ρt

ρ
+

w11t + 2w1w1t

w̃11 + w2
1

, (3.30)

0 ≥ (log z)ii = (
2ρii

ρ
− 6ρ2

i

ρ2
) +

w̃11,ii + 2w1w1ii + 2w2
1i

w̃11 + w2
1

. (3.31)

We have, by (3.29) and the Ricci identities,

Wij,11 = wij11 + wi11wj + wj11wi + 2wi1wj1 − w2
k1δij + O(

1
ρ
(w̃11 + w2

1))

= w11ij + 2wi1wj1 − w2
k1δij + O(

1
ρ
(w̃11 + w2

1)).

Hence we obtain

0 ≥
∑

i

F ii(log z)ii − (log z)t

≥ −C

ρ2
F +

1
w̃11 + w2

1

F ii(w̃11,ii + 2w1wii1 + 2w2
i1)−

w11t + 2w1w1t

w̃11 + w2
1

− 2ρt

ρ

≥ −C

ρ2
F +

1
w̃11 + w2

1

F ii[(Wii,11 + w2
k1) + 2w1w1ii]− w11t + 2w1w1t

w̃11 + w2
1

− 2ρt

ρ

≥ −C

ρ2
F +

1
w̃11 + w2

1

(F iiWii,11 − w11t) + w11F +
2w1

w̃11 + w2
1

(F iiwii1 − wt1)− 2ρt

ρ

≥ −C

ρ2
F +

1
w̃11 + w2

1

∇2
1µ(f) + w11F +

2w1

w̃11 + w2
1

∇1µ(f)− 2ρt

ρ
. (3.32)
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By our choice of µ, F ≥ C for some C depending only on n, k. We obtain w11ρ
2 ≤ C at

(x0, t0). Whence z(0, r2) ≤ z(x0, t0) ≤ C. ¤
Remark 3.1. The a priori estimates (3.23) and (3.26) also hold for the equation

1
a
µ(akσ(λ(W ))− wt =

1
a
µ(akf), (3.33)

where a > 0 is a constant. We claim that the constants C in (3.23) and (3.26) are
independent of a ≥ 1.

First we note that this is obvious for (3.23) as the gradient estimate is independent of
the choice of µ.

For the estimate (3.26), we have, by Lemma 2.3,

F =
∑

i

∂

∂Wii

[
1
a
µ(akσk(λ(W ))

]

= (n− k + 1)ak−1σk−1(λ(W ))µ′

≥ Cak−1σ
(k−1)/k
k µ′(akσk)

≥ C inf
t>0

t(k−1)/kµ′(t),

By our choice of µ, inft>0 t(k−1)/kµ′(t) ≥ C > 0. Hence F > C > 0.

Therefore by (3.32) it suffices to show that

|∇1g|+ |∇2
1g| ≤ C

for some C > 0 independent of a ≥ 1, where g = 1
aµ(akf). By our choice of µ,

g =
{

µ(f) if akf > 10
1
a (k log a + log f) if akf < 1

10 ,

Hence sup(|∇1g| + |∇2
1g|) is independent of a ≥ 1 if akf > 10 or akf < 1

10 . When
akf ∈ ( 1

10 , 10), we can choose µ properly such that sup |∇2
1g| is independent of a ≥ 1.

Alternatively one can compute directly

|∇1g| = |ak−1f (k−1)/kµ′(akf)| |k∇1f
1/k|

≤ C|∇1f
1/k|,

|∇2
1g| = |ak−1µ′(akf)∇2

1f |+
∣∣ak−1µ′(akf)

(∇1f)2

f

∣∣ ∣∣akfµ′′(akf)
µ′(akf)

∣∣

≤ C
|∇2

1f |
f1− 1

k

|+ C
|∇1f |2
f2− 1

k

,

where C depends on supt>0 t1−1/kµ′(t) and supt>0
tµ′′(t)
µ′(t) < ∞. Hence the estimate (3.26)

is independent of a ≥ 1.

Remark 3.1 will be used in the next section. The choice of function µ in the parabolic
equation (3.21) is critical.

20



Lemma 3.5. Let w be a k-admissible solution of (3.21) on Qr. Then we have the
estimates

|wt(0, r2)| ≤ C, (3.34)

where C depends only on n, k, r, µ, inf w, supw, and ‖Ag0‖C2 .

Proof. From the equation (3.21) and by the estimate (3.26) we have an upper bound
for wt. It suffices to show that wt is bounded from below. Let z = wt

(M−w)α ρβ , where
M = 2 supQr

|w|, ρ is the cut-off function as above. Suppose minQr
z attains its minimum

at (x0, t0), t0 > 0. Then at the point we have zt ≤ 0, zi = 0 and the matrix {zij} ≥ 0,
namely

wtt

wt
+ α

wt

M − w
+ β

ρt

ρ
≥ 0, (3.35)

wti

wt
+ α

wi

M − w
+ β

ρi

ρ
= 0 i = 1, · · · , n, (3.36)

{wijt

wt
− witwjt

w2
t

+ α
wij

M − w
+ α

wiwj

(M − w)2
+ β

ρij

ρ
− β

ρiρi

ρ2
} ≤ 0, (3.37)

where we have changed the direction of the inequalities as we assume that wt < 0.
Differentiating equation (3.21) gives

F ijWijt − wtt =
∂

∂t
µ(f). (3.38)

Hence by (3.35),

α
wt

M − w
≥ −wtt

wt
− β

ρt

ρ

=
−1
wt

F ijWijt +
1
wt

∂

∂t
µ(f)− β

ρt

ρ

By (3.36), the matrix in (3.37) is equal to

{wijt

wt
+

αwij

M − w
+

α(1− α)wiwj

(M − w)2
− 2αβwiρj

(M − w)ρ
+ β

ρij

ρ
− β(1 + β)

ρiρi

ρ2
} ≤ 0.

