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We describe the applications of localization methods, in particular the functorial

localization formula, in the proofs of several conjectures from string theory. Func-
torial localization formula pushes the computations on complicated moduli spaces

to simple moduli spaces. It is a key technique in the proof of the general mirror

formulas, the proof of the Hori-Vafa formulas for explicit expressions of basic hyper-
geometric series of homogeneous manifolds, the proof of the Mariño-Vafa formula,

its generalizations to two partition analogue. We will also discuss our development

of the mathematical theory of topological vertex and simple localization proofs of
the ELSV formula and Witten conjecture.

1. Introduction

According to string theorists, String Theory, as the most promising can-
didate for the grand unification of all fundamental forces in the nature,
should be the final theory of the world, and should be unique. But now
there are five different looking string theories. As argued by physicists,
these theories should be equivalent, in a way dual to each other. On the
other hand all previous theories like the Yang-Mills and the Chern-Simons
theory should be parts of string theory. In particular their partition func-
tions should be equal or equivalent to each other in the sense that they
are equal after certain transformation. To compute partition functions,
physicists use localization technique, a modern version of residue theorem,
on infinite dimensional spaces. More precisely they apply localization for-
mally to path integrals which is not well-defined yet in mathematics. In
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many cases such computations reduce the path integrals to certain inte-
grals of various Chern classes on various finite dimensional moduli spaces,
such as the moduli spaces of stable maps and the moduli spaces of vector
bundles. The identifications of these partition functions among different
theories have produced many surprisingly beautiful mathematical formulas
like the famous mirror formula 29, as well as the Mariño-Vafa formula 44.

The mathematical proofs of these conjectural formulas from the string
duality also depend on localization techniques on these various finite di-
mensional moduli spaces. The purpose of this note is to discuss our works
on the subject. I will briefly discuss the proof of the mirror conjecture
and its generalizations, the proof of the Hori-Vafa formula, the proof of
the Marinõ-Vafa formula and its generalizations, the related topological
vertex theory 1 26, and simple localization proofs of the ELSV formula
and the Witten conjecture 20. More precisely we will use localization for-
mulas in various form to compute the integrals of Chern classes on moduli
spaces, and to prove those conjectures from string duality. For the proofs of
these conjectures such as the mirror formula, the Mariño-Vafa formula and
the theory of topological vertex, we note that many aspects of mathemat-
ics are involved, such as the Chern-Simons knot invariants, combinatorics
of symmetric groups, representations of Kac-Moody algebras, Calabi-Yau
manifolds, geometry and topology of moduli space of stable maps, etc.
The spirit of our results is the duality among various string theories. In
particular the duality between IIA and IIB string theory gives the mirror
formulas, the duality between gauge theory, Chern-Simons theory and the
Calabi-Yau geometry in string theory leads to the Mariño-Vafa conjecture
and the theory of topological vertex.

Localization techniques have been very successful in proving many con-
jectures from physics, see my ICM 2002 lecture 41 for more examples. The
reason may be that physical systems always have natural symmetry which
can be used to do localizations. One of our major tools in the proofs of
these conjectures is the functorial localization formula which is a variation of
the classical localization formula, it transfers computations on complicated
spaces to simple spaces, and connects computations of mathematicians and
physicists.

In this note we will discuss the following results:

1. The proof of the mirror formulas and its generalizations which we
call the mirror principle. The mirror principle implies all of the
conjectural mirror formulas of counting rational curves for toric
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manifolds and their Calabi-Yau submanifolds from string theory.
In this case we apply the functorial localization formula to the map
from the nonlinear moduli space to the linearized moduli space.
This transfers the computations of integrals on complicated moduli
space of stable maps to computations on rather simple spaces like
projective spaces. From this the proof of the mirror formula and its
generalizations become conceptually clean and simple.

In fact the functorial localization formula was first found and
used in Lian-Liu-Yau’s proof of the mirror conjecture.

2. The proof of the Hori-Vafa conjecture and its generalizations for
Grassmannian and flag manifolds. This conjecture predicts an ex-
plicit formula for the basic hypergeometric series of a homogeneous
manifold in terms of the basic series of a simpler manifold such as
the product of projective spaces. In this case we use the functor-
ial localization formula twice to transfer the computations on the
complicated moduli spaces of stable maps to the computations on
quot-schemes. The first is a map from moduli space of stable maps
to product of projective spaces, and another one is a map from
the quot-scheme into the same product of projective spaces. A key
observation we had is that these two maps have the same image.

This approach was first sketched in 31, the details for Grassman-
nians were carried out in 28 and 3. The most general case of flag
manifolds was carried out in 35 and 4.

3. The proof of the Mariño-Vafa conjecture on Hodge integrals in 38.
This conjecture gives a closed formula for the generating series of
a class of triple Hodge integrals for all genera and any number of
marked points in terms of the Chern-Simons knot invariant of the
unknot. This formula was conjectured by M. Mariño and C. Vafa
in 44 based on the duality between large N Chern-Simons theory
and string theory. Many Hodge integral identities, including the
ELSV formula for Hurwitz numbers 8 and the λg conjecture 10, can
be obtained by taking various limits of the Mariño-Vafa formula 39.
The Mariño-Vafa formula was first proved by applying the functorial
localization formula to the branch morphism from the moduli space
of relative stable maps to a projective space.

4. The proof of the generalization of the Mariño-Vafa formula to two
partitions cases, and the theory of topological vertex. The mathe-
matical theory of topological vertex was motivated by the physical
theory as first developed by the Vafa group 1, who has been work-
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ing on string duality for the past several years. Topological vertex
theory is a high point of their work starting from their geomet-
ric engineering theory and Witten’s conjecture that Chern-Simons
theory is a string theory 50. While the Marinõ-Vafa formula gives
a close formula for the generating series of triple Hodge integrals
on the moduli spaces of all genera and any number marked points,
topological vertex 26 gives the most effective ways to compute the
Gromov-Witten invariants of any open toric Calabi-Yau manifolds.
Recently Pan Peng was able to use our results on topological vertex
to give a complete proof of the Gopakumar-Vafa integrality con-
jecture for any open toric Calabi-Yau manifolds 48. Kim also used
our technique to derive new effective recursion formulas for Hodge
integrals on the moduli spaces of stable curves 18.

5. We describe a very simple proof of the ELSV formula 8 following our
proof of the Mariño-Vafa formula, by using the cut-and-join equa-
tion from localization and combinatorics. The proof of the ELSV
formula is particularly easy by using functorial localization, it is re-
duced to the fact that the push-forward in equivariant cohomology
of a constant between two equal dimensional varieties is still con-
stant. We will also show how to directly derive the ELSV formula
from the Mariño-Vafa formula by taking a scaling limit.

6. By using functorial localization formula we have the simple proofs
of the Witten conjecture 20. Our simple proof of the Witten con-
jecture in 19 is to study the asymptotic expansion of the simple
cut-and-join equation for one Hodge integrals which is derived from
functorial localization. This immediately gives a recursion formula
which implies both the Virasoro constraints and the KdV relation
satisfied by the generating series of the ψ integrals.

I will start with brief discussions about the proofs of the mirror conjec-
ture and the Hori-Vafa formula for Grassmannians, then I will go to the
proofs of the Marinõ-Vafa conjecture and its generalizations to two parti-
tions and the topological vertex theory. After that we discuss the simple
proofs of the ELSV formula and the Witten conjecture. This note is partly
based on my plenary lecture at the International Conference of Differen-
tial Geometry Method in Theoretical Physics held in August 2005. It is
an much more expanded version of a previous survey I wrote for the 2004
International Complex Geometry Conference held in the Eastern Normal
University of China. This survey is intended for readers from physics and
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from other fields of mathematics. The materials on mirror conjectures and
the Hori-Vafa formulas were taken from a previous survey of Chien-Hao
Liu, Shing-Tung Yau and myself written for the Gelfand symposium. Our
purpose to combine the discussions together is to give the reader a more
complete picture about the applications of localization techniques in solving
conjectures from string duality. I hope this note has accomplished this goal.
I would like to thank the organizers of the conferences, especially Professor
Chunming Bai, Professor Shengli Tan, Professor Weiping Zhang and Pro-
fessor Zhijie Chen for their hospitality during my visits. I would also like to
thank my collaborators for the past 10 years, Bong Lian, Shing-Tung Yau,
Chien-Hao Liu, Melissa C.-C. Liu, Jian Zhou, Jun Li, Yon Seo Kim for the
wonderful experience in solving these conjectures and to develop the theory
together.

2. Localization

In this section we will explain the Functorial Localization Formula. We
start with a review of the Atiyah-Bott localization formula. Recall that the
definition of equivariant cohomology group for a manifold X with a torus
T action:

H∗
T (X) = H∗(X ×T ET )

where ET is the universal bundle of T , we will use R or Q as coefficients
through this note.

Example We know ES1 = S∞. If S1 acts on Pn by

λ · [Z0, . . . , Zn] = [λw0Z0, . . . , λ
wnZn],

with w0, · · · , wn as weights, then

H∗
S1(Pn;Q) ∼= Q[H, u]/〈(H − w0u) · · · (H − wnu)〉

where u is the generator of H∗(BS1,Q). We have the following important
Atiyah-Bott Localization Formula:

Theorem 2.1.
For ω ∈ H∗

T (X) an equivariant cohomology class, we have

ω =
∑

E

iE∗

(
i∗Eω

eT (E/X)

)
.
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where E runs over all connected components of T fixed points set, iE de-
notes the inclusion map, i∗E iE∗ denote the pull-back and push-forward in
equivariant cohomology.

