GEOMETRIC ANALYSIS

SHING-TUNG YAU

This was a talk I gave in the occasion of the seventieth anniversary of the Chi-
nese Mathematical Society. I dedicated it in memory of my teacher S. S. Chern
who passed away half a year ago.

During my graduate study, I was rather free in picking research topics. I [538]
worked on fundamental groups of manifolds with non-positive curvature. But
in the second year of my study, I started to look into differential equations
on manifolds. While Chern did not express much opinions on this part of my
research, he started to appreciate it a few years later. In fact, after Chern gave
a course on Calabi’s works on affine geometry in 1972 in Berkeley, Cheng told
me these inspiring lectures. By 1973, Cheng and I started to work on some
problems mentioned in his lectures. We did not realize that great geometers
Pogorelov, Calabi and Nirenberg were also working on them. We were excited
that we solved some of the conjectures of Calabi on improper affine spheres.
But soon we found out that Pogorelov [398] published it right before us by dif-
ferent arguments. Nevertheless our ideas are useful to handle other problems in
affine geometry and my knowledge about Monge-Ampere equations started to
be broadened in these years. Chern was very pleased by my works, especially
after I [543] solved the problem of Calabi on Kéhler Einstein metric in 1976. 1
had been in Stanford and Chern proposed to Berkeley Department to hire me.
I visited Berkeley in 1977 for a year and gave a course on geometric analysis
with emphasis on isometric embedding.

Chern nominated me to give a plenary talk in the International Congress in
Helsinki. The talk [544] went well, but my decision not to stay in Berkeley did
not quite please him. Nevertheless he recommended me to be a faculty in the
Institute for Advanced Study. Before I accepted to be a faculty in the Institute,
I organized a special year on geometry in 1979 in the Institute at the invitation
of Borel. That was an exciting year because most people in geometric analysis
came.

In 1979, I visited China at the invitation of Professor L. K. Hua. I gave a series

of talks on the bubbling process of Sacks-Uhlenbeck [413]. T suggested to the

Chinese mathematicians to apply similar arguments for Jordan curve bounding

two surfaces with same constant mean curvature. I thought it is a good exercise

to get into this exciting field of geometric analysis. The problem was indeed

picked up by a group of students of Professor Wang [251]. But unfortunately
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it also initiated some ugly fights during the meeting of the sixtieth anniversary
of the Chinese Mathematical Society. Professor Wang was forced by one of
his students to resign. This event did slow down development of this beautiful
subject in China in the past ten years.

In 1980, Chern decided to develop geometric analysis in a large scale. He
initiated a series of international conferences on differential geometry and dif-
ferential equations to be held each year in China. For the first year, a large
group of most distinguished mathematicians were gathering in Beijing to give
lectures (see [107]). I lectured on open problems in geometry [546]. It took a
much longer time than I expected for Chinese mathematicians to pick up some
of these problems.

To his disappointment, Chern’s enthusiasm about developing differential equa-
tions and differential geometry in China did not stimulate as much activity as
he had hoped. Most Chinese mathematicians are trained in analysis, but rather
weak in geometry. The goal of geometric analysis to understand geometry is not
appreciated. On the other hand, the works of Zhong (see, e.g., [562, 372, 373])
were remarkable. Unfortunately he died about twenty years ago. The major
research center on differential geometry come from students of Chern and late
Professor Su. Gu [208] did a remarkable pioneering work in which he considered
harmonic map based on metrics with different signature. Such maps are called
wave maps. Hong (see, e.g., 239, 220]) did some interesting works on isometric
embedding of surfaces into R3. In the past five years, the research center in the
Chinese University of Hong Kong led by Tam and Zhu did produce first class
works related to Hamilton’s Ricci flow (see, e.g., [87, 88, 91, 92, 80]).

As a support of Chern’s ambition on building up geometric analysis, I will ex-
plain my personal view to my Chinese colleagues.

I will consider this article to be successful if it conveys to my readers the ex-
citement of developments in differential geometry which have been taking place
during the period during which it has been my good fortune to contribute. I do
not claim this covers all respects of the subject. In fact, I have given priority to
those works closer to my personal experience, and, as such, it gives insufficient
space to aspects of differential geometry in which I have not participated. In
spite of its shortcomings, I hope that its readers, particularly those too young
to know the origins of geometric analysis will be interested to learn how the
field looks to someone who was there. I am grateful to J. Fu, especially for his
help tracking down references.

The major contributors can be roughly mentioned in the following periods:
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I. 1972 to 1982: Atiyah, Bott, Singer, Calabi, Nirenberg, Pogorelov, Schoen,
Simon, Uhlenbeck, Donaldson, Hamilton, Taubes, Stein, Fefferman, Siu, Caf-
farelli, Kohn, S. Y. Cheng, Kuranishi, Cheeger, Gromoll, Harvey, Lawson, Gro-
mov, Aubin, Patodi, Hitchin, Guillemin, Melrose, Colin de Verdiere, M. Taylor,
Bryant, H. Wu, R. Green, Peter Li, Phong, Wolpert, Pitts, Trudinger, Hilde-
brandt, Kobayashi, Hardt, Spruck, Gerhardt, White, Gulliver, Warner, Kazdan.

II. 1983 to 1992: In 1983, Schoen and I started to give lectures on geometric
analysis in the Institute for Advanced Study. Zhong was the major person to
take notes of our lectures. The lectures were continued in 1985 in San Diego.
During the period of 1985 and 1986, K. C. Chang and W. Y. Ding came to
take notes for our lectures. The book Lectures on Differential Geometry was
published in Chinese around 1989 [434]. It did have great influence for a gen-
eration of Chinese mathematicians to become interested in this subject. At
the same time, a large group of my students made contributions to the subject.
This includes Treibergs, Parker, Bartnik, Bando, Saper, Stern, Cao, Chow, Shi,
Zheng and Tian.

At the same time, Bismut, C. S. Lin, N. Mok, J. Q. Zhong, Jost, Huisken,
Jerison, Sarnak, Fukaya, Mabushi, Ilmanen, Croke, Stroock, Price, F. H. Lin,
Zelditch, Christodoulou, Klainerman, Moncrief, Terng, Michael Wolf, Ander-
son, LeBrun, Micallef, Moore, John Lee, A. Chang, Korevaar are making con-
tributions in various directions. One should also mention that in this period
important work done by the authors in the first group. For example, Don-
aldson, Taubes [476] and Uhlenbeck [509, 510] did the spectacular works on
Yang-Mills theory on general manifolds which led Donaldson [143] to solve out-
standing questions on four manifold topology. Donaldson [144], Uhlenbeck-Yau
[512] proved the existence of Hermitian Yang-Mills connection on stable bun-
dles. Schoen [419] solved the Yamabe problem.

ITI. 1993 to now: Many mathematicians joined the subject. This includes
Kronheimer, Mrowka, Demailly, Colding, Minicozzi, T. Tao, Thomas, Zworski,
Eliasberg, Toth, Andrews, L. F. Tam, C. Leung, Y. Ruan, W. Ruan, R. Went-
worth, Grigorian, Saloff-Coste, J. X. Hong, X. P. Zhu, M. T. Wang, A. K. Liu,
K. F. Liu, X. F. Sun, T. J. Li, X. J. Wang, Loftin, Y. Li, H. Bray, J. P. Wang,
L. Ni, P. F. Guan, N. Kapouleas, Ozsvath, Szabd, Y. Li. The most important
event is of course the first major breakthrough of Hamilton [218] in 1995 on
the Ricci flow. I did propose to him in 1982 to use his flow to solve Thurston’s
conjecture. But only until this paper of Hamilton, it is finally realized that it
is feasible to solve the full geometrization program by geometric analysis. (A
key step was estimates on parabolic equations initiated by Li-Yau [309] and ac-
complished by Hamilton for Ricci flow [216, 217].) In 2002, Perelman [389, 390]
brought in fresh new ideas to solve important steps that are remained in the
program. It is hopeful that the works of Chen-Zhu [91, 92] and Cao-Zhu may
finally finish the whole program. In the other direction, we see the important
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development of Seiberg-Witten theory [533]. Taubes [482, 483, 484, 485] was
able to prove the remarkable theorem on counting pseudo-holomorphic curves
in terms of his invariants. Kronheimer-Mrowka [279] were able to solve the
Thom conjecture that holomorphic curves provide the lowest genus surfaces in

representing homology in algebraic surfaces. (Ozsvéth-Szabd had a symplectic
version [387].)

Since the whole development does depend heavily on the past, we start out
with historical developments. The followings are samples of work before 1970
which provide fruitful ideas and methods.

e Fermat’s principle of calculus of variation (Shortest path in vari-
ous media).

e Calculus (Newton and Leibniz): Path of bodies governed by law of
nature.

e Euler, Lagrange: Foundation for variational principle and the study
of partial differential equations. Derivations of equations for fluids and
for minimal surfaces.

e Fourier, Hilbert: Decomposition of functions into eigenfunctions,
spectral analysis.

e Gauss, Riemann: Concept of intrinsic geometry.

e Riemann, Dirichlet, Hilbert: Solving Dirichlet boundary value prob-
lem for harmonic function using variational method.

e Maxwell: Electromagnetism, gauge fields, unification of forces.
e Christoffel, Levi-Civita, Bianchi, Ricci: Calculus on manifolds.

e Riemann, Poincaré, Koebe: Riemann surface uniformation theory,
conformal deformation.

e Cartan: Exterior differential system, connections on fiber bundle.
e Einstein, Hilbert: Einstein equation and Hilbert action.

e Dirac: Spinors, Dirac equation, quantum field theory.

o Kahler, Hodge: Kahler metric and Hodge theory.

e Hilbert, Cohn-Vossen, Lewy, Weyl, Hopf, Pogorelov, Effimov,
Nirenberg: Global surface theory in three space based on analysis.

o Weistress, Riemann, Lebesgue, Courant, Douglas, Radé, Mor-
rey: Minimal surface theory.

e Gauss, Green, Poincaré, Schauder, Morrey: Potential theory,
regularity theory for elliptic equations.

o Weyl, Hodge, Kodaira, de Rham, Bergman, Milgram-Rosenbloom,
Atiyah-Singer: de Rham-Hodge theory, integral operators, kernel func-
tions, index theory.

e Pontrjagin, Chern, Allendoerfer-Weil: Global topological invari-
ants defined by curvarure forms.
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e Bochner-Kodaira: Vanishing of cohomology groups based on curva-
ture consideration.

e De Giorgi-Nash-Moser: Regularity theory for higher dimensional
elliptic equation and parabolic equation of divergence type.

e Kodaira, Morrey, Hormander, Kohn, Andreotti-Vesentini: Em-
bedding of complex manifolds, 0-Neumann problem.

¢ Kodaira-Spencer, Newlander-Nirenberg: Deformation of geomet-
ric structures.

e Federer-Fleming, Almgren, Allard: Varifolds and minimal varieties
in higher dimension.

e Eells-Sampson: Existence of harmonic maps into manifolds with non-
positive curvature.

e Calabi: Affine geometry and conjectures on Kéahler Einstein metric.

I will now explain what has been accomplished since the seventies, and I will be-
gin with a more systematic study of interaction between geometry and analysis.
The story depends on my personal tastes and may leave out the contribution
of many authors.

I. Construction of functions in geometry

The following is the basic principle [544]:

Linear or non-linear analysis is developed to understand the underly-
ing geometric or combinational structure. On the process, geometry
will provide deeper insight of analysis. An important guideline is
that space of special functions defined by the structure of the space
can be used to define the structure of this space itself.

Algebraic geometer has defined Zariski topology of an algebraic variety using
ring of rational functions.