We have

−1
wt

F ijWijt =
−1
wt

F ij(wijt + witwj + wjtwi − wkwktδij)

≥ F ij(
αwij

M − w
+

α(1− α)wiwj

(M − w)2
− 2αβwiρj

(M − w)ρ
+ β

ρij

ρ
− β(1 + β)

ρiρi

ρ2
)

+ F ij(2α
wiwj

M − w
+ 2β

ρiwj

ρ
− α

|∇w|2
M − w

δij − β
wkρk

ρ
δij}

≥ α

M − w
F ij(wij + 2wiwj − |∇w|2δij)

+
α

M − w
F ij(

(1− α)wiwj

M − w
− 2β

wiρj

ρ
)− C

ρ2
,
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where the constant C depends on the gradient estimate (3.23) and the second derivative
estimate (3.26). Choose α = 1

2 . By the Holder inequality,

F ij(
wiwj

2(M − w)
− 2β

wiρj

ρ
) ≥ −C

ρ2
.

By the k-admissibility, F ijWij ≥ 0. Hence we obtain

−1
wt

F ijWijt ≥ α

M − w
F ij(Wij + wiwj − 1

2
|∇w|2δij − aij)− C

ρ2
≥ −C

ρ2
.

It follows that
α

wt

M − w
≥ −C

ρ2
+

1
wt

∂

∂t
µ(f)− β

ρt

ρ
.

Now we choose β = 2. Then we obtain

z(x0, t0) =
wt

(M − w)1/2
ρ2(x0, t0) ≥ −C.

It follows that z(0, r2) ≥ z(x0, t0) ≥ −C. Hence wt is bounded from below. ¤

Theorem 3.2. For any w0 ∈ Φk, there is a smooth k-admissible solution w ∈ C3,2(M×
[0, T )) of (3.21) with w(·, 0) = w0 on a maximal time interval [0, T ). If T < ∞, we have
infM w(·, t) → −∞ as t ↗ T .

Proof. First we point out that a k-admissible solution of (3.21) is locally bounded.
Indeed, at the minimum point of w, by equation (3.21) we have

wt = F [w]− µ(f) ≥ µ
(
σk(λ(Ag0))

)− µ(f).

Hence locally in time the solution is bounded from below. By the interior gradient
estimate (3.23), the solution is also bounded from above. Therefore by Lemmas 3.3-3.5,
equation (3.21) is uniformly parabolic. By Krylov’s regularity theory, we obtain the C3,2

a priori estimate for (3.21), and so the local existence follows. Let [0, T ) be the maximal
time interval for the solution. If T < ∞, we must have infM w(·, t) → −∞ as t ↗ T . ¤

Remark 3.2. The a priori estimates in §3.1 and §3.2 can be extended to the quotient
equation

σk,l

(
λ(∇2u− |∇u|2

2u
g0 + uA)

)
= ul−k (1 ≤ l < k ≤ n) (3.39)

and its parabolic counterpart, where σk,l(λ) = σk

σl
(λ). Indeed, let µ be a monotone

increasing function such that µ[σk,l(λ)] is concave. Write equation (3.39) in the form
F [u] = µ(f) as (3.3). Then the proof for the second derivative estimates (3.14) and (3.26)
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can be extended to the quotient equation without change. For the gradient estimates
(3.2) and (3.23), denote σk−1;i(λ) = ∂

∂λi
σk(λ). By Newton’s inequality [LT],

∂σk,l

∂λi
(λ) =

σlσk−1;i − σkσl−1;i

σ2
l

=
σl;iσk−1;i − σk;iσl−1;i

σ2
l

≥ n(k − l)
k(n− l)

σl;iσk−1;i

σ2
l

. (3.40)

As before we arrange the eigenvalues in the descending order λ1 ≥ · · · ≥ λn. Then by
Lemma 2.3(v), σl;i(λ) ≥ Cσl(λ) when i ≥ l +1. Hence ∂σk,l

∂λk
(λ) ≥ C

∑
i

∂σk,l

∂λi
(λ), namely

F kk ≥ CF . Hence the proof of (3.2) and (3.23) can also be extended to the quotient
equation. But we need to replace (3.11) in Case 2 by

A ≥ 1
2
µ′

∂σk,l

∂λk−1
ũ2

k−1 k−1 ≥
1
2
µ′

n(k − l)
k(n− l)

σl;k−1σk−1;k−1

σ2
l

ũ2
k−1 k−1

≥ C
σl;k−1σk−1;k−1

σ2
l

λ2
k−1 ≥ C

σk−1;k−1

σl
λ2

k−1 ≥ Cb2F ,

and (3.12) in Case 3 by

A ≥ 1
2
Σi 6=i∗F

iiũ2
ii ≥

1
2
F llũ2

ll ≥ C
σn−1,l

σl
ũ2

ll ≥ Cλlλn
σn−1,n

σl
≥ Cb2F ,

where we have used F ll ≥ Cσk−1,l/σl by (3.40).

