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Abstract

A recently discovered relation between 4D and 5D black holes is used to derive exact

(weighted) BPS black hole degeneracies for 4D N = 8 string theory from the exactly

known 5D degeneracies. A direct 4D microscopic derivation in terms of weighted 4D

D-brane bound state degeneracies is sketched and found to agree.
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1. Introduction

In this paper, we deduce an exact formula for the modified elliptic genus of string

theory in four dimensions with N = 8 supersymmetry. The modified elliptic genus, as

we review below, provides a weighted count of BPS states of N = 8 string theory. We

derive a formula for it using a recently proposed exact relation [1] between 4D and 5D

BPS degeneracies, together with the known degeneracies [2] in 5D. In addition we sketch

a direct microscopic counting of D0-D2-D4 bound states which gives the same result. Our

hope is that this example will provide a useful laboratory for testing the string theory

relations recently proposed in e.g.[3].

Some years ago an explicit formula for the elliptic genus for BPS states in 4D N = 4

theories was presciently conjectured [4]. This formula was recently derived using the 4D-5D

connection in [5]. The present work is an extension of [5] to 4D N = 8 theories. Previous

work in this direction includes [6,7,8].

In the next section we review the 5D index defined and computed in [2]. In section

3 we use the 4D-5D connection to derive the 4D index. In section 4 we sketch how this

expression should follow (for one element of the U-duality class of black holes) from a

microscopic analysis.

2. Review of the 5D modified eliptic genus

In this section, we want to summarize the work of reference [2] on counting the mi-

crostates of 1/8 BPS black holes in five dimensions. These can be realized in string theory

as the usual D1-D5-momentum system of type IIB on T 4×S1, with Q1 D1-branes, Q5 D5-

branes and integral S1 momentum n. The reason that microstate counting of this system

is more difficult than for K3 compactification is because the usual supersymmetric index

that counts these microstates, the orbifold elliptic genus of Hilbk(K3) with k = Q1Q5,

vanishes when K3 is replaced with T 4. In [2], this difficulty was overcome by defining

1



(and then computing) a new supersymmetric index E2, closely related with the elliptic

genus, which is nonvanishing for T 4. We will refer to this new supersymmetric index as

the modified elliptic genus of Hilbk(T 4). It is defined to be

E (k)
2 = Tr

[
(−1)2J3

L
−2J3

R2(J3
R)2qL0qL0y2J3

L

]
(2.1)

where the trace is over states of the sigma model with target space Hilbk(T 4).1 Here J3
L

and J3
R are the left and right half-integral U(1) charges of the CFT, and they are identified

with generators of SO(4) rotations of the transverse R4. The S1 momentum is n = L0−L0.

The usual elliptic genus is given by the same formula but without the 2(J3
R)2 factor; it is

these two insertions of J3
R that make E2 nonvanishing for T 4.

As for K3, here it is convenient to define a generating function for the modified elliptic

genus:

E2 =
∑

k≥1

pkE (k)
2 (2.2)

In [2], this was shown to be given by the following sum

E2(p, q, y) =
∑

s,k,n,ℓ

s(pkqnyℓ)sĉ(nk, ℓ) (2.3)

with the sum running over s, k ≥ 1, n ≥ 0, ℓ ∈ Z. Note that the q dependence has dropped

out – only the L0 = 0 states contribute to the modified elliptic genus. Of course, the

index must have this property in order to count BPS states, since the BPS condition is

equivalent to requiring L0 = 0.

It was furthermore shown in [2] that the integers ĉ(nm, ℓ) are the coefficients in the

following Fourier expansion

Z(q, y) ≡ −η(q)−6ϑ1(y|q)2 =
∑

n,ℓ

ĉ(n, ℓ)qnyℓ (2.4)

where η(q) is the usual Dedekind eta function, and ϑ1(y|q) is defined by the product

formula

ϑ1(y|q) = i(y1/2 − y−1/2)q1/8
∞∏

n=1

(1 − qn)(1 − yqn)(1 − y−1qn) (2.5)

1 A free sigma model on R4
× T 4 is factored out here, and our definition differs by a factor of

2 from [2].
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Finally, it was observed in [2] that ĉ(n, ℓ) actually only depends on a single combination

of parameters 4n − ℓ2:

ĉ(n, ℓ) = ĉ(4n − ℓ2) (2.6)

Using (2.6) in (2.3) yields

E2(p, q, y) =
∑

s,k,n,ℓ

s(pkqnyℓ)sĉ(4nk − ℓ2) (2.7)

When (k, n, ℓ) are coprime, ĉ(4nk − ℓ2) counts BPS black holes with k = Q1Q5, S1 mo-

mentum n and spin J3
L = ℓ

2
, multiplied by an overall (−)ℓ and summed over J3

R weighted

by 2(J3
R)2(−)2J3

R :

ĉ(4nk − ℓ2)
∣∣∣
(k,n,ℓ) coprime

= (−)ℓ
∑

JR,BPS states

2(J3
R)2(−)2J3

R (2.8)

When they are not coprime, the black hole can fragment, and the situation is more com-

plicated due to multiple contributions in E2 [2]. In this paper we will always avoid this

complication by choosing coprime charges.