In differential geometry, one should extract information about the metric and
topology of the manifolds from functions defined over it. Naturally, these func-
tions should be defined either by geometric construction or by differential equa-
tions given by the underlying structure of the geometry. (Integral equations
have not been used extensively as the idea of linking local geometry to global
geometry is more related to differential equations.) A natural generalization
of functions consists of following: differential forms, spinors, sections of vector

bundles.

The dual concepts of differential forms or sections of vector bundles are subman-
ifolds or foliations. From the differential equations that govern them (mostly
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arising from variational principle) we have minimal submanifolds or holomor-
phic cycles. Naturally the properties of them or the totality of all such objects
govern the geometry of the underlying manifold. A very good example is Morse
theory on the space of loops on a manifold.

I shall now discuss various methods for constructing functions or tensors of
geometric interest.

A. Polynomials from ambient space.

If the manifold is isometrically embedded into Euclidean space, a natural class
of functions are the restrictions of polynomials from Euclidean space. However,
isometric embedding in general is not rigid, and so functions constructed in
such a way are usually not too useful.

On the other hand, if a manifold is embedded into Euclidean space in a canon-
ical manner and the geometry of this submanifold is defined by some group of
linear transformations of the Euclidean space, the polynomials restricted to the
submanifold do play important roles. S. Y. Cheng and I (1974,1975) [102, 106]
did develop several important gradient estimates for these functions in order to
control the geometry of such submanifolds.

The first important theorem is a spacelike hypersurface M in the Minkowski
space R™!. A very important question: Since the metric on R™! is 3" (dx?)? —
dt?, the restriction of this metric on M need not be complete even though M
may be complete with respect to the Euclidean metric. In order to prove the
equivalence of these two concepts for hypersurface where we can control their
mean curvature, Cheng and I proved gradient estimate of the function

(X, X) = 3 (@) - &2

restricted on the hypersurface.

By choosing coordinate system, the function (X, X) can be assumed to be
positive and proper on M. For any positive proper function f defined on M, if
we prove the following gradient estimate

|V f |
f

where C is independent of f, then we can prove the metric on M is complete.
This is obtained by integrating the inequality to get

| log f(x) —log f(y) |< Cd(z,y)

so that when f(y) — oo, d(z,y) — co. Once we know the metric is complete, we
proved the Bernstein theorem which says that maximal spacelike hypersurface
must be linear. Such work was then generalized by Treibergs [506], C. Gerhardt

<C
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[181] and R. Bartnik [28] for hypersurfaces in more general spacetimes. (It is
still an important problem to understand the behavior of maximal spacelike
hypersurface foliation for general spacetime when we assume the spacetime is
evolved by Einstein equation from nonsingular data set.)

Another important example is the study of affine hypersurfaces M"™ in an affine
space A"T!. These are the improper affine spheres

det(uij) =1

where u is a convex function or the hyperbolic affine spheres

det(us) = (—1)%2

u

where u is convex and zero on 0f) and €2 is a convex domain. Note that these
equations describe hypersurfaces where the affine normals are either parallel or
converge to a point.

For affine geometry, there is an affine invariant metric defined on M which is
1 . .
(det hij)im Z hijdl‘zdl'J

where h;; is the second fundamental form of M. A fundamental question is
whether this metric is complete or not.

If a coordinate system in A"*! is chosen so that the height function is a proper
positive function defined on M. The gradient estimate of the height function
gives a way to prove completeness of the affine metric. Cheng and I [106] did
find such an estimate similar to the one given above.

Once completeness of the affine metric is known, it is trivial to prove properties
of affine spheres, some of which were conjectured by Calabi. For example we
proved that an improper affine sphere is a paraboloid and that every proper
convex cone admits a foliation of hyperbolic affine spheres. The statement
about improper affine sphere was first proved by Jorgens [252], Calabi [67] and
Pogorelov [398]. Conversely, we also proved that every hyperbolic affine sphere
is asymptotic to a convex cone. (The estimate of Cheng-Yau was reproduced
again by a Chinese mathematician who claimed to prove the result ten years
afterwards.) Much more recently, Trudinger and X. J. Wang [508] solved a diffi-
cult Bernstein problem for affine minimal surface, thereby settling a conjecture
by Chern. They found counterexample for dim> 10. These results make it
clear that we can learn much more about affine minimal surfaces by examining
fourth order elliptic equations.

The same sort of argument, using gradient estimates for some naturally de-
fined function was also used by me to prove that the Kéahler Einstein metric
constructed by Cheng and myself is complete for any bounded pseudo-convex
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domain [104]. (It appeared in my paper with Mok [371] who proved the con-
verse statement which says that if the Kahler Einstein metric is complete, the
domain is pseudo-convex.)

Cheng-Yau’s argument is based on maximum principle. Prior to such develop-
ment, there was deep work due to Bombieri-Ginsti [45] on gradient estimate of
minimal graph using ideas of De Giorgi-Nash. Eventually, N. Korevaar [274]
found an argument of this work based on maximum principle also.

Basic Principle: To control a metric, find a function that we know well and
give a gradient or higher order estimate of this function.

This principle was used by Cheng-Li-Yau [100] in 1982 to give a comparison
theorem for heat kernel for minimal submanifolds in Euclidean space, sphere
and hyperbolic space. Since any complex submanifold in CP™ can be lifted
to a minimal submanifold in $?"*1, the much later work of Li-Tian [304] on
complex submanifolds of CP" is a corollary.

Another very important property of a linear function is that when it is re-
stricted to a minimal hypersurface in a sphere S™*!, it is automatically an
eigenfunction. When the hypersurface is embedded, I conjectured that the first
eigenfunction is linear and the first eigenvalue of the hypersurface is equal to n
(see [546]). While this conjecture is not completely solved, the work of Choi-
Wang [112] gives strong support, and they proved that the first eigenvalue has
a lower bound depending only on n. Such a result was good enough for Choi-
Schoen [110] to prove a compactness result for embedded minimal surfaces in S3.

There is another class of functions that are constructed from the ambient
space. These are the support functions of a hypersurface which are func-
tions defined on the sphere. The famous Minkowski problem reduces to solving
some Monge-Ampere equation for the support function. This was done by
Nirenberg [382], Pogorelov[397], Cheng-Yau[103]. The question of prescribed
symmetric functions of principal curvatures has been studied by many people:
Pogorelov([399], Caffarelli-Nirenberg-Spruck[65], P. F. Guan (see [210, 209]), Bo
Guan, Gerhardt[182], etc. The question of isometric embedding of surfaces into
three space can also be written in terms of Darboux equation for the support
function. For local problem, there are deep works due to C. S. Lin [320, 321],
which are followed by Han-Hong-Lin [220]. The global problem for surfaces
with negative curvature was studied by Hong [239].

Submanifolds of space forms are called isoparametric if the normal bundle is flat
and the principal curvatures are constants along parallel normal fields. These
were studied by E. Cartan. Recently there has been extensive work by Terng
and Thorbergsson (see Terng’s survey [488] and Thorbergsson [493]). Terng
[487] also connected hyperbolic spaces embedded in Euclidean space to soliton



GEOMETRIC ANALYSIS 9

theory. Also, a nice theory of Lax pair and loop groups related to geometry has
been developed.

B. Geometric construction of functions

When manifolds cannot be embedded into linear spaces, there are ways to
construct functions adapted to metric structure. Obviously distance function
is the first major function to be used. Out of the distance function, we can
construct Busemann function in the following way:

Given a geodesic ray v : [0,00) — M so that
distance(y(t1),v(t2)) = ta — t1,

where || ‘fl—z |= 1, one defines
B, (z) = lim (d(z7 (1) 1)

This function generalizes the notion of linear function. For hyperbolic space-
form, its level set defines horospheres. For manifolds with positive curvature, it
is concave. Cohn-Vossen (for surface) and Gromoll-Meyer [196] used it to prove

that a complete noncompact manifold with positive curvature is diffeomorphic
to R™.

A very important property of the Busemann function is that it is superharmonic
on complete manifolds with nonnegative Ricci curvature in the sense of distri-
bution. This is the key to prove the splitting principle of Cheeger-Gromoll [86].
Various versions of this splitting principle have been important for applications
to structure of manifolds. When I [543] proved the Calabi conjecture, the split-
ting principle was used by me and others to prove the structure theorem for
Kéahler manifolds with nonnegative first Chern Class. (The argument for the
structure theorem is due to Calabi [66] who know how to handle the first Betti
number. Kobayashi [267] and Michelsohn [363] wrote up the formal argument
and Beauville [33] had a survey article on this development.)

In 1974, I was able to use the Busemann function to estimate volume of complete
manifolds with nonnegative Ricci curvature [541]. This work was generalized
by Gromov [201] to understand volume of geodesic balls and has been useful
for the recent works of Perelman [389, 390] on Hamilton’s flow.

If we consider inf, B,, where v ranges from all geodesic rays from a point on
the manifold, we may be able to obtain a proper exhaustion of the manifold.
When M is a complete manifold with finite volume and its curvature is pinched
by two negative constants, Siu and I [459] did prove that such function gives a
concave exhaustion of the manifold. If the manifold is Kahler, we were able to
prove that we can compactify such manifolds by adding a point to each end to
form a compact complex variety.
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I also proposed that every complete Kéhler manifold with bounded curvature,
finite volume and finite topology should be compactificable to be a compact
complex variety. I suggested this problem to Mok and Zhong in 1982 who did
significant work [373] in this direction. (The compactification by Mok-Zhong
is not canonical and it is desirable to find an algebraic geometric analogue of
Borel-Baily compactification [20] so that we can study the L?-cohomology in
terms of the intersection cohomology of the compactification.) Recall that the
important conjecture of Zucker on identifying L?-cohomology with the intersec-
tion cohomology of the Borel-Baily compactification was settled by Saper-Stern
[415] and Looijenga [337]. It would be nice to have similar compactification,
at least for moduli spaces of various types. Goresky-Harder-MacPherson [190]
and Saper [414] has contributed a lot towards this kind of questions.

Besides taking distance function to a point, we can also take distance function
to a submanifold. In such case, its Laplacian will involve Ricci curvature of the
ambient manifold and the mean curvature of the submanifold. Such functions
can be used as barrier for construction of minimal submanifolds. Schoen-Yau
[431] was able to use such barrier to apply minimal surface argument to prove
that any complete three dimensional manifold with positive Ricci curvature is
diffeomorphic to Euclidean space.

If we look at the space of loops in a manifold, we can take the length of each loop
and thereby define a natural function on the space of loops. This is a function
for which Morse theory found rich application. Starting from the famous works
of Poincaré, Birkhoff, Morse, Ljusternik-Shnirel’man, there has been extensive
work on proving existence of closed geodesic using Morse theory on the space
of loops. Klingenberg and his students developed powerful tools (see [266]).
Gromoll-Meyer [197] did important work in which they proved the existence of
infinitely many closed geodesics. There was also later work by Ballmann, Ziller,
Hingston and Kramer (see, e.g., [24, 227, 278]). When the metric is Finsler, the
most recent work of Victor Bangert and Yiming Long [27] shows the existence
of two closed geodesics on the two dimensional sphere. (Katok[261] produced
an example which shows that two is optimal.) Under the leadership of Chern,
David Bao, Z. Shen, X. H. Mo and M. Ji developed Finsler geometry (see, e.g.,
120]).

When the manifold has negative curvature, the length function of curves is re-
lated to the displacement function defined in the following way:

If v is an element of the fundamental group acting on the universal cover
of a complete manifold with non-positive curvature, we consider the function
d(z,y(z)): The study of such a function gives rise to properties of compact
manifolds with non-positive curvature. For example, in my thesis, I gener-
alized Preissmann theorem to the effect that every solvable subgroup of the
fundamental group must be a finite extension of an abelian group which is the
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fundamental group of a totally geodesic flat subtorus [538]. Gromoll-Wolf [198]
and Lawson-Yau [284] also proved that if the fundamental group of such mani-
fold has no center and splits as a product, then the manifold splits as a metric
product.

