ON A DEFORMED TOPOLOGICAL VERTEX

JIAN ZHOU

ABSTRACT. We introduce a deformed topological vertex and use it to define
deformations of the topological string partition functions of some local Calabi-
Yau geometries. We also work out some examples for which such deformations
satisfy a deformed Gopakumar-Vafa integrality and can be identified with the
equivariant indices of some naturally defined bundles on the framed moduli
spaces.

1. INTRODUCTION

Since the introduction of the topological vertex in [1], there have been interests in
generalizing it to have more variables. Very recently one such generalization using
Macdonald’s polynomials has been introduced [4]. In this paper we will consider
another one.

Recall the topological vertex involves three partitions, when one of them is empty
it is related to the leading term of the large N colored HOMFLY polynomials of
the Hopf link, and the general topological vertex can be expressed in terms of
such leading terms. We will use the whole colored HOMFLY polynomials to define
the deformed vertex, hence deformations of the partition functions of topological
strings.

We define the deformed topological string partition functions simply by replac-
ing the topological vertices by the deformed vertices, so their geometric meaning
is missing at present. Nevertheless, they share some important properties with the
undeformed topological string partition functions For example, our examples in-
dicate that the deformed topological string partition functions satisfy a deformed
Gopakumar-Vafa integrality. We will also show that many results in [23] and [12]
can be generalized to the deformed case, i.e., we obtain some explicit expressions
for some deformed topological string partition functions which we identify with the
equivariant indices of some natural bundles on the framed moduli spaces.

The rest of the paper is arranged as follows. In Section 2 we compute the equi-
variant indices of some natural equivariant bundles on the framed moduli spaces. In
Section 3 we collect some results on skew Schur functions which serve as our main
technical tools. In Section 4 we will introduce the deformed topological vertex by
studying the large N Chern-Simons invariants of the Hopf link. We present some
product expressions for certain sums of these invariants in Section 5. We propose
in Section 6 partition functions of some local Calabi-Yau spaces using the deformed
topological vertex and identify with the equivariant indices in Section 2.
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2. THE DEFORMED INSTANTON COUNTING

In this section we consider some equivariant indices of equivariant bundles ex-
tending the ones considered in [12]. They give us the “deformed instonton counting
functions” to be identified with the “deformed curved counting functions” in §6.

2.1. The framed moduli spaces. Let M (N, k) denote the framed moduli space
of torsion free sheaves on P? with rank N and ¢y = k. The framing means a
trivialization of the sheaf restricted to the line at infinity. In particular when N =1
the framed moduli spaces are the Hilbert schemes CI¥l. See [16] for details.

As proved in [16], M (N, k) is a nonsingular variety of dimension 2Nk. The
action of the maximal torus 7' of GLy(C) together with the torus action on P2
induces an action on M (N, k). As shown in [16], the fixed points are isolated and
parameterized by N-tuples of partitions i = (p!, -+, u) such that >, |uf| = k.
The weight decomposition of the tangent bundle of TM (N, k) at a fixed point [ is
given by

N
_ —((B")5=9)  u&—j+1 (n™)5 =141, — (] —3)
(1) dooeed > 4 ty T+ Y ty "),
ay=1 (4,5)Ep™ (,5)EnY
where t1,to € C* x C*, and e, € T.

The space M (N, k) has the following remarkable property. Let E be an equivari-
ant coherent sheaf on it. Even though H*(M (N, k), E) might be infinite-dimensional,
it still makes sense to define the equivariant index and compute it by localization

(cf. [16]):
Lemma 2.1. Let E be an equivariant coherent sheaf on M (N, k). Then

2Nk _ ' D)
X(M(N,k),E) = (=1)"ch H'(M(N,k),E) = ch <W> '
i=0 z o 7

2.2. Some naturally defined bundles on the framed moduli paces. Recall
M (N, k) can be identified with the space of equivalent classes of tuples of linear
maps

(B1:V—=V;By: VoV W—oVi5: VW)
satisfying

[B1,Bs] +ij =0

and a stability condition. Hence one gets a vector bundle Vi over M (N, k) whose
fibers are given by V. This bundle is an equivariant bundle, and its weight decom-
position at a fixed point i is given by [16]:

(2) Vi=Pea Y, tit7

a (IS
Therefore, the weight of detV;, at the fixed point [ is

ICARIE

a (i,5)ep™
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One can has an equivariant bundle W; whose fibers are given by W. It has the
following weight decomposition:

N
(3) ch = Zea.

Now we take By, = Kf,’k ® (det V;)™, where Ky denotes the canonical line
bundle of M (N, k). By Lemma 2.1, (1), (2) and (3) one easily gets

Lemma 2.2. We have

(4)

Z QkX(M(Nv k)a A—e*t (Vk & Wit:) 0 A—e*t (VZ & Wk?) ® E]Wl,k)(eh ..., EN, t17 t2)
k>0

m
— Z QZ \Af\ﬁ e;\u‘*\ H tzfltéfl
""" a=1 (i.5)Ene
N t, —1p—itl =i+l
' H H () 2)1_7;%601‘67 t171 tz*((#”)t‘*i) e —j+1y_1
av=1(ij)epe (€a eyt th e —(eate sty T T e
1 — e~t(e ety It
e (e 67t§M )} Hlt;(” ,j)) (e glevtgﬂa)ﬁ‘*”lt;(u?*j))7%

2.3. Rank 1 case and generalizations. When N = 1, ¢; = qgan ty = ¢!, we

have

QR X((C)F A~ (Vi @ W) @ A_ et (V5 © Wi) @ K1 k) (g, ")
k>0

(5) _ | 1— 67tqc(:c) 1— eftqfc(:r)
Z Q" H g h@)/2 — gh(@)/2 ' Gh@)/2 — g=h(@)/2

IEM

Since the canonical line bundle K j is equivariantly trivial, this is equal to:

Z QkX(M(L k)a A—e*‘ (Vk & Wlt) by A—e*t (VZ 0y Wk))(q7 q_l)
k>0

1—et c(r 1— e—tq—c(r)

_ZQ\MH — @ ).

TEN

This can be generalized as follows. Let

We*t,y(vn) = A_e—t (Vn) 024 A_e—t (V;) ® Se*ty(vn) ® Se’ty(V:,)'
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Now by (1) and (2),

X)L A (T (C)M) @ Wewr (V) (11, 12)
-y (1— e—tt;i“t;f“)u —e g
t;(ui*j+1))(1 _ t;(#.t7'72+1)t/21i*j)

(7) [ul=n (i,5)€n (1- t

= iy D) 1y )
Gien (1 _ yefttlfH*lt;]'Jrl)(l . ye*ttlfltéfl)
This generalizes the equivariant x, genera of the Hilbert schemes as one can see by
taking e=t = 0. It is easy to see that
XUCHI A (T(C*)M) @ Wee (Vi) (071