We should note that Z(q, y) is also the modified elliptic genus of T 4, i.e.

E (1)
2 =

∑

n,ℓ

ĉ(n, ℓ)qnyℓ = Z(q, y). (2.9)

This corresponds to the coprime D1-D5 system with k = 1 = Q1 = Q5. By writing

Z(q, y) =
∑

m

ĉ(4m)qm
∑

k

qk2

y2k +
∑

m

ĉ(4m − 1)qm
∑

k

qk2+ky2k+1 (2.10)

and using (2.4) along with the standard Fourier expansion of the theta function

ϑ1(y|q) = i
∑

n∈Z

(−1)nq(n−1/2)2/2yn−1/2 (2.11)

one can reorganize the generating functions for ĉ as

∑

m

ĉ(4m)qm = −q
1

4 η(q)−6
∑

m∈Z

qm2+m,

∑

m

ĉ(4m − 1)qm = q
1

4 η(q)−6
∑

m∈Z

qm2

.
(2.12)

These expressions will analyzed microscopically below in section 4.
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3. The 4D modified elliptic genus

In this section we use the conjecture of [1] to transform the 5D degeneracies into 4D

ones. The fact that the ĉ coefficients depend only on the combination 4nk − ℓ2 is very

encouraging, for the following reason. We expect the 1/8 BPS 5D degeneracies to be

related to degeneracies of 1/8 BPS black holes in 4D, and in 4D U-duality implies [9] that

the black hole entropy must depend on the unique quartic invariant of E7,7, the so-called

Cremmer-Julia invariant [10]. In an N = 4 language, this invariant takes the form

J = q2
eq2

m − (qe · qm)2 (3.1)

where qe and qm are the electric and magnetic charge vectors for N = 4 BPS states. (See

e.g. [5] for details on the notation.) This is precisely the dependence of ĉ on n, m, ℓ,

provided we identify

k =
1

2
q2
e , n =

1

2
q2
m, ℓ = qe · qm. (3.2)

Note that from the purely 5D point of view, there was no obvious reason that ĉ should

depend only on the combination 4nk − ℓ2 as there is no 5D U-duality which mixes spins

with charges.

Let us now derive the identification (3.2) from the dictionary of [1], beginning from

the IIB spinning 5D D1-D5-n black hole of the previous section. First we T-dual on S1

to obtain a black hole with spin ℓ
2 , F-string winding n, Q1 D0-branes, and Q5 D4-branes.

Now T-dual so that there are Q1 + Q5 D2 branes with intersection number Q1Q5 = k on

the T 4. Next we compactify on a single center Taub-NUT, whose asymptotic circle we

identify as the the new M-theory circle. The result is three orthogonal sets of (n, Q1, Q5)

D2-branes on T 6, ℓ D0-branes, and one D6-brane. For IIA D-brane configurations with

D0, D2, D4, D6 charges (q0, qij, p
ij , p0), where i = 1, ...6 runs over the T 6 cycle and

pij = −pji, qij = −qji J reduces to2

J =
1

12
(q0ǫijklmnpijpklpmn + p0ǫijklmnqijqklqmn)

− pijqjkpklqli +
1

4
pijqijp

klqkl − (p0q0)
2 +

1

2
p0q0p

ijqij .

(3.3)

2 See e.g. [11], equation (66), and take p0 = p87, p8i = 0, etc. Our definition of J differs from

that of [11] by a sign.
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For our D0-D2-D6 configuration, we can pick a basis of cycles without loss of generality

such that the nonzero charges are

p0 = 0, q0 = ℓ, q12 = −q21 = n, q34 = −q43 = Q1, q56 = −q65 = Q5 (3.4)

Then (3.3) reduces to

J = 4nk − ℓ2, (3.5)

which, as stated above, is exactly the argument of (2.3).