When the manifold has bounded curvature, Margulis studied those points where
d(x,~v(z)) is small and proved the famous Margulis lemma which was used ex-
tensively by Gromov [199] to study structure of manifolds with non-positive
curvature. He [200] also developed a remarkable idea of Morse theory for the
distance function (a preliminary version due to K. Grove and K. Shiohama
[207]) to compare topology of a geodesic ball to that of a large ball, thereby
obtaining a bound on the Betti numbers of compact manifolds with nonnegative
sectional curvature. (He can also allow negative curvature when the curvature
is bounded below, but then the diameter and lower bound on the curavture
enter the estimate.)

The Busemann function also gives a way to detect the “angular structure” at
infinity of the manifold. It can be used to construct the Poisson kernel of hy-
perbolic space form. For simply connected complete manifold with bounded
and strongly negative curvature, it is used as a barrier to solve Dirichlet prob-
lem for bounded harmonic functions, after they are mollified at infinity. This
was achieved by Sullivan [471] and Anderson [4]. Schoen and Anderson [5] also
had deep Harnack inequality for bounded harmonic function and identified the
Martin boundary of such manifolds. There is also important work due to W.
Ballmann [21] on the Dirichlet problem for manifolds of nonpositive curvature.

The Martin boundary was also studied by L. Ji and MacPherson [250] for the
compactification of various symmetric spaces. For products of manifolds with
negative curvature, there is also nice work of A. Freire [170] about the Martin
boundary. For rank one complete manifolds with nonpositive curvature, there is
work due to Ballman-Ledrappier [22] and Cao-Fan-Ledrappier [75]. This work
should be related to the L. K. Hua operator on symmetric spaces with higher
rank. Hua found that bounded harmonic functions satisfy extra equations that
come from Hua operator. See [242].

C. Functions defined by differential equations

The most important differential operator for a manifold is the Laplacian. Its
spectral resolution gives rise to eigenfunctions. Harmonic functions are there-
fore the simplest functions that play important roles in geometry.

If the manifold is compact, the maximum principle shows that harmonic func-
tions are constant. However, when we try to understand singularities of com-
pact manifolds, we may create noncompact manifolds by scaling and blowing
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up processes, at which point harmonic functions can play an important role.

The first important question about harmonic functions on a complete manifold
is the Liouville theorem. I started my research on analysis by understanding
the right formulation of Liouville theorem. In 1971, I thought that it is natural
to prove that for complete manifolds with non-negative Ricci curvature, there
is no nontrivial harmonic function [539]. I also thought that in the opposite
case, when a complete manifold has strongly negative curvature and is simply
connected, one should be able to solve Dirichlet problem for bounded harmonic
functions.

The gradient estimates [539] that I derived for positive harmonic function come
from a suitable interpretation of Schwarz lemma in complex analysis. In fact,
I generalized the Ahlfors Schwarz lemma before I understood how to work out
the gradient estimates for harmonic functions. The generalized Schwarz lemma
[545] says that holomorphic maps, from a complete K&hler manifold with Ricci
curvature bounded from below to a Hermitian manifold with holomorphic bi-
sectional curvature bounded from above by a negative constant, are distance
decreasing with constants depending only on the bound on the curvature. This
generalization has since found many applications such as the study of the ge-
ometry of moduli spaces by Liu-Sun-Yau [333, 334]

The gradient estimate that I found can be generalized to cover eigenfunctions
and Peter Li [301] was the first one to apply it to find estimates for eigenvalues
for manifolds with positive Ricci curvature. (If the Ricci curvature has a posi-
tive lower bound, this was due to Lichnerowicz.) Li-Yau [307] then solved the
problem of estimating eigenvalues of manifolds in terms of their diameter and
the lower bound on their Ricci curvature. Li-Yau conjectured the sharp constant
for their estimates, and Zhong-Yang [562] were able to prove this conjecture by
sharpening Li and Yau’s arguments. A probabilistic argument was developed by
Chen and Wang [94] to derive these inequalities. The precise upper bound for
the eigenvalue was first obtained by S. Y. Cheng [97]. Cheng’s theorem gives a
very good demonstration of how the analysis of functions provides information
about geometry. As a corollary of his theorem, he proved that if a compact
manifold M™ has Ricci curvature > n — 1 and the diameter is equal to m, then
the manifold is isometric to the sphere. He used a lower estimate for eigenvalues
due to Lichnerowicz and Obata. Colding [123] was able to use functions with
properties close to those of the first eigenfunction to prove a pinching theorem
which states that: When Ricci curvature is bounded below by n—1 and volume
is close to that of the unit sphere, the manifold is diffeomorphic to the sphere.
There is extensive work by Colding-Cheeger [83, 84, 85] and Perelman (see, e.g.,
[61]) devoted to understanding of Gromov’s theory of Hausdorff convergence for
manifolds. The tools they used include the comparison theorem, splitting the-
orem of Cheeger and Gromoll, and the ideas introduced earlier by Colding.
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The classical Liouville theorem has a natural generalization: Polynomial growth
harmonic functions are in fact polynomials. Motivated by this fact and several
complex variables, I asked whether the space of polynomial growth harmonic
functions with a fixed growth rate is finite dimension with upper bound de-
pending only on the growth rate [548]. This was proved by Colding-Minicozzi
[124] and generalized by Peter Li [302]. (Functions can be replaced by sections
of bundles). In a beautiful series of papers (see, e.g., [305, 306]), P. Li and J.
P. Wang studied the space of harmonic functions in relation to the geometry of
manifolds. In the case when harmonic functions are holomorphic, they form a
ring. I am curious about the structure of this ring. In particular, When is it
finitely generated?

Most of these works can be generalized to those manifolds where Sobolev and
Poincaré inequalities hold. (It should be noted that Aubin [17, 19] and Tal-
enti [473] did find best constant for various Sobolev inequalities on Euclidean
space.) These inequalities are all related to isoperimetric inequalities. The
first important work in this direction was due to Cheeger [81] who pointed
out the importance of isoperimetric constant for estimates of eigenvalues. C.
Croke [134] was able to follow my work [540] on Poincaré inequalities to prove
Sobolev inequality depending only on volume, diameter and the lower bound
of Ricci curvature. Arguments of John Nash was then used by Cheng-Li-Yau
[99] to give estimates of heat kernel and its higher derivatives. In this pa-
per, an estimate of injectivity radius was derived and this estimate turn out to
play a role in Hamilton’s theory of Ricci flow. D. Stroock (see [380]) was able
to use his methods from Malliavin’s calculus to give remarkable estimates for
heat kernel at pair of points where one point is at the cut locus of another point.

The estimate of heat kernel was later generalized by Saloff-Coste and Grigor’yan
to complete manifolds with polynomial volume growth and volume doubling
properties. Since these are quasi-isometric invariants, their analysis can be
applied to graphs or discrete groups. See Grigor’yan’s survey [193] and Saloff-
Coste’s survey [417].

On the other hand, the original gradient estimate that I derived is a pointwise
inequality that is much more adaptable to nonlinear theory. Peter Li and I
[309] were able to find a parabolic version of it in 1984. We observed its signif-
icance for estimates on the heat kernel and its relation to variational principle
for paths in spacetime. Such ideas turn out to provide fundamental estimates
which play a crucial role in the analysis of Hamilton’s Ricci flow [216, 217].

Isoperimetric inequality is a beautiful subject. It has a long history. Besides
its relation to eigenvalues, it reviews deep structure of manifolds. The best
constant for the inequality is important. Pdlya-Szego [400], G. Faber (1923),
E. Krahn (1925), P. Lévy (1951) made fundamental contributions. Gromov
generalized the idea of Lévy to obtain good estimate of Cheeger’s constant (see
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[203]). C. Croke [135] and Cao-Escobar [74] have worked on domains in a sim-
ply connected manifold with non-positive curvature. It is assumed that the
inequality holds for any minimal subvariety in Euclidean space. But it is not
known to be true for the best constant. Li-Schoen-Yau [303] did some work in
the case of surfaces, and E. Lutwak, Deane Yang and G. Y. Zhang did some
beautiful work in the affine geometry case (see, e.g., [343, 344]).

A very precise estimate of eigenvalues of Laplacian has been important in many
areas of mathematics. For example, the idea of Szeg6 [472]-Hersch [226] on up-
per bound of first eigenvalue was generalized by me to higher genus in joint
works with P. Yang [537] and P. Li [308]. I [551] applied it to prove that a
Riemann surface defined by an arithmetric group must have a relative high
degree when it is branched over the sphere. In a beautiful article, N. Kore-
vaar [275] gave an upper bound, depending only on genus and n, for the nth
eigenvalue )\, of Riemann surface. His result settled a conjecture of mine (see
[546]). Grigor’'yan, Netrusov and I [194] were able to simplify his proof and gave
applications to bounding the index of minimal surfaces. There are also beau-
tiful works by P. Sarnak (see, e.g., [416, 249]) on understanding eigenfunctions
for such Riemann surfaces. He pointed out their relevance to number theory
and showed that the estimate of the maximum norm of n-th eigenfunction on
arithmetic surface has significant interest in number theory.

There are many important properties of eigenfunctions that were studied in the
seventies. For example, Cheng [98] found a beautiful estimate of multiplicities
of eigenvalues based only on genus. The idea was used by Colin de Verdiere
[132] to embedded graphes into R® when they satisfy nice combinatorial prop-
erties. The connectivity and the topology of nodal domains are very interesting
questions. Melas [359] did prove that for convex planar domain, the nodal line
of second eigenfunctions must intersect the boundary in exactly two points.
Very little is known about the number of nodal domains except the famous
theorem of Courant that the number of nodal domain of m-th eigenfunction is
less than m.

There are many other ideas in geometric analysis that can be discretized and
applied to graph theory. This is especially true for the theory of spectrum of
graphs. Some of these were carried out by F.Chung, Grigor’yan and myself (see
the reference of Chung’s survey [121]). But the results in [121] are far away from
being exhaustive. On the other hand, Margulis [347], Lubotzky-Phillips-Sarnak
[340] were able to make use of discrete group and number theory to construct
expanding graphes. Methods to construct and classify these expanding graphs
are important for application in computer science. It is also important to see
how to give a good decomposition of any graph using spectral method.

There are several important questions related to nodal sets and the number
of critical points of eigenfunctions. I made a conjecture (see [546]) about the
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area of nodal sets, and significant progress toward its resolution was made by
Donnelly-Fefferman [153], Dong [152] and F. H. Lin [323]. The number of crit-
ical points of eigenfuction is difficult to determine. I [552] managed to prove
existence of an critical point near the nodal set. Nadirashvili has proved sev-
eral nice results concerning eigenvalues and their eigenfunctions. He and his
coauthors [238] were the first to show that the critical point sets of solutions to
eigenfunctions in n-dimensional manifold have finite H"~2-Hausdorff measure.
Afterwards, Han-Hardt-Lin [219] gave an explicit estimate.

When there is potential V', the eigenvalues of — A +V are also important. I
made an attempt to understand the gap Ao — A1 with Singer, Wong, and stephen
Yau [450]. I [553] observed how this gap depends on the lower eigenvalue of the
Hessian of —log, where 1 is the ground state. When V' is the scalar curva-
ture, this was studied by Schoen and myself extensively. These problems are
naturally related to conformal deformation, stability of minimal surfaces, etc.
(The works of D. Fischer-Colbrie and Schoen [163], Micallef [361], Schoen-Yau
[425, 431] on stable minimal surfaces all depend on understanding of spectrum
of this operator.) The parabolic version appears in the recent work of Perelman.