This formula is very effective in the computations of integrals on man-
ifolds with torus T symmetry. The idea of localization is fundamental in
many subjects of geometry. In fact Atiyah and Witten proposed to formally
apply this localization formula to loop spaces and the natural S1-action,
from which one gets the Atiyah-Singer index formula. In fact the Chern
characters can be interpreted as equivariant forms on loop space, and the
Â-class is the inverse of the equivariant Euler class of the normal bundle of
X in its loop space LX:

eT (X/LX)−1 ∼ Â(X),

which follows from the normalized infinite product formula

∏

n 6=0

(x + n)



−1

∼ x

sinx
.

I observed in 42 that the normalized product

∏
m,n

(x + m + nτ) = 2q
1
8 sin(πx) ·

∞∏

j=1

(1− qj)(1− e2πixqj)(1− e−2πixqj),

where q = e2πiτ , also has deep geometric meaning. This formula is the
Eisenstein formula. It can be viewed as a double loop space analogue of the
Atiyah-Witten observation. This formula gives the basic Jacobi θ-function.
As observed by in 42, formally this gives the Â-class of the loop space, and
the Witten genus which is defined to be the index of the Dirac operator on
the loop space:

eT (X/LLX) ∼ Ŵ (X),

where LLX is the double loop space, the space of maps from S1 × S1 into
X. Ŵ (X) is the Witten class. See 42 for more detail.

The variation of the localization formula we will use in various situations
is the following Functorial Localization Formula

Theorem 2.2. Let X and Y be two manifolds with torus action. Let f :
X → Y be an equivariant map. Given F ⊂ Y a fixed component, let
E ⊂ f−1(F ) be those fixed components inside f−1(F ). Let f0 = f |E, then
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for ω ∈ H∗
T (X) an equivariant cohomology class, we have the following

identity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)
eT (F/Y )

.

This formula will be applied to various settings to prove various con-
jectures from physics. It first appeared in 29. In many cases we will use
a virtual version of this formula. It is used to push computations on com-
plicated moduli spaces to simpler moduli spaces. A K-theory version of
the functorial localization formula also holds 30, interesting applications
are expected.

Remark Consider the diagram:

H∗
T (X)

f∗−→ H∗
T (Y )

↓ iE
∗ ↓ iF

∗

H∗
T (E)

f0∗−→ H∗
T (F ) .

The functorial localization formula is like Riemann-Roch with the inverted
equivariant Euler classes of the normal bundle as ”weights”, in a way similar
to the Todd class for the Riemann-Roch formula. In fact if we formally ap-
ply this formula to the map between the loop spaces of X and Y , equivariant
with respect to the rotation of the circle, we do formally get the differen-
tiable Riemann-Roch formula. We believe this can be done rigorously by
following Bismut’s proof of the index formula which made rigorous of the
above argument of Atiyah-Witten.

3. The Mirror Principle

There have been many discussions of mirror principle in the literature. Here
we only give a brief account of the main ideas of the setup and proof of the
mirror principle. We will use two most interesting examples to illustrate
the algorithm. These two examples give proofs of the mirror formulas for
toric manifolds as conjectured by string theorists.

The goal of mirror principle is to compute the characteristic numbers
on moduli spaces of stable maps in terms of certain hypergeometric type
series. This was motivated by mirror symmetry in string theory. The most
interesting case is the counting of the numbers of curves which corresponds
to the computations of Euler numbers. More generally we would like to
compute the characteristic numbers and classes induced from the general
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Hirzebruch multiplicative classes such as the total Chern classes. The com-
putations of integrals on moduli spaces of those classes pulled back through
evaluation maps at the marked points and the general Gromov-Witten in-
variants can also be considered as part of mirror principle. Our hope is to
develop a ”black-box” method which makes easy the computations of the
characteristic numbers and the Gromov-Witten invariants.

The general set-up of mirror principle is as follows. Let X be a projective
manifold, Mg,k(d,X) be the moduli space of stable maps of genus g and
degree d with k marked points into X, modulo the obvious equivalence.
The points in Mg,k(d,X) are triples (f ;C; x1, · · · , xk) where f : C → X

is a degree d holomorphic map and x1, · · · , xk are k distinct smooth points
on the genus g curve C. The homology class f∗([C]) = d ∈ H2(X,Z) is
identified as integral index d = (d1, · · · , dn) by choosing a basis of H2(X,Z),
dual to the Kähler classes.

In general the moduli space may be very singular, and may even have
different dimension for different components. To define integrals on such
singular spaces, we need the virtual fundamental cycle of Li-Tian 25, and
also Behrend-Fantechi 5 which we denote by [Mg,k(d,X)]v. This is a ho-
mology class of the expected dimension

2 (c1(TX)[d] + (dimCX − 3)(1− g) + k)

on Mg,k(d,X).
Let us consider the case k = 0 first. Note that the expected dimension

of the virtual fundamental cycle is 0 if X is a Calabi-Yau 3-fold. This is
the most interesting case for string theory.

The starting data of mirror principle are as follows. Let V be a
concavex bundle on X which we defined as the direct sum of a posi-
tive and a negative bundle on X. Then V induces a sequence of vector
bundles V g

d on Mg,0(d,X) whose fiber at (f ;C;x1, · · · , xk) is given by
H0(C, f∗V ) ⊕ H1(C, f∗V ). Let b be a multiplicative characteristic class.
So far for all applications in string theory, b is the Euler class.

The problem of mirror principle is to compute

Kg
d =

∫

[Mg,0(d,X)]v
b(V g

d ).

More precisely we want to compute the generating series

F (T, λ) =
∑

d, g

Kg
d λg ed·T
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in terms of certain hypergeometric type series. Here λ, T = (T1, · · · , , Tn)
are formal variables.

The most famous formula in the subject is the Candelas formula as
conjectured by P. Candelas, X. de la Ossa, P. Green, and L. Parkes 6.
This formula changed the history of the subject. More precisely, Candelas
formula considers the genus 0 curves, that is, we want to compute the
so-called A-model potential of a Calabi-Yau 3-fold M given by

F0(T ) =
∑

d∈H2(M ;Z)
K0

d ed·T ,

where T = (T1, . . . , Tn) are considered as the coordinates of the Kahler
moduli of M , and K0

d is the genus zero, degree d invariant of M which
gives the numbers of rational curves of all degree through the multiple
cover formula 29. The famous mirror conjecture asserts that there exists
a mirror Calabi-Yau 3-fold M ′ with B-model potential G(T ), which can be
computed by period integrals, such that

F(T ) = G(t),

where t accounts for coordinates of complex moduli of M ′. The map t 7→ T

is called the mirror map. In the toric case, the period integrals are explicit
solutions to the GKZ-system, that is the Gelfand-Kapranov-Zelevinsky hy-
pergeometric series. While the A-series are usually very difficult to com-
pute, the B-series are very easy to get. This is the magic of the mirror
formula. We will discuss the proof of the mirror principle which includes
the proof of the mirror formula.

The key ingredients for the proof of the mirror principle consists of

(1) Linear and non-linear moduli spaces;
(2) Euler data and hypergeometric (HG) Euler data.

More precisely, the non-linear moduli is the moduli space Mg
d (X) which

is the stable map moduli of degree (1, d) and genus g into P1×X. A point
in Mg

d (X) consists of a pair (f, C) : f : C → P1 × X with C a genus g

(nodal) curve, modulo obvious equivalence. The linearized moduli Wd for
toric X were first introduced by Witten and used by Aspinwall-Morrison
to do approximating computations.

Example Consider the projective space Pn with homogeneous coordinate
[z0, · · · , zn]. Then the linearized moduli Wd is defined as projective space
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with coordinates

[f0(w0, w1), · · · , fn(w0, w1)]

where fj(w0, w1)’s are homogeneous polynomials of degree d.
This is the simplest compactification of the moduli spaces of degree d

maps from P1 into Pn. The following lemma is important. See 32 for its
proof. The g = 0 case was given in 11 and in 29.

Lemma 3.1. There exists an explicit equivariant collapsing map

ϕ : Mg
d (Pn) −→ Wd.

For general projective manifold X, the nonlinear moduli Mg
d (X) can

be embedded into Mg
d (Pn). The nonlinear moduli Mg

d (X) is very ”sin-
gular” and complicated, but the linear moduli Wd is smooth and simple.
The embedding induces a map of Mg

d (X) to Wd. Functorial localization
formula pushed the computations onto Wd. Usually mathematical compu-
tations should be done on the moduli of stable maps, while physicists tried
to use the linearized moduli to approximate the computations. So functor-
ial localization formula connects the computations of mathematicians and
physicists. In some sense the mirror symmetry formula is more or less the
comparison of computations on nonlinear and linearized moduli.

Mirror principle has been proved to hold for balloon manifolds. A pro-
jective manifold X is called balloon manifold if it admits a torus action
with isolated fixed points, and if the following conditions hold. Let

H = (H1, · · · ,Hk)

be a basis of equivariant Kahler classes such that

(1) the restrictions H(p) 6= H(q) for any two fixed points p 6= q;
(2) the tangent bundle TpX has linearly independent weights for any

fixed point p.

This notion was introduced by Goresky-Kottwitz-MacPherson.

Theorem 3.1. Mirror principle holds for balloon manifolds and for any
concavex bundles.

Remarks

1. All toric manifolds are balloon manifolds. For g = 0 we can identify
the hypergeometric series explicitly. Higher genus cases need more
work to identify such series.
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2. For toric manifolds and g = 0, mirror principle implies all of the
mirror conjectural formulas from string theory.

3. For Grassmannian manifolds, the explicit mirror formula is given
by the Hori-Vafa formula to be discussed in Section 4.

4. The case of direct sum of positive line bundles on Pn, including the
Candelas formula, has two independent approaches by Givental, and
by Lian-Liu-Yau.