(8) (1—e'q*)(1 —etq=™) (1 —yg"™)(1 —yg~"™))
Z H ye—tqc(x))(l _ ye—tq—c(gc)) (1 _ qh(x)))(l _ q—h(x)) :

lu|=nzEp

We will generalize this further to an analogue of the elliptic genus as follows. Define

o

EN(T(C*)", Vo) (y.pe™) = QA1 (TH(CHM) @ Ay 1,0 (T(C*)™)

n=1
©Spn (T*(CH)) ® Spn (T(C*)M)
QA _e—tpn-1(V, @VE) @ A_c—t)n (V,, V)™
®Se—typn-1(Vn @ V) @ Se—ty—1pn(V,, & V7)™
This suggests that we should consider the supermanifolds obtained from (C2)l"]
whose odd part of the tangent spaces are V,, @ V. By taking p = 0, one gets:
EI(T(C*)!M, V) (y,0,e7")
= Ay (T (C)) @ A=t (Vi) ® Aot (V3) ® Se-ty (Vi) ® Se-ty (V)
= A—y(T*(Cz)[n]) ® We*f,y(vn)'

by (1) and (2),

X((CHI, EL(T(C)M, Vo) (y, p e ")) (b, 1)

-y II I (e

1 k—1 nh—i
lul=n (ihj)enk=1 \ (1 —pF 1

t_ . s —(ut—i —
k_ltlfj Zt;(/h J+1))(1 _1t1 (MJ 'L+1)t£h, .7)

— yp"
— g —(ut —i+1 )
1y ) (1 = phonay 9T )

.(1_ypkt1*(“§ thi= J+1)
(1— ktl_( K= tﬂz ]+1)<1 —itl *(uz J))
(1_6 k— 1t z+1t ]+1)(1 . k 1t’ ltj 1)

(1= yemtpht T (1 - =rs o

(1—e~'pPy 7 (A — e tpP T

(1 —yetphty Py T (1 - yetpkti‘lt%1)>

il (g
(1 ypkt t (n J))
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It follows easily that
x((€), Ell(T(«?)W v >(y p,e—t»(q,q—l)

-3 11 H ( ’]))(1— i lyq_h(l’]))
h(i,5) —h(i,5)

lul=n (i,7)epn k=1 - )

C(L=pry ) (1 - p’“y’lq’h(”))
(10) (1= P ) (1 = g )

(1 _e—t k—1 cz )(1 _e—tpk 1 —c(ij))
(1 _ e—tpk lch(l,]))(l _ e—tpk 1yq c(z,j))
(1 _ e—t r(z j))(l _ e—t k C(Z,j))
(1—etph y‘lq“”))(l —etpk y”(}*“’”)) '

It is natural to expect that a deformed version of the equivariant DMVV conjecture
holds for such deformed elliptic genera.

2.4. Rank > 1 case. When t; = ¢, t; = ¢~ !, after a tedious elementary calculation
one can find:

(1)

Z QkX(M(N’ k),A,e—t(Vk ® WZ:) ® A,e—t(VZ ® Wk) ® E}Zfl,k)(eh e 76N7qa qil)
k>0

N
Z QT il N T e T (e(zwqma/z)

.....

10 10

a=1(i,j)ep>

t/2q(1 /2 _ e=t/2g=(—0)/2
(4,9)/2 — g=h(i,7)/2

1 j—i

~te o= q]
H I—e” €a€7 1q (j—1) |
(m‘)em 1—eqey'q —(u] + ()i —i—j+1)

t/2q(J /2 _ et/2g=(1=1)/2

X H H /2 _ g—h(ij)/2

a=1(i,j)ep>

1 j—i

—ele ¢’
H H :H;ﬂ) —i—j+1

1<a<y<N (i,j5)ep>

(3—17)

H 1—eleqe; 1q )
(l ) 1 — eaealq_(uz—‘r(ua)fi—i_j-‘rl) '
1,5) €Y

3. PRELIMINARY RESULTS ON SKEW SCHUR FUNCTIONS

In this section we collect some results on skew Schur functions. They will be our
main technical tools for the rest of the paper.
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3.1. Summation formulas for Skew Schur functions. Recall the following
identity:
(12) H (1 Qajzyj = eXpZ 7pn )Pn (),
i,j=1

where z = (21, x2,...), y = (Y1, ¥2,...), and

pu(z) =al +af +-o-
For some specializations, the left-hand side of (12) may not make sense, but the
right-hand side makes sense. For example, when x = ¢° = (q_%,q_%,...), Yy =
q P = (q%,q%, ...), the left-hand side becomes

ij=1

which does not make sense, while on the right-hand,

_sm q q2 _
z2 = = - :_pn(q p)’

(13) pald”) =a % +q
hence the right-hand side of (12) is
o _(4Q)" )
eXp | — Z n 2 |°
( = -1

We will use the following identity for skew Schur functions (cf. [13, p. 93, (1)]):

(14) an/u( )8/ (Y —expz p" Pnl( ZS#/T Y)su/r (@),
n

(15) an/# x)sye s, (Y) —eXpZ% ZS#/TI Y)sut /7 (),
n=1
where = (21, x2,...), ¥y = (Y1, Y2, ... ). In particular,
(16) Z 371 37; = exXp Z %pn(x)pn(y)v
n=1
a7) S susu@)su(0) = 0D Zpu@)pnly) -5 (v),
(15) S sy@s ) =ep S T @)
(19) D supe(@)sy(y) = expy (_17):_ Pu(@)pn(y) - 5.(y)
n n=1

For ¢ = (z1,22,...), y = (Y1,92,--.), let (z,y) = (z1,y1,%2,92,...). Then we

(20) Zsu/s 2)se/u(y) = supw(2,y).
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We will need the following:
Lemma 3.1. [23] The following identity holds:

N
Z S T suesm—r GNQY sun e ()

(21) ..... Nl nN-1k=1
_ o~ (QrQpt1 - Quor)" k -1
= H Z n Pu(x)pn(y ™),
1<k<I<N+1 n=1

where n® =N = (0), z = («f,25,...), v* = (WF,95,...).

Formulas of the type in the following Lemma appeared in [7] without proof.

Lemma 3.2. For |uv| < 1 we have

(22) Zul“lv‘l’lsu/y( )5,/ (y) = expz Pr(@)pn(y),

(23) > () (o) s (@) sy 0 (y) = eXpZ P (2)pn(y)-

sV

For Jujusvive| < 1, we have

S ol s ()56 ()50 10 (2) 8 (w)
uV&n

(24) —expz

+ (u1u2v1) " (w)pn(2) + (u1u202)" pr(2)pn(y)),

ulumg) (W pn @)pn(2) + 63pa (y)pa(w)

and

Z (—uy)# (_u2)|u"l}|1£|v‘2n‘8'u/£t ()54 /et ()50t yn(2) 8t /(W)

uVﬁn

(25) — exp Z

+ (Uluzvl) Pn(W)pn(2) + (w1u2v2)" pn(7)pn(y)),

U1U2U1U2) )(_u?p”(x)p"(z) — U (Y)pn(w)

Proof. Write the left-hand side of (22) as S(x,y,u,v). By (15) one has:
S(x, yiu, ’U) = Z(uv>|y‘ Z Su/u(ux)s,u/u(y)
v 1

= eXpZ*Pn pn Z( )‘ |Su/u(ux)51//u(y)

Vi

un
= exp Z —pa(@)pn(y) - Do uls, u(vy)s, (uz)
n=1

v,

oo un
= €exp Z ;pn(m)pn (y) ’ S(Uy7 ux;u, U)'
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This procedure can be graphically represented as follows:

