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Abstract

It has recently been shown that the M theory lift of a IIA 4D BPS Calabi-Yau black

hole is a 5D BPS black hole spinning at the center of a Taub-NUT-flux geometries, and

a certain linear relation between 4D and 5D BPS partition functions was accordingly

proposed. In the present work we fortify and enrich this proposal by showing that the

M-theory lift of the general 4D multi-black hole geometry are 5D black rings in a Taub-

NUT-flux geometry.

* Permanent address: Jefferson Physical Laboratory, Harvard University, Cambridge, MA,

USA.



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Multicenter BPS solutions in 4D . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. 5D solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4. 4D → 5D lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Introduction

In a recent paper [1] it was shown that the M-theory lift of a general 4D BPS Calabi-

Yau black hole can be viewed as a 5D BPS spinning black hole [2] sitting in the center of

a flux-Taub-NUT spacetime. This suggested a direct relation between the microstates of

4D and 5D black holes, and (invoking [3]) motivated a conjecture of the form

Z5D = Z4D = |Ztop|
2, (1.1)

relating a 4D BPS partition function, a 5D BPS partition function and the topological

string. See [1] for the precise form of and arguments appearing in (1.1).

A recent surprise [4] is that BPS objects in 5D include black rings as well as black

holes. The 5D partition function Z5D should include all BPS states, in particular black

rings. A check of our conjecture is then that Z4D must include a contribution to match

the 5D black rings in Z5D.

Indeed we will show that there is just such a matching contribution. In a series of

beautiful papers [5,6,7] Denef and collaborators have explicitly constructed multi-center

4D BPS black hole solutions which in general carry angular momenta. The black holes in

these solutions can have different sets of charges and they are bound to one another in the

sense that the black holes separations are fixed in terms of their charges and the asymptotic

values of the moduli. In this paper we will construct exact ”flux-Taub-NUT-black-ring”

solutions describing a black ring in Taub-NUT with four-form flux turned on. We further

show that these solutions are precisely the lift to 5D of the Denef multi-center solutions,

and the 4D black hole separations become the radii of the 5D rings. This result fortifies

and enriches the 4D-5D connection proposed in [1], and will also clearly have implications

for our understanding of the topological string.1

1 In particular we expect the anomalous background dependence of the topological string to be

equivalent to the anomalous asymptotic moduli dependence of the black hole partition function

arising from split attractor flows as analyzed in [8,9,10,7,5,6].
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This paper is organized as follows. Section 2 reviews the multi-center black hole

solutions. Section 3 constructs a general solution of 5D supergravity describing black rings

and black holes in a multi-Taub-NUT-flux geometry. In section 4 we show that section 3

is the M-theory lift of section 2, and describe the basic example of lifting the bound state

of a D6-brane with a D4-D2-D0 black hole to a 5D black ring.

2. Multicenter BPS solutions in 4D

In this section we review, and slightly reformulate, the general multi-center BPS so-

lution of 4D N = 2 supergravity2 found in [7]. The solution is characterized by electro-

magnetic charges and asymptotic moduli. It may be expressed in terms of 2h11 + 2 real

harmonic functions on R3

(

HΛ(~x)

HΛ(~x)

)

=

(

hΛ

hΛ

)

+
∑

s

(

pΛ
i

qΛ,i

)

1

|~x − ~xi|
, (2.1)

where (pΛ
i , qΛi) is the electromagnetic charge located at the spatial position ~xi, and (hΛ, hΛ)

are constants which will shortly be related to the asymptotic moduli. The projective scalar

moduli XΛ as a function of spatial positions are then given by

CXΛ(~x) = HΛ(~x) +
i

π

∂Sbh(pΛ, qΛ)

∂qΛ

∣

∣

∣

∣

pΛ=HΛ(~x), qΛ=HΛ(~x)

. (2.2)

The complex function C depends on the choice of projective gauge (and may be set to one

by an appropriate choice). As a function of the moduli and prepotential (or periods FΛ)