Now we briefly discuss the proof of the mirror principle. The main idea
is to apply the functorial localization formula to ϕ, the collapsing map and
the pull-back class ω = π∗b(V g

d ), where π : Mg
d (X) →Mg,0(d,X) is the

natural projection.
Such classes satisfy certain induction property. To be precise we intro-

duce the notion of Euler Data, which naturally appears on the right hand
side of the functorial localization formula, Qd = ϕ!(π∗b(V

g
d )) which is a

sequence of polynomials in equivariant cohomology rings of the linearized
moduli spaces with simple quadratic relations. We also considered their
restrictions to X.

From functorial localization formula we prove that, by knowing the
Euler data Qd we can determine the Kg

d . On the other hand, there is
another much simpler Euler data, the HG Euler data Pd, which coincides
with Qd on the ”generic” part of the nonlinear moduli. We prove that
the quadratic relations and the coincidence on generic part determine the
Euler data uniquely up to certain degree. We also know that Qd always
have the right degree for g = 0. We then use mirror transformation to
reduce the degrees of the HG Euler data Pd. From these we deduced the
mirror principle.

Remarks

1. Both the denominator and the numerator in the HG series, the
generating series of the HG Euler data, are equivariant Euler classes.
Especially the denominator is exactly from the localization formula.
This is easily seen from the functorial localization formula.

2. The quadratic relation of Euler data, which naturally comes from
gluing and functorial localization on the A-model side, is closely re-
lated to special geometry, and is similar to the Bershadsky-Cecotti-
Ooguri-Vafa’s holomorphic anomaly equation on the B-model side.
Such relation can determine the polynomial Euler data up to cer-
tain degree.
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It is an interesting task to use special geometry to understand the
mirror principle computations, especially the mirror transformation
as a coordinate change.

3. The Mariño-Vafa formula to be discussed later is needed to deter-
mine the hypergeometric Euler data for higher genus computations
in mirror principle. The Mariño-Vafa formula comes from the dual-
ity between Chern-Simons theory and Gromov-Witten theory. This
duality and the matrix model for Chern-Simons theory indicate that
mirror principle may have matrix model description.

Let us use two examples to illustrate the algorithm of mirror principle.

Example Consider the Calabi-Yau quintic in P4. In this case

Pd =
5d∏

m=0

(5κ−mα)

with α can be considered as the weight of the S1 action on P1, and κ

denotes the generator of the equivariant cohomology ring of Wd.
The starting data of the mirror principle in this case is V = O(5) on

X = P4. The hypergeometric series, after taking α = −1, is given by

HG[B](t) = eH t
∞∑

d=0

∏5d
m=0(5H + m)∏d
m=1(H + m)5

ed t,

where H is the hyperplane class on P4 and t is a formal parameter.
We introduce the series

F(T ) =
5
6
T 3 +

∑

d>0

K0
d ed T .

The algorithm is as follows. Take the expansion in H:

HG[B](t) = H{f0(t) + f1(t)H + f2(t)H2 + f3(t)H3},

from which we have the famous Candelas Formula: With T = f1/f0,

F(T ) =
5
2
(
f1

f0

f2

f0
− f3

f0
).
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Example Let X be a toric manifold and g = 0. Let D1, .., DN be the
T -invariant divisors in X. The starting data consist of V = ⊕iLi with
c1(Li) ≥ 0 and c1(X) = c1(V ). Let us take b(V ) = e(V ) the Euler class.
We want to compute the A-series

A(T ) =
∑

K0
d ed·T .

The HG Euler series which is the generating series of the HG Euler data
can be easily written down as

B(t) = e−H·t ∑

d

∏

i

〈c1(Li),d〉∏

k=0

(c1(Li)−k)

∏
〈Da,d〉<0

∏−〈Da,d〉−1
k=0 (Da + k)

∏
〈Da,d〉≥0

∏〈Da,d〉
k=1 (Da − k)

ed·t.

Then mirror principle implies that there are explicitly computable func-
tions f(t), g(t), which define the mirror map, such that

∫

X

(
efB(t)− e−H·T e(V )

)
= 2A(T )−

∑
Ti

∂A(T )
∂Ti

where T = t + g(t). From this equation we can easily solve for A(T ).
In general we want to compute:

Kg
d,k =

∫

[Mg,k(d,X)]v

k∏

j=1

ev∗j ωj · b(V g
d )

where ωj ∈ H∗(X) and evj denotes the evaluation map at the j-th marked
point. We form a generating series with t, λ and ν formal variables,

F (t, λ, ν) =
∑

d,g,k

Kg
d,kedtλ2gνk.

The ultimate mirror principle we want to prove is to compute this series
in terms of certain explicit HG series. It is easy to show that those classes
in the integrand can still be combined to induce Euler data. Actually the
Euler data really encode the geometric structure of the stable map moduli.

We only use one example to illustrate the higher genus mirror principle.

Example Consider open toric Calabi-Yau manifold, say O(−3) → P2.
Here V = O(−3). Let

Qd =
∑

g≥0

ϕ!(π∗eT (V g
d ))λ2g.
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Then it can be shown that the corresponding HG Euler data is given ex-
plicitly by

Pd J(κ, α, λ)J(κ− dα,−α, λ),

where Pd is exactly the genus 0 HG Euler data and J is generating series of
Hodge integrals with summation over all genera. J may be considered as
the degree 0 Euler data. In fact we may say that the computations of Euler
data include computations of all Gromov-Witten invariants, and even more.
Zhou has obtained some closed formulas. We have proved that the mirror
principle holds in such general setting. The remaining task is to determine
the explicit HG Euler data. But the recently developed topological vertex
theory has given complete closed formulas for all open toric Calabi-Yau
manifolds in terms of the Chern-Simons invariants. See the discussion in
Section 7 for details.

Finally we mention some recent works. First we have constructed re-
fined linearized moduli space for higher genus, the A-twisted moduli stack
AMg(X) of genus g curves associated to a smooth toric variety X, induced
from the gauged linear sigma model studied by Witten.

This new moduli space is constructed as follows. A morphism from
a curve of genus g into X corresponds to an equivalence class of triples
(Lρ, uρ, cm)ρ,m, where each Lρ is a line bundle pulled back from X, uρ is
a section of Lρ satisfying a non-degeneracy condition, and the collection
{cm}m gives conditions to compare the sections uρ in different line bundles
Lρ, AMg(X) is the moduli space of such data. It is an Artin stack, fibered
over the moduli space of quasi-stable curves 34. We hope to use this refined
moduli to do computations for higher genus mirror principle.

On the other hand, motivated by recent progresses in open string theory,
we are also trying to develop open mirror principle. Open string theory pre-
dicts formulas for the counting of holomorphic discs with boundary inside
a Lagrangian submanifold, more generally of the counting of the numbers
of open Riemann surfaces with boundary in Lagrangian submanifold. Lin-
earized moduli space for such data is being constructed which gives a new
compactification of such moduli spaces.

4. The Hori-Vafa Formula

In 15, Hori and Vafa generalize the world-sheet aspects of mirror symmetry
to being the equivalence of d = 2, N = (2, 2) supersymmetric field theories
(i.e. without imposing the conformal invariance on the theory). This leads
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them to a much broader encompassing picture of mirror symmetry. Putting
this in the frame work of abelian gauged linear sigma models (GLSM) of
Witten enables them to link many d = 2 field theories together. Gener-
alization of this setting to nonabelian GLSM leads them to the following
conjecture, when the physical path integrals are interpreted appropriately
mathematically:

Conjecture 4.1. The hypergeometric series for a given homogeneous space
(e.g. a Grassmannian manifold) can be reproduced from the hypergeomet-
ric series of simpler homogeneous spaces (e.g. product of projective spaces).
Similarly for the twisted hypergeometric series that are related to the sub-
manifolds in homogeneous spaces.

In other words, different homogeneous spaces (or some simple quotients
of them) can give rise to generalized mirror pairs. A main object to be un-
derstood in the above conjecture is the fundamental hypergeometric series
HG [1]X(t) associated to the flag manifold X. Recall that in the computa-
tions of mirror principle, the existence of linearized moduli made easy the
computations for toric manifolds.

An outline of how this series may be computed was given in 31 via an
extended mirror principle diagram. To make clear the main ideas we will
only focus on the case of Grassmannian manifolds in this article. The main
problem for the computation is that there is no known good linearized mod-
uli for Grassmannian or general flag manifolds. To overcome the difficulty
we use the Grothendieck quot scheme to play the role of the linearized
moduli. The method gives a complete proof of the Hori-Vafa formula in
the Grassmannian case.

Let ev : M0,1(d,X) → X be the evaluation map on the moduli space
of stable maps with one marked point, and c the first Chern class of the
tangent line at the marked point. The fundamental hypergeometric series
for mirror formula is given by the push-forward:

ev∗[
1

α(α− c)
] ∈ H∗(X)

or more precisely the generating series

HG[1]X(t) = e−tH/α
∞∑

d=0

ev∗[
1

α(α− c)
] edt.

Assume the linearized moduli exists. Then functorial localization for-
mula applied to the collapsing map: ϕ : Md → Nd, immediately gives the
expression as the denominator of the hypergeometric series.
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Example X = Pn, then we have ϕ∗(1) = 1, functorial localization imme-
diately gives us

ev∗[
1

α(α− c)
] =

1∏d
m=1(x−mα)n+1

where the denominators of both sides are equivariant Euler classes of normal
bundles of the fixed points. Here x denotes the hyperplane class.