X

One can repeat this procedure for infinitely many times to get:

Z ulﬂlv‘ylsu/u(‘r)su/u(y)
TR

— ep Yy A T pa(9) - (), (w) )

n=1 n
_ expz "(1+ (uwv)™ + - n'+(uv)2n+'”)pn(w)pn(y)
= EXp;n(l _u(u,u)n)p"( )pn(y)

The proof of (23) is similar. We present two proof for (24). In the first proof we
use (14) and (20) to reduce to (22):

Z el /()80 /e (Y)S 1y (2) S0 /n(w)

IRASY)
= Z u‘“‘ulglv‘lﬂvylslb/f( )sﬂ/n(z)Zsy/g(qu)sy/n(w)
51 v
= epo—pn Y)pn(w Z u‘“‘ulflvmvlnls 1/e(2)8,/m(2) 800 (U2y)se /0 (W)

Ay

= eXPZ*pn pn ZU‘M u2U1’U2>‘ |S#/U(Z,E UQUIw)S,u/v(Z U27}2y)
v

= exp Z —pn pn - exp Z
+(u2v1) Pn(w ))(pn( )+(U2@2) pn(y))
= eXPZ U1U201U2) )(u’fpn(x)pn(z)

+(U1U2'U2) Pr(@)pn(y) + (urug01)" pp(w)pn(2) + uspn (Y)pn(w))

(Pn(z)

U1U271102) )
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The second proof of (24) is similar to the proof of (22). We write its left-hand
side as S(z,y, z, w; u,v). Then we have:

S(z,y, z, w;ur, ug, v1,v2)
Z U\M\UIV\Ulilvlnls /5($)Su/g(y)8y/n(w)sﬂ/n(z)

Y]
= Z(ulvl)‘g‘(uwg ) Zs Je(ur)s,,/n (2 Zsy/g Y)Sy /n (u2w)
&n H

= exp Z (U1 Pn(2)pn(2) + u3pn(y)pn(w))

: Z (ulvl)m (u2v2)|n|5n/ﬂ(ulx)sg/u(z)sn/u(y)SE/V(u2w)
uV£n

= exp Z (uf Pr(2)pn(2) + g (y)pn(w))

3
) Z “ll IU\IM\UIQnI,UIQ lsn/u(ulﬂf)sg/u(vlz)sn/u(UQy)Sg/u(uzw)
#V&n

= eXPZ (ul'Pn (2)pn(2) + uypn(Y)pn(w)) - S(v12, ur T, upw, v2y; Uy, Uz, V1, V2).

nl

Repeating this procedure for four times:

Sz, bz w'u1,u2,v1,v2)
= eXPZ (uf (1 + (u1u2v1v2)"™)pn (®)pn(2) + uz (1 + (uru2v1v2)"™ )P (y)Pn (w)

—|—(u1uzvl) (1 + (u1usv1v2)™)pn(w)pn(2)
+(uru2v2)" (1 + (u1u2v1v2)")pn(2)pn(y))
=S (u1ugv1 Vo, U U2V VoY, U UV V2 Z, U U U] VoW; U, Uz, VT, V2).
Repeating this procedure for infinitely many times:
S(xz,y, z, w;uy, ug, vy, vz)

= Y (4P (@)Pn(2) + 4P (5P ()

’LL1U2’U1U2)”)

+(u1u2v1)"pp(W)pn(2) + (u1u202)" pr(2)pn(y))-
O

3.2. Some results on specialization of Schur functions. Recall any symmet-
ric function f can be written a polynomial f(ej,es,...,€,,...) in the elemen-
tary symmetric functions eq,...,ep,.... Let E(u) = 1+ 37 e,u™. We write
fler, ... en,...) as f(E(u)). In general, take E(u) to be any formal power series
with leading coefficient 1, f(E(u)) defines a specialization of f.

Lemma 3.3. Let a = (a1, a2,...), b= (b1,ba,...), and

= (1 + au)

T2
B = 11 (0 by
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Then we have

(26) Pn(E(u)) = pn(a) — pu(b)
Proof. Let
Plu) = 3" pa(B(w)u".

Then one has [13]:

d o, a bi
P(— = —logFE(u)= —
0 = s = - )
= > (ap =) (—w)" = (pala) — pa(d)(—u)" "
i=1n=1 n=1
|
Lemma 3.4. Let a = (a1,a2,...), b= (b1,b2,...), ¢ = (c1,ca,...), d = (dy,...),
and
> (1 ; . > (1 ;
E(u) _ H’gl( +a1u)’ E(U) — Hgl( +Clu) )
ITZ (1 + biu) [1:2, (1 + diu)
Then we have
~ a (1 — aidj)(l — biCj)
2 E E = .
( 7) ;Su( (U))SM( (U)) igl (1 — aicj)(l — b?,dj)
Proof. This is a straightforward consequence of (16) and Lemma 3.3. O

4. THE DEFORMED TOPOLOGICAL VERTEX

In this section we will introduce the deformed topological vertex. We will begin
by studying the large N Chern-Simons invariants of the Hopf link. We will express
them in terms of specializations of skew Schur functions and study their symmetric
properties. It will be interesting to combine our approach with that of Awata and
Konno [4]. We hope to report on this in a separate work.

4.1. The quantum dimension. Recall the large N invariant of the unknot is
given by the quantum dimension [14]:

(28) Wa(g.e ) =11

ecp

et/2qc(e)/2 _ e—t/2q—c(e)/2
qh(e)/2 _ qfh(e)/Q ’

where po = (pu1, . .., ) is a partition. For the zero partition we take W) (g, e ") = 1.
Here c¢(e) and h(e) are the content and the hook length of the box e in the Young
diagram p respectively. From the definition (28) one easily gets the following:

Proposition 4.1. The quantum dimension has the following symmetry properties:
(29) Wu(q_lv et) = W;L(Qa e_t)a
(30) Wi(q™ ' e™") = Wa(g.e') = (=)W (g, e 7).
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Our next result express the quantum dimension as a specialization of the Schur
functions.

Proposition 4.2. The quantum dimension can be identified with the following spe-
cialization of the Schur function:

(31) Wou(g,e™") = (ge")M725, (B (u; 9, ¢77)),
where
oo n e~tgi=1
—t) = _
(32) E©(ug,e 1+Zu en =1+ ;:: 1;[ q—l

Proof. Recall the following fact from the theory of symmetric functions. For a

specialization with
bq t
hyu" =
S -l
one has ([13], p. 27, Example 5, and p. 45, Example 3).