Sbh here is given by

Sbh(CXΛ(~x)) =
π

2
Im[CXΛC̄F̄Λ]. (2.3)

In order to find Sbh as a function of charges, as needed in (2.2), one must solve the algebraic

attractor equations [11,12]. This may or may not be analytically possible, depending on the

form of the prepotential and the charge vector. Note that the Sbh used here is a function of

position and is equal to the black hole entropy only at the horizon. The constants h encode

the values of the moduli at spatial infinity, i.e. Re[CXΛ(∞)] = hΛ, Re[CFΛ(∞)] = hΛ.

2 The solutions reviewed here solve the leading order equations,and do not incorporate R
2

corrections.
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Given the moduli fields XΛ(~x) the four dimensional metric is then simply

ds2
4 = −

π

Sbh

(

dt + ω(4)
)2

+
Sbh

π
d~x2 , (2.4)

where it is implicit that Sbh = Sbh(XΛ(~x)) and ω(4) is the solution of

dω(4) = HΛ ∗3 dHΛ − HΛ ∗3 dHΛ. (2.5)

The gauge fields strengths are

dAΛ = d

[

S−1
bh

∂Sbh

∂qΛ

(

dt + ω(4)
)

]

pΛ=HΛ, qΛ=HΛ

+ ∗3dHΛ. (2.6)

Finally the equilibrium positions ~xj of the black hole centers are determined by the

asymptotic moduli and the charges via the integrability condition following from (2.5),

which may be written
[

pΛ
j HΛ(~x) − qjΛHΛ(~x)

]
∣

∣

~x=~xj
= 0. (2.7)

The basic example of this paper, which illustrates the connection to the black ring, is

a bound state of a single D6 brane at r = 0 and a D4 −D2 − D0 black hole with charges

(pA, qA, q0) at r = L, θ = 0. The harmonic functions are:

H0 =
4

R2
TN

+
1

r

HA =
pA

(r2 + L2 − 2rL cos θ)
1

2

HA = hA +
qA

(r2 + L2 − 2rL cos θ)
1

2

H0 = −
q0

L
+

q0

(r2 + L2 − 2rL cos θ)
1

2

(2.8)

The integrability condition (2.7) is then

1

L
+

4

R2
TN

=
hApA

q0
. (2.9)

As the parameter RTN goes to infinity the distance between the centers reaches a minimum

value, while for RTN small enough the distance between the centers will diverge, and the

bound state disappears.
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3. 5D solutions

This section will describe some new supersymmetric 5D black ring-Taub-NUT-flux

solutions which generalize previous solutions of minimal supergravity [4,13]. In the next

section we will see they are simply the lift to 5D of the 4D multicenter solutions reviewed

in the previous section.

N = 2 supergravity fields in 5D are organized by the so-called very special geometry

[14], parameterized by h11 real scalar fields Y A, subject to the constraint

DABCY AY BY C = 1, (3.1)

for constant couplings DABC . It is useful to further define

YA ≡ 3DABCY BY C . (3.2)

BPS solutions in 5D N = 2 supergravity may be written following [15], [13]

ds2
5 = −2−4/3f−2 (dt + ω)

2
+ 22/3fds2

X

FA = d
[

f−1Y A(dt + ω)
]

+ ΘA
(3.3)

where ds2
X is hyperkäler metric on a 4D hyperkäler space X , ΘA are closed self-dual

2-forms on X , the self-dual part of dω is −fYAΘA and f is a function on X obeying

∇2(fYA) = 3DABCΘB · ΘC . (3.4)

When the space X is Taub-NUT, one has

ds2
X = H0(~x)d~x2 + H0(~x)−1(dx5 + ω0)2, dω0 = ∗3dH0, (3.5)

with H0 a harmonic function as in (2.8), and the coordinate x5 has periodicity 4π. Closed

self-dual 2-forms are then given by

ΘA = d

[

HA

H0
(dx5 + ω0)