For X = Gr(k, n) or general flag manifolds, no explicit linearized moduli
is known. Hori-Vafa conjectured a formula for HG[1]X(t) by which we can
compute this series in terms of those of projective spaces which is the Hori-
Vafa formula for Grassmannians:

Theorem 4.2. We have

HG[1]Gr(k,n)(t) =
e(k−1)π

√−1σ/α

∏
i<j(xi − xj)

·
∏

i<j

(α
∂

∂xi
− α

∂

∂xj
)
∣∣∣∣
ti=t+(k−1)π

√−1

HG[1]P(t1, · · · , tk)

where P = Pn−1×· · ·×Pn−1 is product of k copies of the projective spaces,
σ is the generator of the divisor classes on Gr(k, n) and xi the hyperplane
class of the i-th copy Pn−1:

HG[1]P(t1, · · · , tk) =
k∏

i=1

HG[1]P
n−1

(ti).

Now we describe the ideas of the proof of the above formula. As men-
tioned above we use another smooth moduli space, the Grothendieck quot-
scheme Qd to play the role of the linearized moduli, and apply the functorial
localization formula. Here is the general set-up:

To start, note that the Plücker embedding τ : Gr(k, n) → PN induces
an embedding of the nonlinear moduli Md of Gr(k, n) into that of PN .
Composite of this map with the collapsing map gives us a map ϕ : Md →
Wd into the linearized moduli space Wd of PN . On the other hand the
Plücker embedding also induces a map ψ : Qd → Wd. We have the following
three crucial lemmas proved in 28.

Lemma 4.1. The above two maps have the same image in Wd: Im ψ =
Im ϕ. And all the maps are equivariant with respect to the induced circle
action from P1.
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Just as in the mirror principle computations, our next step is to analyze
the fixed points of the circle action induced from P1. In particular we need
the distinguished fixed point set to get the equivariant Euler class of its
normal bundle. The distinguished fixed point set in Md isM0,1(d, Gr(k, n))
with equivariant Euler class of its normal bundle given by α(α− c), and we
know that ϕ is restricted to ev.

Lemma 4.2. The distinguished fixed point set in Qd is a union: ∪sE0s,
where each E0s is a fiber bundle over Gr(k, n) with fiber given by flag man-
ifold.

It is a complicated work to determine the fixed point sets E0s and the
weights of the circle action on their normal bundles. The situation for flag
manifold cases are much more involved. See 28 and 35 for details.

Now let p denote the projection from E0s onto Gr(k, n). Functorial
localization formula, applied to ϕ and ψ, gives us the following

Lemma 4.3. We have the equality on Gr(k, N):

ev∗[
1

α(α− c)
] =

∑
s

p∗[
1

eT (E0s/Qd)
]

where eT (E0s/Qd) is the equivariant Euler class of the normal bundle of
E0s in Qd.

Finally we compute p∗[ 1
eT (E0s/Qd) ]. There are two different approaches,

the first one is by direct computations in 28, and another one is by using
the well-known Euler sequences for universal sheaves 3. The second method
has the advantage of being more explicit. Note that

eT (TQ|E0s
− TE0s) = eT (TQ|E0s

)/eT (TE0s).

Both eT (TQ|E0s
) and eT (TE0s) can be written down explicitly in terms

of the universal bundles on the flag bundle E0s = Fl(m1, · · · ,mk, S) over
Gr(r, n). Here S is the universal bundle on the Grassmannian.

The push-forward by p from Fl(m1, · · · ,mk, S) to Gr(r, n) is done by
an analogue of family localization formula of Atiyah-Bott, which is given
by a sum over the Weyl groups along the fiber which labels the fixed point
sets.
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In any case the final formula of degree d is given by

p∗[
1

eT (E0s/Qd)
]

= (−1)(r−1)d
∑

(d1,...,dr)
d1+...+dr=d

∏
1≤i<j≤r(xi − xj + (di − dj)α)

∏
1≤i<j≤r(xi − xj)

∏r
i=1

∏di

l=1(xi + lα)n
.

Here x1, ...xr are the Chern roots of S∗. As a corollary of our approach, we
have the following:

Corollary 4.3. The Hori-Vafa conjecture holds for Grassmannian mani-
folds.

This corollary was derived in 3 by using the idea and method and also the
key results in 28. For the explicit forms of Hori-Vafa conjecture for general
flag manifolds, see 35 and 4.

5. The Mariño-Vafa Conjecture

Our original motivation to study Hodge integrals was to find a general mir-
ror formula for counting higher genus curves in Calabi-Yau manifolds. To
generalize mirror principle to count the number of higher genus curves, we
need to first compute Hodge integrals, i.e. the intersection numbers of the λ

classes and ψ classes on the Deligne-Mumford moduli space of stable curves
Mg,h. This moduli space is possibly the most famous and most interesting
orbifold. It has been studied since Riemann, and by many Fields medal-
ists for the past 50 years, from many different point of views. Still many
interesting and challenging problems about the geometry and topology of
these moduli spaces remain unsolved. String theory has motivated many
fantastic conjectures about these moduli spaces including the famous Wit-
ten conjecture which is about the generating series of the integrals of the
ψ-classes. We start with the introduction of some notations.

Recall that a point in Mg,h consists of (C, x1, . . . , xh), a (nodal) curve
C of genus g, and n distinguished smooth points on C. The Hodge bundle
E is a rank g vector bundle over Mg,h whose fiber over [(C, x1, . . . , xh)] is
H0(C, ωC), the complex vector space of holomorphic one forms on C. The
λ classes are the Chern Classes of E,

λi = ci(E) ∈ H2i(Mg,h;Q).

On the other hand, the cotangent line T ∗xi
C of C at the i-th marked

point xi induces a line bundle Li over Mg,h. The ψ classes are the Chern
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classes:

ψi = c1(Li) ∈ H2(Mg,h;Q).

Introduce the total Chern class

Λ∨g (u) = ug − λ1u
g−1 + · · ·+ (−1)gλg.

The Mariño-Vafa formula is about the generating series of the triple
Hodge integrals

∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏h

i=1(1− µiψi)
,

where τ is considered as a parameter here. Later we will see that it actually
comes from the weight of the group action, and also from the framing of the
knot. Taking Taylor expansions in τ or in µi one can obtain information
on the integrals of the Hodge classes and the ψ-classes. The Marinõ-Vafa
conjecture asserts that the generating series of such triple Hodge integrals
for all genera and any numbers of marked points can be expressed by a close
formula which is a finite expression in terms of representations of symmetric
groups, or Chern-Simons knot invariants.

We remark that the moduli spaces of stable curves have been the sources
of many interests from mathematics to physics. Mumford has computed
some low genus numbers. The Witten conjecture, proved by Kontsevich 20,
is about the integrals of the ψ-classes.

Let us briefly recall the background of the conjecture. Mariño and Vafa
44 made this conjecture based on the large N duality between Chern-Simons
and string theory. It starts from the conifold transition. We consider the
resolution of singularity of the conifold X defined by

{(
x y

z w

)
∈ C4 : xw − yz = 0

}

in two different ways:
(1). Deformed conifold T ∗S3

{(
x y

z w

)
∈ C4 : xw − yz = ε

}

where ε a real positive number. This is a symplectic resolution of the
singularity.

(2). Resolved conifold by blowing up the singularity, which gives the
total space
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X̃ = O(−1)⊕O(−1) → P1

which is explicitly given by
{

([Z0, Z1],
(

x y

z w

)
) ∈ P1 ×C4 :

(x, y) ∈ [Z0, Z1]
(z, w) ∈ [Z0, Z1]

}

X̃ ⊂ P1 ×C4

↓ ↓
X ⊂ C4

The brief history of the development of the conjecture is as follows. In
1992 Witten first conjectured that the open topological string theory on the
deformed conifold T ∗S3 is equivalent to the Chern-Simons gauge theory on
S3. Such idea was pursued further by Gopakumar and Vafa in 1998, and
then by Ooguri and Vafa in 2000. Based on the above conifold transition,
they conjectured that the open topological string theory on the deformed
conifold T ∗S3 is equivalent to the closed topological string theory on the
resolved conifold X̃. Ooguri-Vafa only considered the zero framing case.
Later Marinõ-Vafa generalized the idea to the non-zero framing case and
discovered the beautiful formula for the generating series of the triple Hodge
integrals. Recently Vafa and his collaborators systematically developed
the theory, and for the past several years, they developed these duality
ideas into the most effective tool to compute Gromov-Witten invariants on
toric Calabi-Yau manifolds. The high point of their work is the theory of
topological vertex. We refer to 44 and 1 for the details of the physical theory
and the history of the development.

Starting with the proof of the Marinõ-Vafa conjecture 38, 39, we have
developed a rather complete mathematical theory of topological vertex 26.
Many interesting consequences have been derived for the past year. Now
let us see how the string theorists derived mathematical consequence from
the above naive idea of string duality. First the Chern-Simons partition
function has the form

〈Z(U, V )〉 = exp(−F (λ, t, V ))

where U is the holonomy of the U(N) Chern-Simons gauge field around
the knot K ⊂ S3, and V is an extra U(M) matrix. The partition function
〈Z(U, V )〉 gives the Chern-Simons knot invariants of K.
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String duality asserts that the function F (λ, t, V ) should give the gener-
ating series of the open Gromov-Witten invariants of (X̃, LK), where LK is
a Lagrangian submanifold of the resolved conifold X̃ canonically associated
to the knot K. More precisely by applying the t’Hooft large N expansion,
and the ”canonical” identifications of parameters similar to mirror formula,
which at level k are given by

λ =
2π

k + N
, t =

2πiN

k + N
,

we get the partition function of the topological string theory on conifold X̃,
and then on P1. which is just the generating series of the Gromov-Witten
invariants. This change of variables is very striking from the point of view
of mathematics.