There is important work of Fefferman, Phong, E. Lieb, Duistermaat, Guillemin,
Melrose, Colin de Verdier, Taylor, Toth, Zelditch, Sarnak on understanding the
spectrum of Laplacian from the point of view of semi classical analysis (see, e.g.
[161, 155, 225, 418]). Some of their ideas can be found in the geometric optic
analysis of J. Keller. The fundamental work of Duistermaat and Hormander
[154] on propagation of singularities was also used extensively. There has been
a lot of progress on the very difficult question of determining when one ” Can
here the shape of a drum” by, among others, Melrose (see [360]), Guillemen
[211], Zelditch [559]. (Two dimensional counterexamples were given by Gordon-
Webb-Wolpert [189], Wilson, Szabod)

Natural generalizations of harmonic or holomorphic functions are harmonic or
holomorphic sections of bundles with connections. The most important bundles
are the exterior power of cotangent bundles. Using the Levi-Civita connection,
harmonic sections are harmonic forms which, by the theory of de Rham and
Hodge, give canonical representation of cohomology classes. The major re-
search on harmonic forms comes from Bochner’s vanishing theorem [43]. But
our understanding is still poor except for one forms. If the manifold is Kéhler,
differential forms can be decomposed further to (p, q)-forms and Kodaira van-
ishing theorem [268] yields much more powerful information.

In order to demonstrate the idea behind determining the structure of manifolds
by function theory, I was motivated to generalize the uniformization theory of
Riemann surface to higher dimensions when I was a graduate student. During
this period, I was influenced by some of the works of Greene-Wu [192] in for-
mulating these conjectures. Green and Wu were interested in knowing wether
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the manifolds are Stein or not.

When the complete Kahler manifold is compact with positive bisectional curva-
ture, this is the Frankel conjecture, as was proved independently by Mori [374]
and Siu-Yau [458]. Both arguments depend on the construction of rational
curves of low degree. When the manifold has nonnegative bisectional curvature
and positive Ricci curvature, Mok-Zhong [372] and Mok [368], using the ideas
of Bando [25] in his thesis (which was about the application of Hamilton’s Ricci
flow to low dimensional manifolds of this type) proved that the manifold is
Hermitian symmetric.

When a complete Kahler manifold is noncompact with positive bisectional cur-
vature, I conjectured that it must be biholomorphic to C™ (see [546]). Siu-Yau
[457] made the first attempt to prove such a conjecture by using the L?-method
of Hérmander [241] to construct holomorphic functions with slow growth. (Note
that Hormander’s method goes back to Kodaira, which was also generalized by
Calabi-Vesentini [68].) Singular weight functions were used in this paper and
later much more refined arguments were developed by Nadel [378] and Siu [456]
using what is called the multiplier sheaf method, which also found important
applications in algebraic geometry.

This work of Siu-Yau was followed by Siu-Mok-Yau [369] and Mok [366, 367]
under assumptions about the decay of curvature and volume growth of volume.
Shi [439, 440, 441] introduced Hamilton’s Ricci flow to study my conjecture,
and his work is fundamental. This was followed by beautiful works of Cao
[72, 73], Chen-Zhu [89, 90] and Chen-Tang-Zhu [87]. Assuming the manifold
has maximal Euclidean volume growth and bounded curvature, Chen-Tang-Zhu
[87] (for complex dimension two) and then Ni [381] (for all higher dimension)
were able to prove the manifold can be compactified as a complex variety. Last
year, Albert Chau and Tam [80] were finally able to settle the conjecture assum-
ing maximal Fuclidean volume growth and bounded curvature. An important
lemma of L. Ni [381] was used, where a conjecture of mine (see [549] or the in-
troduction of [381]) was proved. (It says that maximal volume growth implies
scalar curvature quadratic decay in the average sense.)

While we see great accomplishment in the case of positive curvature, very lit-
tle is known on the case when the K&ahler manifold is simply connected and
complete with strongly negative curvature. It is conjectured to be a bounded
domain in C". (Some people told me that Kodaira considered similar problem.
But I cannot find appropriate reference.) The major problem is to construct
bounded holomorphic functions.

The difficulty of construction of bounded holomorphic functions is that the basic
principle of L?-method of Hérmander come from Kodaira’s vanishing theorem.
It is difficult to go from functions in weighted L? space to bounded functions.
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In this connection, I was able to show that non-trivial bounded holomorphic
functions do not exist on a complete manifold with non-negative Ricci curva-
ture [545].

If the manifold is the universal cover of a compact Kahler manifold M which has
nontrivial topological map to a compact Riemann surface with genus > 1, then
one can construct bounded holomorphic function, using arguments of Jost-Yau
[256]. In particular, if M has a surjectively topological map to product of Rie-
mann surfaces with genus > 1 and nontrivial topological degree, the universal
cover should have a good chance to be a bounded domain.

Of course, this kind of construction is based on the fact that holomorphic func-
tions are harmonic. Certain rigidity based on curvature forced the converse
to be true. For functions, the target space has no topology and rigidity is
not expected. Bounded Harmonic functions can not be constructed by solving
Dirichlet problem unless some boundary data is assumed. This would make
good sense if the boundary has nice CR structure. Indeed, for odd dimensional
real submanifold in C™ which has maximal complex linear subspace on each tan-
gent plane, Harvey-Lawson [222, 223] proved the remarkable theorem that they
bound complex submanifolds. Unfortunately the boundary of a complete sim-
ply connected manifold with bounded negative curvature does not have smooth
boundary. It will be nice to define a CR structure on such a singular boundary.
One may mention the remarkable work of Kuranish [280, 281, 282] on embed-
ding of abstract CR-structure.

A very important bundle is the bundle of spinors. The Dirac operator acting
on spinors is a major geometric operator. Atiyah-Singer were the first mathe-
maticians to study it in geometry and by thoroughly understanding the Dirac
operator, they were able to prove their celebrated index theorem [15]. The van-
ishing theorem of Lichnerowicz [318] on harmonic spinors over spin manifolds
with positive scalar curvature gives strong information. Through Atiyah-Singer
index theorem, it gives vanishing theorem for the A—genus and the « invari-
ants for spin manifolds with positive scalar curvature. The method was later
sharpened by Hitchin [229] for K3 surfaces and Gromov-Lawson [204, 205]. An
effective use of this theorem for sping structure for four dimensional manifold is
important for Seiberg-Witten theory. Lawson-Yau [285] were able to use Lich-
nerowicz’s work coupled with Hitchin’s work to prove a large class of smooth
manifolds have no smooth non-abelian group action and, by using modular
forms, K. F. Liu proved a loop space analogue of the Lawson-Yau’s theorem for
the vanishing of the Witten genus in [331].

On the basis of the surgery result of Schoen-Yau [425, 428] and Gromov-Lawson
[204, 205], one should expect that a suitable converse to Lichnerowicz’s theorem
exists. The chief result is that surgery on spheres with codimension > 3 pre-
serves class of metrics with positive scalar curvature. Once geometric surgery
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is possible, standard works on cobordism theory allow one to deduce some exis-
tence result for simply connected manifolds with positive scalar curvature. The
best work is due to Stolz [466] who gave a complete answer in the case of sim-
ply connected manifolds with dimension greater then 4. I also suggested that
one should perform surgery on asymptotic hyperbolic manifold with conformal
boundary whose scalar curvature is positive. This is related to the recent work
of Witten-Yau [534] on the connectedness of the conformal boundary.

The study of metrics with positive scalar curvature is the first important step
in understanding the question of positive mass conjecture in general relativity.
Schoen-Yau [426, 430] gave the first proof using ideas of minimal surfaces. Three
years later, Witten [527] gave a proof using harmonic spinors. Schoen-Yau then
generalized their argument to higher dimensional manifolds with positive scalar
curvature [428]. Subsequently Gromov-Lawson [204, 205] observed that Lich-
nerowicz theorem can be coupled with fundamental group and give topological
obstructions for metric with positive scalar curvature. This work was related
to Novikov conjecture where many authors, including Lusztig [342], Rosenberg
[404], Weinberger [524] and G. L. Yu [557] made contributions.

Besides its importance on demonstrating the stability of Minkowski spacetime,
positive mass conjecture was used by Schoen [419] in a remarkable manner to
finish the proof of the Yamabe problem where Trudinger [507] and Aubin [16]
made substantial contributions.

Korevaar-Mazzeo-Pacard-Schoen [276] developed powerful method to under-
stand Nirenberg’s problem on prescribed curvature. It was followed by Chen-Lin
[93], Chang-Gursky-Yang [79]. However, the integrability condition of Kazdan
and Warner is still not fully understood.

The relation between spectrum of manifolds and their global topology is very
deep. Atiyah-Bott-Hirzebruch-Singer were the first to study this relationship.
Atiyah-Bott-Patodi [9] related the heat kernel expansion to a proof of the local
index theorem. Atiyah-Patodi-Singer [12, 13, 14] initiated the study of spec-
trum flow and gave important global spectral invariants on odd dimensional
manifolds. These global invariants become boundy terms for L?-index theo-
rem developed by Atiyah-Donnelly-Singer [10] and Mark Stern [465]. Witten
[528, 529] has introduced supersymmetry and analytic deformation of de Rham
complex to Morse theory, and thereby revealed a new aspect of the connection
between global geometry and theoretical physics. Witten’s work has been gen-
eralized by Demailly [139], Bismut-Zhang[41, 42] to study holomorphic Morse
inequality and analytic torsion. Novikov [383] also studied Morse theory for
one forms. Witten’s work on Morse theory inspired the work of Floer (see,
e.g., [164, 165, 166]) who used his ideas in Floer cohomology to prove Arnold’s
conjecture in case the manifold has vanishing higher homotopic group. Floer’s
theory is related to knot theory (through Chern-Simon’s theory [109]) on three
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manifolds. Atiyah, Donaldson, Taubes , Dan Freed, P. Braam, and others (see,
e.g., [6, 479, 53, 167]) all contributed to this subject. Fukaya-Ono [177], Oh
[384], Kontsevich [272], Hofer-Wysocki-Zehnder [237], G. Liu-Tian [330], all
studied such a theory in relation to symplectic manifold. Some part of Arnold’s
conjecture was claimed to be proved. But a completely satisfactory proof has
not been forthcoming.

One should also mention here the very important work of Cheeger [82] and
Miiller [375] in which they verify the conjecture of Ray-Singer about the re-
lation between analytic torsion with combinational structure of the manifold.
The fundamental idea of Ray-Singer [406] on holomorphic torsion are still being
vigorously developed in beautiful work of Vafa et al [37]. Later work on an-
alytic torsion was done by Quillen, Todorov, Kontsevich, Borcherds , Bismut,
Lott, Zhang and Z. Q. Lu (see [40] and it’s reference, [253], [47, 48]). The local
version of the index theorem due to Atiyah-Bott-Patodi [9] was later extended
in an sophisticated way by Bismut [39] to index theorem for family of elliptic
operators.(The local index argument dates back to the foundational work of
Mckean-Singer [352].) Quillen’s work had been important in this direction (see,
e.g. [402, 403]). The study of elliptic genus by Witten [530], Bott-Taubes [50],
Taubes [478], K. F. Liu [332] and M. Hopkins [240] has built a bridge between
topology and modular form.

It should not be forgotten that, during the seventies, Bott [49] and Atiyah-Bott
[8] developed the localization formula for equivariant cohomology. This has
been a very important tool. For example, it is used in the most powerful way
by K. F. Liu and his coauthors on several topics: the mirror principle (Lian-
Liu-Yau [314, 315, 316, 317]), topological vertex (Li-Liu-Liu-Zhou [295]), etc.
Idea of applying localization to enumerative geometry was initiated by Kont-
sevich [271] and later by Givental [186] and Lian-Liu-Yau [314] independently.
These works solve the identities conjectured by Candelas et al [70] based on
mirror symmetry, and provide good examples of the ways in which conformal
field theory can be a source of inspiration when looking at classical problems
in mathematics.