" — bgi—1
& e I
r i1
(34) o = I
(3) o= T
. — bgc®)
(36) s, = ”()zEHUCi_qq

Hence one gets E(u) in (32) by taking a = e~*, b =1, and ¢ = V=™, Tt follows
that

su(Buige) = ¢ [[ St

ecp

- _qC(P)
1—ght
c(e)/2 _ e—t/2 —c(e)/2

— )tz X, lele)=h(e)] e~ lnlt/2
g e ! H O — g—h(e)/2

ecp

et/2qe(@)/2 _ g=t/2g—c(e)/2

_ —1 —t [pl/2
- H h(e /2 _ ,—h(e)/2
ecu

= (g e )P WL(g ™).
Here we have used the following properties of the hook length and the content [13]:

(37) > h(z) = n@) +n') + v,

rev

(38) Z c(z) = n(v') — n(v).
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4.2. The invariant of the Hopf link. Recall the large IV invariant of the Hopf
link is [15, 2]:

(39) Wyw(qe™") = Wilg, e ) (€' )5, (B* (u;q,e7")),

where
U(p) i— 1

_ 14 gt~ zu 1—etg
EF(u;q,e") =
e - TTHE +g H i
Proposition 4.3. We have
[[2 (1 +¢" ")

(40) E¥(u) 12,1+ e tg—iu)

Proof. Recall the following famous identity due to Cauchy [3]. For |z| < 1, |¢| < 1,

(1—aqg 1 = (1 — azq’
I | e I e

n=1 =1 1 o q =0
Now
1—etgi-1 o noq ety (i-1)
N | e Y A I
i=1 ¢~ n=1 i=1 —4q
_ ﬁ 1+q¢
el e~tqg=iu’
Hence (40) follows. O

Apply Lemma 3.3 to E¥(u):

(41) pn(EH(U, q,e_t)) = Z(qn(ﬂi_i) _ e—nt TL( z))

Now note

Hence we have
(42) Po(EF(usq,e™)) = palg"TPTE) 4 pu(eTlgTrR).

Le., formally E*(u;q,e™") gives the specialization (¢"+t?~2, e~ tq=?~2). In (42) and
the expression below, we are not working in different domains |¢| < 1 and |¢| > 1 at
the same time. Instead, we write the relevant skew Schur functions as polynomials
of pn(g”) and p,(¢—"), whose values are given by (13). Hence our treatment is
mathematically rigorous. For later use note

(43) pu(E"(usq,e7")) = pr(B*(¢", e ™)),
and
o ()

(49)  pi(E g e ) =S (@ — et = 3 (¢ — g + y

i=1 i=1 qg—1
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Lemma 4.1. We have

(45) su(E"(u;q,e7")) = ¢~/ Z Su /(€7 q7P) sy (" FP)
(46) = Y s g ) (=) S““(qs;(f_”g(q_ )

Proof. We use (42) and (20) to get:

sl (uq,e7) = s (g"TE TP = Y T (et ) sy (0"
= Zq*(ll"*|77|)/25y/17(6*tq*P)q*‘n‘/25n(qH+P)
= MY s (e ) sy (@),

This proves (45). To prove (46) recall the following identity proved in [21]:

7 L I{ S /5 V/f( p)
(47) s,(q"HP) = (—1)IHgrv/? & :
Z 9|
O

Corollary 4.1. We have the following symmetry:

t — v|— —(lv|— - —
(48) Sut/nt(E# (U;Qae t)) = (_l)l | |77|q (vl ‘n‘)su/n(E#(u;q 1,6 t))
Proof. Recall the following symmetry [23]:
(49) sp@ ™) = (D@7 ).
Hence (48) follows from (46). O

4.3. Symmetries of W1 2.
Proposition 4.4. We have
(50) W e (q, e_t) =Wy (q, e_t)7
_ 1 2 _ _
(51) W(ul)*v(uz)*(qve t) = (‘DW s quHu?(q 1,6 t)-

Proof. The identity (50) follows from the fact that W, ,2(g,e™") can be obtained
from the colored HOMFLY polynomials of the Hopf hnk By (39) and (?7),
Wit e (67 = Walg,e ™) (e'g)” 125, (Bue (u; g, e7"))
(=)W e ) ()2 (=) Mg s (Bu(uig ™ e ™)
(—1)‘“‘+“’|Wu,y(q_l,e‘t).
This proves (51). O
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4.4. The Deformed topological vertex. The topological vertex introduced in
[1] is defined by

t W( t 1((])W 2( 3)t<q)
(52 cH lt)tqn 2/2+nk,3/2 /Y (B2)tp :
) Wit 2 s Z p*(p*) W,2(q)
where
pt )t uto (1)
Cor(po)r = Cnpt Cn(p?)t-
n
It can be reformulated in terms of skew Schur functions [20, 23, 7]:
Wity (@) = 0" 25,0 (0°) Y 500" ) s0y0 0 (0 F).
n

Now we define the deformed topological vertex to be:

W#1 12,13 (q,e_t)
(53) _qnu3/2 |u2|t/2WH2(q,67t)

2\t 3 2
.Zq(\u I—\n\)/25#1/n(E(u ) (u; g, e t))gm \—\n\)/%wa)t/n(Eu (u;q, e ).
It is easy to see that the leading term of W1 2 ,3(q,e™") is W1 2 5(q). When
pt = (0),
Wiy (567" = "2/ 2e W0 (g, e =) Vs )0 (B (usg,e7)
— o UnPlHI? Dt/2 g8 /2 Wz 2y (g, € .

When 13 = (0),
Wi e o)) = e WI2W a2 (g e)gh V25,0 (BW (u; g, e7Y)).
When p? = (0),

WN17(0)7H3 (q7 e_t)

1 _ 3|_ _
(54) —g 23 g 1D 2 (B s g, 7)) g D 25 e (B s g, 7)),
n

One then sees that W1 2 ,3 does not have the Z3 cyclic symmetry.
Proposition 4.5. We have

_ 1 2 3 _ _
(55) W(#l)t7(#2)t7(‘u3)t(q7e t) = (—1)‘“ I ln” 1+l IWﬂ31N27#1 (q 1,6 t).

Proof. This is a straightforward consequence of (48). ]

5. FROM SUMMATIONS TO PRODUCTS

We use the results in the preceding two sections to prove some product expres-
sions for certain sums of the invariants of the Hopf link and the deformed topological
vertex. They generalize the results in [9, 10, 5, 6, 23] They will play a crucial role
in the next section.
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5.1. Results on F,1,2. For two partitions p', /%, define:

Fue(ge™) = Y (qh 5 —eTlqm5) Y (¢TI —emlgTith)
i>1 j>1
—Z 1—e" *”2 Z(l—e*t)qﬂ#%.
i>1 i>1
We have
(56) F;t u? ( ) fu 2 ( ) - e_tf,ul (Q) - e_tfuz(q>‘

Indeed, by (44) we have
Fo2(q, e )
= i (E* (u;q,e7))pr (B (u;q,¢7%) — qpi (B (w5 ¢, ¢ ))p1 (B© (u; ¢,e7)

2
1—et TR 1—e 2 » 1—et)3q
- F Y@ | (S Y- | - B

)

p,
+q Z( i —i Z quj - _
i=1 =1

= Q—eful@+Q—efula)+(@—2+q ") fu (@) fu2(q)
= fuliﬂ (Q) - e_tfp,l (Q) - e_tf/yb2 (Q)

The expression

(57) futpr = 37 (qMHHimimatt - gt
ij=1
has been studied in [23]:
(58)  fuquey(e) = Z g i Z g~ W —mititi=1
(4,5)€pt (i,5)Ep?
(59) - _ Z qm—ujﬂ—z _ qj—i).

ij>1

In particular,

(60) ful@= > 7"
5.2. Some product expressions. By (56) we have

exp Z (HQ)t ,eint)

n>1

= oxp | D (e (@) = " (0") = € flue(a™)

n>1
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From this one can obtain various product expressions. First of all, by (57),

exp Z 1(“2)t 7677115)

n>1

(61)
H (1= g9 1)(1 = wetg i )(1 — et =i H)
o e L ( uz+(u )i—i— I (1 — we—tq—i=i+1)(1 — ue—tq—z‘—j+1)'
By (59),
u”F n _—nt
exp 7; - w2yt (g™, e”™)
(62) o0 - 1 2 . . . . . .
I (1= g =1=H49)(1 = wetg =) (1 — ue~tg) )
L = a1 — wer g9 (1 — uetq S )
By (58) and ( )
exp Z % Z)t ,eint)
(63) nzt N
. 1 —ue™ quz H 1-— u@ftqf(.jfz)
N L1 — gt H )i+l 1 — ug (WD Hui—i—s+1”

(i,5)€n?