For the corresponding parabolic equation (3.21), where F [w] = µ
(
σk,l(λ(W ))

)
, choose

a monotone increasing function µ such that F is concave in λ, and µ(t) = t1/(k−l) when
t ≥ 10, µ(t) = log t for t > 0 small. Then we can prove Theorem 3.2 for the quotient
equation in the same way as before.

We remark that the a priori estimates for (3.39), and for its parabolic counterpart on
locally conformally flat manifolds, were obtained in [GW3].

We also note that the a priori estimates in §3.1 can be extended to the more general
equation

sk =
k−1∑

l=0

βlsl, (3.41)

where βl are nonnegative constants,
∑

l βl > 0, and sk = ukσk(λ(∇2u− |∇u|2
2u + uA)) is

the k-curvature.

3.3. Counterexamples. Theorem 3.1 applies to solutions of (3.1) with eigenvalues
in the positive cone Γk. The a priori estimate (3.14) relies critically on the negative sign
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of the term |∇u|2
2u , which yields the dominating term u2

k1 in (3.18). Equation (3.1) has
another elliptic branch, namely when the eigenvalues λ lie in the negative cone −Γk. An
open problem is whether the a priori estimate (3.14) holds for solutions with eigenvalues
in the negative cone −Γk. This is also an open problem for equations from optimal
transportation [MTW], in particular the reflector antenna design problem (3.19). Here
we give a counter example to the regularity. Our example is a modification of the Heinz-
Levy counterexample in [Sc].

We will consider the two dimensional case. By making the change u → −u, we consider
equation

det(uij + |∇u|2I + aij) = f (3.42)

with positive sign before the term |∇u|2, where f is a C1,1 positive function to be
determined. We want to show that equation (3.42) has no interior a priori estimates for
solutions with eigenvalues in the positive cone.

Set
u(x) =

b

2
x2

2 + ϕ(x1), (3.43)

where b is constant, ϕ is an even function. Let

a11 = −b2x2
2, a12 = 0, a22 = −b− b2x2

2. (3.44)

Then equation (3.42) becomes

(ϕ
′′

+ ϕ′2)ϕ′2 = f. (3.45)

Let ψ = (ϕ′)3. Then ψ satisfies the equation

1
3
ψ′ + ψ4/3 = f. (3.46)

Let
ψ(x1) = x1 − 9

7
x

7/3
1 . (3.47)

Then
f(x) =

1
3
− x

4/3
1 + (x1 − 9

7
x

7/3
1 )4/3 (3.48)

is a positive C2 function, but the solution u 6∈ C2.

If instead of (3.44), we choose

a11 = c0 − b2x2
2, a12 = 0, a22 = ε− b− b2x2

2, (3.49)

where c0, ε are constants, ε > 0 small. Then we have the equation

(ϕ
′′

+ ϕ′2 + c0)(ε + ϕ′2) = f. (3.50)
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Let f ≡ 1 and denote g = ϕ′. Then g(0) = 0 and g satisfies

g′ =
1

ε + g2
− g2 − c0. (3.51)

This equation has a unique solution gε. Obviously the gradient of gε is not uniformly
bounded. Hence there is no interior C1,1 a priori estimate for equation (3.43). Note that
the matrix A = (aij) can either be in the positive cone or in negative cone by choosing
proper constants b, c0.

Write equation (3.1) in the form

σk(λ(∇2w −∇w ⊗∇w +
1
2
|∇w|2I + A)) = f. (3.52)

Then similarly as above we can construct a sequence of functions satisfying equation
(3.52) with f = 1 whose second derivatives are not uniformly bounded.

Remark 3.3. In many situations [MTW, W2] there arise equations of the form

σk(λ(D2u + A(x, u,Du)) = f, (3.53)

where A is a matrix. From the discussions in this section, we see that the interior a priori
estimates hold in general when A is negative definite with respect to Du, and do not
hold if A is positive definite. When A = 0, there is no interior regularity in general, but
if the solution vanishes on the boundary, interior a priori estimates have been established
in [CW2].
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4. Proof of Lemma 2.1

4.1. Existence of solutions in the sub-critical growth case. In this subsection
we first study the existence of k-admissible solutions, for 2 ≤ k < n

2 , to equation (2.5)
in the subcritical growth case 1 < p < n+2

n−2 . We then extend the existence result to the
critical case p = n+2

n−2 in §4.2 by the blow-up argument. In §4.3 we consider the case
k = n

2 .

Theorem 4.1. Suppose 2 ≤ k < n
2 . Then for any given 1 < p < n+2

n−2 , there is a solution
vp of (2.5) with Jp(vp) = cp > 0, where Jp, cp are defined respectively in (2.6) and (2.8).
Moreover, the set of solutions of (2.5) is compact.

A solution of (2.5) is a critical point of the functional J = Jp. To study the critical
points of the functional J , we will employ the parabolic equation (3.21), which can also
be written in terms of v as (ignoring a coefficient 2

n−2 before vt)

F [v] +
vt

v
= µ(f(v)), (4.1)

where f(v) = v
4k

n−2−ε, F [v] = µ(σk(λ(V
v ))), µ is the function in (3.21), and

ε =
n + 2
n− 2

− p. (4.2)

Write functional (2.6) in the form

J(v) =
n− 2

2n− 4k

∫

(M,g0)

v
2n−4k

n−2 σk(λ(
V

v
))− 1

p + 1

∫

(M,g0)

v
2n−4k

n−2 v
4k

n−2−ε. (4.3)

Equation (4.1) is a descent gradient flow of the functional J ,

d

dt
J(v) =

∫

(M,g0)

v
2n−4k

n−2 −1
[
σk(λ(

V

v
))− v

4k
n−2−ε

]
vt

= −
∫

(M,g0)

v
2n−4k

n−2
[
σk(λ(

V

v
))− v

4k
n−2−ε

] [
µ
(
σk(λ(

V

v
))

)− µ
(
v

4k
n−2−ε

)] ≤ 0.
(4.4)

Given an initial k-admissible function v0, by Theorem 3.2, the flow (4.1) has a unique
smooth positive solution v on a maximal time interval [0, T ), where T ≤ ∞.

