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Abstract. We describe some recent results motivated by physical dualities
and their proofs by localization methods. These include some closed formulas
for some Hodge integrals, calculations of Gromov-Witten invariants in arbitrary
degree and arbitrary genus for some open Calabi-Yau threefolds, and their

identifications with invariants of framed moduli spaces of torsion free sheaves.

1. Introduction

Duality in the physics literature means the equivalence of two different physical
theories. In a quantum theory, one is often concerned with the partition function
defined by a Feynman integral over some configuration space which is usually in-
finite dimensional, hence is often not mathematically well-defined. However often
the intrinsic symmetries of the theory enables one to reduce the partition func-
tion to an integral over a finite dimensional moduli space. This is where rigorous
mathematical definitions can be made and concrete calculations can be carried out.
When the physical duality involves two such theories, sometimes it is possible to
mathematically verify the answers. Since the relevant different physical theories
may involve different branches of mathematics to set up, the duality of the physical
theories then suggests sometimes surprising connections between the corresponding
mathematical branches.

We will report on some recent mathematical results that verify some physical
conjectures predicted by duality. Our main technical tool is the localization tech-
niques applied to various moduli spaces. Localization is a technique in geometry
that computes global invariants by local contributions. The global invariants are
often expressed as integrals over the whole space, but when there is symmetry, one
can often compute them by summing up contributions from fixed point components
of the symmetry. The idea can be traced back to the Poincaré-Hopf theorem on
vector fields, the Lefschetz fixed point formula and Chern’s famous proof of the
Gauss-Bonnet theorem. It has been developed in both differential geometry and
algebraic geometry into a powerful method.

In general localization applied to moduli spaces leads us naturally to combinato-
rial objects such as partitions of numbers and summations over labeled graphs. It
is exactly this connection that relates the geometry and topology of moduli spaces
to the rich mathematics of representations and integrable systems.
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2 JIAN ZHOU

Since we will present results that have strong physics backgrounds, it might be
helpful to list below some physical theories and their corresponding mathematical
counterparts. In dimension 2:

2D quantum gravity Deligne-Mumford moduli spaces
Topological 2D Yang-Mills theory Moduli spaces of flat connections

on Riemann surfaces
Wess-Zumino-Witten model Representations of Kac-Moody algebras

In dimension 3:

Chern-Simons theory Jones/HOMFLY polynomials
Witten 3-manifold invariants Reshetikhin-Turaev invariants

In dimension 4:

Topological Yang-Mills theory Donaldson theory
Instantons in 4D YM Self-dual connections
Noncommutative 4D instantons Torsionfree sheaves

In dimension 6, on a Calabi-Yau 3-fold,

Type IIA topological string theory Gromov-Witten theory
Type IIB topological string theory Variation of Hodge structures

We will present results that establish the following relations. In 2D and 3D (§4):

Hodge integrals on Deligne-Mumford moduli spaces
l

Colored HOMFLY polynomials of the Hopf link

In complex 3D and real 3D (§2):

Gromov-Witten invariants of toric Fano local Calabi-Yau 3-folds
l

Colored HOMFLY polynomials of the Hopf link

In complex 3D and complex 2D (§6):

Gromov-Witten invariants of toric Fano local Calabi-Yau 3-folds
l

Equivariant indices of the framed moduli spaces of torsionfree sheaves on C2

We see in these results that the following contributions of three great Chinese scien-
tists are related to each other: Chern-Weil theory, Chern-Simons theory, Yang-Mills
theory, Yang-Baxter equations, Calabi-Yau geometries.
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As is clear from the above brief introduction, the work of Professor Shiing-Shen
Chern plays an important role in many of the relevant mathematical and physical
theories. His passaway is a great loss to many of us both mathematically and
personally. I dedicate this article to his memory.