The special case when K is the unknot is already very interesting. In
non-zero framing it gives the Mariño-Vafa conjectural formula. In this case
〈Z(U, V )〉 was first computed in the zero framing by Ooguri-Vafa and in
any framing τ ∈ Z by Mariño-Vafa 44. Comparing with Katz-Liu’s com-
putations of F (λ, t, V ) in 17, Mariño-Vafa conjectured the striking formula
about the generating series of the triple Hodge integrals for all genera and
any number of marked points in terms of the Chern-Simons invariants, or
equivalently in terms of the representations and combinatorics of symmet-
ric groups. It is interesting to note that the framing in the Mariño-Vafa’s
computations corresponds to the choice of lifting of the circle action on the
pair (X̃, Lunknot) in Katz-Liu’s localization computations. Both choices are
parametrized by an integer τ which will be considered as a parameter in
the triple Hodge integrals. Later we will take derivatives with respect to
this parameter to get the cut-and-join equation.

It is natural to ask what mathematical consequence we can have for
general duality, that is for general knots in general three manifolds, a first
naive question is what kind of general Calabi-Yau manifolds will appear in
the duality, in place of the conifold. Some special cases corresponding to
the Seifert manifolds are known by gluing several copies of conifolds.

Now we give the precise statement of the Mariño-Vafa conjecture, which
is an identity between the geometry of the moduli spaces of stable curves
and Chern-Simons knot invariants, or the combinatorics of the representa-
tion theory of symmetric groups.

Let us first introduce the geometric side. For every partition µ = (µ1 ≥
· · ·µl(µ) ≥ 0), we define the triple Hodge integral to be,
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Gg,µ(τ) = A(τ) ·
∫

Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)
∏l(µ)

i=1 (1− µiψi)
,

where the coefficient

A(τ) = −
√−1

|µ|+l(µ)

|Aut(µ)| [τ(τ + 1)]l(µ)−1

l(µ)∏

i=1

∏µi−1
a=1 (µiτ + a)
(µi − 1)!

.

The expressions, although very complicated, arise naturally from localiza-
tion computations on the moduli spaces of relative stable maps into P1

with ramification type µ at ∞.
We now introduce the generating series

Gµ(λ; τ) =
∑

g≥0

λ2g−2+l(µ)Gg,µ(τ).

The special case when g = 0 is given by

∫

M0,l(µ)

Λ∨0 (1)Λ∨0 (−τ − 1)Λ∨0 (τ)∏l(µ)
i=1 (1− µiψi)

=
∫

M0,l(µ)

1∏l(µ)
i=1 (1− µiψi)

which is known to be equal to |µ|l(µ)−3 for l(µ) ≥ 3, and we use this
expression to extend the definition to the case l(µ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .), and define

pµ = pµ1 · · · pµl(µ)

for any partition µ. These pµj
correspond to TrV µj in the notations of

string theorists. The generating series for all genera and all possible marked
points are defined to be

G(λ; τ ; p) =
∑

|µ|≥1

Gµ(λ; τ)pµ,

which encode complete information of the triple Hodge integrals we are
interested in.

Next we introduce the representation theoretical side. Let χµ denote
the character of the irreducible representation of the symmetric group S|µ|,
indexed by µ with |µ| =

∑
j µj . Let C(µ) denote the conjugacy class of

S|µ| indexed by µ. Introduce
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Wµ(λ) =
∏

1≤a<b≤l(µ)

sin [(µa − µb + b− a)λ/2]
sin [(b− a)λ/2]

·

1∏l(ν)
i=1

∏µi

v=1 2 sin [(v − i + l(µ))λ/2]
.

This has an interpretation in terms of quantum dimension in Chern-Simons
knot theory.

We define the following generating series

R(λ; τ ; p) =
∑

n≥1

(−1)n−1

n

∑
µ

[
∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))
zµi

e
√−1(τ+ 1

2 )κνiλ/2Wνi(λ)]pµ

where µi are sub-partitions of µ, zµ =
∏

j µj !jµj and

κµ = |µ|+
∑

i

(µ2
i − 2iµi)

for a partition µ which is also standard for representation theory of sym-
metric groups. There is the relation zµ = |Aut(µ)|µ1 · · ·µl(µ).

Finally we can give the precise statement of the Mariño-Vafa conjecture:

Conjecture 5.1. We have the identity

G(λ; τ ; p) = R(λ; τ ; p).

Before discussing the proof of this conjecture, we first give several re-
marks.

Remarks:

1. This conjecture is a formula: G : Geometry = R : Representations,
and the representations of symmetric groups are essentially combi-
natorics.

2. We note that each Gµ(λ, τ) is given by a finite and closed expression
in terms of the representations of symmetric groups:
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Gµ(λ, τ) =
∑

n≥1

(−1)n−1

n

∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))
zµi

e
√−1(τ+ 1

2 )κνiλ/2Wνi(λ).

The generating series Gµ(λ, τ) gives the values of the triple Hodge
integrals for moduli spaces of curves of all genera with l(µ) marked
points.

3. Note that an equivalent expression of this formula is the following
non-connected generating series. In this situation we have a rela-
tively simpler combinatorial expression:

G(λ; τ ; p)• = exp [G(λ; τ ; p)]

=
∑

|µ|≥0

[
∑

|ν|=|µ|

χν(C(µ))
zµ

e
√−1(τ+ 1

2 )κνλ/2Wν(λ)]pµ.

According to Mariño and Vafa, this formula gives values for all
Hodge integrals up to three Hodge classes. Lu proved that this is
right if we combine with some previously known simple formulas
about Hodge integrals.

4. By taking Taylor expansion in τ on both sides of the Mariño-Vafa
formula, we have derived various Hodge integral identities in 40.

For examples, as easy consequences of the Mariño-Vafa formula
and the cut-and-join equation as satisfied by the above generat-
ing series, we have unified simple proofs of the λg conjecture by
comparing the coefficients in τ in the Taylor expansions of the two
expressions,

∫

Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,

for k1 + · · ·+kn = 2g−3+n, and the following identities for Hodge
integrals:

∫

Mg

λ3
g−1 =

∫

Mg

λg−2λg−1λg =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

,

where B2g are Bernoulli numbers. And
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∫

Mg,1

λg−1

1− ψ1
= bg

2g−1∑

i=1

1
i
− 1

2

∑
g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2 ,

where

bg =

{
1, g = 0,
22g−1−1
22g−1

|B2g|
(2g)! , g > 0.

Now let us look at how we proved this conjecture. This is joint work
with Chiu-Chu Liu, Jian Zhou, see 37 and 38 for details.

The first proof of this formula is based on the Cut-and-Join equation
which is a beautiful match of combinatorics and geometry. The details of
the proof is given in 37 and 38. First we look at the combinatorial side.
Denote by [s1, · · · , sk] a k-cycle in the permutation group. We have the
following two obvious operations:

1. Cut: a k-cycle is cut into an i-cycle and a j-cycle:

[s, t] · [s, s2, · · · , si, t, t2, · · · tj ] = [s, s2, · · · , si][t, t2, · · · tj ].
2. Join: an i-cycle and a j-cycle are joined to an (i + j)-cycle:

[s, t] · [s, s2, · · · , si][t, t2, · · · tj ] = [s, s2, · · · , si, t, t2, · · · tj ].
Such operations can be organized into differential equations which we call
the cut-and-join equation.

Now we look at the geometry side. In the moduli spaces of stable maps,
cut and join have the following geometric meaning:

1. Cut: one curve splits into two lower degree or lower genus curves.
2. Join: two curves are joined together to give a higher genus or higher

degree curve.

The combinatorics and geometry of cut-and-join are reflected in the follow-
ing two differential equations, which look like heat equation. It is easy to
show that such equation is equivalent to a series of systems of linear ordinary
differential equations by comparing the coefficients on pµ. These equations
are proved either by easy and direct computations in combinatorics or by
localizations on moduli spaces of relative stable maps in geometry. In com-
binatorics, the proof is given by direct computations and was explored in
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combinatorics in the mid 80s and later by Zhou 37 for this case. The dif-
ferential operator on the right hand side corresponds to the cut-and-join
operations which we also simply denote by (CJ).

Lemma 5.1.

∂R

∂τ
=

1
2
√−1λ

∞∑

i,j=1

((i + j)pipj
∂R

∂pi+j
+ ijpi+j(

∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj
)).

On the geometry side the proof of such equation is given by localization
on the moduli spaces of relative stable maps into the the projective line P1

with fixed ramifications at ∞:

Lemma 5.2.

∂G

∂τ
=

1
2
√−1λ

∞∑

i,j=1

((i + j)pipj
∂G

∂pi+j
+ ijpi+j(

∂G

∂pi

∂G

∂pj
+

∂2G

∂pi∂pj
)).

The proof of the above equation is given in 37. Together with the following

Initial Value : τ = 0,

G(λ, 0, p) =
∞∑

d=1

pd

2d sin
(

λd
2

) = R(λ, 0, p).

which is precisely the Ooguri-Vafa formula and which has been proved
previously for example in 51, we therefore obtain the equality which is the
Mariño-Vafa conjecture by the uniqueness of the solution:

Theorem 5.2. We have the identity

G(λ; τ ; p) = R(λ; τ ; p).

During the proof we note that the cut-and-join equation is encoded in
the geometry of the moduli spaces of stable maps. In fact we later find
the convolution formula of the following form, which is a relation for the
disconnected version G• = exp G,

G•µ(λ, τ) =
∑

|ν|=|µ|
Φ•µ,ν(−√−1τλ)zνK•

ν (λ)

where Φ•µ,ν is the generating series of double Hurwitz numbers, and zν is
the combinatorial constant appeared in the previous formulas. Equivalently
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this gives the explicit solution of the cut-and-join differential equation with
initial value K•(λ), which is the generating series of the integrals of certain
Euler classes on the moduli spaces of relative stable maps to P1. See 36 for
the derivation of this formula, and see 39 for the two partition analogue.