Holomorphic sections of holomorphic line bundles have always been important
in algebraic geometry. Riemann-Roch formula coupled with vanishing theorems
gave very powerful existence results for sections of line bundle. The Kodaira
embedding theorem [269] which said that every Hodge manifold is projective
has initiated the theory of holomorphic embeddings of Kdhler manifolds. For
example, Hirzebruch-Kodaira [228] proved that every odd (complex) dimen-
sional Kahler manifold diffeomorphic to projective space is biholomorphic to
projective space.
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Given an orthonormal basis of holomorphic sections of a line bundle, we can
embedding it into projective space. The induced metric is the Bergman met-
ric associated to the line bundle. Note that the original definition of Bergman
metric used the canonical line bundle and L2-holomorphic sections.

In the process of trying to understand the relation between stability of a mani-
fold and existence of Kéhler Einstein metric, I [548] proposed that every Hodge
metric can be approximated by Bergman metric as long as we allow the power
of the line bundle to be large. Following the ideas of the paper of Siu-Yau [457],
Tian [497] proved the C? convergence in his thesis under my guidance. My other
student W. D. Ruan [405] then proved C'™ convergence in his thesis. This work
was followed by Lu [338], Zelditch [558] and Catlin [77] who observed that the
asymptotic expansion of the kernel function follows from some rather standard
expression of the Szegd kernel, going back to Fefferman [160] and Boutet de
Monvel-Sjostrand [51] on some circle bundle over the Kahler manifold.

Kodaira’s proof of embedding Hodge manifolds by sufficiently high power of
positive line bundle is not effective in terms of the power. Matsusaka [348] and
later Kollar [270], Siu [454] were able to make the power effective. Demailly
[140, 141] and Siu [454, 456] were able to give remarkable theorems which nearly
solve the famous Fujita conjecture [174] (see also Ein and Lazarsfeld [157]). Siu’s
powerful method also leads to a proof of the deformation invariance of pluri-
genera of algebraic manifolds [455].

I1. Mappings between manifolds and rigidity of geometric structures

Another direction to generalize the concept of functions is the study of maps
between manifolds. One can define the energy of maps between manifolds and
its critical point is called harmonic map. Eells-Sampson [156] was the first one
to prove existence of such maps in their homotopy class if the image manifold
has non-positive curvature.

Even when I was working on my thesis on manifolds with non-positive curva-
ture in relation to their fundamental group, I realized that it is possible to use
harmonic map to reprove some of the theorems in my thesis. I also realized the
importance of harmonic maps in the study of rigidity questions in geometry.
At that time, the most famous theorem was Mostow’s rigidity theorem [376].
In 1976, I proved the Calabi conjecture and applied the Kéhler Einstein met-
ric and the Mostow rigidity theorem to prove uniqueness of complex structure
on the quotient of the ball [542]. T therefore proposed to use harmonic map
to prove the rigidity of complex structure for Kéhler manifolds with strongly
negative curvature. I proposed this to Siu who carried out the idea when the im-
age manifold satisfies a curvature condition [451] stronger than what I proposed.
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Further result was obtained by Jost-Yau [257], Mok-Siu-Yeung [370] on the
proof of superrigidity theorem of Margulis [346], improving an earlier result of
Corlette [133] who proved superrigidity for certain rank one locally symmetric
space. Complete understanding of superrigidity for the quotient of complex ball
is not yet available. One needs to find more structures for the harmonic map
which reflect the underlying structure of the manifold. The ideas were based
on an argument of Matsushima [350] as was suggest by Calabi. (This was a

topic discussed by Calabi in the special year on geometry in the Institute for
Advanced Study.)

There are ideas of considering discrete analogue of harmonic maps. When
the image manifold is a metric space, there is work by Gromov-Schoen [206],
Korevaar-Schoen [277] and Jost [255]. When the domain manifold is a sim-
plicial complex, there are articles by Ballmann-Swwiatkowski [23] and M. T.
Wang [517, 518], in which they introduce generalizations of buildings. They
also generalized the works of H. Garland [179] on the vanishing of cohomology
group for p—adic buildings.

Using the concept of center of gravity, Besson-Courtois-Gallot [38] gives a metric
rigidity theorem for rank one locally symmetric space. There are also beautiful
rigidity inverse problems for metric geometry due to Gerver-Nadirashvili [184],
Pestov-Uhlmann [392] on recovering a Riemannian metric when one knows the
distance functions between pair of points on the boundary.

Harmonic map behaves especially well for Riemann surface. Morrey was the
first one who solved the Dirichlet problem for energy minimizing harmonic map
into any Riemannian manifold.

Another major breakthrough was made by Sacks-Uhlenbeck [413] in 1978 where
they constructed minimal spheres in Riemannian manifold representing ele-
ments in the second homotopy group using a beautiful extension theorem of
harmonic map at an isolated point. By pushing their method further, Siu-Yau
[458] studied the bubbling process for the harmonic map and made use of it to
prove existence of holomorphic spheres under curvature assumptions. As a con-
sequence, they proved the famous conjecture of Frankel that Kahler manifold
with positive bisectional curvature is CP™. (This was also proved by Mori [374].)

Gromov [202] then realized that pseudoholomorphic curve for almost complex
structure can be used in a similar way to prove rigidity of symplectic structure
on CP". The bubbling process mentioned above was sharpened further to give
compactification of the moduli space of pseudoholomorphic maps by Ye [555]
and Parker-Wolfson [388]. Based on these ideas, Kontsevich [271] introduced
concept to stable maps and their compactification.
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The formal definitions of Gromov-Witten invariants and quantum cohomology
were based on these developments and the ideas of physicists. For example,
quantum cohomology was initiated by Vafa (see, e.g., [513]) and his coauthors
(the name was suggested by Greene and me). Associativity in quantum co-
homology was due to four physicists WDVV [532, 142]. The mathematical
treatment (due to Ruan [411] and subsequently by Ruan-Tian [412]) followed
the gluing ideas of the physicists. Ruan-Tian made use of ideas of Taubes [477].
But important points were overlooked. A. Zinger [563, 564] has recently com-
pleted these arguments.)

In close analogy with Donaldson’s theory, one needs to introduce the idea of
virtual cycle in the moduli space of stable maps. The algebraic setting of such
concept is deeper than the symplectic case and is more relevant to the devel-
opment for algebraic geometry. The major idea was due to Jun Li who also
did the algebraic geometric counterpart of Donaldson’s theory (see [292, 296]).
(The same comment applies to the so called relative Gromov-Witten invariant,
where Jun Li made the vital contribution in the algebraic setting [293, 294].)
The symplectic version of Li-Tian [297] ignores difficulties, many of which are
completed recently by A. Zinger [563, 564].

Schoen-Yau [429] studied in 1976 the meaning of the action of an L} map on
the fundamental group of a manifold. It was used to prove existence of har-
monic map with prescribed action on the fundamental group. Recently F. H.
Lin developed this idea further [325]. He studied extensively geometric measure
theory on the space of maps (see, e.g., [322, 324]). The action on the second
homotopy group is much more difficult to understand. I think there should
exist a harmonic map with nontrivial action on the second homotopic group if
such continuous map exists.

The energy functional for maps from S? into a manifold does not quite give
rise to Morse theory. But the perturbation method of Sacks-Uhlenbeck does
provide enough argument for Micallef-Moore [362] to provide some structure
theorem for manifolds with positive isotropic curvature.

The major work of harmonic maps on regularity theory in higher dimension is
due to Schoen-Uhlenbeck [421, 422]. Leon Simon (see [446]) made deep con-
tribution to the structure of harmonic maps or minimal subvarieties near their
singularity. This was followed by F. H. Lin [324].

In early eighties, C. H. Gu [208] initiated a new branch of interest for harmonic
maps. He was the first one to study harmonic map when the domain manifold
is the Minkowski spacetime. It was the beginning of a new subject called wave
maps. This subject was studied extensively by Christodoulou , Klainerman,
Tao, Tataru and M. Struwe (see, e.g., [118, 265, 474, 475, 438]).
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Uhlenbeck [511] used techniques from integrable systems to construct harmonic
maps from S? to U(n), Bryant [57] and Hitchin [232] also contributed to related
constructions using twistor theory and spectral curves. These inspired Burstall,
Ferus, Pedit and Pinkall [62] to construct harmonic maps from a torus to any
compact symmetric space. In a series of papers, Terng and Uhlenbeck [490, 491]
used loop group factorizations to solve the inverse scattering problem and to
construct Backlund transformations for soliton equations, including Schrédinger
maps from RY! to a Hermitian symmetric space.

III. Submanifolds defined by variational principles

Given a conformal structure on a Riemann surface 3, a harmonic map from
> to a fixed Riemannian manifold may minimize energy within a certain ho-
motopy class. However, it may not be conformal and may not be a minimal
surface. In order to obtain a minimal surface, we need to vary the conformal
structure on ¥ also. Since the space of conformal structures on a surface is not
compact, one needs to make sure the minimum can be achieved.

If the map f induces an injection between the fundamental group of the do-
mains, Schoen-Yau proved the energy is proper on the moduli space by making
use of a theorem of Linda Keen. (They developed the theory of topology of
Lf map.) Hence they proved the existence of incompressible minimal surfaces
[425]. As a product of this argument, it is possible to find a nice exhaustion
function for the Teichmiiller space. Michael Wolf [535] was able to use har-
monic maps to give a compactification of Teichmiiller space which he proves to
be equivalent to the Thurston compactification. S. Wolpert studied extensively
the behavior of the Weil-Petersson metric (see Wolpert’s survey [536]). Royden
[410] proved that the Teichmiiller metric is the same as the Kobayashi metric.
C. McMullen [377] introduced a new Kéahler metric on the moduli space which
can be used to demonstrate that the moduli space is hyperbolic in the sense of
Gromov. The great detail of comparison of various intrinsic metrics on the Te-
ichmuller space had been a major problem [548]. It was accomplished recently
in the works of Liu-Sun-Yau [333, 334]. Actually Liu-Sun-Yau introduced new
metrics with bounded negative curvature and geometry and found the stability
of the logrithmatic cotangent bundle of the moduli spaces. Schoen-Yau [424]
also proved that degree one harmonic maps are one to one if the image surface
has non-positive curvature. Results of this type work only for two dimensional
surfaces.

There is a long and rich history on minimal surfaces in Euclidean space. Re-
cent articles include works by Meeks, Osserman, Lawson, Gulliver, White,
Hildebrandt, Rosenberg, Collin, Hoffman, Karcher, Ros, Colding, Minicozzi,
Rodriguez, Nadirashvili and others (see the reference in Colding and Mini-
cozzi’s survey [131]) on embedded minimal surfaces in Euclidean space. They
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come close to classifying complete embedded minimal surfaces and a good un-
derstanding of complete minimal surface in a bounded domain. For example,
Meeks-Rosenberg [353] proved that the plane and helicoid are the only properly
embedded simply connected minimal surfaces in R>.

In a series of papers started in 1978, Meeks-Yau [355, 356, 357, 358] settled a
classical conjecture that the Douglas solution for the Plateau problem is em-
bedded if the boundary curve is a subset of a convex boundary. (One should
note that Osserman [386] had already settled the old problem of non-existence
of branched points for the Douglas solution while Gulliver [213] proved non-
existence of false branched point.) We made use of area minimizing property
of minimal surfaces to prove these surfaces are equivariant with respect to the
group action. Embedded surfaces which are equivariant play important roles
for finite group actions on manifolds. Coupling with a theorem of Thurston,
we can then prove the Smith conjecture [554] for cyclic groups acting on the
spheres: that the set of fixed points is not a knotted curve.