According to [1] the weighted degeneracy of the 4D black hole resulting from U-duality

and Taub-NUT compactification equals that of the original 5D black hole, when J3
R in (2.8)

is identified with the generator J3 of R
3 rotations in 4D. Note that, since J is odd if and

only if ℓ is, we may trade (−)ℓ for (−)J in (2.8). Therefore, for fixed coprime charges,

the weighted 4D BPS degeneracy depends only on the the Cremmer-Julia invariant and is

given by
∑

J3,BPS states

2(J3)2(−)2J3

= (−)J ĉ(J ). (3.6)

Note that, although this formula for the 4D BPS degeneracy was derived assuming a

specific D6-D2-D0 configuration, it applies to all D-brane configurations by U-duality.

As a first check on this conjecture, we note that for large charges ĉ(J ) ∼ eπ
√

J .

From the supergravity solutions Area = 4π
√

J , so there is agreement with the Bekenstein-

Hawking entropy.

As an example, let’s consider the modified elliptic genus for the D4-D0 black hole on

T 6, in which we fix the D4 charges and sum over D0 charge q0. Consider the T 6 of the

form T 2 × T 2 × T 2 with α1, α2, α3 being the three 2-cycles associated with the T 2’s. Let

A1, A2, A3 be the dual 4-cycles. We shall consider the D4-brane wrapped on the cycle

[P ] = A1 + A2 + A3. Its triple self-intersection number is D = P · P · P = 6. From (3.3)

we have

J = 4q0. (3.7)

We then have

E2(q) =
∑

q0∈Z

ĉ(4q0)q
q0 = −q

1

4 η(q)−6
∑

m∈Z

qm2+m. (3.8)

according to (2.12).
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A straightforward generalization of this example is the D4-D2-D0 system, where we

wrap (q1, q2, q3) D2 branes on the 2-cycles (α1, α2, α3). In this case, the Cremmer-Julia

invariant becomes

J = 4(q0 + q1q2 + q1q3 + q2q3) − (q1 + q2 + q3)
2 (3.9)

and the sum over q0 produces

E2(q) =
∑

q0∈Z

(−1)J ĉ(J )qq0 =

{
−q

1

4 η(q)−6
∑

m∈Z
qm2+m− 1

4
J̃ q1 + q2 + q3 even

−q
1

4 η(q)−6
∑

m∈Z
qm2− 1

4
J̃− 1

4 q1 + q2 + q3 odd

(3.10)

where J̃ = 4(q1q2 + q1q3 + q2q3) − (q1 + q2 + q3)
2. Now let us turn to the 4D derivation

of (3.8) and (3.10).

4. Microscopic derivation in 4D

In this section we sketch a derivation of (3.8) and (3.10) using a 4D microscopic

analysis. The derivation is not complete because, as we will discuss below, we ignore some

potential subtleties associated to the fact that P is not simply connected. In principle it

should be possible to close this gap. A microscopic description of T 6 black holes using

the M-theory picture of wrapped fivebranes has been given in [8], adapting the description

given in [12] for a general Calabi-Yau, in terms of a (0, 4) 2D CFT living on the M-theory

circle. For uniformity and simplicity of presentation, we here will use the IIA description

in which fivebrane momenta around the M-theory circle become bound states of D0 branes

to D4 branes.

As above (3.7) we examine the special case of the D4-D0 system wrapped on [P ] =

A1 + A2 + A3. The D4-D0 system can be described in terms of the quantum mechanics

of q0 D0-branes living on the D4-brane world volume P . The D4-brane world volume P

is holomorphically embedded in the T 6. One can compute its Euler character, χ(P ) = 6.

It follows from the Riemann-Roch formula that the only modulus of P is the overall

translation in T 6.3 Since χ(P ) = 6, P has 4 + 2b1 2-cycles. By the Lefschetz hyperplane

theorem we have b1(P ) = b1(T
6) = 6, and therefore b2(P ) = 16. All but one of the 2-cycles

3 The dual line bundle LP of the divisor P has only one holomorphic section. However as T 6

is not simply connected, the line bundle LP is not only determined by c1(LP ) = [P ]. In fact the

translation of T 6 takes it to a different line bundle.
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come from the intersection of P with
(
6
4

)
= 15 4-cycles in T 6. We will be mostly interested

in 3 of these, denoted by α̃i, corresponding to intersections of Ai with P . Turning on

fluxes along these three 2-cycles corresponds to having charges of D2-branes wrapped on

the αi’s. Their intersection numbers are

α̃i · α̃j =

{
0, i = j

1, i 6= j
(4.1)

There is, however, one extra 2-cycle in P , which we shall denote by β, that does not

correspond to any cycle in the T 6.

One can show from the adjunction formula that c1(P ) is Poincaré dual to −(α̃1 + α̃2 +

α̃3). It then follows from Hirzebruch signature theorem that

σ(P ) = −2

3
χ(P ) +

1

3

∫

P

c2
1 = −2. (4.2)

We conclude that the intersection form on P is odd (and that P is not a spin manifold).