The Witten conjecture as proved by Kontsevich states that the gen-
erating series of the ψ-class integrals satisfy infinite number of differential
equations. The remarkable feature of Mariño-Vafa formula is that it gives a
finite close formula. In fact by taking limits in τ and µi’s one can obtain the
Witten conjecture. A much simpler direct proof of the Witten conjecture
was obtained recently by Kim and myself in 19. We directly derived the
recursion formula which implies both the Virasoro relations and the KdV
equations.

The same argument as our proof of the conjecture gives a simple and
geometric proof of the ELSV formula for Hurwitz numbers. It reduces to
the fact that the push-forward of 1 is a constant in equivariant cohomology
for a generically finite-to-one map. See 38 for more details.

We would like to briefly explain the technical details of the proof. The
proof of the combinatorial cut-and-join formula is based on the Burnside
formula and various simple results in symmetric functions. See 51, 27 and
38.

The proof of the geometric cut-and-join formula used the functorial
localization formula in 29 and 30. The virtual version of this formula was
proved first applied to the virtual fundamental cycles in the computations
of Gromov-Witten invariants in 30.

As remarked in previous sections the functorial localization formula is
very effective and useful because we can use it to push computations on
complicated moduli space to simpler moduli space. The moduli spaces
used by mathematicians are usually the correct but complicated moduli
spaces like the moduli spaces of stable maps, while the moduli spaces used
by physicists are usually the simple but the wrong ones like the projective
spaces. This functorial localization formula has been used successfully in
the proof of the mirror formula 29, 30, the proof of the Hori-Vafa formula
28, and the easy proof of the ELSV formula 38. Our first proof of the
Mariño-Vafa formula also used this formula in a crucial way.

More precisely, let Mg(P1, µ) denote the moduli space of relative stable
maps from a genus g curve to P1 with fixed ramification type µ at ∞,
where µ is a fixed partition. We apply the functorial localization formula
to the divisor morphism from the relative stable map moduli space to the
projective space,
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Br : Mg(P1, µ) → Pr,

where r denotes the dimension of Mg(P1, µ). This is similar to the set-up
of mirror principle, only with a different linearized moduli space, but in
both cases the target spaces are projective spaces.

We found that the fixed points of the target Pr precisely labels the
cut-and-join operations of the triple Hodge integrals. Functorial localiza-
tion reduces the problem to the study of polynomials in the equivariant
cohomology group of Pr. We were able to squeeze out a system of linear
equations which implies the cut-and-join equation. Actually we derived
a stronger relation than the cut-and-join equation, while the cut-and-join
equation we need for the Mariño-Vafa formula is only the very first of such
kind of relations. See 38 for higher order cut-and-join equations.

As was known in infinite Lie algebra theory, the cut-and-join operator
is closely related to and more fundamental than the Virasoro algebras in
some sense.

Recently there have appeared two different approaches to the Mariño-
Vafa formula. The first one is a direct derivation of the convolution formula
which was discovered during our proof of the two partition analogue of the
formula 39. See 36 for the details of the derivation in this case. The second
is by Okounkov-Pandhripande 47, they gave a different approach by using
the ELSV formula as initial value, and as well as the λg conjecture and
other recursion relations from localization on the moduli spaces of stable
maps to P1.

6. Two Partition Formula

The two partition analogue of the Mariño-Vafa formula naturally arises
from the localization computations of the Gromov-Witten invariants of the
open toric Calabi-Yau manifolds, as explained in 52.

To state the formula we let µ+, µ− be any two partitions. Introduce the
Hodge integrals involving these two partitions:

Gµ+,µ−(λ; τ) = B(τ ;µ+, µ−) ·
∑

g≥0

λ2g−2Ag(τ ;µ+, µ−)

where
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Ag(τ ;µ+, µ−) =
∫

Mg,l(µ+)+l(µ−)

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏l(µ+)

i=1

(
1− µ+

i ψi

) ∏l(µ−)
j=1 τ

(
τ − µ−i ψj+l(µ+)

)

and

B(τ ;µ+, µ−) = − (
√−1λ)l(µ+)+l(µ−)

|Aut(µ+)||Aut(µ−)| [τ(τ + 1)]l(µ
+)+l(µ−)−1 ·

l(µ+)∏

i=1

∏µ+
i −1

a=1

(
µ+

i τ + a
)

(µ+
i − 1)!

·
l(µ−)∏

i=1

∏µ−i −1
a=1

(
µ−i

1
τ + a

)

(µ−i − 1)!
.

These complicated expressions naturally arise in open string theory, as well
as in the localization computations of the Gromov-Witten invariants on
open toric Calabi-Yau manifolds.

We introduce two generating series, first on the geometry side,

G•(λ; p+, p−; τ) = exp


 ∑

(µ+,µ−)∈P2

Gµ+,µ−(λ, τ)p+
µ+p−µ−


 ,

where P2 denotes the set of pairs of partitions and p±µ± are two sets of
formal variables associated to the two partitions as in the last section.

On the representation side, we introduce

R•(λ; p+, p−; τ) =
∑

|ν±|=|µ±|≥0

χν+(C(µ+))
zµ+

χν−(C(µ−))
zµ−

·e
√−1(κν+τ+κν−τ−1)λ/2Wν+,ν−p+

µ+p−µ− .

Here

Wµ,ν = ql(ν)/2Wµ · sν(Eµ(t))

= (−1)|µ|+|ν|q
κµ+κν+|µ|+|ν|

2

∑
ρ

q−|ρ|sµ/ρ(1, q, . . . )sν/ρ(1, q, . . . )

in terms of the skew Schur functions sµ
43. They appear naturally in the

Chern-Simons invariant of the Hopf link.
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Theorem 6.1. We have the identity:

G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ).

The idea of the proof is similar to that of the proof of the Mariño-Vafa
formula. We prove that both sides of the above identity satisfy the same
cut-and-join equation of the following type:

∂

∂τ
H• =

1
2
(CJ)+H• − 1

2τ2
(CJ)−H•,

where (CJ)± denote the cut-and-join operator, the differential operator
with respect to the two set of variables p±. We then prove that they have
the same initial value at τ = −1:

G•(λ; p+, p−;−1) = R•(λ; p+, p−;−1),

which is again given by the Ooguri-Vafa formula 39, 52.
The cut-and-join equation can be written in a linear matrix form, and

such equation follows from the convolution formula of the form

K•
µ+,µ−(λ)

=
∑

|ν±|=µ±
G•µ+,µ−(λ; τ)zν+Φ•ν+,µ+(−√−1λτ)zν−Φ•ν−,µ−(

−√−1
τ

λ)

where Φ• denotes the generating series of double Hurwitz numbers, and
Kµ+,µ− is the generating series of certain integrals on the moduli spaces of
relative stable maps. For more details see 39.

This convolution formula arises naturally from localization computa-
tions on the moduli spaces of relative stable maps to P1 × P1 with the
point (∞,∞) blown up. So it reflects the geometric structure of the mod-
uli spaces. Such convolution type formula was actually discovered during
our search for a proof of this formula, both on the geometric and the combi-
natorial side, see 39 for the detailed derivations of the convolution formulas
in both geometry and combinatorics.

The proof of the combinatorial side of the convolution formula is again
a direct computation. The proof of the geometric side for the convolution
equation is to reorganize the generating series from localization contribu-
tions on the moduli spaces of relative stable maps into P1 × P1 with the
point (∞,∞) blown up, in terms of the double Hurwitz numbers. It involves
careful analysis and computations.
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7. The Theory of Topological Vertex

When we worked on the Mariño-Vafa formula and its generalizations, we
were simply trying to generalize the method and the formula to involve more
partitions, but it turned out that in the three partition case, we naturally
met the theory of topological vertex. Topological vertex was first introduced
in string theory by Vafa et al in 1, it can be deduced from a three partition
analogue of the Mariño-Vafa formula in a highly nontrivial way. From this
we were able to give a rigorous mathematical foundation for the physical
theory. Topological vertex is a high point of the theory of string duality as
developed by Vafa and his group for the past several years, starting from
Witten’s conjectural duality between Chern-Simons and open string theory.
It gives the most powerful and effective way to compute the Gromov-Witten
invariants for all open toric Calabi-Yau manifolds. In physics it is rare to
have two theories agree up to all orders, topological vertex theory gives a
very significant example. In mathematics the theory of topological vertex
already has many interesting applications. Here we only briefly sketch the
rough idea for the three partition analogue of the Mariño-Vafa formula. For
its relation to the theory of topological vertex, we refer the reader to 26 for
the details.

Given any three partitions −→µ = {µ1, µ2, µ3}, the cut-and-join equation
in this case, for both the geometry and representation sides, has the form:

∂

∂τ
F •(λ; τ ;p) = (CJ)1F •(λ; τ ;p) +

1
τ2

(CJ)2F •(λ; τ ;p)

+
1

(τ + 1)2
(CJ)3F •(λ; τ ;p).

The cut-and-join operators (CJ)1, (CJ)2 and (CJ)3 are with respect to
the three partitions. More precisely they correspond to the differential
operators with respect to the three groups of infinite numbers of variables
p = {p1, p2, p3}.

The initial value for this differential equation is taken at τ = 1, which
is then reduced to the formulas of two partition case. The combinatorial,
or the Chern-Simons invariant side is given by W−→µ = Wµ1,µ2,µ3 which is a
combination of the Wµ,ν as in the two partition case. See 26 for its explicit
expression.