Meeks-Yau used Douglas-Morrey solution of the Plateau problem by fixing the
genus of the surfaces. There is a difficult problem of minimizing area letting
the genus to be arbitrary large. This was settled by Hardt-Simon [221]. In
the other direction, Almgren-Simon [3] succeeded to minimize embedded disk
in Euclidean space. The technique was used by Meeks-Simon-Yau [354] to
prove existence of embedded minimal spheres enclosing fake ball. This theo-
rem has been important to prove that the universal covering of an irreducible
three manifold is irreducible. They also gave conditions for existence of embed-
ding minimal surfaces of higher genus. This work was followed by topologists
Freedman-Hass-Scott [169]. Pitts [395] used mini-max argument for varifolds
to prove existence of embedded minimal surfaces. Simon-Smith (unpublished)
managed to prove existence of an embedded minimax sphere for any metric on
three spheres. Jost [254] was able to extend it to find four minimax spheres.
Pitts-Rubinstein (see, e.g., [396]) continued to study such mini-max surfaces.
Three manifold topologists were able to adapt the ideas of Meeks-Yau to handle
combinational type minimal surfaces and gave applications in three manifold
topology.

The most recent works of Colding and Minicozzi [126, 127, 128, 129] on lamina-
tion by minimal surfaces and estimates of minimal surfaces without area bound
are remarkable and may eventually give good applications in the topology of
three manifolds. In fact, they [130] did make contributions to Hamilton’s Ricci
flow to bound the time evolution before it hits a singularity.

Higher dimensional minimal subvarieties are very important for geometry. There
are works due to Federer-Fleming [159], Almgren [2] and Allard [1]. The at-
tempt to prove the Bernstein conjecture, that a minimal graphs are linear,
was a strong drive for its development. Bombieri, De Giorgi and Giusti [46]
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found the famous counterexample to the Bernstein problem. It initiated a great
deal of interest on area minimizing cone (as graph must be area minimizing).
Schoen-Simon-Yau [420] found a completely different approach to the proof of
Bernstein problem in low dimensions. This paper on stable minimal hypersur-
faces originated many developments on curvature estimates for codimensional
one stable hypersurfaces. There are also works by L. Simon with Caffarelli and
Hardt [64] on constructing minimal hypersurfaces by deforming stable minimal
cones. Recently N. Wickramasekera [525, 526] did some deep work on stable
minimal (branched) hypersurfaces which generalizes Schoen-Simon-Yau.

The best regularity result for higher codimension was due to F.Almgren where
he proved that for any area minimizing variety, the singular set has codimen-
sion at least two. How such a result can be used for geometry remains to be
seen. Perhaps the most important question is the Hodge conjecture: whether
a multiple of a (p,p) type cohomology class in a projective manifold can be
represented by an algebraic cycle. An attempt was made by Lawson, making
use of an observation due to J. Simons that any stable subvariety in complex
projective space is algebraic [283]. The problem of how to use the hypothesis
of (p,p) type has been difficult. In general, the algebraic cycle is not effective.
This also creates difficulties for analytic methods. The work of King [263] and
Shiffman [443] on complex currents may be relevant.

Perhaps one should generalize the Hodge conjecture to include general (p,q)
classes, as it is possible that every cycle in @f:_k HP~HP*? i rationally ho-
mologous to an algebraic sum of minimal varieties such that there is a p — k
dimensional complex space in the normal space for almost every point of the
variety.

Note that it may be important to assume the metric to be canonical, e.g. Kéhler
Finstein metric.

A dual question is how to represent homology class by Lagrangian cycles which
are minimal submanifolds also. When the manifold is Calabi-Yau, these are
special Lagrangian cycles. Since they are supposed to be dual to holomorphic
cycles, there should be an analogue of the Hodge conjecture. For example if
dim¢ M = n is odd, any element in P, ti=n H%J should be representable by
special Lagrangian cycles up to a rational multiple provided the cup product of
it with the Kahler class is zero.

A very much related question is: if the Chern classes of a complex vector bundle
are of (p,p) type, does the vector bundle, after adding a holomorphic vector
bundle, admit a holomorphic structure? If the above generalization of the
Hodge conjecture holds, there should be a similar generalization for the vector
bundle.
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These questions had a lot more success for four dimensional symplectic mani-
folds by the work of Taubes both on the existence of pseudoholomorphic curves
[486] and on the existence of anti-self-dual connections [476, 477]. On a Kéahler
surface, anti-self-dual connections are Hermitian connections for a holomorphic
vector bundle. In particular, Taubes gave a method to construct holomorphic
vector bundles over Kéahler surfaces.

Another important class of minimal varieties is the class of special Lagrangian
cycles in Calabi-Yau manifolds. Such cycles were first developed by Harvey-
Lawson [224] in connection to calibrated geometry in Euclidean space. Major
works were done by Schoen-Wolfson [423], Yng-Ing Lee [288] and Butscher
[63]. One expects Lagrangian cycles to be mirror to holomorphic bundles and
special Lagrangian cycles to be mirror to Hermitian-Yang-Mills connections.
Hence by the Donaldson-Uhlenbeck-Yau theorem, it is related to stability. The
concept of stability for Lagrangian cycles was discussed by Joyce and Thomas.
Thomas-Yau [492] had therefore made suggestions about an analogy for the
the mean curvature flow for the existence of special Lagrangian cycles based
on stability of Lagrangian cycles. Their existence and the relation to mean
curvature flow is very interesting. See M. T. Wang [519, 520], Smoczyk [461]
and Smoczyk-Wang [462]. The geometry of mirror symmetry was explained by
Strominger-Yau-Zaslow in [468] using a family of special Lagrangian tori. There
are other manifolds with special holonomy group. They have similar calibrated
submanifolds. Conan Leung has contributed to studies of such manifolds and
their mirrors (see, e.g. [290, 291]).

Besides minimal surfaces, another important class of surfaces are surfaces with
constant mean curvature and also surfaces that minimize the L? norm of the
mean curvature. It is important to know the existence of such surfaces in a
three dimensional manifold with nonnegative scalar curvature.

The Existence of minimal spheres is related to the existence of black holes. The
most effective method was developed by Schoen-Yau [432] using the existence
theorem they [427] proved for the equation of Jang. It should be interesting
to develop methods to prove existence of stable minimal spheres. Extremum
of the Hawking mass is related to minimization of L? norm of mean curvature.
Their existence and behavior have not been understood.

For surfaces with constant mean curvature, we have the concept of stability.
(Fixing the volume it encloses, the second variation of area is non-negative.)
Making use of my work on eigenvalues with Peter Li, Christodoulou and I
[119] proved that the Hawking mass of these surfaces is positive. This fact was
used by Huisken and I [248] to prove uniqueness and existence of foliation by
constant mean curvature spheres for a three dimensional asymptotically flat
manifold with positive mass. (We initiated this research in 1986. Ye studied
our work and proved existence of similar foliations under various conditions, see
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[656].) After ten years, Tian and Qing [401] reproduced our uniqueness result,
but the argument is basically the same.

This foliation was used by Huisken and Yau [248] to give a canonical coordinate
system at infinity. It defines the concept of center of gravity where important
properties for general relativity are found. The most notable is that total linear
momentum is equal to the total mass multiple with the velocity of the center of
mass. One expects to find good asymptotic properties of the tensors in general
relativity along these canonical surfaces. We hope to find a good definition
of angular momentum based on this concept of center of gravity so that global
inequality like total mass can dominate the square norm of angular momentum.
Some preliminary attempt was made by my former student X. Zhang [561], but
his definition does not have good physical motivation and does not seem to lead
to anything significant at this time.

In the paper of Huisken-Yau [248], the uniqueness of foliation was improved to
the uniqueness of a single closed hypersurface with constant mean curvature
enclosing a compact set of the three manifold. This compact set was defined
in terms of the mean curvature of the hypersurface in [248]. As a side remark,
Huisken-Yau proposed to enlarge this neighborhood of uniqueness to be inde-
pendent of the choice of the mean curvature. While this improvement for a
single hypersurface has some interest, it has little to do with the above applica-
tions in general relativity. In particular, it is not needed to define the important
concept of center of gravity. This proposal of Huisken-Yau was observed to be
true by Qing-Tian [401] based on the same argument of Huisken-Yau and a
simple integral formula.

The idea of using foliation of surfaces satisfying various properties (constant
Gauss curvature, for example) to study three manifolds in general relativity
is also developed by R. Bartnik [30]. His idea of quasi-spherical foliation gives
a good parametrization of a large class of metrics with positive scalar curvature.

Some of these ideas were used by Shi-Tam [442] to study quantities associated
to spheres which bound three manifolds with positive scalar curvature. Such a
quantity is realized to be the quasi-local mass of Brown-York [56]. At the same
time, M. Liu and Yau [328, 329] were able to define a new quasi-local mass for
general spacetimes in general relativity, where some of the ideas of Shi-Tam
were used. Further works by M. T. Wang and myself generalize Liu-Yau’s work
by studying surfaces in hyperbolic space-form.

My interest in quasi-local mass dates back to the paper that I wrote with Schoen
[432] on the existence of a black hole due to condensation of matter. It is de-
sirable to find a quasi-local mass which includes effect of matter and nonlinear
effect of gravity. Hopefully one can prove that when such a mass is larger than
a constant multiple of square root of the area, a black hole forms. This has not
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been achieved yet.

The argument of Huisken-Yau depends on the mean curvature flow. There is
another flow called the inverse mean curvature which was proposed by Geroch
[183] to understand the Penrose conjecture relating the mass with the area of
the black hole. Such procedure was finally carried out by Huisken-Ilmanen
[245] when the scalar curvature is non-negative. There was a different proof by
H. Bray [55] subsequently. Mean curvature flow for varifolds was initiated by
Brakke [54]. The level set approach was studied by many people: S. Osher, L.
Evans, Giga, etc (see [385, 158, 96]). Huisken [243, 244] did the first impor-
tant work when the initial surface is convex. His recent work with Sinestrari
[246, 247] on mean convex surfaces is remarkable and gives a good understand-
ing of the structure of singularities of mean curvature flow.

Natural elliptic problems with higher order are difficult to handle. Affine mini-
mal surfaces and Willmore surfaces are such examples. L. Simon [445] did make
important contribution to the regularity of the Willmore surfaces.

Most elliptic problems have a parabolic version. But it is not a trivial matter
to find good quantities to apply maximal principle on a manifold. Besides the
work of Li-Yau [309], I expect the Cheng-Yau gradient estimates for maximal
slice and affine spheres to have a parabolic version. On the other hand, not
much progress is known on the Calabi flow (see Chang’s survey [78]) for Kéhler
metrics. They are higher order problem where maximal principle has not been
effective. An important contribution was made by Chrisciel [120] for Riemann
surface.

The dynamics of FEinstein equations for general relativity is a very difficult
subject. The Cauchy problem was considered by many people: Lichnerow-
icz, Choquet-Bruhat, York, Moncrief, Friedrich, Christodoulou, Klainerman,
H. Lindblad, Dafermos (see, e.g., [319], [115], [114], [172], [116], [264], [326],
[136]). But the global behavior is still far from being understood. The major
unsolved problem is to formulate and prove the fundamental question of Pen-
rose on Cosmic censorship. I suggested to Klainerman to consider small initial
data for the Einstein system. The treatment of stability of Minkowski space-
time was accomplished by Christodoulou-Klainerman [117] under small fall off
conditions. Recently Lindblad and Rodnianski [326] gave a simpler proof. A
few years ago, N. Zipser (Harvard thesis) added Maxwell equation to gravity
and still proved stability of Minkowski spacetime. Stability for Schwarzschild or
Kerr solutions is far from being known. Finster-Kamran-Smoller-Yau [162] had
studied decay properties of Dirac particles with such background. The works
are rather nontrivial and does indicate stability of these classical spacetime.
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There is extensive literature on spacelike hypersurfaces with constant mean
curvature. The foliation defined by them can give interesting dynamical infor-
mation of spacetime. These surfaces are interesting even for R*!. Treiberges
studied it extensively [506]. Li, Choi-Treibergs [111] and T. Wan [515] observed
that the Gauss maps of such surfaces give very nice examples of harmonic maps
mapping into the disk. Recently Fisher and Moncrief used them to study the
evolution equation of Einstein in 2 + 1 dimension.