Lemma 4.1. Suppose J(v(·, t)) is bounded from below for all t ∈ (0, T ). If v(·, t) is
uniformly bounded, then either v(·, t) → 0 or there is a sequence tj → ∞ such that
v(·, tj) converges to a solution of (2.5).

Proof. By the assumption that v(·, t) is uniformly bounded, we have T = ∞. At the
maximum point of v(·, t), by equation (4.1) we have

vt ≤ v[µ(f(v))− µ(σk(λ(Ag0)))]. (4.5)
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Hence if sup v(·, t0) is sufficiently small at some t0, by the assumptions g0 ∈ Γk and v > 0,
we have v(·, t) → 0 uniformly. Therefore if v does not converges to zero uniformly, by the
gradient estimate (3.23), we have v ≥ c for some constant c > 0. In the latter case, by
Theorem 3.2 and the assumption that v is uniformly bounded, we have ‖v(·, t)‖C3(M) ≤ C

for any t ≥ 0.

Choose a sequence tj →∞ such that

d

dt
J(v(·, tj)) → 0. (4.6)

By the above C3 a priori estimate, we may abstract a subsequence, still denoted as tj ,
such that v(·, tj) converges in C2,α. By (4.4) we concludes that v(x, tj) converges as
j →∞ to a solution of (2.5). ¤

Lemma 4.2. Suppose J(v(·, t)) is bounded from below for all t ∈ (0, T ). Then T = ∞
and v(·, t) is uniformly bounded.

Proof. Suppose to the contrary that there exists a sequence tj ↗ T such that mj =
sup v(·, tj) → ∞. Assume the maximum is attained at zj ∈ M. By choosing a normal
coordinate centered at zj , we may identify a neighbourhood of zj in M with the unit
ball in Rn such that zj becomes the origin. We make the local transformation

vj(y, s) = m−1
j v(x, t), (4.7)

y = m
2

n−2− ε
2k

j x,

s = m
4

n−2− ε
k

j (t− tj).

For the transformation x → y, more precisely it should be understood as a dilation of
M, regarded as a submanifold in RN for some N > n with induced metric. Denote

Mj = {Y m
2

n−2− ε
2k

j X | X ∈ M ⊂ RN}, with induced metric from RN . Then we have
0 < vj(y, 0) ≤ m−1

j v(0, tj) = 1, vj is defined for y ∈ Mj and s ≤ s0, where by (4.5),
s0 > 0 is a positive constant independent of j. Moreover vj satisfies the equation

m
− 4

n−2+ ε
k

j µ
[
m

4k
n−2−ε

j σk(λ(
Vj

vj
))

]
+

(vj)s

vj
= m

− 4
n−2+ ε

k

j µ(m
4k

n−2−ε

j f(vj)). (4.8)

By direct computation,
∫

Mj

vj

2n−4k
n−2 σk(λ(

Vj

vj
))dy = m

ε(1− n
2k )

j

∫

M
v

2n−4k
n−2 σk(λ(

V

v
))dx (4.9)

∫

Mj

vj
2n

n−2−εdy = m
ε(1− n

2k )
j

∫

M
v

2n
n−2−εdx
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Hence

J(vj ,Mj) =:
n− 2

2n− 4k

∫

Mj

vj

2n−4k
n−2 σk(λ(

Vj

vj
))dy − 1

p + 1

∫

Mj

vj
2n

n−2−εdy

= m
ε(1− n

2k )
j J(v,M) ≤ C. (4.10)

We may choose sj ∈ (0, 1
2s0) such that

d

ds
J(vj(·, sj)) → 0. (4.11)

By (4.4), (4.11) is equivalent to

∫

Mj

vj

2n−4k
n−2

{
σk(λ(

Vj

vj
))− vj

4k
n−2−ε

}
·

{
m
− 4

n−2+ ε
k

j

[
µ
(
m

4k
n−2−ε

j σk(λ(
Vj

vj
))

)− µ
(
m

4k
n−2−ε

j v
4k

n−2−ε

j

)]}
→ 0.

By (3.22), we obtain

∫

Mj

vj

2n−4k
n−2

{
σk(λ(

Vj

vj
))− vj

4k
n−2−ε

}
·
{(

σk(λ(
Vj

vj
))

)1/k − (
v

4k
n−2−ε

j

)1/k
}
→ 0. (4.12)

By the gradient estimate (3.23), vj + 1
vj

(at s = sj) is locally uniformly bounded. Hence

σk(λ(
Vj

vj
))− v

4k
n−2−ε

j → 0 in L(k+1)/k. (4.13)

Note that by Remark 3.1, vj are locally uniformly bounded in C1,1 and the convergence
in (4.13) is locally uniform.

By extracting a subsequence we can assume that vj(·, sj) converges to a function
v0 ∈ C1,1(Rn) with v0(0) = 1. We claim that v0 is a smooth solution of the equation

F0[v] := σ
1/k
k (λ(V )) = vp (4.14)

in Rn. On the other hand, by the Liouville Theorem in [LL2], there is no entire positive
solution to (4.14) when ε > 0. This is a contradiction. Hence Lemma 4.2 holds.