2. Calabi-Yau Geometries and Chern-Simons Link Invariants

2.1. Gromov-Witten invariants of local Calabi-Yau spaces. Let S be a toric
Fano surface (e.g. P2 or P1×P1), we are interested in the Gromov-Witten invariants
of open Calabi-Yau 3-fold given by the total space of its canonical line bundle
KS . They can be defined as follows. Let β ∈ H2(S,Z), and let Mg,0(S, β) be
the moduli space of genus g stable maps to S of degree β. An element of this
space is an equivalence class of holomorphic maps f : Σ → S such that Σ is a
connected curve with nodes which has arithmetic genus g, f∗([Σ]) = β, and f has
finite automorphisms. On this space there is a canonically defined bundle Kg,β

whose fiber at f : Σ → S is given by H1(Σ, f∗KS). The rank of this bundle is the
same as the virtual dimension of Mg,0(S, β), so one can define the Gromov-Witten
invariants by

ng,β =
∫

[Mg,0(S,β)]virt
e(Kg,β).

We are interested in the generating series:

FKS
=

∑

β 6=0∈H2(S,Z)
ng,βλ2g−2eβ ,

here eβ denotes an element in the Novikov ring of H2(S,Z), i.e.,

eβ1 · eβ2 = eβ1+β2 .

Here we are considering the instanton part of the free energy, the corresponding
instanton part of the partition function is given by:

ZKS
= exp FKS

.

2.2. Chern-Simons link invariants of the Hopf link. Following the famous
work of Witten [57] on Chern-Simons theory and link invariants, the colored HOM-
FLY polynomial for SU(N) can be given as follows. The level k integrable highest
weight representations of the Kac-Moody algebra ŝu(N) are labeled by partitions of
length < N and width ≤ k. Denote their characters by χµ(τ), then by the modular
properties of such representations one has

χµ(−1
τ

) =
∑

ν

Sµν(τ)χν(τ).

Then the colored HOMFLY polynomial of the Hopf link is given by

Wµν =
Sµν

S(0)(0)
.

It can expressed in terms of Schur functions. Such expressions can be mathemat-
ically established by skein theory (Morton-Lukac [46]) or by representation theory
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of quantum groups and Hecke algebras (Lin-Zheng [36]). What concerns us here is
the large N and k behavior of Wµν and the following leading term:

Wµν(q) = sµ(qρ)sν(qµ+ρ),

where for a partition ν,

qν+ρ = (qν1− 1
2 , . . . , qνi−i+ 1

2 , . . . ).

When ν = (0), one gets the leading term of the quantum dimension which can also
be defined in the representation theory of quantum groups:

Wµ(q) = Wµ(0)(q) = sµ(qρ).

2.3. Gromov-Witten invariants in terms of link invariants. Now we come to
a remarkable conjecture made by Aganagic-Mariño-Vafa [3] based on duality with
Chern-Simons theory. This conjecture states that one can express FKS

in terms
of the colored HOMFLY polynomials of the Hopf link. Iqbal [22] interpreted this
conjecture in terms of Feynman rules. The reader can consult e.g. [44] for the
sequence of physical ideas in a series of papers [59, 15, 17, 53] that lead to this
conjecture, and many related references in the physics literature.

Consider the image of the moment map of the torus action on the toric surface
S. This is a convex polygon whose vertices are images of the fixed points and whose
edges are images of invariant divisors. From the edges one can read the information
on the weight decomposition at the fixed point. We also add external edges which
encode also the weights of KS . For example, the following are the diagrams for the
Hirzebruch surfaces Fm (m = 0, 1, 2).
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Figure 1

Give the k internal edges a cyclic labeling as Ei counterclockwise. Denote by si the
self-intersection number of Ei in S, and write ti = eEi . Then we have

Theorem 2.1. We have

ZKS
= exp FKS

=
∏

i∈Zk

∑
νi

e
√−1κνi

siλ/2((−1)siti)|νi|Wνi,νi−1(e
√−1λ),(1)

for a partition µ,

κµ =
l(µ)∑

i=1

µi(µi − 2i + 1).

This result was conjectured in [3, 22] and proved in [64]. Such a result was first
brought to my attention by Kefeng Liu. The efforts to prove it initiated my work in
this area. See [54, 27] for recent work on Gopakumar-Vafa conjecture [16] for toric
Fano local Calabi-Yau geometries based on this result.
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There is a similar result for the resolved conifold O(−1) ⊕ O(−1) → P1. The
corresponding diagram is:

??
??

? µ

Figure 2

Let O(−1)g
d be the bundle on Mg,0(P1, d) whose fiber at a map f : C → P1

representing a point in the moduli space is given by

H1(C, f∗O(−1)).