5.3. Product expressions for K,1(,2):(Q). Define
1 2 _ —
12 (Qig e”t) =Y QMlem I IRy L (g, e )W, y2(g,e7).

Proposition 5.1. The following identities holds:

u ,U,2(Q;Q7 7t)
Koy(0)(Q;a,e7")
(64) =g
:e_(‘ul‘+|u2|)t/2wﬂl (q7e_t)W q,€ t exp (Z 7 7€_nt)> '

Proof. We have
ICMI/P(Q)
= ZQ'”‘e_”“l|+‘“2‘)t/2W#1q'”‘/QsV(E“l(u;q7e‘t))Wqu"’VQsl,(E“z(u;q,e‘t))
= e Un' I+ D2 W, ex i—(q@n EM (u:q, et EY (ua. et
= 1t W2 exp L Pn(E" (w50, e77))pn(BY (usq,€77)).
n=1

In particular, when pu! = p? = (0),

qQ
(65) Koyo(Q) = expz (B (u; q,e74))2.
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Hence

Kﬁtl/ﬁ (@)
K0)0)(Q)
= e 2y

P @WE’“ (usq, e pn(E (usq,e ™)) = pu(EO(usq,e™))?)

) t n
N W exp | 30 ED (e

n
n>1

O

We will find product expressions for /C,1(,2) in two different ways. By (65), (40)
and Lemma 3.4 we have

S (1 o qf(i+jfl)Q)2
66 K = — ——
(66) (0)(0) ZEI (1-— q—(1+J—1)etQ)(1 _ q—(z—i-j—l)e—tQ)
- (1-¢Q)?
67 = .
o I i=Faa= e
Recall
t/2,(—1)/2 _ o—t/2,—(i—1)/2
—t\ _ €’ q € q
(68) Wilg,e™) = (l:[ q(m+u§—i—j+1)/2 - q—(m+u;—i—j+1)/2'
2,]) €M

It is possible to rewrite this as an infinite product. For the denominator, recall [23,
Lemma 2.1],

) I R R SR A
1<i<j<oco (i,4)En

for the numerator, recall

(70) fule)= > @7 == (@ =),

(4,9) € 1,j=1
Hence

q(ururiﬂ’)/? _ q*(uﬁuriﬂ’)/?
qU=1/2 — ¢q=(i—i)/2

(71) Wulg,e™ = 1

1<i<j<oo
. ﬁ et/Qq(ltH‘j—i)/Q _ e_t/zq_(ﬂi+j—’i)/2
oo P — et/

By (62) and (63) one then gets two product expressions as follows.
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Theorem 5.1. We have

ICul(MZ)t(Q)
K 0)(0)(Q)
e W ] €!/2qU0/2 — e7t/2q" 002
(ui+h)i—i—j+1)/2 _ —(pi+(pt)s—i—j+1)/2
(et 4 q
(72) et/2q(i=0)/2 _ g=t/24—(i=i)/2
’ )1_([ . (it =it 1)/2 o= ((u?)i4pd—imj+1)/2
1,7)€(p)"
1—etQg H 1—etQq 9
() —i—j+1 Tl )it
Gpew 1= Qqti T e - Qq Wi +n J+1]
Furthermore,
K2 (@)
K0y0)(Q)
Tyt —itg —(pt=pt—itj
—e— (' I +Ip®+2lv)t/2 H gl /2 q (i =1 =i+3)/2
A -2 — g—G-0/2
<i<y<oo
> ot/2g(niHi=0)/2 _ o=t/2g—(ni+i=)/2
R L Ve e EDIE
1,]=
(73) G —iE)/2 = —pi—itd) /2
1<Z_1<_JI<OO qu=0/2 — q=(G-1)/2

> ot/2qiHi=0)/2 _ o=t/2¢— (i +5=1)/2
et/2q(j*i)/2 — e*t/Qq*(j*i)/2

4,J=1

T Bk
AL (g (1~ wetg =) (1 e tq )

5.4. Product expressions for L£,1(,2):(Q). Define
1 2 — —
EMIMQ(Q§Q76_t) = Ze_(lu I+l |+2|V‘)t/2(_Q)‘V|Wulu(Q7e t)Wl/t[LZ(q7e t)~

Proposition 5.2. The following identity holds:

L1,2(Q5q,e7)
L0y0)(Q;q,e7")
(74)

oo

== T2 (4,07 )W (g, ™) exp ( > L Fela” >> |

n=1
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Proof. We have
L,1,2(Q)
1 1
= Z(—Q)‘”le_“‘ 2W g1 2, (B (u;q,e7t))
Y g (B (g, )

n

M8

n=1

= WY T exp (

In particular, when u! = p? = (0),

19

pu(B* (u5¢,¢7))pp(E* <u;q,et>>> :

— (9Q)"
(75) Loy (@) = exp ( Z Pu(BEO(u; g, t))2)> :
n=1
Hence
L1,2(Q)
L0)(0)(Q)
1 2 2
= e U2y W exp ( Z S (o (B (w30, )pa (B (u g, 1)
o (B (usq,e 7))
A E AR & B a(a™ e
n>1 n
O
By (62) and (63) one then gets two product expressions.
Theorem 5.2.
L1221 (Q)
L0)(0)(Q)
et/2qli=0)/2 _ g=t/2—(i=)/2
- H (i +(p)i—i—j+1)/2 _ —(pl4(pt)t—i—j+1)/2
Ggent 4 9
et/2qi=0/2 _ o=t/24=(i=1)/2
e GBS —imit1)/2 = ((W2)i4pf—imjt1)/2
H 1 — Qqri+tw?)j—i—i+1 1 — Qq~((W)i+ui—i=i+1)
1— Qe—tgi— ’ 1— Qe—tg-U—
()ent Qela ()en® Qeta
In particular, when p' = p? = p,
‘C;mt (Q)
76 L0)0)(Q)
( ) 1 — et c(e))(l _ e—tq—c(e)) (1 _ Qqh(e))(l _ Qq—h(e))

1)k .
”H = Qe ) (1= Qeq@) (1 (I~ )
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Furthermore,
Loy (@)
L 0y(0)(Q)
B H q(u}—u}—iﬂ')/? _ q—(u}—u}—iH)/?
B G-0/2 — g—G-9)/2
1<i<j<oo qv v
et/2qni+i=1)/2 _ o=t/2=(ni+j=0)/2
i et/2qG=0/2 — o=t/2q=(—)/2
(77) H G —D/2 (e =i i) /2
—)/2 _ —(—1)/2
1<i<j<oo q(] )/ q (J )/

2 ot/20(HiHi—0)/2 _ gmt/2g—(ui+i—1)/2

et/2q(i=)/2 — e=t/2¢g=(i—1)/2

1,j=1

] (L )0 et )0 et
(1 —ugi—*)(1 - ue_tq“%_i""j)(l — ue—tq’@_”j) .

i,j=1

5.5. Generalizations. Define:

N
Kuyn (Q1,...,Qn-1;q,¢7 ") = Z Hqnuk/2Wyk*1H’€(yk)t(q,eit)

vl vN-1 k=1

.....

where 10 = vV = (0), Qn = 1.