To prove that v0 is a smooth solution of (4.14), we note that since v0 ∈ C1,1(Rn), v0

is twice differentiable almost everywhere. Suppose now that F0[v0] > vp
0 at some point

x0 where v0 is twice differentiable. Without loss of generality we assume that x = 0. Let

ϕ(x) = v0(0) + Dv0(0)x +
1
2
Dijv0(0)xixj +

ε

2
|x|2 − δ,
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where ε, δ are positive constants. By choosing δ sufficiently small we have

ϕ > v0 on ∂Br(0) and ϕ(0) < v0(0).

Since vj → v0 uniformly, we have ϕ > vj on ∂Br(0) and ϕ(0) < vj(0) when j is sufficiently
large. Since v0 is locally uniformly bounded in C1,1, by the inequality F0[v0] > vp

0 we
have λ(Vv0 − εI) ∈ Γk and

Fj [ϕ] := σ
1/k
k [λ(−∇2ϕ +

n

n− 2
∇vj ×∇vj

vj
− 1

n− 2
|∇vj |2

vj
g0 +

n− 2
2

vjAg0 ] ≥ vp
j

when ε > 0 is sufficiently small, where Vv0 is the matrix relative to v0, given in (2.2).
Hence by the concavity of σ

1/k
k ,

F ab[vj ]Dab(ϕ− vj) ≤ F (vj)− vp
j → 0 (4.15)

in Lp̃(Ω) for any p̃ < ∞, where F ab[vj ] = ∂
∂rab

σ
1/k
k (λ(r)) at r = Vvj (a, b = 1, · · · , n),

which satisfy detF ab ≥ C > 0 for some C > 0 depending only on n, k. Applying
the Aleksandrov-Bakelman maximum principle [GT] to (4.15) in {ϕ < vj} and sending
j →∞, we conclude that ϕ ≥ v0 near 0, which is a contradiction so that F0[v0] ≤ vp

0 at
x0. By a similar argument we obtain the reverse inequality and hence we conclude (4.14)
for v0. Since the limit equation (4.14) is locally uniformly elliptic with respect to v0, we
then conclude further regularity by the Evans-Krylov estimates and linear theory [GT].
In particular we obtain v0 ∈ C∞. ¤

A more general approach to the approximation argument to obtain (4.14) can be
obtained by extending the theory of Hessian measures in [TW1, TW3] to the operators
of the type F0.

Lemma 4.3. There exists a function v0 ∈ Φk such that the solution v of (4.1) satisfies
J(v(·, t)) ≥ −C and sup v(·, t) ≥ c0 > 0 for all t ≥ 0.

Proof. Let P be the set of paths introduced in §2.2. For γ ∈ P , let vs (s ∈ [0, 1]) be the
solution of (4.1) with initial condition vs(·, 0) = γ(s). Then by (4.5) and the comparison
principle, there is an s0 > 0 such that vs(·, t) → 0 uniformly for s ≤ s0. Denote by
Iγ the set of s ∈ [0, 1] such that J(vs(·, t)) ≥ 0 for all t > 0. Then (0, s0) ⊂ Iγ . Let
s∗ = sup{s | s ∈ Iγ}.

Obviously s∗ ∈ Iγ . For if there exists t such that J(vs∗(·, t)) < 0, then J(vs(·, t)) < 0
for s < s∗ sufficiently close to s∗, which implies s∗ 6= sup{s | s ∈ Iγ}. It is also easy to see
that vs∗(·, t) does not converges to zero uniformly, for otherwise vs(·, t) → 0 uniformly
for s > s∗ and near s∗. Finally by our definition of the set P , we have 1 6∈ Iγ , namely
s∗ < 1. Hence v0 = γ(s∗) satisfies Lemma 4.3. ¤

From the above three Lemmas, one sees that there is a sequence tj → ∞ such that
vs∗(·, tj) converges to a solution of (2.5) for 1 < p < n+2

n−2 . Next we prove
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Lemma 4.4. For any given 1 < p < n+2
n−2 , the set of solutions of (2.5) is compact.

Proof. By the a priori estimates it suffices to show that the set of solutions is uniformly
bounded. If on the contrary that there is a sequence of solutions vj ∈ Φk such that
sup vj → ∞, denote mj = sup vj and assume that the sup is attained at zj . Similar
to (4.7) we make a translation and a dilation of coordinates and a scaling for solution,
namely

ṽj(y) = m−1
j vj(x),

y = Rjx Rj = m
2

n−2− ε
2k

j .

Then 0 < ṽj ≤ 1, and ṽj satisfies

σk(λ(Ṽ )) = ṽk n+2
n−2−ε.

By the a priori estimates in §3.1, ṽ is locally uniformly bounded in C3. Hence ṽj converges
by a subsequence to a positive solution ṽ of

σk(λ(V )) = vk n+2
n−2−ε in Rn. (4.16)

By the Liouville Theorem [LL2], there is no nonzero solution to the above equation. We
reach a contradiction. ¤

Let v be a k-admissible solution of (2.5). Then we have
∫

(M,g0)

v
2n−4k

n−2 σk(λ(
V

v
))−

∫

(M,g0)

v
2n−4k

n−2 v
4k

n−2−ε = 0.

Hence
J(v) = sup

t>0
J(tv).