Define

Kg
d =

∫

[Mg,0(P1,d)]vir

e(O(−1)g
d ⊕O(−1)g

d),

and its generating series:

F (q, Q) =
∑

d>0

∑

g≥0

Kg
dλ2g−2Qd.

Also set Z4D(q;Q) = expF (q, Q). Then one has

(2) Z4D(q, Q) =
∑

µ

(−1)|µ|Wµ(q)Wµ′(q)Q|µ|,

where Wµ(q) = Wµ(0)(q) = sµ(q) is the invariant for the unknot.

More recently Aganagic et al [2] introduced a topological vertex defined in terms of
Wµν . This is used to compute Gromov-Witten invariants for Calabi-Yau geometries
associated to more complicated diagrams, e.g. the nonplanar diagram obtained by
gluing the two horizontal edges with each other of the following diagram:

??
??

?|
|

Figure 3

which gives the partition function

Z5D(q, Q, Qm) =
∑

µ∈P
(−Q)|µ|

∑

ν∈P
(−Qm)|ν|Cνtµ(0)(q)Cνµt(0)(q).(3)

or glue furthermore the vertical edges with each other:

??
??

?|
|

=

=

Figure 4

which gives the partition function

Z6D(Q,Qm, Q1, q) =
∑

µ,ν,η∈P
(−Q)|µ|(−Q1)|ν|(−Qm)|η|Cµνη(q)Cµtνtηt(q);(4)
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or diagrams of the form:
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Figure 5

A mathematical theory of the topological vertex has been developed in [30].

3. Localizations on Moduli Spaces of Stable Maps and Hodge
Integrals

In this and the next two sections we will explain our proof of Theorem 2.1. We
summarize our strategy as follows. In this section we apply virtual localization [29,
18] onMg,0(S, β). This leads us to some special Hodge integrals involving partitions
of numbers and summation over graphs. In §4 we show by localization on the relative
moduli space introduced in [34] to a suitable space with these partitions as boundary
conditions, one can prove closed formulas for such Hodge integrals in terms of Wµν .
In §5 we briefly describe how summations over graphs naturally appear when using
localization techniques and a combinatorial trick called the chemistry of graphs [64]
that handles such summations.

3.1. Localization on moduli spaces of stable maps. When there are sym-
metries, one can often compute global invariants by local contributions from fixed
points. This idea is called the localization. It dates back to the Poincaré-Hopf
theorem and Chern’s proof of the Gauss-Bonnet theorem. It is developed by Borel,
Atiyah, Bott, Segal, Berline, Vergne and many others. As an example let T be a
torus acting on a vector bundle π : V → M which covers a T -action on M , suppose
both E and M are oriented and M is compact, and the rank of V is equal to the
dimension of M . We are interested in the Euler number

∫
M

e(V ). This can be
computed by considering the integral of the equivariant Euler class eT (V ), and we
have ∫

M

e(V ) =
∫

M

eT (V ) =
∑

F

∫

F

eT (V )|F
eT (F/M)

,

where the sum is taken over all fixed point components F , eT (F/M) is the equi-
variant Euler class of F in M .

Now we take M to be the moduli space of stable maps Mg,0(S, β). For this we
need the modification using virtual fundamental class [29, 18]. The fixed points are
parameterized by labeled graphs, and the computations of the equivariant Euler
classes lead to Hodge integrals.
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3.2. Hodge integrals. Let Mg,n denote the Deligne-Mumford moduli stack of
stable curves of genus g with n marked points. The Hodge bundle E is a rank g
vector bundle over Mg,n whose fiber over [(C, x1, . . . , xn)] ∈ Mg,n is H0(C,ωC),
where ωC is the dualizing sheaf of C. Let Li be the line bundle over Mg,n whose
fiber over [(C, x1, . . . , xn)] ∈ Mg,n is the cotangent line T ∗xi

C at the i-th marked
point xi. A Hodge integral is an integral of the form∫

Mg,n

ψj1
1 · · ·ψjn

n λk1
1 · · ·λkg

g(5)

where ψi = c1(Li) is the first Chern class of Li, and λj = cj(E) is the j-th Chern
class of the Hodge bundle.