IV. Construction of geometric structures on bundles and manifolds

It is a fundamental question to build geometric structures over a given mani-
fold. In general, the group of topological equivalence that leaves invariant this
geometric structure should be a special group. With the exception of symplec-
tic structures, these groups are usually finite dimensional. When the geometric
structure is unique (up to equivalence), it can be used to produce key informa-
tions about the topological structure.

The study of special geometric structures dates back to Sophus Lie, Klein and
Cartan. In most cases, we like to be able to parallel transform vectors along
paths so that we can define the concept of holonomy group.

When the holonomy group is not compact, there are examples of projective flat
structure, affine flat structure and conformally flat structure. It is not a trivial
matter to determine which topological manifolds admit such structures. Since
the structure is flat, there is a unique continuation property and hence one can
construct a developing map from a suitable cover of the manifold to the real
projective space, the affine space and the sphere respectively. The map gives
rise to a representation of the fundamental group of the manifold to the real
projective group, the special linear group and the Mobius group respectively.
This holonomic representation gives a great deal of information for the geomet-
ric structure. Unfortunately, the map is not injective in general. In case it is
injective, the manifold can be obtained as quotient of a domain by a discrete
subgroup of the corresponding Lie group. In this case, a lot more can be said
about the manifold as the theories of partial differential equations and discrete
group can play important roles. For example, if a projective flat manifold can
be projectively embedded as a bounded domain, Cheng-Yau [104] were able
to construct a canonical metric from the real Monge-Ampere equation which
generalizes the Hilbert metric. When the manifold is two dimensional, there
are works of Wang [516] and Loftin [335] on how to associate such metrics to a
conformal structure and a holomorphic section of the cubic power of canonical
bundle. This is a beautiful theory related to the hyperbolic affine sphere men-
tioned in the first section.
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There are fundamental works of Choi, Goldman (see the reference of Choi and
Goldman’s paper [113]) and Hitchin [233] and others on the geometric decom-
position and moduli of projective structures on Riemann surfaces. It should be
interesting to extend them to three or four dimensional manifolds.

It is a difficult question to determine which manifolds admit affine structures.
It is an open question whether the Euler number of such spaces is zero al-
though great progress was made by Sullivan [470]. Goldman [187] has also
found topological constrains on three manifolds in terms of fundamental group.
The difficulty arises as there is no useful metric that is compatible with the
underlining affine structure. This motivated Cheng-Yau [105] to define the con-
cept of affine Kéahler metric.

When Cheng and I considered the concept of affine Kéahler metric, we thought
that it was a natural analogue of Kéahler metrics. However, compact nonsin-
gular examples are not bountiful. Strominger-Yau-Zaslow [468] proposed the
construction of mirror manifolds by constructing the quotient space of a Calabi-
Yau manifold by a special Lagrangian torus. At the limit of large Kahler class,
it was pointed out by Hitchin [234] that the quotient space admits a natural
affine structure with a compatible affine Kahler structure. But in general, we
do expect singularities of such structure. It now becomes a deep question to
understand what kind of singularity is allowed and how we build the Calabi-
Yau manifold from such structures. Loftin-Yau-Zaslow [336] have initiated the
study of the structure of ”Y” singularity. Hopefully one can find existence the-
orem for affine structures over compact manifolds with prescribed singularities
along codimensional two stratified submanifolds.

Construction of conformally flat manifolds is also a very interesting topic. Sim-
ilar to projective flat or affine flat manifolds, there are simple constraints from
curvature representation for the Pontrjagin classes. The deeper problem is re-
lated to the understanding of the fundamental group and the developing map.
When the structure admits a conformal metric with positive scalar curvature,
Schoen-Yau [433] proved the rather remarkable theorem that the developing
map is injective. Hence such manifold must be the quotient of a domain in
S™ by a discrete subgroup of Mobius transformations. It would be interesting
to classify such manifolds. In this regard, the Yamabe problem as was solved
by Schoen [419] did provide a conformal metric with constant scalar curvature.
One hopes to be able to use such metrics to control the conformal structure.
Unfortunately the metric is not unique and a deep understanding of the moduli
space of conformal metrics with constant scalar curvature should be important.

It is curious that while bundle theory was used extensivly in Riemannian geom-
etry, it has not been used in these geometries. One can construct real projective
space bundles, affine bundles or sphere bundles by mapping coordinate charts
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to the corresponding model spaces (possible with different dimensions) and glu-
ing the target model spaces together to form natural bundles. One may want
to study the associated Chern-Simons forms [109].

An important goal of geometry is to build a canonical metric associated to a
given topology. Besides the uniformization theorem in two dimension, the only
(spectacular) work in this regard is the geometrization conjecture of Thurston
(see [495]).

Thurston made use of ideas from Riemann surface theory, Haken’s work [214] on
three manifold, Mostow’s rigidity [376] and discrete group theory of Lie group
to build his program. He made the assumption that an incompressible surface
exists in the three manifold. When Hamilton [215] had his initial success on
his Ricci flow, I immediately suggested (around 1981) to him to use his flow to
break up the manifold. His generalization of the theory of Li-Yau [309] to Ricci
flow [216, 217] and his seminal paper in 1996 [218] on breaking up manifold
mark cornerstone of the program. Perelman’s recent idea [389, 390] built on
these two works and has gone deeply to the problem. Detailed discussions are
being pursued by Zhu, Cao, Hamilton and Huisken in the past two years. Hope-
fully it may lead to the final settlement of Thurston’s program. This theory
of Hamilton and Perelman should be considered as a crowning achievement of
geometric analysis in the past thirty years. Most ideas developed in this period
by geometric analysts are used.

Hyperbolic metrics have been used by topologists to give invariants for three
dimensional manifolds. Thurston [494] observed that the volume of the hy-
perbolic metric is an important topological invariant. The associated Chern-
Simons [109] invariant, which is defined mod integers, can be looked upon as a
phase for such manifolds. These invariants appeared later in Witten’s theory
of 2 + 1 dimensional gravity [530] and S. Gukov [212] was able to relate them
to fundamental questions in knot theory.

The major accomplishment of Thurston, Hamilton, Perelman et al is the abil-
ity to create a canonical structure on three manifolds. Such structure has not
even been conjectured for four manifolds despite the great success of Donaldson
invariants and Seiberg-Witten invariants. Taubes [480] did prove a remarkable
existence theorem for self-dual metrics on a rather general class of four dimen-
sional manifolds. Unfortunately their moduli space is not understood and their
topological implication is not clear at this moment. Prior to the construction
of Taubes , Donaldson-Friedman [151] and LeBrun [286] have used ideas from
twistor theory to construct self-dual metrics on connected sum of CP?.

While the paper of Atiyah-Hitchin-Singer [11] laid the algebraic and geometric
foundation for self-dual connections, the analytic foundation was laid by Uh-
lenbeck [509, 510] where she established the removable singularity theorem and
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compactness theorem for Yang-Mills connections. This eventually led to the
fundamental works of Taubes [477] and Donaldson [143] which revolutionized
four manifold topology.

Donaldson’s theory started out from anti-self-dual connections on four mani-
folds. The analogues of it on Kéhler manifolds are Hermitian Yang-Mills connec-
tions, which was shown by Donaldson [144] for Kéahler surfaces and Uhlenbeck-
Yau [512] for general Kéhler manifolds to be equivalent to polystability of bun-
dles. It was generalized by C. Simpson [447], using ideas of Hitchin [231],
to bundles with Higgs fields. It has deep applications to the theory of varia-
tion of Hodge structure [448, 449]. Wentworth and Daskalopoulos (see [138])
studied such theory for moduli space of vector bundles over curves. Li-Yau
[298] generalized existence of Hermitian Yang-Mills connections to non-Kéhler
manifolds. (Buchdahl [60] subsequently did the same in the case of complex
surfaces.) Li-Yau-Zheng [300] then used the result to give a complete proof
of Bogomolov’s theorem for class VIl surfaces. I expect more applications of
Donaldson-Uhlenbeck-Yau theory to algebraic geometry.

D. Gieseker [185] developed geometric invariant theory for the moduli space of
bundles and introduced Gieseker stability of bundles. Conan Leung [289] intro-
duced the analytic counterpart of such bundles in his thesis under my guidance.
While it is a natural concept, there is still an analytic problem to be resolved.
(He assumed the curvature of the bundles to be uniformly bounded.)

There were attempts by de Bartolomeis-Tian [32] to generalize Yang-Mills the-
ory to symplectic manifolds and also by Tian [500] to manifolds with special
holonomy group. The arguments are not complete and still need to be finished.

For a given natural structure on a manifold, we can often fix a structure and
linearize the equation to obtain a natural connection on the tangent bundle.
Usually we obtain Yang-Mills connections with extra structure given by the
holonomy group of the original structure. It is curious whether an iterated
procedure can be constructed to find interesting metric or not. In any case,
we can draw analogous properties between bundle theory and metric theory.
The concept of stability for bundles is reasonably well understood for the holo-
morphic category. I believed that for each natural geometric structure, there
should be a concept of stability. Donaldson [145] was able to explain stability
in terms of moment map, generalizing the work of Atiyah-Bott [7] for bundles
over Riemann surfaces. It will be nice to find moment maps for other geometric
structures.

The most interesting geometric structure is the Kéhler structure. There are
two interesting pre-Kéahler structures. One is the complex structure and the
other is the symplectic structure. The complex structure is a rather rigid struc-
ture in two dimension. However it may be much more flexible in dimension
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greater than two. For example, Clemens [122] and Friedman [171] proposed a
way to perform complex surgery by blowing down complex submanifolds with
codimension greater than one and negative normal bundle. By smoothing out
the singularity, one can obtain interesting non-Kéhler complex manifold. (Lu-
Tian [339] followed these ideas.) These manifolds can play important roles for
connecting Calabi-Yau manifolds together as was speculated by M. Reid [407].
In order to give deeper analysis, it will be important to equip them with canon-
ical metrics. (A possible candidate of such metric is the Strominger’s system
studied by Fu-Yau [173].)

As was pointed out by Smith-Thomas-Yau [460], mirrors of non-K&hler com-
plex manifolds can be symplectic manifolds. They construct a large class of
symplectic manifolds with trivial first Chern class by reversing the procedure
of Clemens-Friedman. In dimension four, the Betti numbers of such mani-
folds are determined by T. J. Li [311]. In the last ten years, there has been
extensive work on symplectic manifolds, initiated by Gromov [202], Taubes
[482, 483, 484, 485]), Donaldson [146, 147, 148] and Gompf [188]. These works
are based on the understanding of pseudo-holomorphic curves and Lefschetz
fibrations. The most fundamental work is centered around four dimensional
manifolds. The major tools are Seiberg-Witten theory [435, 436, 533] and anal-
ysis. The work of Taubes on the existence of pseudo-holomorphic curves and
the topological meaning of its counting is one of the deepest works in geometry.
Based on this work, Taubes [482] was able to prove the old conjecture that there
is only one symplectic structure on the standard CP2. The following question
of mine is still unanswered: If M is a symplectic 4-manifold homotopic to CP?,
is M symplectomorphic to the standard CP?? (The corresponding question for
complex geometry was solved by me in [542].) On the other hand, based on
the work of Taubes [481], T. J. Li and A. K. Liu [312] did find wall crossing
formula for four dimensional manifolds that admit metrics with positive scalar
curvature. Subsequently A. Liu gave the classification of such manifolds. (The
surgery result by Stolz [466] based on Schoen-Yau-Gromov-Lawson for man-
ifolds with positive scalar curvature is not effective for the four dimensional
case.) As another application of the general wall crossing formula in [312], it
was proved by T. J. Li and A. Liu in [313] that there is a unique symplectic
structure on S%-bundles over any Riemann surface. A main result of D. McDuff
in [351] is used here.