By (4.3) we have

J(v) = (
n− 2

2n− 4k
− 1

p + 1
)
∫

(M,g0)

v
2n−4k

n−2 v
4k

n−2−ε

≥ C > 0 (4.17)

By the compactness in Lemma 4.4, the constant C is bounded away from zero.

Lemma 4.5. There exists a solution vp of (2.5) such that J(vp) = cp.

Proof. For any given constant δ > 0, choose a path γ ∈ P such that sups∈(0,1) J(γ(s)) ≤
cp + δ. By the proof of Lemma 4.3, there exists s∗ ∈ (0, 1) such that the solution of (4.1)
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with initial condition v(·, t) = γs∗ converges to a solution v∗δ of (2.5). Since (4.1) is a
descent gradient flow, we have J(v∗δ ) < cp + δ. Letting δ → 0, by the compactness in
Lemma 4.4, v∗δ converges along a subsequence to a solution v of (2.5) with J(v) ≤ cp.
Note that J(v) = sups>0 J(sv) ≥ cp. Hence J(v) = cp. ¤

From (4.17) we also have
cp ≥ C > 0. (4.18)

We have thus proved Theorem 4.1.

4.2. Proof of Lemma 2.1 (for 2 ≤ k < n
2 ). Let vp be a solution of (2.5) with

Jp(vp) = cp. If there is a sequence pj ↗ n+2
n−2 such that sup vpj

is uniformly bounded, by
the a priori estimate in §3.1, vpj sub-converges to a solution of (2.1) and Lemma 2.1 is
proved.

If sup vp →∞ as p ↗ n+2
n−2 , noting that cp ≤ sups>0 J(sv0) for any given v0 ∈ Φk, we

see that cp is uniformly bounded from above for p ∈ [1, n+2
n−2 ]. By (4.17),

∫

(M,g0)

vp+1
p ≤ C, (4.19)

where C is independent of p ≤ n+2
n−2 . Denote mp = sup vp and assume that the sup is

attained at zp = 0. As before we make a dilation of coordinates and a scaling for solution,
namely

ṽp(y) = m−1
p vp(x),

y = Rpx Rp = m
2

n−2− ε
2k

p .

Then 0 < ṽp ≤ 1, and ṽp satisfies

σk(λ(Ṽ )) = ṽk n+2
n−2−ε

in BcRp for some constant c > 0 independent of p. Note that in the present case,
ε = n+2

n−2 − p → 0. By the a priori estimates in §3.1, ṽ is locally uniformly bounded in
C3. Hence ṽp converges by a subsequence to a positive solution ṽ of

σk(λ(V ) = vk n+2
n−2 in Rn.

By the Liouville Theorem [LL1],

ṽ(y) = c(1 + |y|2) 2−n
2 , (4.20)

where c = [n(n− 2)](n−2)/4. Moreover

sup
s>0

Jp∗(sṽ;Rn) = cp∗ [Sn], (4.21)
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with p∗ = n+2
n−2 , where cp was defined in (2.9).

The above argument implies that the metric g = v
4

n−2
p g0 is a bubble near the maximum

point zp. By (4.20), vp has the asymptotical behavior

vp(x) = c (
δ

δ2 + r2
)

n−2
2 (1 + o(1)) δ = m

− 2
n−2+ ε

2k
p . (4.22)

For a sufficiently small θ > 0, let Ωp = {x ∈M | vp(x) > θmp}, and let

v̂p(x) =
{

vp(x) x ∈M− Ωp,

θmp x ∈ Ωp.

Note that by assumption (1.7),

sup
s>0

J(svp) = cp < cp∗ [Sn] (4.23)

when p < n+2
n−2 and is close to n+2

n−2 .

Combining (4.21), (4.22) and (4.23), we see that
∫

(M,g0)

v̂p+1
p ≥ C > 0

for some C independent of θ, provided θ is sufficiently small and mp is sufficiently large,
and

sup
s>0

J(sv̂p) < sup
s>0

J(svp).

Namely sups>0 J(sv̂p) < cp, which is in contradiction of our definition of cp. Note that
v̂p is not smooth, but can be approximated by smooth, k-admissible functions. This
completes the proof of Lemma 2.1. ¤

4.3. The case k = n
2 . In this case, the proof of Lemma 4.3 does not apply, due to

that J(v) → −∞ as v → 0, and also we don’t know if En/2(v) is bounded from below for
any admissible function v with VolMgv

= 1, where

J(v) = En/2(v)− 1
p + 1

∫

(M,g0)

v
2n

n−2−ε

is the corresponding functional and En/2 is given in (2.32). However when k = n
2 , we

have the following

Lemma 4.6. Assume that equation (2.1) is variational. Then Fn/2(v) is a constant.

Proof. When k = n
2 , we write the equation (2.1) and the functional Fn/2 in the form

σn/2(λ(W )) = e−nw,

Fn/2(w) =
∫

(M,g0)

σn/2(λ(W )), (4.24)
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To prove that Fn/2 is equal to a constant, we have

Fn/2(w)−Fn/2(w0) =
∫

(M,g0)

∫ 1

0

d

dt
σn/2(λ(Wt))

=
∫ 1

0

∫

(M,g0)

Lwt
(w)

where wt = tw, w0 = 0, Lwt
is the linearized operator of σn/2(λ(W )) at wt. By the

assumption that equation (2.1) is variational, we have (see §2.4)

∫

(M,g0)

Lwt(w) =
∫

(M,g0)

wLwt(1) = 0.