The study of Hodge integrals is an important part of the intersection theory on
Mg,n. The famous Witten Conjecture/Kontsevich Theorem says that a suitable
generating series of integrals of the form∫

Mg,n

ψj1
1 · · ·ψjn

n(6)

is a τ -function of the KdV hierarchy, and this recursively determines such integrals.
It is known that integrals of the form (5) can be reduced to the simpler form (6)
and there is a computer program to compute them in this way.

Faber [9] made some interesting conjectures on Hodge integrals. Some of these
conjectures are related by Getzler and Pandharipande [13] to the Virasoro con-
straint conjecture for Gromov-Witten invariants in various dimensions. Faber and
Pandhripande in a series of papers [10, 11, 12] used localizations on Mg,n(P1, d)
to prove some of these conjectures. For example, they have proved the following
identities:

∑

g≥0

λ2g

∫

Mg,1

Λ∨g (a)
1− ψ1

=
(

sin(λ/2)
λ/2

)a−1

,(7)

∫

Mg

λg−2λg−1λg =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

,(8)

∫

Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,(9)

where Bn are Bernoulli numbers, and

Λ∨g (a) =
g∑

i=0

(−1)iag−iλi.

The following identity
∑

g≥0

λ2g−2

∫

Mg,1

Λ∨g (1)Λ∨g (a)Λ∨g (b)
1− ψ1

=
(

sin(λ/2)
λ/2

)a+b

is obtained in a similar fashion in [56]. Another important result on Hodge integrals
is the ELSV formula [8]:

Hg,µ =
(2g − 2 + |µ|+ l(µ))!

|Aut(µ)|
l(µ)∏

i=1

µµi

i

µi!

∫

Mg,l(µ)

Λ∨g (1)
∏l(µ)

i=1 (1− µiψi)
;
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where Hg,µ is the Hurwitz number associated to the partition µ = (µ1, . . . , µl(µ)).

As we will see below to prove the Hodge integral identities needed for the proof
of Theorem 2.1, localizations on relative moduli spaces seem to be more powerful.
The reason is that those identities involve partitions of numbers which naturally
come from boundary conditions for relative moduli spaces.

3.3. Some Hodge integrals from localizations on Mg,0(P1, d). We use the
following T (= S1)-action on P1:

e
√−1t · [z0 : z1] = [z0 : e

√−1tz1].

This induces T -actions on Mg,0(P1, d). For k ∈ Z, a lifting of the T -action to
Lk = OP1(k) is determined by the weights a0 of Lk|[1:0] and a1 of Lk|[0:1]. It is easy
to see that a0 − a1 = k. We say Lk is given the weights [a0, a1]. For example, the
induced action on TP1 has weights [1,−1], the cotangent bundle has weights [−1, 1].
For the two copies of O(−1), we use weights [p,−p− 1] and [−p− 1, p] respectively.
Now the localization of

Kg
d =

∫

[Mg,0(P1,d)]vir
T

eT (O(−1)g
d ⊕O(−1)g

d)

gives rise to the following Hodge integral [62]:

Gµ(λ; τ) =−
√−1

l(µ)

zµ
[τ(τ + 1)]l(µ)−1 ·

l(µ)∏

i=1

∏µi−1
a=1 (µiτ + a)

µi!

·
∑

g≥0

λ2g−2

∫

Mg,l(µ)

Λ∨g (1)Λ∨g (τ)Λ∨g (−1− τ)
∏l(µ)

i=1
1
µi

(
1
µi
− ψi

) ,

(10)

Here µ = (µ1 ≥ µ2 ≥ µl(µ) > 0) is a partition of d. Such integrals first appear in
the calculations by Katz and Liu [26].

3.4. Hodge integrals from localizations on Mg,0(S, β). Similarly, by applying
localization to

ng,β =
∫

[Mg,0(S,β)]virt
T

eT (Kg,β)

I am led to the following Hodge integrals:

Gµ+,µ−(λ; τ) = − (
√−1λ)l(µ+)+l(µ−)

zµ+ · zµ−
[τ(τ + 1)]l(µ

+)+l(µ−)−1

·
l(µ+)∏

i=1

∏µ+
i −1

a=1

(
µ+

i τ + a
)

µ+
i !