On the geometry side,

G•(λ; τ ;p) = exp(G(λ; τ ;p))
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is the non-connected version of the generating series of the triple Hodge
integral. More precisely,

G(λ; τ ;p) =
∑
−→µ

[
∞∑

g=0

λ2g−2+l(−→µ )Gg,−→µ (τ)]p1
µ1p2

µ2p3
µ3

where l(−→µ ) = l(µ1)+l(µ2)+l(µ3) and Gg,−→µ (τ) denotes the Hodge integrals
of the following form,

A(τ)
∫

Mg,l1+l2+l3

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏l1

j=1(1− µ1
jψj)

∏l2
j=1 τ(τ − µ2

jψl1+j)
·

(τ(τ + 1))l1+l2+l3−1

∏l3
j=1(τ + 1)(τ + 1 + µ3

jψl1+l2+j)
,

where

A(τ) =
−(
√−1λ)l1+l2+l3

|Aut(µ1)||Aut(µ2)||Aut(µ3)|
l1∏

j=1

∏µ1
j−1

a=1 (τµ1
j + a)

(µ1
j − 1)!

·

l2∏

j=1

∏µ1
j−1

a=1 ((−1− 1/τ)µ2
j + a)

(µ2
j − 1)!

l3∏

j=1

∏µ1
j−1

a=1 (−µ3
j/(τ + 1) + a)

(µ3
j − 1)!

In the above expression, li = l(µi), i = 1, 2, 3. Despite of its complicated
coefficients, these triple integrals naturally arise from localizations on the
moduli spaces of relative stable maps into the blow-up of P1 × P1 × P1

along certain divisors. It also naturally appears in open string theory com-
putations 1. See 26 for more details.

One of our results in 26 states that G•(λ; τ ;p) has a combinatorial ex-
pression R•(λ; τ ;p) in terms of the Chern-Simons knot invariants W−→µ ,
which is a closed combinatorial expression. More precisely it is given by

R•(λ; τ ;p) =
∑
−→µ

[
∑

|νi|=|µi|

3∏

i=1

χνi(µi)
zµi

q
1
2 (
P3

i=1 κνi
wi+1

wi
)
W−→ν (q)]p1

µ1p2
µ2p3

µ3 .

Here w4 = w1 and w3 = −w1 − w2 and τ = w2
w1

. Due to the complicated
combinatorics in the initial values, the combinatorial expression W−→µ we ob-
tained is different from the expression W−→µ obtained by Vafa et al. Actually
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our expression is even simpler than theirs in some sense. The expression we
obtained is more convenient for mathematical applications such as the proof
of the Gopakumar-Vafa conjecture for open toric Calabi-Yau manifolds, see
48.

Theorem 7.1. We have the equality:

G•(λ; τ ;p) = R•(λ; τ ;p).

The key point to prove the above theorem is still the proof of convolution
formulas for both sides which imply the cut-and-join equation. The proof
of the convolution formula for G•(λ; τ ;p) is much more complicated than
the one and two partition cases. See 26 for details.

The most useful property of topological vertex is its gluing property in-
duced by the orthogonal relations of the characters of the symmetric group.
This is very close to the situation of two dimensional gauge theory. In fact
string theorists consider topological vertex as a kind of lattice theory on
Calabi-Yau manifolds. By using the gluing formula we can easily obtain
closed formulas for generating series of Gromov-Witten invariants of all
genera and all degrees, open or closed, for all open toric Calabi-Yau man-
ifolds, in terms of the Chern-Simons knot invariants. Such formulas are
always given by finite sum of products of those Chern-Simons type invari-
ants Wµ,ν ’s. The magic of topological vertex is that, by simply looking at
the moment map graph of the toric surfaces in the open toric Calabi-Yau,
we can immediately write down the closed formula for the generating series
for all genera and all degree Gromov-Witten invariants, or more precisely
the Euler numbers of certain bundles on the moduli space of stable maps.

Here we only give one example to describe the topological vertex formula
for the generating series of the all degree and all genera Gromov-Witten
invariants for the open toric Calabi-Yau 3-folds. We write down the explicit
close formula of the generating series of the Gromov-Witten invariants in
this case.

Example: Consider the toric Calabi-Yau manifold which is O(−3) −→ P2.
In this case the formula for the generating series of all degrees and all genera
Gromov-Witten invariants is given by
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exp (
∞∑

g=0

λ2g−2Fg(t))

=
∑

ν1,ν2,ν3

Wν1,ν2Wν2,ν3Wν3,ν1(−1)
P3

j=1 |νj |q
1
2

P3
i=1 κνi et(

P3
j=1 |νj |)

where q = e
√−1λ. The precise definition of Fg(t) will be given in the next

section.
For general open toric Calabi-Yau manifolds, the expressions are just

similar. They are all given by finite and closed formulas, which are easily
read out from the moment map graphs associated to the toric surfaces, with
the topological vertex associated to each vertex of the graph.

In 1 Vafa and his group first developed the theory of topological ver-
tex by using string duality between Chern-Simons and Calabi-Yau, which
is a physical theory. In 26 we established the mathematical theory of the
topological vertex, and derived various mathematical corollaries, including
the relation of the Gromov-Witten invariants to the equivariant index the-
ory as motivated by the Nekrasov conjecture in string duality 37. During
the development of the mathematical theory of topological vertex we also
introduced formal Calabi-Yau manifolds, see 26 for details.

8. The Gopakumar-Vafa Conjecture and the Indices of
Elliptic Operators

Let Ng,d denote the so-called Gromov-Witten invariant of genus g and
degree d of an open toric Calabi-Yau 3-fold. Ng,d is defined to be the Euler
number of the obstruction bundle on the moduli space of stable maps of
degree d ∈ H2(S,Z) from genus g curve into the surface base S. The open
toric Calabi-Yau manifold associated to the toric surface S is the total space
of the canonical line bundle KS on S. More precisely

Ng,d =
∫

[Mg(S,d)]v
e(Vg,d)

with Vg,d = R1π∗u∗KS a vector bundle on the moduli space induced by the
canonical bundle KS . Here π : U →Mg(S, d) denotes the universal curve
and u can be considered as the evaluation or universal map. Let us write

Fg(t) =
∑

d≥0

Ng,d e−d·t.
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The Gopakumar-Vafa conjecture is stated as follows:

Conjecture 8.1. There exists an expression:

∞∑
g=0

λ2g−2Fg(t) =
∞∑

k=1

∑

g,d≥0

ng
d

1
d

(2 sin
dλ

2
)2g−2e−kd·t,

such that ng
d are integers, called instanton numbers.

Motivated by the Nekrasov duality conjecture between the four dimensional
gauge theory and string theory, we are able to interpret the above integers
ng

d as equivariant indices of certain elliptic operators on the moduli spaces
of anti-self-dual connections 37:

Theorem 8.2. For certain interesting cases, these ng
d’s can be written as

equivariant indices on the moduli spaces of anti-self-dual connections on
C2.

For more precise statement, we refer the reader to 27. The interest-
ing cases include open toric Calabi-Yau manifolds when S is Hirzebruch
surface. The proof of this theorem is to compare fixed point formula ex-
pressions for equivariant indices of certain elliptic operators on the moduli
spaces of anti-self-dual connections with the combinatorial expressions of
the generating series of the Gromov-Witten invariants on the moduli spaces
of stable maps. They both can be expressed in terms of Young diagrams of
partitions. We find that they agree up to certain highly non-trivial ”mirror
transformation”, a complicated variable change. This result is not only
interesting for the index formula interpretation of the instanton numbers,
but also for the fact that it gives the first complete examples that the
Gopakumar-Vafa conjecture holds for all genera and all degrees.

Recently P. Peng 48 has given the first complete proof of the
Gopakumar-Vafa conjecture for all open toric Calabi-Yau 3-folds by us-
ing our Chern-Simons expressions from the topological vertex. His method
is to explore the property of the Chern-Simons expression in great detail
with some clever observation about the form of the combinatorial expres-
sions. On the other hand, Kim in 18 has derived some remarkable recursion
formulas for Hodge integrals of all genera and any number of marked points,
involving one λ-classes. His method is to add marked points in the mod-
uli spaces and then follow the localization argument we used to prove the
Mariño-Vafa formula.
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9. Two Proofs of the ELSV Formula

In this section we describe two proofs of the ELSV formula, one is by direct
localization and cut-and-join equation following our proof of the Mariño-
Vafa formula, another one is to derive it from the Mariño-Vafa formula
through a scaling limit. These results are contained in 40

Given a partition µ of length l(µ), denote by Hg,µ the Hurwitz numbers
of almost simple Hurwitz covers of P1 of ramification type µ by connected
genus g Riemann surfaces. The ELSV formula 8, 14 states:

Hg,µ = (2g − 2 + |µ|+ l(µ))!Ig,µ

where

Ig,µ =
1

|Aut(µ)|
l(µ)∏

i=1

µµi

i

µi!

∫

Mg,l(µ)

Λ∨g (1)
∏l(µ)

i=1 (1− µiψi)
.

Define generating functions

Φµ(λ) =
∑

g≥0

Hg,µ
λ2g−2+|µ|+l(µ)

(2g − 2 + |µ|+ l(µ))!
,

Φ(λ; p) =
∑

|µ|≥1

Φµ(λ)pµ,

Ψµ(λ) =
∑

g≥0

Ig,µλ2g−2+|µ|+l(µ),

Ψ(λ; p) =
∑

|µ|≥1

Ψµ(λ)pµ.

In terms of generating functions, the ELSV formula reads

Theorem 9.1. We have the identity

Ψ(λ; p) = Φ(λ; p).

We first describe a proof of this formula by using cut-and-join equations,
following our proof of the Mariño-Vafa formula. It was known that Φ(λ; p)
satisfies the following cut-and-join equation 12:

∂Θ
∂λ

=
1
2

∑

i,j≥1

(
ijpi+j

∂2Θ
∂pi∂pj

+ ijpi+j
∂Θ
∂pi

∂Θ
∂pj

+ (i + j)pipj
∂Θ

∂pi+j

)
.