This completes the proof of Lemma 4.6. ¤
By assumption (1.7), we have

Fn/2(v) = c0 < Yn/2(Sn) (4.25)

for some constant c0 depending on (M, g0). Lemma 4.6 enables us to prove the following

Lemma 4.7. For 1 < p ≤ n+2
n−2 , the set of solutions of (2.5) is compact.

Proof. When 1 < p < n+2
n−2 , the proof is the same as that of Lemma 4.4.

When p = n+2
n−2 , we use the same argument of Lemma 4.4. Instead of (4.16), we have

the equation

σn/2(λ(V )) = v
n
2

n+2
n−2 in Rn. (4.26)

By the Liouville theorem [LL1], v must be the function given in (4.20). Hence we have

∫

Rn

σn/2(λ(V )) = Yn/2(Sn).

By (4.9), we obtain that

limj→∞Fn/2(vj) ≥ Yn/2(Sn).

This is in contradiction with (4.25). ¤
By Lemma 4.7, we can prove the existence of solutions of (2.1) by a degree argument,

see [CGY2, LL1]. We omit the details here.

4.4. A Sobolev type inequality. As a consequence of our argument above, we
have the following Sobolev type inequality.
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Corollary 4.1. Let 2 ≤ k < n
2 . Then there exists a constant C > 0 such that the

inequality [
V ol(Mg)]

n−2
2n ≤ C

[ ∫

M
σk(λ(Ag))d volg]

n−2
2n−4k (4.27)

holds for any conformal metric g = v
4

n−2 g0 with v ∈ Φk.

Proof. Note that (4.27) is equivalent to

[ ∫

(M,g0)

v
2n

n−2
]n−2

2n ≤ C
[ ∫

(M,g0)

v
2n−4k

n−2 σk(λ(
V

v
))

] n−2
2n−4k , (4.28)

which is equivalent to (4.18). ¤
Remark 4.1. The Sobolev type inequality (4.27) is similar to (2.17) of l = 0, k ≥ 1, and
was proved in [GW2] for locally conformally flat manifolds. If M is locally conformally
flat and f = µ(e−2kw), the flow (3.21) has a remarkable property. That is by the
moving plane argument of Ye [Ye] and the conformal invariance of the equation, one
obtains the gradient estimate (3.23) at all time t, with the upper bound C depending
only on the initial function w(·, 0), for any monotone increasing µ satisfying (2.13).
Therefore by the second derivative estimate (3.26), the solution of (3.21) converges to a
solution of the k-Yamabe equation (2.1), and accordingly one also obtains the Sobolav
type inequality (4.27). Theorem 4.2 shows that the Sobolev type inequality also holds
on general manifolds provided equation (1.1) is variational.
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5. Proof of Lemma 2.2

We let vε be the function given by

vε(x)
(

ε

ε2 + r2

)n−2
2

, (5.1)

where r = |x|, x ∈ Rn, and ε > 0 is a small constant. Let Vε be the matrix relative to
vε, see (2.2). Then we have

Vε

vε
= (n− 2)v

4
n−2
ε I.

Hence vε is k-admissible on Rn and

σk(λ(
Vε

vε
) = Cn,kv

4k
n−2
ε ,

where Cn,k = n!(n−2)k

k!(n−k)! . It follows that

∫

Rn

v
2n−4k

n−2 σk(λ(
V

v
)) = Cn,k

∫

Rn

v
2n

n−2 .

So we have

Yk(Sn) =

∫
Rn v

2n−4k
n−2 σk(λ(V

v ))
[ ∫

Rn v
2n

n−2
](n−2k)/n

= Cn,k

[ ∫

Rn

v
2n

n−2

]2k/n

. (5.2)

In particular we have

Yk(Sn) =
Cn,k

(n(n− 2))k
[Y1(Sn)]k. (5.3)

In the above v = vε and the integrations are independent of ε.

To verify (1.7), it would be natural to use the function (5.1) as a test function, as
in the case k = 1 [Au1, S1]. However on a general manifold, the function vε, where r

denotes the geodesic distance from a given point, is k-admissible only when r ≤ Cε1/2.
It seems impossible to find an explicit test function.

Instead we shall deduce (1.7) directly from (1.6). First note that by assumption, there
exists a function v > 0 such that g̃ = v4/(n−2)g ∈ Γk. Hence σ1(λ(Ag̃)) > 0. That is the
scalar curvature of (M, g̃) is positive. Hence the comparison principle for the operator
σ1(λ(Ag)) holds on M.

Let v1 be a solution of the Yamabe problem (with k = 1) such that Q1(v1) < Y1(Sn),
where

Q1(v) =

∫
M vσ1(λ(V ))

[
∫
M v2n/(n−2)](n−2)/n

.
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Let vk be the solution of

σk(λ(V )) = Cn,kv
k n+2

n−2
1 in M. (5.4)

By Lemma 2.3(vi), we have

−∆vk +
n− 2

4(n− 1)
Rvk = σ1(λ(Vk)) ≥ n(n− 2)v

n+2
n−2
1 .

Since v1 satisfies

−∆v +
n− 2

4(n− 1)
Rv = n(n− 2)v

n+2
n−2
1 ,

by the comparison principle,
vk ≥ v1 (5.5)

Now writing

Qk(v) =

∫
M v

2n
n−2−k n+2

n−2 σk(λ(V ))
[ ∫
M v2n/(n−2) dvolg

](n−2k)/n
,

we claim that
Qk(vk) < Yk(Sn), (5.6)

namely (1.7) holds. Indeed, when k ≥ 2, we have 2n
n−2 − k n+2

n−2 < 0. Hence by (5.5),

v
2n

n−2−k n+2
n−2

1 ≥ v
2n

n−2−k n+2
n−2

k .