·
l(µ−)∏

i=1

∏µ−i −1
a=1

(
µ−i

1
τ + a

)

µ−i !

·
∑

g≥0

λ2g−2

∫

Mg,l(µ+)+l(µ−)

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏l(µ+)

i=1
1

µ+
i

(
1

µ+
i

− ψi

) ∏l(µ−)
j=1

τ
µ−i

(
τ

µ−j
− ψl(µ+)+j

) ,

(11)
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where λ, τ are variables, (µ+, µ−) ∈ P2
+, the set of pairs of partitions which are

not both empty. We will call the Hodge integrals in Gµ+,µ−(λ; τ) the two-partition
Hodge integrals.

In a more recent work [30] where a mathematical theory for the topological
vertex is developed, a similar kind of Hodge integrals which involve three partitions
naturally appear when applying localization techniques.

4. Proof of Hodge Integral Identities by Localizations

In the previous section we have seen localization on moduli spaces of stable maps
leads one naturally to some Hodge integrals hence it is desirable to evaluate them.
In this section we will briefly describe how this can be achieved by localization
again, but this time on relative moduli spaces. The interested reader can consult
[38, 39, 30] and the survey papers [37, 41] for details.

4.1. Mariño-Vafa formula. Hodge integrals of the form (10) can be evaluated
by the Mariño-Vafa formula. This formula arises in the duality between relative
Gromov-Witten invariants of the resolved conifold and the invariant of the unknot
[45]. The leading term of the former was computed by Katz and Liu [26], it is given
by Gµ(λ, τ) in §3.3. Consider its generating series:

G•(λ; τ ; p) = exp

(∑
µ

Gµ(λ; τ)pµ

)
, pµ = pµ1 · · · pµl

.

The latter is given by the following generating series of the leading terms of the
quantum dimensions Wµ:

R•(λ; τ ; p) =
∑

ν

qκντ/2Wν(q)sν .

Here sν are the Schur functions, they are related to the Newton functions pµ by the
characters of irreducible representations of the symmetric groups:

〈sµ, pν〉 = χµ(ν),

where χµ denotes the character of the irreducible representation indexed by µ,
and χµ(ν) denotes its value on the conjugacy class indexed by ν. The remarkable
formula conjectured by Mariño and Vafa [45] states that

G•(λ; τ ; p) = R•(λ; τ ; p).(12)

Note the left-hand side of this formula encodes the geometric information of the
Hodge integrals of the Deligne-Mumford moduli spaces while the right-hand side
encodes the algebraic information from representation theory of symmetric groups,
Kac-Moody algebras, quantum groups and Hecke algebras. In physics, the left-
hand side comes from 2D quantum gravity and the right-hand side comes from 2D
Yang-Mills theory.

Here is one way to understand the Mariño-Vafa formula. One can think of
G•(λ; τ ; p) as a vector in the space of symmetric functions. Its coefficients expanded
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in the basis pµ are given by the Hodge integrals, while its coefficients expanded in
the basis sµ are given by the leading terms of quantum dimensions.

The Mariño-Vafa formula was proved in [38] (see also [48]). The basic ingredients
are a system of ordinary differential equations called the cut-and-join equations and
localizations on relative moduli spaces Mg,0(P1, µ) introduced in [34]. The strategy
was proposed in [61] and carried out jointly with Melissa Liu and Kefeng Liu in [38].
The motivation for such a proof comes from comparison with the ELSV formula. It
is well-known by Burnside formula that Hurwitz numbers can be expressed in terms
of representations of symmetric groups. One can think of the Mariño-Vafa formula
as a deformation of the ELSV formula. It is known that the Hurwitz numbers
satisfy the cut-and-join equations, by combinatorial method [14] and by geometric
method [33] using the symplectic version of relative moduli spaces [32, 21]. The
motivation of applying localization on the algebro-geometric relative moduli spaces
comes from comparing [26] with [35] and from [19].

Originally I tried to prove the Mariño-Vafa formula by localizations onMg,0(P1, d)
and got the special cases for |µ| = 2 and 3 in [60] but it became too complicated to
do so in higher degrees. The treatment in [48] uses localization on Mg,n(P1, d) and
the complicated proof of (9) in [12].