Proposition 5.3. We have the following identity:

Kutun Q1. Qn—1)
[Li<ici<n Koyo)(Qr - -+ Qi-1)

N
- Qi Qi=1)" n
= HWM((L@ t)'eXP Z Z%me)t(q , €
k=1

1<k<I<N n>1

k
[V

k

)
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Proof.
(Q17' . '7QN 1;4,¢€ 7t)

= Z qu/ Wiy (6,6 QY (0 = v = (0)

vi v N-1k=1

= Z H e"”k“/QWM (g, e

vl wN-1k=1
. Z q(‘Vk71‘_‘nkill)/quk—l/nkfl(E(Hk)tQ7e_t))
nk*l
k1 k _ vk
VD 2 (B (g, e )QL
e )

— ﬁef“‘k“/QWM(q,e’t) Z Z Hq(m\ "1
k=1

LwN=Lpl  pN=2 k=1
k+1)t

k k v
'Syk/nk—l(E'u (q’e—t))q(lv [—In" I/QQL ‘Sl,k/nk(E('u
(0 =n""1 = (0))
N 00
oy g 4QiQus1 - Q)"
_ He B2 (g, e7t)) - H expz( k k-:ll 1)
k=1 I<k<ISN  n=1
k _ Iyt _
PulE" (q,¢7))pa(BH) (q,67)).
In the last equality we have used (21). Hence

HN(QM' . 'aQN—l;Qae_t)
H1§k<l§N Koy0)(Qk - Qi-15q,¢7")

N
1k Q )" -
H(e Iz It/QWMk(q . exp Z Z 1-1) Sk bt g (g e ).

k=1 1<k<IKN n2>1

(g,¢7"))

O

Hence one can easily get a Nekrasov type infinite product expression and the
following product expression:

;,LN(Qla ey QN—l; q7e_t)
H1§k<l§N K0)0)(Qr -+ Qi—15¢,e7")

N - i
_ H(ef\,u“\t/2 H et/2q(] )2 _ e t/2q (j—i)/2
o o PGP Y
a= i,J)Ep>
78 o
( ) . H H 1— Q(y . Q’y—leitqjil
T [ LA i |
1<a<y<N (5,j)epe Qa Q'y—lql S t+(u )i —i+i+

H 1 — Qa .. Q'Y le_tq_(j_i)
1

(ienr 1~ @ Qg i
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6. DEFORMED TOPOLOGICAL STRING PARTITION FUNCTIONS OF SOME LOCAL
CALABI-YAU GEOMETRIES

In this section we introduce some deformed topological string partition functions
for some local Calabi-Yau geometries. We identify them with the deformed in-
stanton counting partition functions considered in §2. Our results generalize those
related to Nekrasov’s partition function [18, 9, 5, 23].

6.1. The resolved conifold case. The web diagram is

I

Figure 1

The (undeformed) partition function is given by:

Z) ZW \MQ\MW (q).
We take the deformed partition functlon to be:
(79) Zo) = e MWu(q e ) (=)HQIMW,(g,e7").
m

By (30) it can be also written as:
(80) Zo) = > e QMW (g, e ) We(g €.
o

By (28), one easily gets:

1—e =) (1 — e tgiI
(81) Zo) =D H h(qm)))(( _qhgu‘)))'

Ko(i4)€Ep

We will prove two results for such deformed partition functions. First of all, we
will identify it with certain partition functions on the Hilbert schemes. Secondly,
we will find infinite product expression for it so that one can extract the deformed
Gopakumar-Vafa invariants.

By comparing (81) and (5), one gets the following result which generalizes the
undeformed case considered in [7, 12]:

Theorem 6.1. One has the following identification of deformed partition functions:

(82) Z) = ZQ" (CML Ao (Vo) @ Ao (Vi) (g 07Y).

The second result is a straightforward consequence of (75) and the observation

Zo) = Loy)o0)(Q)-
It can be stated as follows.
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Theorem 6.2. The deformed partition function for the resolved conifold can be
rewritten as follows.

& e—nt 2
(83) Z(O) = exp Z n/2 n)/Q) Qn)
T (0= Q) (- Q)
(84) = 1:[ 1q_Qe—t/2qne)2nq .

Besides the natural T2-action on C2, consider an extra circle action on V; and
V¥ by scalar multiplications along the fibers. Then we have

(1—e7%)2

X((C27 (V1)®A ( ))(t17t27 ) (l_t—l)(l_t—l)

Then we have
(85) Z<o>—epo (V) @ At (Vi) (E0, 85, €™y —g tymg s
n= 1

From this one expects an interpretation in terms of symmetric products generalizing
the nondeformed case in [12].

6.2. A related case. A related case is given by the following diagram, where the
two horizontal edges are glued with each other.

Figure 2

The (undeformed) partition function is given by
(86) Z(Q:Qm>a) = > (=)™ (=Qu) "Wy (@)Wt ().
"R%

We take the deformed partition function to be

(87) 2(Q,Qm gy e™) = (=M (=Qu) " Wi (g, ™ ) Wty (g, 7).
8%

Now note that

(88) 2(Q. Q0™ = Y- L 0 (Qu).

“w
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Hence by (76)

Z2(Q,Qm.q.¢7")
Z(O (Qﬂh q, e_t)
B | 1 _ eftqc(e))(l _ eftqfc(e))
(89) Z Q " 61;£ - Qmeftqc(e))(l _ Qmeftqfc(e))

(1 - qu )(1 - quih(e))
11 1 — ") (1 —ghO)

ecp

We now identify this as a partition function on the Hilbert schemes by comparing
with (8), generalizing the results in the deformed case [7, 12]:

Theorem 6.3. One has the following identification of deformed partition functions:

o 2% nzocz” (C) A0 (Va) & Were., (Vi) 007,

We do not know a rigorous method to establish an infinite product expression
for Z (Q, Q) at present. For the unddeformed partition function, a physical cal-
cultion based on duality with Chern-Simons thoery was carried out in [7], and a
mathematical proof based on symmetric products was given in [12]. Here we first
present another mathematical proof for the undeformed case using Schur calculus.