Hence
∫

M
v

2n
n−2−k n+2

n−2
k σk(λ(Vk)) dvolg ≤ Cn,k

∫

Bρ

v
2n

n−2−k n+2
n−2

1 v
k n+2

n−2
1 dvolg

≤ Cn,k

∫

Bρ

v
2n

n−2
1 dvolg

and ∫

M
v

2n
n−2
k dvolg ≥

∫

Bρ

v
2n

n−2
1 dvolg.

Therefore we obtain
Qk(vk) ≤ Cn,k

[ ∫

M
v

2n
n−2
1 dvolg

]2k/n
, (5.7)

so that (5.6) follows from (5.3).

We remark that a similar argument can be used to prove the inequality Y1(M) <

Y1(Sn) for some manifolds.
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6. Some remarks

6.1. Compactness of the solution set. For the Yamabe problem (k = 1), Schoen
[S2] has shown furthermore that the set of solutions is compact if the manifold is locally
conformally flat and not conformally equivalent to the sphere. Schoen’s result was ex-
tended to general compact manifolds for which the positive mass theorem holds, such as
in low dimensions 3 ≤ n ≤ 7 [LZ, M].

When k > n
2 , the compactness of solutions has also been established in [GV2], for the

more general equation
σk(λ(Agv

)) = f v
n+2
n−2 , (6.1)

where f is any positive, smooth function f . Their proof relies crucially on the fact
that the Ricci curvature Ricgv ≥ Cgv if gv = v

4
n−2 g0 is a solution to (6.1). For the

convenience of the reader we indicate the idea of their proof here. From the positivity of
the Ricci curvature, the volume of (M, gv) is uniformly bounded. Hence if there exists
a sequence of solutions {vk} with sup vk → ∞, there are at most finitely many blow-
up points P =: {p0, p1, · · · , ps}. By the interior first and second derivative estimates
(3.23) and (3.26), vk/ inf vk converges locally uniformly on M− P to a C1,1 function v

with σk(λ(Agv )) = 0. By a technical analysis one has v(x) = C(1 + o(1))r2−n near the
singularity set P . Since Ricgv > 0, the ratio h(r) =: |Br(p0)|

rn is non-increasing, where
|Br(p0)| denotes the volume of the geodesic ball on (M, gv). On the other hand, since
v(x) = C(1 + o(1))r2−n, we have limr→∞ h(r) = (s + 1)ωn, where ωn is the volume of
the Euclidean unit ball. Hence s = 0 and (M, gv) is isometric to the Euclidean space
Rn, and so M is conformal to the unit sphere. Note that when 2 ≤ k ≤ n

2 , the Ricci
curvature of (M, gv) may not be positive anymore.

6.2. Conditions (C1) and (C2). As indicated earlier, we impose condition (C1)
so that equation (1.1) is elliptic. If a fully nonlinear partial differential equation is not
elliptic, little is known about the existence and regularity of solutions. For example it is
unknown whether there is a local solution to the Monge-Ampere equation detD2u = f

when the right hand side f changes sign, even in dimension two. But possibly condition
(C1) may be replaced by the positivity of the Yamabe constant Yk(M), as in the case
k = 2, n = 4 [CGY1, GV1].

As for the condition (C2), the variational approach to the k-Yamabe problem is nat-
ural, as in the case k = 1. Indeed this approach has already been employed in [CGY1,
CGY2, GW2, GW3], and Theorem 2.1 was proved in [CGY1, CGY2] when n = 4, k = 2,
and in [GW2, GW3] when M is locally conformally flat. At the moment we are not
aware of any other possible ways to remove the variational structure condition (C2) for
the case 2 ≤ k ≤ n

2 , even in low dimensional cases.
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6.3. The full k-Yamabe problem [K, La]. We bring to the attention of the readers
the full k-Yamabe problem. On a Riemannian manifold (Mn, g), one can define a series
of scalar curvatures

sk = sk(Riem) = sk(W + A¯ g), (6.2)

for k = 1, 2, · · · , [n
2 ], where Riem,W,A are introduced at the beginning in the introduc-

tion. The k-scalar curvature can also be expressed simply as

sk =
1

(2k)!
c2kRiemk, (6.3)

where c is the standard contraction operator, and Riemk = Riem ◦ · · · ◦ Riem is the
product introduced in [K].

When k = 1, s1 is the usual scalar curvature. When n is even, sn/2 is the Lipschitz-
Killing curvature. Furthermore if M is a hypersurface, the k-scalar curvature sk is the
2kth mean curvature H2k, which is equal to the 2kth elementary symmetric polynomial
of the principal curvatures of the hypersurface, which is intrinsic quantity [Sp]. When
M is locally conformally flat, then the Weyl curvature in (6.2) vanishes, and sk turns
out to be the k-curvature given in (1.1).

The full k-Yamabe problem concerns the existence of a conformal metric such that the
k-scalar curvature is a constant. This problem coincides with the k-Yamabe problem for
locally conformally flat manifolds. The corresponding equation of the k-Yamabe problem
is always variational, as in the case k = 1 [La]. However the equation is of mixed type
in general.

Note. After this paper was completed, we were informed by Guofang Wang that he
and Yuxin Ge had recently solved the case k = 2, n > 8 of Theorem 2.1.
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