Many earlier results on Hodge integrals can be derived from the Mariño-Vafa
formula. See [40] for the derivations of (7)-(9). Mariño and Vafa conjectured that
one can recover all Hodge integrals with at most three λ classes from their formula.
Lu [42] has shown that this is true with the exception of only one class of Hodge
integrals.

4.2. Two-partition formula. Motivated by the Mariño-Vafa formula I conjec-
tured the following formula in [63] for two-partition Hodge integrals:

(13) G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ)

where

G•(λ; p+, p−; τ) = exp


 ∑

(µ+,µ−)∈P2
+

Gµ+,µ−(λ; τ)p+
µ+p−µ−


 ,

R•(λ; p+, p−; τ) =
∑

ν±
e
√−1(κν+τ+κν−τ−1)λ/2Wν+,ν−(e

√−1λ)s+
ν+s−ν− ,

p±µ = p±µ1
· · · p±µh

.

This formula is proved in [39] by localization on the relative moduli spaces of stable
maps to P1 × P1 blown up at a point.

In a recent paper [5], Diaconescu and Florea conjectured a relation between three-
partition Hodge integrals and the topological vertex [2]. In [30] we prove a formula
for three-partition Hodge integrals in terms of the topological vertex.

4.3. Relationship with integrable hierarchies. The relationship between Hodge
integrals with link invariants has a straightforward consequence of relating them to
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integrable hierarchies. This is a result of the appearance of Schur functions in the
generating series, and the fact that Wµ can also be expressed in terms of skew
Schur functions [63]. As a results one can use the boson-fermion correspondence
to express them in terms of free fermionics. Hence by Kyoto school’s approach to
integrable systems, one sees that the generating series of the one-partition, two-
partition and three-partition Hodge integrals are the τ -functions of the KP, 2-Toda
and 3-component KP hierarchies respectively [65, 1]. Note here we do not use a
matrix model to establish a connection with integrable hierarchies (even though
using the explicit formula one can write down such a model), while in Kontsevich’
proof [28] of the Witten conjecture [58] matrix model plays an important role.

5. Summation over Graphs Arising in Localization

We explain in this section how graphs arise in localization on moduli spaces. We
will also describe the technique developed in [62, 64] to take summations over these
graphs.

5.1. Toric Fano surfaces and cyclic graphs. Let S be a toric Fano surface with
associated T = U(1)2-action. The image µ(S) of the moment map µ : S → R2 of
the T -action is a convex polygon whose vertices are the images of the fixed points
and whose edges are the images of the invariant divisors (see e.g. [4]). We give these
vertices and edges cyclic labels. For example, the following pictures correspond to
Fm, m = 0, 1, 2 respectively:
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ÄÄ

Ä
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??

?

ÄÄ
ÄÄ

Ä

F0

l1

l2

l3

l4
p1 p2

p3p4

(a)

?????

??
??
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F1

ÄÄ
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Ä
OOOOOOO
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l1

l4 l2

p1 p2

p3p4

(b)
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?

OOOOOOOOOOOOO

F2

ÄÄ
ÄÄ

Ä

?????

TTTTTTTTTT

l3

l4

l1

l2

(c)
Figure 6

p1 p2

p3p4

Denote the weights of Tpi
S of the torus action corresponding to the two invariant

divisors li and li−1 by u+
i and u−i respectively.

5.2. Fixed points on Mg,0(S, d). For d ∈ H2(S,Z), denote by Mg,0(S, d) the
moduli space of stable maps of genus g to S of class d. The T -action induces T -
actions on Mg,0(S, d). The fixed point components of Mg,n(S, d)T are very easy to
describe. They are in one-to-one correspondence with a set Gg(S, d) of decorated
graphs described below. Each vertex v of the graph Γ ∈ Gg(S, d) is assigned an
index i(v) ∈ ST , and a genus g(v). The valence val(v) of v is the number of edges
incident at v. If two vertices u and v are joined by an edge e, then i(u) 6= i(v), and
e is assigned a “degree”

δ(e) = de[e] ∈ H2(X,Z).
Denote by E(Γ) the set of edges of Γ, V (Γ) the set of vertices of Γ. The genus of
the graph is given by

g(Γ) = 1− |V (Γ)|+ |E(Γ)|.
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The decorations of Γ are required to satisfy the following conditions:
∑

e∈E(Γ)

δe = d,
∑

v∈V (Γ)

g(v) + g(Γ) = g.