This equation was later reproved by sum formula of symplectic Gromov-
Witten invariants 21.
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The calculations in Section 7 and Appendix A of 37 shows that

H̃g,µ = (2g − 2 + |µ|+ l(µ))!Ig,µ

H̃g,µ = (2g − 3 + |µ|+ l(µ))!


 ∑

ν∈J(µ)

Ig,ν +
∑

ν∈C(µ)

I2(ν)Ig−1,ν

+
∑

g1+g2=g

∑

ν1∪ν2∈C(µ)

I3(ν1, ν2)Ig1,ν1Ig2,ν2




where

H̃g,µ =
∫

[Mg,0(P1,µ)]vir
Br∗Hr

is some relative Gromov-Witten invariant of (P1,∞), and

C(µ), J(µ), I1, I2, I3

are defined as in 21. So we have

(2g − 2 + |µ|+ l(µ))Ig,µ

=
∑

ν∈J(µ)

Ig,ν +
∑

ν∈C(µ)

I2(ν)Ig−1,ν +
∑

g1+g2=g

∑

ν1∪ν2∈C(µ)

I3(ν1, ν2)Ig1,ν1Ig2,ν2 ,

which is equivalent to the statement that the generating function Ψ(λ; p)
of Ig,µ also satisfies the cut-and-join equation.

Any solution Θ(λ; p) to the cut-and-join equation (9) is uniquely de-
termined by its initial value Θ(0; p), so it remains to show that Ψ(0; p) =
Φ(0; p). Note that 2g − 2 + |µ|+ l(µ) = 0 if and only if g = 0 and µ = (1),
so

Ψ(0; p) = H0,(1)p1, Φ(0; p) = I0,(1)p1.

It is easy to see that H0,(1) = I0,(1) = 1, so

Ψ(0; p) = Φ(0; p).

One can see geometrically that the relative Gromov-Witten invariant
H̃g,µ is equal to the Hurwitz number Hg,µ. This together with (9) gives a
proof of the ELSV formula presented in 37 in the spirit of 14. Note that
H̃g,µ = Hg,µ is not used in the proof described above.
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On the other hand we can deduce the ELSV formula as the limit of
the Mariño-Vafa formula. By the Burnside formula, one easily gets the
following expression (see e.g. 39):

Φ(λ; p) = log


∑

µ


 ∑

|ν|=|µ|

χν(µ)
zµ

eκνλ/2 dimRν

|ν|!


 pµ.




=
∑

n≥1

(−1)n−1

n

∑
µ

∑
∪n

i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi
(µi)

zµi

eκνi
λ/2 dimRνi

|νi|! pµ.

The ELSV formula reads

Ψ(λ; p) = Φ(λ; p)

where the left hand side is a generating function of Hodge integrals Ig,µ, and
the right hand side is a generating function of representations of symmetric
groups. So the ELSV formula and the Mariño-Vafa formula are of the same
type.

Actually, the ELSV formula can be obtained by taking a particular
limit of the Mariño-Vafa formula G(λ; τ ; p) = R(λ; τ ; p). More precisely, it
is straightforward to check that

lim
τ→0

G(λτ ;
1
τ

; (λτ)p1, (λτ)2p2, · · · )

=
∑

|µ|6=0

∞∑
g=0

√−1
2g−2+|µ|+l(µ)

Ig,µλ2g−2+|µ|+l(µ)pµ

= Ψ(
√−1λ; p)

and

lim
τ→0

R(λτ ;
1
τ

; (λτ)p1, (λτ)2p2, · · · )

= log


∑

µ


 ∑

|ν|=|µ|

χν(C(µ))
zµ

e
√−1κνλ/2 lim

t→0
(t|ν|Vν(t))


 pµ




= log


∑

µ


 ∑

|ν|=|µ|

χν(C(µ))
zµ

e
√−1κνλ/2 1∏

x∈ν h(x)


 pµ




= Φ(
√−1λ; p)

where we have used
1∏

x∈ν h(x)
=

dimRν

|ν|! .
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See 40 for the notations. In this limit, the cut-and-join equation of G(λ; τ ; p)
and R(λ; τ ; p) reduces to the cut-and-join equation of Ψ(λ; p) and Φ(λ; p),
respectively.

10. A Localization Proof of the Witten Conjecture

The Witten conjecture for moduli spaces states that the generating series
F of the integrals of the ψ classes for all genera and any number of marked
points satisfies the KdV equations and the Virasoro constraint. For example
the Virasoro constraint states that F satisfies

Ln · F = 0, n ≥ −1

where Ln denote certain Virasoro operators to be given later.
Witten conjecture was first proved by Kontsevich using combinator-

ial model of the moduli space and matrix model, with later approaches
by Okounkov-Pandhripande 47using ELSV formula and combinatorics, by
Mirzakhani 45 using Weil-Petersson volumes on moduli spaces of bordered
Riemann surfaces.

I will present a much simpler proof by using functorial localization and
asymptotics. This was done jointly with Y.-S. Kim in 19. This is also
motivated by methods in proving conjectures from string duality. It should
have more applications.

The basic idea of our proof is to directly prove the following recursion
formula which, as derived in physics by Dijkgraaf, Verlinde and Verlinde
by using quantum field theory, implies the Virasoro and the KdV equation
for the generating series F of the integrals of the ψ classes:

Theorem 10.1. We have identity

〈σ̃n

∏

k∈S

σ̃k〉g =
∑

k∈S

(2k + 1)〈σ̃n+k−1

∏

l 6=k

σ̃l〉g +
1
2

∑

a+b=n−2

〈σ̃aσ̃b

∏

l 6=a,b

σ̃l〉g−1

+
1
2

∑
S=X∪Y,

a+b=n−2,
g1+g2=g

〈σ̃a

∏

k∈X

σ̃k〉g1〈σ̃b

∏

l∈Y

σ̃l〉g2 .

Here σ̃n = (2n + 1)!!ψn and

〈
n∏

j=1

σ̃kj
〉g =

∫

Mg,n

n∏

j=1

σ̃kj
.

The notation S = {k1, · · · , kn} = X ∪ Y .
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To prove the above recursion relation, similar to the proof of the Mariño-
Vafa formula, we first apply the functorial localization to the natural branch
map from moduli space of relative stable maps Mg(P1, µ) to projective
space Pr where r = 2g − 2 + |µ|+ l(µ) is the dimension of the moduli.

As discussed in last section we easily get the cut-and-join equation for
one Hodge integral

Ig,µ =
1

|Aut µ|
n∏

i=1

µµi

i

µi!

∫

Mg,n

Λ∨g (1)∏
(1− µiψi)

.

The equation we get has the form as discussed in last section, it is trivial
corollary of the fact that the push-forward of 1 in equivariant cohomology
by a map between equal dimension manifolds is a constant:

(2g − 2 + |µ|+ l(µ))Ig,µ

=
∑

ν∈J(µ)

Ig,ν +
∑

ν∈C(µ)

I2(ν)Ig−1,ν +
∑

g1+g2=g

∑

ν1∪ν2∈C(µ)

I3(ν1, ν2)Ig1,ν1Ig2,ν2 .

Note that more general formulas of such type was first found and proved
by Kim in 18.

Write µi = Nxi. Let N go to infinity and expand in xi, we get:

n∑

i=1

[ (2ki + 1)!!
2ki+1ki!

xki
i

∏

j 6=i

x
kj− 1

2
j√
2π

∫

Mg,n

∏
ψ

kj

j −
∑

j 6=i

(xi + xj)ki+kj− 1
2√

2π

∏

l 6=i,j

x
kl− 1

2
l√
2π

∫

Mg,n−1

ψki+kj−1
∏

ψkl

l

−1
2

∑

k+l=ki−2

(2k + 1)!!(2l + 1)!!
2ki ki!

xki
i

∏

j 6=i

x
kj− 1

2
j√
2π

[ ∫

Mg−1,n+1

ψk
1ψl

2

∏
ψ

kj

j

+
∑

g1+g2=g,
ν1∪ν2=ν

∫

Mg1,n1

ψk
1

∏
ψ

kj

j

∫

Mg2,n2

ψl
1

∏
ψ

kj

j

]]
= 0.

Performing Laplace transforms on the xi’s, we get the recursion formula in
the above theorem which implies both the KdV equations and the Virasoro
constraints. For example the Virasoro constraints states that the generating
series
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τ(t̃) = exp
∞∑

g=0

〈exp
∑

n

t̃nσ̃n〉g

satisfies the equations:

Ln · τ = 0, (n ≥ −1)

where Ln denote the Virasoro differential operators

L−1 = −1
2

∂

∂t̃0
+

∞∑

k=1

(k +
1
2
)t̃k

∂

∂t̃k−1

+
1
4
t̃20

L0 = −1
2

∂

∂t̃1
+

∞∑

k=0

(k +
1
2
)t̃k

∂

∂t̃k
+

1
16

Ln = −1
2

∂

∂t̃n−1

+
∞∑

k=0

(k +
1
2
)t̃k

∂

∂t̃k+n

+
1
4

n∑

i=1

∂2

∂t̃i−1∂t̃n−i

We remark the same method can be used to derive very general recursion
formulas in Hodge integrals and general Gromov-Witten invariants. We
hope to report these results on a later occasion.

11. Final Remarks

We strongly believe that there is a more interesting and grand duality
picture between Chern-Simons invariants for three dimensional manifolds
and the Gromov-Witten invariants for open toric Calabi-Yau manifolds. We
hope such a duality picture will also help us solve the counting problems
of higher genus curves in compact Calabi-Yau manifolds. Our proofs of the
Mariño-Vafa formula, and the setup of the mathematical foundation for
topological vertex theory and the results of others we have discussed above
all together have just opened a small window for a more splendid picture.
We can certainly expect more exciting conjectures from such duality to
stimulate more developments in mathematics.
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