Theorem 6.4. [7, 12] For the undeformed partition function, one has

(1 Q++! kQE+14
it Q Qha)'(1 - Q QL g

k+1
i 11 —QMIQm )

(91) Z(Q;Qm,q)

Proof. We use the following identity [21]:
(92) Wiw(q) = (=1)+7lg (””“”)/st n(@")sup(q"")-
and (25):

Z(Q7 Qma Q) = Z(_Q)|M| (_Qm)ly‘Wﬂu(q)Wutut ((])

w,v
= Z <_Q)|“|(_Qm)|V|Su/&(q_p)su/£(q_p)sl/“/n(q_p)slﬁ/n(q_p)
H,v,€,m
= > QMM e(q)80se(a)50m(a") 810/ (d")
uV&n

= exp Z m(@"w((’) )P (a”) + Qppnla " )pn(a”)
(QQm) Pr(q”")Pn(q™?) + (QQm)"pn(q”)Pn(a”))-
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y (26) we then have:

Z2(Q, Qm, q)

Q"q" Qmq" 2(QQm)"q"

ﬁﬁ Qk+1Q ) ( Qka+1 l) .

k4+1)k+1
k=01=1 — Q1 Q¢

ep; (1= QQm) )( T2 T-¢)  (1-g)

25

)

It turns out that this proof can be generalized to another deformed partition

function:

93)  Z(Q,Qmige™) =D (=R (=Qum)" Wy (g, e )Wy (oye (g €7F).

vyn
Theorem 6.5. We have
Z(Q, Qmige ")
(1—Q*1Qk, —2QRFHLQE ¢ !
—H(H( )
(94) —QFQEH G (1 — e 2QRQR g z)
(1 - e ' Q Qm™)?
— e tQRHIQEH gl 2l
( Q’““Q’““ N1 —e ﬂ@kﬂ@fn“ql)) )

Proof. By (25) we have:

Z(Q7 Qm; q, e_t)
- TCorian"

1
Zq Inl—=1€")/2 /gl(E(u.q,eft))q(IVIflﬁ |)/stt/51(E(u;q,e*t))

Zq WIS s e (B s g, e ))g 1D 2, o (Bus g, 071))
- expz n(1—( Qlan

(- Q” Qm +2(QQm) )pn(E(u; g, e™"))pn(E(u; g, 7))
— ex (1_e—nt)2 n n n
- pz n(l—( QlQm) ) (¢" — 1)2 (—Q" — Qy, +2(QQm)")
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It is then an easy exercise to show that:
B (25 (1 — QFFLQE ¢)(1 — e 2QFHLQE ¢h) !
Z2(Q,Qm;q,e t) = U <l1_[1< (1 — e~ tQ++1QkE ¢1)2 )
(( —QQN1d)(1 - ‘QtQkQﬁflql)>
(1— eftQkaJrl)

(1— e tQr1Qk+1¢!)2 2l
'<(1_Qk+1an+1 N1 — _QkaHQlﬁanl)) )

6.3. Another related case. Consider the local Calabi-Yau geometry with the
following web diagram:

where we glue together the horizontal edge with other and also the vertex edge with
each other. The undeformed theory of this case has been discussed in Section 5.1.1
and Section 6.2 in [7]. The partition function by topological vertex method is

(95) Z(QananéQ) = Z (_Q)M(_QI)M(_QM)lnlwwn(Q)WutV*n‘ (q)

Hsvsm

We take the deformed partition function to be:

Z(Q Qma Qll q, eit)
(96) = Z M (—Q1) Vl( sz)'mvvﬁuu((b‘37t)VV7I’5H’§Vt (‘Leit)-

v

Theorem 6.6. We have

Z(~Q7 Qm; Ql; q, e_t)

(Qla Qm; q, eit)
_ (1 g1 — et )

Z QW‘ (7,%_)‘[EH (1 — qh(iﬁj))(l _ qfh(i,j))

ﬁ (1 - Qu@s "1~ Q@ g~ )

i (1= e Qm@Qp™ g~ )(1 = e7'Qm@p g~ 079)
(1-@QiQp " ))(1 — Q1 Qg "))

(1— et Q1Qp "¢~ )(1 — et Qp " q=U=D)

(1- Q’,ﬁe‘tqu’:)Q(l - Q’;e‘tqf(f_i))z
(1~ QR (1 — Qg 2

(97)
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Proof. First of all, by the definition of the deformed topological vertex we have:
Z(Qv va Ql; q, e_t)
— Z(_Q)Iu\(_Ql)IV\(_Qm)\n\e—lﬂlt/QWM(%e—t)e—lutlt/QWm(%e—t)

m,v,n
—¢t ¢ — v|—|¢t _
.Zq(\ﬂ\ 1€ ‘)/2577/51(E” (u;q76 t))q(| |—|& D/QSyt/gl(E’u(u;q,e t))
€l
t 2 2 t
S QD2 (B (s g, e ))g MV 25 e (B (g, 67)).
€2

Hence by (25) we have:
Z(Q7 Qma Q17 q,€e _t)

= e MW, (g, e Wi (g, e eXpZ

1—Q1Q ")

(—QF — Q%+ 2(Q1Qm)")pn (B (u; ¢, ¢~))pu (B (u; g, e 7).
It follows that

Z(Q7 Qma Q17 q, e_t)
Z(Qh va q, eit)

- Wt o Yl

(=Q7 — Qn, +2(Q1Qm)")F, ot (qn’ eint)'
Hence (97) follows from (63).

Theorem 6.7. We have the following identity:

Z(Qa Qm7 Q17 q, eit)
(Q17 Qm7 Q7 e_t)

_ZQn EH( (C2)[n]7vﬂ)(Qm,Qpaeit))((bqil)a

n>0

where Q, = Q1Qm.

(98)

Proof. we rewrite the right-hand side of (97) as follows.

S 1l H( — Qb Qug") )(1—Q’,§’1qui’1“’j>)

et — QD) (1 - Qg )

.<1 — QEQR1 ") (1~ QbQRlg )
(1= Q5g" e ) (1~ Qhq ")
(1= e tQ8 1) (1 — e QL g0

(1— Q) ' Qmaet))(1 — 6‘tQk*1qu‘c(’*”)

' (1- eftQ’quc(i,j))(l — e~ tQkgeid) >

(1 - e 'QkQm' ¢t ))(1 — ¢ tQ’“Q g=e@9))
Then (98) follows from (10).
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6.4. The SU(2) case. The web diagrams are:

B B B
F| Fy |F F Iy F Fy F
B B+ F B+ 2F
Figure &

where B, F € Hy(F,,,Z) are the homological classes of the base and the fiber
respectively, and we have

F? =0, B? = —m, BF =1,
hence
(B+ mF)2 =m.

The undeformed partition functions are calculated in physics literature in [2] and
formulated as a Feynman rule in [8]. The mathematical proof can be found in
[22]. The self-intersection numbers of the divisors in the surfaces represented by the
internal edges play a role in the formula:

ZIFM(QB,QF) = Z Wulyl(q)QlFV ‘Wl,l(,ﬂ)f,(q)(—l)mmzlqmm(ﬂ)t

pl2, 1.2
2 v? —m|ut| —mk
'(QBQ%")“L |W(H2)tl,2(q)Q|F IWyzﬂl(q)(—l) I |q mk
1 2 1 2 2 _1 %1 K m
= > QE TR g R A (2 (Q)
ptiu?