Let f : C → S represent a fixed point. Then each vertex v corresponds to a
connected component Cv of genus g(v), with val(v) nodal points. The component
Cv is mapped by f to the fixed point i(v). When 2g(v)−2+val(v) < 0, Cv is simply
a point. There are only two cases when this happens: g(v) = 0 and val(v) = 1,
g(v) = 0 and val(v) = 2. Each edge e corresponds to a component Ce of C which
is isomorphic to P1. Each Ce is mapped to an invariant divisor li with degree de.

Define
MΓ =

∏

v∈V (Γ)

Mg(v),val(v).

In this product, M0,1 and M0,2 are interpreted as points. There is a natural
morphism

τΓ : MΓ →Mg,0(P1, d)T .

Its image is MΓ/AΓ, where for AΓ we have an exact sequence:

0 →
∏

e∈E(Γ)

Zde
→ AΓ → Aut(Γ) → 1.

Given a graph Γ in Gg(X, d), we call the labelled graph obtained from Γ by
ignoring the markings of g(v) of the vertices the type of Γ. Denote by G(X, d) the
set of types of graphs in Gg(X, d).

5.3. Feynman rule for a type of graphs. Now by applying localization one can
get [64]:

F (λ) =
∑

g≥0

λ2g−2
∑

Γ∈Gg(Zk,d)

1
|AΓ|

∏

v∈V (Γ)

wv ·
∏

e∈E(Γ)

we,

where

wv = zµ+(v) · zµ−(v) ·Gµ+(v),µ−(v)(u
+
i(v), u

−
i(v)),

we = ((−1)seeli)
de .

5.4. Chemistry of graphs. In the above we have reduced the problem of com-
puting the free energy to a problem of summing over some graphs. Motivated by
quantum field theory where Feynman diagrams and Feynman rules are common, I
have developed in [62, 64] a method to take such summations by using the theory
of free bosons. The basic idea is to associate to each edge in the toric diagram of S
a system of free bosons, and use vacuum expectation and Wick theorem to produce
from the toric diagram all graph types that appear in localization. In a more recent
paper [1], the authors used free fermions to study the topological vertex. This is
related to my work by boson-fermion correspondence.
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6. Local Calabi-Yau Geometries and Yang-Mills Theory

In this section we explain the relationship between the topological string partition
functions computed above and some invariants of the moduli spaces in 4D Yang-
Mills theory.

6.1. Geometric engineering. An interesting way to establish relationships be-
tween Gromov-Witten invariants of Calabi-Yau spaces and invariants of Yang-Mills
theory is an idea called geometric engineering. In string theory physicists start with
a theory on R4×X where X is a Calabi-Yau space. In what they call the low energy
effective theory of this theory (a supergravity theory in this case) they get a theory
which contains both gravitational fields and gauge fields. By suitably choosing the
Calabi-Yau spaces, one can in principle obtain gauge theories on R4 with various
gauge groups. See [25] and the references therein for more details. Mathematically
this leads to the possibility of identifying the generating series of Gromov-Witten
invariants of some local Calabi-Yau geometries with the generating series of some
invariants of some Yang-Mills theory on R4 which we regard as C2. As we explained
in §2, the former can be mathematically computed. For the latter, Nekrasov stud-
ied some partition functions in the context of moduli spaces of noncommuative
instantons in the physics literature. He conjectured his partition functions can be
identified with topological string partition functions of local Calabi-Yau geometries
obtained as An-fibered over P1. Such moduli spaces correspond to the framed mod-
uli spaces of torsion free sheaves on C2 and have been studied by Nakajima and
Yoshioka [49]. In two papers Iqbal and Kashini-Poor [23, 24] proposed some combi-
natorial identities which lead to the proof of Nekrasov’s conjecture. These identities
are proved in [6, 7, 66]. In a more recent work [30] this connection between Calabi-
Yau geometries and gauge theory is used to studied the Gopakumar-Vafa invariants.
Nekrasov [51] also conjectured a relationship with the Seiberg-Witten prepotential.
See [49, 52] for the proof.