The Strominger’s system [467] does admit supersymmetries. It will be nice to
see if an analogous structure can be built on symplectic manifolds with zero first
Chern class. Fukaya and Oh [176] have developed an elaborate theory for sym-
plectic manifolds with Lagrangian cycles. Pseudo-holomorphic disks appeared
as trace of motions of curves according to Floer theory. Paul Sideal-Thomas
[437] and Ruan discussed Fukaya’s category in relation to Kontsevich’s holo-
morphic conjecture [273]. One wonders whether Fukaya’s theory can help to
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construct canonical metrics for symplectic structures.

The construction of Calabi-Yau manifolds was based on the existence of a com-
plex structure which can support a Kéahler structure. A fundamental question
is whether an almost complex manifold admits an integrable complex structure
when complex dimension is greater than two.

Once we have an integrable complex structure, we can start to search for Her-
mitian metrics with special properties. As was mentioned earlier, if we would
like to have supersymmetries and if we use connections without torsion, then
a Kahler metric is the only choice. Further supersymmetry would require it
to be Calabi-Yau. However if we do not require the connection to be torsion
free, Strominger [467] did derive a set of equations that exhibit supersymme-
tries without requiring the manifold to be Kéhler. It is a coupled system of
Hermitian Yang-Mills connections with Hermitian metrics. Twenty years ago,
I tried to develop such a coupled system. The attempt was unsuccessful as I re-
stricted myself to Kéhler geometry. My student Bartnik with Mckinnon [31] did
have a good success in the Lorentzian case. They found non-singular solutions
for such a coupled system. (The mathematical rigorous proof was provided by
Smoller-Wasserman-Yau-Mcleod [464] and [463]).

The Strominger’s system was shown to be solvable in a neighborhood of a
Calabi-Yau structure by Jun Li and myself [299]. Fu and I [173] are also able
to solve it on complex manifolds which admit no K&hler structure. These man-
ifolds are balanced manifolds and were studied by M. Michelsohn [364]. These
manifolds can be used to explain some questions of flux in string theory (see,
e.g., [34, 76]).

The Calabi-Yau structure was used by me and others to solve important prob-
lems in algebraic geometry before it appeared in string theory. For example,
the proof of Torelli theorem for K3 surface due to Todorov[504]-Siu[453] and
the surjectivity of the period map of K3 surface due to Siu[452]-Todorov[504]
are important works for algebraic surfaces. The proof of the Bogomolov[44]-
Tian[496]-Todorov[505] theorem also requires the metric.

In my talk [544] in the Congress in 1978, I outlined the program of classifying
noncompact Calabi-Yau manifolds. Some of these works were written up by
Tian-Yau [502, 503]. During the period of 1984, there was a strong request by
string theorist to construct Calabi-Yau threefolds with Euler number equal to
+6. I [547] constructed such manifold with Zs fundamental group by taking the
quotient of a bi-degree (1,1) hypersurface in the product of two cubics. Soon
afterwards, more examples were constructed by Tian and myself [501].

The existence of a Kéahler Einstein metric with negative scalar curvature was
proved by Aubin [18] and me [543] independently. I [542] did find important
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applications of it to solve classical problems in algebraic geometry, e.g., the
uniqueness of complex structure over CP? [542], the Chern number inequality
of Miyaoka[365]-Yau[542] and the rigidity of algebraic manifolds biholomorphic
to Shimura varieties. The problem of the existence of Kéhler Einstein met-
rics with positive scalar curvature in the general case is not solved. However,
my proof of the Calabi conjecture already provided all the necessary estimates
except some integral estimate on the unknown. This of course can be turned
into hypothesis. I conjectured that an integral estimate of this sort is related
to stability of manifolds. Tian [499] called it K-stability. Mabuchi’s functional
[345] made the integral estimate to be more intrinsic and it gives rise to a nat-
ural variational formulation of the problem. Siu has pointed out that the work
of Tian [498] on two dimensional surfaces is not complete. The work of Nadel
[378] on multiplier ideal sheaf did give interesting methods for the subject.

For Kéhler Einstein manifolds with positive scalar curvature, it is possible that
they admit continuous group of automorphisms. Matsushima [349] was the first
one to observe that such a group must be reductive. Futaki [178] introduced a
remarkable invariant and proved that it must vanish for such manifolds. In my
seminars in the eighties, I proposed that Futaki’s theorem should be generalized
to understand the projective group acting on the embedding of the manifold by
high power of anti-canonical embedding and that Futaki’s invariant should be
relevant to my conjecture [550] relating Kahler Einstein manifold to stability.
Tian asked what happens when manifolds have no group actions. I explained
that the shadow of the group action is there once it is inside the projective
space and one should deform the manifold to a possibly singular one under
the projective group to obtain more information. The connection of Futaki
invariant with stability of manifolds has finally appeared in the recent work of
Donaldson [149, 150]. One should also mention the recent interesting work of
Ross-Thomas [408, 409] on stability of manifolds. There are many contribu-
tions on the study of stability of manifold by analytic means. For example,
Phong-Strum [393] constructed solutions of certain degenerate Monge-Ampére
equations to produce geodesics in the space of Kéhler potentials. They [394]
also studied convergence of the Kahler-Ricci flow.

My program to understand stability of a manifold through canonical metrics
was followed by several authors and the best achievement was made by Don-
aldson [149] A K&hler metric with constant scalar curvature is equivalent to the
fact that the first Chern form is harmonic. The uniqueness theorem for har-
monic Kéhler metric was due to X. Chen [95], Donaldson [149] and Mabuchi for
various cases. (Note that the most important case of the uniqueness of Kéhler
Einstein metric with positive scalar curvature was due to the remarkable ar-
gument of Bando-Mabuchi [26].) The general conjecture for the existence of
such harmonic Kéahler manifolds based on stability of manifolds is still largely
unknown. In my seminar in the mid-eighties, I also dicussed the relation of har-
monic Kéhler manifolds with stability of manifolds: Several students of mine
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including Tian [497], Luo [341] and Wang [523] had written thesis related to this
topic. Prior to them, my former students Bando [25] and Cao [71] had already
made attempts to study this problem by Ricci flow. The study of harmonic
Kéahler metrics with constant scalar curvature on toric variety was initiated
by S. Donaldson [150], who proposed to study the existence problem via real
Monge-Ampere equation. This was solved by Wang-Zhu [522]. LeBrun and his
coauthors [262] also have found special constructions, based on twistor theory,
for harmonic surfaces. Bando was in fact interested to study Kéahler manifolds
with harmonic ¢ — th Chern form. (it should be interesting to find an analogue
of stability for harmonic ¢ — th Chern class.) Cao taught a course on Kéhler
metrics in Columbia when S. W. Zhang was working on Arakelov geometry.
After he learned about my conjecture relating stability of manifolds to har-
monic Kahler metrics, he showed his interest to relate the metric to the height
of manifolds. This led him to discuss with our group of students on stability
of manifolds in relation to induced metrics from embedding of manifolds into
complex projective space [560]. (The last part is related to the above mentioned
Bergman metric.) His works on Chow stability in [560] gave strong inputs to my
students, including Tian [32]. While Zhang’s paper should be credited properly,
his work did have nontrivial influence on the later works of Donaldson [149, 150].

Besides Kékler manifolds, there are manifolds with special holonomy groups.
Holonomy groups of Riemannian manifolds were classified by Berger [35]. The
most important ones are O(n), U(n), SU(n), G2 and Spin(7). The first two
groups correspond to Riemannian and Kéahler geometry respectively. SU(n)
corresponds to Calabi-Yau manifolds. A G2 manifold is seven dimensional and
a Spin(7) is eight dimensional (assuming they are irreducible manifols). These
last three classes of manifolds have zero Ricci curvature. It may be noted that
before I [543] proved the Calabi conjecture in 1976, there was no known non-
trivial compact Ricci flat manifold. Manifolds with special holonomy group
admit nontrivial parallel spinors and they correspond to supersymmetries in
the language of physics. The input of ideas from string theory did help to
understand these manifolds. However, the very basic question of constructing
these structures on a given topological space is still not well understood. In the
case of G2 and Spin(7), it was initiated by Bryant (see [58, 59]). The first set of
compact examples was given by Joyce [258, 259, 260]. Recently Dai-Wang-Wei
[137] proved stability of manifolds with parallel spinors.

The nice construction of Joyce was based on singular perturbation which is sim-
ilar to the construction of Taubes [476] on anti-self-dual connections. However,
it is not global enough to give a good parametrization of Gy or Spin(7) struc-
tures. A great deal more works are needed. The beautiful theory of Hitchin
[235, 236] on three forms and four forms may lead to a resolution of these im-
portant problems.
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One can also obtain new geometric structures by imposing some singular struc-
tures on a manifold with special holonomy group. For example, if we require
a metric cone to admit Ga, Spin(7) or Calabi-Yau structure, the link of the
cone will be a compact manifold with special structures. They give interesting
Finstein metrics. When the cone is Calabi-Yau, the structure on the odd di-
mensional manifold is called Sasakian Einstein metric.

There is a natural Killing field called Reeb vector field defined on a Sasakian
Einstein manifold. If it generates a circle action, the orbit space gives rise to a
Kaéhler Einstein manifold with positive scalar curvature. However, It need not
generate a circle action and J. Sparks, Gauntlelt, Martelli, Waldram [180] gave
many interesting explicit examples of non-regular Sasakian Einstein structures.
They have interesting properties related to conformal field theory. For quasi-
regular examples, there were works due to Boyer, Galicki and Kollar [52]. The
procedure gave many interesting examples of Einstein metrics on odd dimen-
sional manifolds.

Existence of Einstein metrics on a fixed topological manifold is clearly one of
the most important questions in geometry. Any metrics with compact special
holonomy group are Einstein. Besides Kéhler geometry, we do not know much
of their moduli space. For Einstein metric with no special structures, we know
only some topological constraints on four dimensional manifolds. There are
works due to Berger [36], Gray [191] and Hitchin [230] in terms of inequalities
linking Euler number and signature of the manifold. (This is of course based
on Chern’s work [108] on representation of characteristic classes by curvature
forms.) Gromov [201] made use of his concept of Gromov volume to give further
constraint. LeBrun [287] then introduced the ideas of Seiberg-Witten invari-
ants to enlarge such classes and gave beautiful rigidity theorems on Einstein
four manifolds. Unfortunately it is very difficult to understand moduli space
of Einstein metrics when they admit no special structures. For example, it is
still an open question of whether there is only one Einstein metric on the four
dimensional sphere. M. Wang and Ziller [521] did use symmetric reductions to
give many examples of Einstein metrics for higher dimensional manifolds. This
is really a very interesting field for geometric analysis.

Basic Philosophy:

Functions plus subvarieties governed by natural differential equations provide
deep insight into geometric structures. The information will provide a way to
construct such a geometric structure. It also provides important information
for physics, algebraic geometry and topology. Conversely it is vital to learn
ideas from these fields.
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Behind such basic philosophy, there are basic invariants to understand how
space is twisted. This is provided by Chern Classes [108], which appear in ev-
ery branch of mathematics and theoretical physics. So far we barely understand
the analytic meaning of the first Chern Class. It will take much longer time for
geometers to understand the analytic meaning of the higher Chern forms. The
analytic expression of Chern Classes for forms have opened up a new horizon
for global geometry. Professor Chern’s influence on mathematics is forever.
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