Here the locations of the partitions are indicated below:

Figure 4

The above expression for Zy,, suggests the following partition function:
Z~Fm ((L QB; QFa eit)
= Z o~ Q@lut 1+206® |+t |+ 2]t
(99) pl2 1.2
_ vt — W2 +
~W#1U1(q,e t)Q‘F |Wul(#2)t(q7e t)(—l)m“ Iq YR(u2)
2 V2 —m|pt| —mk
(@B Wiyena (0, 6)QE Wiz (g, ') (=1) 7 lg e,

This is not a deformation of Zr . However it has a similar property as Zg, as
follows.
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Theorem 6.8. We have
(100)
Zr, (QB,Qr;q,e”")
K0y0)(Qr; q,e ") K0y (0) (QF; g, €')

= QEX(M(2, k), A_e— (Vi @ W) @ A_ (V@ Wi) @ ER ) )(er, e2,4,47)
k>0

where Qp = 6162_1, e = —1.

Proof. By (99) we have
Z]Fm (q7 QB7 QF7 e_t)
K0y0)(QF; g, e )K 00y (QF; g, €")
= 2 QT Qg s )

pt,u?
) ’C,ul,(/ﬁ)t (QF; q, eit)lcul,(/tz)t (QFv q, et)
K0y0)(QrF; q,e ") K0y (0) (QF; g, €')

Now we can apply Theorem 5.1 and (11). O

By the second product expression in Theorem 5.1 one can also express

Z]Fm (Qa QBa QFa e_t)
K0y(0)(QF; ¢, e )K0y0)(QF; g, €t)

as a sum of infinite products. This expression generalizes Nekrasov’s partition
function.

We propose the deformed partition function to be:

Zr,.(QB,Qr;q,e”")
= Z (_ ) m(|pt+|p? |) TR TR Z/QQW \(Q Qm)m |

,LL12V12

W (0,67 )QE W (.67 - Wzo (0,6 QY Wiy (g,67%).

We have checked in some low degree cases that this to satisfy the following deformed
version of Gopakumar-Vafa integrality:

(101) F = Z ZZ g 1 9 71@15)((]% 7q7§)2g,2Qk27

SEH,(X)—{0} g>0k>1

t

where nf,(e7") is a polynomial in e~* with integral coefficients. For example, for

Fo, we have
nh(e™") =n = —2(1— e_t)Qég’O,

g _ .9 _ g _ —\3
Ny = N = 0, nB+F——4(1—e )

)

Ny =nhs =0, nip p=n% op=—(6—2e"")(1—e")350.
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For F; we have

ng = (1-e")23y0, ngp=-2(1-e")%0,
ngB = ngF =0, n%-i—F =(1- eit)3(3 + eit)agﬁ’
nyp = 231 —e)35,0, nhs = —e M,

2

ngp p=(1—e )27 +2¢7")64,0,
n op=(1- e 25— 6e™ — +e )3, 0.

For Fy we have

np=—(1- e_t)Qég,Oa ng = —2(1 - e_t)Q‘Sg,Oa
My = 21— e,y —et(1- et
npep=—2(1- e ")8g.0, nip=0.

In general, one can consider the deformed topological string partition functions
for toric local Calabi-Yau 3-folds in the same fashion and study the deformed
Gopakumar-Vafa invariants. For example, for P? we have

nd(e”") =3(1 — e ")%5,.0,

nd(e™) = —3(1— e)%(2 — e )30,
(e =27 —-15e H(1—e "> ni=(-10+6e ) (1—e")? nj=0(g>1),
= —(1—e")2(192 — 474e" + 39062 — 114e™3" + 6~ ),
= (1—e"2(231 — 402e" + 201~ — 24e73%),

= —(1—e")2(102 — 120e™* + 30e~2),

ng = (1—eM2(15 - 127",
ni=0, g>3.

n3
ng
ny
ni

3

We notice the following positivity of nf for these example. Define
d—
Pi(x) = (-1)"*"Ing(—x).
Then the coefficients of PJ(z) are nonnegative. We conjecture it is true in general.

Here we want to offer some speculations on the geometric meaning of extra
variable in the partition function. For a toric Fano surface X, the mathematical
definition of its Gromov-Witten invariants are defined as follows:

| (kY.
[Mgﬂo(X7d)]virt

where d € Hy(X,Z), Mg (X, d) is the moduli space of genus g stable maps of degree
dto X, K%% is the vector bundle on M, o(X, d) whose fiber at a map f : ¥ — X is
given by HY (X, f*Kx). Since M, o(X,d) is compact, one can do the calculations
in the equivariant setting:

/ﬁ era (K97,
My .0(X D35

and the result is a constant. Here we use the T2-action that defines the toric
structure. However, it is tempting also to do the calculation equivariantly directly
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on Kx. For this purpose consider an extra circle action on the fiber of the Kx by
multiplication and consider
/ﬁ 1.
[(Mg.o(Kx,d)]is*

One can take the result obtained by formally applying the localization as definition.
This might explain the extra parameter in the deformed partition functions.

6.5. The SU(N) (N > 2) cases. The undeformed topological string partition
function is given by the topological vertex as follows [10]:

ZAN = Z H Q“LI (N+m 24)| | (N+2m 2i+1)k, 1)

N =1

(102) =Y TV @a™ QL)

N
k
’ Z H(Wn’“’l(uN“*’“)t(n’“)t(Q)q "k/ZQlngL—k)a
nle N=1 k=1

0 N

where 10 = vV =0 =9
partition function:

AN ) Z H Q\u\ 1)(N+m=2lpt| o (N+2m=2i 1) i)

ploplN =1
N

I/k
(103) Y TT Wiy (g e Q)

= (0), @~ = 1. This suggests the following deformed

k
2 HWww e (@ QR ),

where 10 = vV = n0 = nV = (0), Qn = 1. We expect this to satisfy the deformed

Gopakumar-Vafa integrality.

On the other hand, one can use the following symmetry of the topological vertex
(see e.g. [23]):

Wity uaye oy (4) = ¢~ 52t 2 o (q)
to rewrite the last line in (102). This yields the following expression [10]:

ZX:\L’) = Z H |# | 1 N+m)|ﬂi|q(N+2m_2i)K’ui/2)

N =1

(104) Z H Wor-t oy ()2 Q)
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This suggests the following partition function:

(105)

N n N2m221<;12
ANl Z HQ|H| (+m)\/|(+ ) /)

uli=1

l/k
Z H(Wukfl,uk(uk)t((Leit)q yk/QQLg ‘)

vl N=1 k=1

W, B g'n* /2 In"|
Z H( 77’“71}4’“(7]’“)’5(%6)(1 Qr ')

pleoN=1 k=1

2

=

In other words,

XZ) = Z H Qlu | (N+m)|p [ (N+2m 2i)k 1/2)

N ;=1

N(Q17"'7QN—1;Qa8_t) 'K:;,Ll,“.,pN(le"' aQN—l;Qaet)

Bhoeep

As in the N = 2 case one can try to relate it to the generating series of

X(M(N,E),A_e~e(Vi, @ Wi) @ Ao~ (Vi @ W) @ B ) (ex, ... en, g, g7 1).
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