6.2. Some gauge theoretical invariants by localization. Let M(N, k) denote
the framed moduli space of torsion free sheaves on P2 with rank N and c2 = k.
The framing means a trivialization of the sheaf restricted to the line at infinity. In
particular when N = 1 we get the Hilbert scheme (C2)[k]. See [49] for details.

As proved in [49], M(N, k) is a nonsingular variety of dimension 2Nk. The
maximal torus T of GLN (C) together with the torus action on P2 induces an action
on M(N, k). As shown in [49], the fixed points are isolated and parameterized
by N -tuples of partitions ~µ = (µ1, · · · , µN ) such that

∑
i |µi| = k. The weight

decomposition of the tangent bundle of TM(N, k) at a fixed point ~µ is given by
N∑

α,γ=1

eγe−1
α (

∑

(i,j)∈µα

t
−((µγ)t

j−i)

1 t
µα

i −j+1
2 +

∑

(i,j)∈µγ

t
(µα)t

j−i+1

1 t
−(µγ

i −j)
2 ),(14)

where t1, t2 ∈ C∗ × C∗, and eα ∈ T .

The space M(N, k) has the following remarkable property. Let E be an equivari-
ant coherent sheaf on it. Even though Hi(M(N, k), E) might be infinite-dimensional,



14 JIAN ZHOU

the weight spaces of the induced torus action on it are finite-dimensional, hence it
makes sense to define the equivariant index. In other words, if

Hi(M(N, k), E) =
∑

Vν

is the weight decomposition of Hi(M(N, k), E), then

dimVν < ∞
for all weight ν. Hence one can define

chHi(M(N, k), E) =
∑

(dimVν)eν .

Furthermore, one can compute the equivariant index by localization[49]:

χ(M(N, k), E) =
2Nk∑

i=0

(−1)i ch Hi(M(N, k), E) =
∑

~µ

ch

(
i∗~µE

∧−1T ∗~µM(N, k)

)
.

The partition functions of Nekrasov are equivariant indices of some naturally defined
bundles on M(n, k) ([20, 55, 31]).

6.3. Hilbert schemes and symmetric products. We use the n = 1 cases to
illustrate the idea. See [31] for details and other cases. The framed moduli spaces
M(1, k) are the Hilbert schemes (C2)[k] of points on C2. The partition functions
Z4D, Z5D and Z6D can be related to equivariant χ0, χy and elliptic genera of (C2)[k]

(cf. [20, 31]).

Since the Hilbert-Chow morphism (C2)[k] → (C2)(k) to the k-th symmetric prod-
uct of C2 is a crepant resolution, one expects invariants of (C2)[k] can be identified
with the corresponding orbifold invariants of (C2)(k). The latter has natural infinite
product expressions hence one can extract from them Gopakumar-Vafa invariants.
For example, by localization, one has

∞∑
n=0

Qnχ0((C2)[n])(t1, t2) =
∞∑

n=0

Qn
∑

|µ|=n

1
∏

e∈µ(1− t
−l(e)
1 t

a(e)+1
2 )(1− t

l(e)+1
1 t

−a(e)
2 )

.

This is a sum over partitions. It can be used to compare with (2) to get:

Z4D(q, Q) =
∞∑

n=0

Qnχ0((C2)[n])(q, q−1)

On the other hand,
∞∑

n=0

Qnχ0((C2)(n))(t1, t2) = exp(
∑

n≥1

Qn

n(1− tn1 )(1− tn2 )
).

This can be written as an infinite product. Since one has

χ0((C2)[n])(t1, t2) = χ0((C2)(n))(t1, t2),

one can get:
∞∑

n=0

Qnχ0((C2)[n])(q, q−1) =
1∏

m≥1(1− qmQ)m
.
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This gives a geometric explanation of

Z4D(q, Q) =
1∏

m≥1(1− qmQ)m
.

In [31] we extract the Gopakumar-Vafa invariants of Z5D (Z6D) from the equivariant
χy (elliptic) genera by similar method. We also propose to do the same for other
local Calabi-Yau geometries related to geometric engineering.
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