]

+ ∗3dHA, (3.6)

with harmonic HA as in (2.8). Inserting (3.6) the equation (3.4) for f becomes

∇2(fYA) = 6DABC∇

(

HB

H0

)

· ∇

(

HC

H0

)

. (3.7)

This is then magically solved by

fYA = HA +
3DABCHBHC

H0
. (3.8)

This immediately gives the self-dual part of dω. It is straightforward to show that ω can

be written

ω = −

(

H0 + 2
DABCHAHBHC

(H0)2
+

HAHA

H0

)

(dx5 + ω0) + ω(4), (3.9)

where ω(4) satisfies the integrability condition (2.7).
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4. 4D → 5D lift

N = 2 5D supergravity may be viewed as the circle decompactification of N = 2 4D

supergravity. In this section we see that the 5D black ring solution of the previous section

is the lift from 4D of the general multi-center black hole solutions. A discussion of the

relevant geometry is in [16].

Given a solution of ds2
4D, AA

4D, A0
4D, zA = XA

X0 of 4D supergravity, a solution of 5D

supergravity is quite generally given by

ds2
5D = 22/3V2(dx5 + A0

4D)2 + 2−1/3V−1ds2
4D,

AA
5D = AA

4D + RezA(dx5 + A0
4D),

Y A = V−1ImzA, V ≡
(

DABC ImzAImzBImzC
)

1

3 .

(4.1)

Inserting the multi-center 4D solution of section 2 then gives the general black ring solutions

of section 3.

To be a bit more explicit, consider the 4D prepotential

F (X) =
DABCXAXBXC

X0
. (4.2)

The expression for the entropy as a function of the charges is known, although complicated

[17]. It is

S(p, q) = 2π
√

Q3p0 − J2(p0)2,

Q
3

2 = DABCyAyByC ,

3DABCyAyB = qC +
3DABCpApB

p0
,

J =
q0

2
+

DABCpApBpC

(p0)2
+

pAqA

2p0
.

(4.3)

Correspondingly there will be certain functions Q(~x) and J(~x) built out of the harmonic

functions (HΛ(~x), HΛ(~x)). The volume of the Calabi-Yau at ~x is V(~x)3, with

V(~x) =
S(HΛ, HΛ)

2πH0Q
(4.4)

(4.1) then yields for the metric

ds2
5D = −2−4/3Q(~x)−2

(

dt + ω(4) − 2J(~x)(dx5 + ω0)
)2

+ 22/3Q(~x)ds2
TN

ds2
TN = H0(~x)d~x2 + H0(~x)−1(dx5 + ω0)2

(4.5)
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where

dω0 = ∗3dH0 (4.6)

and ω(4) is given by (2.5).

Now let us further specialize to the bound state of a single D6-brane with a D4-D2-D0

black hole with charges (pA, qA, q0). The relevant harmonic functions are given in (2.8).

In the limit RTN → ∞, H0 → 1
r

and (4.5) becomes precisely the black ring solution in

flat 5D spacetime. The radius of the ring is Rring = L. It is constructed from wrapped

M5 branes with charges pA, carries M2 charges q̃A = qA + 3DABCpBpC and SU(2)L spin

JL = q0/2.

Note that the entropy of the two-centered black hole comes from only the D4-D2-D0

system. It is amusing to verify directly that the tree level entropy of the D4-D2-D0 system

of charge (pA, qA, q0) indeed agrees with that of the black ring [18],[19] with M5-M2 charge

(pA, q̃A) and angular momentum JL = q0/2.

More generally, when there are mulitple 4D black holes carrying D6 charge, the back-

ground geometry of the 5D lift will be a resolved multi-Taub-Nut-flux geometry. The black

holes of the 4D solution that carry D6 charges will lift to 5D spinning black holes at the

fixed points of the U(1)L isometry of the multi-Taub-NUT background. Those that do not

will lift to 5D black rings tracing orbits of the isometry.
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