Essentially the unique way to extend (4.1) to an odd rank 4 unimodular quadratic form is

to have an extra 2-cycle γ with

γ · α̃i = 1, γ · γ = 1. (4.3)

Now if we choose β = 2γ − ∑
α̃i, we have

β · α̃i = 0, β · β = −2. (4.4)

Note that (α̃i, β) is not an integral basis for H2(P, Z), yet β is the smallest 2-cycle that

doesn’t intersect α̃i. The total intersection form on P is the sum of this rank 4 form

together with 6 copies of σ1 coming from the 12 other 2-cycles in P .

Now one can turn on gauge field flux on the D4-brane world volume along β, which

does not correspond to any D2-brane charge. This flux nevertheless induces D0-brane

charge. There is a subtlety in the quantization of this flux. As well known, the curvature

of the D4-brane world volume induces an anomalous D0-brane charge −χ(P )/24 = −1
4 .

In order that the total D0 charge be integral the flux along the cycle β on the D4-brane

must be half-integer, i.e. of the form (m + 1
2 )β. The total induced D0-brane charge is

∆q0 = −1
2 (m + 1

2 )2β · β − 1
4 = m2 + m, which is indeed an integer.4

4 In the M-theory picture the anomalous D0 charge is the left-moving zero point energy −
cL

24
=

−
1

4
, and the 2-cycle fluxes correspond to momentum zero modes of scalars on a Narain lattice.
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We ignore here the facts arising form nonzero b1(P ) that there is a moduli space of flat

connections as well as overall T 6 translations which must be quantized. These factors are

treated in the language of the 2D CFT in [8]. They are found to lead to extra degrees of

freedom which are however eliminated by extra gauge constraints. A complete microscopic

derivation, not given here, would have to show that a careful accounting of these factors

give a trivial correction to our result.

It is now straightforward to reproduce (3.8). Each D0-D4 bound state is in a hypermul-

tiplet which contributes minus one to Tr
[
2(J3)2(−)2J3]

. Counting the number of ways of

distributing n D0-branes among the χ(P ) = 6 ground states of the supersymmetric quan-

tum mechanics, and then summing over n, gives the factor of q1/4η(q)−6 =
∏∞

k=1(1−qk)−6

in (3.8). Including finally the sum over fluxes on β, we precisely reproduce the degeneracy

(3.8)!

Let us now consider the more general case of D4-D2-D0 system. Again we shall assume

(p1, p2, p3) = (1, 1, 1). The D2-brane charges are labelled by (q1, q2, q3). The bound state

is described by the D4-brane with D2-brane dissolved in its world volume. We end up with

the gauge flux

F = (m + 1/2)β +

3∑

i=1

qiδi, δi · α̃j = δij . (4.5)

In above expression δi is defined up to a shift of an integer multiple of β. Since we are

summing over m, this ambiguity is irrelevant. We can choose δi = γ − α̃i. The total

induced D0-brane charge is then

∆q0 = −
∫

1

2
F 2 − 1

4

= (m + 1/2)2 + (m + 1/2)
∑

qi +
1

2

∑
q2
i − 1

4

=

(
m +

1

2
+

1

2

∑
qi

)2

− 1

12
DABqAqB − 1

4
,

(4.6)

where DAB is the inverse matrix of DAB ≡ DABCpC ,

DABqAqB = 3(2q1q2 + 2q2q3 + 2q3q1 − q2
1 − q2

2 − q2
3). (4.7)

Note that 1
3DABqAqB = 0 mod 4 if

∑
qi is even, and 1

3DABqAqB = −1 mod 4 if
∑

qi is

odd. Therefore ∆q0 is always an integer, as expected. The Cremmer-Julia invariant is in

this case

J = 4

(
q0 +

1

12
DABqAqB

)
. (4.8)
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The counting of D0-brane states as before gives the generating function

∑

q0

(−)J c(J )qq0 = −
∞∏

k=1

(1 − qk)−6
∑

m∈Z

qm2+m− 1

12
DABqAqB (4.9)

in the case
∑

qi ∈ 2Z and J ≡ 0 mod 4, and

∑

q0

(−)J c(J )qq0 = −
∞∏

k=1

(1 − qk)−6
∑

m∈Z

qm2− 1

12
DABqAqB− 1

4 (4.10)

in the case
∑

qi ∈ 2Z + 1 and J ≡ −1 mod 4. These are precisely the degeneracies (3.10)

we derived from 5D earlier!
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