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Moduli spaces and Teichmüller spaces of Rie-

mann surfaces have been studied for many many

years, since Riemann.

Ahlfors, Deligne, Mumford, Yau, Witten, Kont-

sevich, McMullen....

They have appeared in many subjects of math-

ematics, from geometry, topology, algebraic

geometry, to number theory: Faltings’ proof

of the Mordell conjecture.

They have also appeared in theoretical physics

like string theory.

Many computations of path integrals are re-

duced to integrals of Chern classes on such

moduli spaces.

We will consider the cases of genus g ≥ 2, the

geometry and topological aspects.



The Teichmüller space Tg is a domain of holo-

morphy embedded in Cn with n = 3g− 3. The

moduli space Mg is an orbifold, as a quotient

of Tg by mapping class group.

The topology of Teichmüller space is trivial,

but the topology of the moduli space and its

compactification have highly nontrivial topol-

ogy, and have been well-studied for the past

years:

Example: Hodge integrals: Witten conjec-

ture(Kontsevich); Marino-Vafa conjecture (Liu-

Liu-Zhou), both came from string theory.

Marino-Vafa conjecture we proved gives a closed

formula for the generating series of triple Hodge

integrals of all genera and all possible marked

points, in terms of Chern-Simons knot invari-

ants.



Hodge integrals are just the intersection num-

bers of λ classes and ψ classes on the Deligne-

Mumford moduli space of stable Riemann sur-

faces Mg,h, the moduli with h marked points.

A point in Mg,h consists of (C, x1, . . . , xh), a

(nodal) Riemann surface and h smooth points

on C.

The Hodge bundle E is a rank g vector bundle

over Mg,h whose fiber over [(C, x1, . . . , xh)] is

H0(C, ωC). The λ classes are Chern Classes:

λi = ci(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗xi
C of C at the i-th marked

point xi gives a line bundle Li over Mg,h. The

ψ classes are also Chern classes:

ψi = c1(Li) ∈ H2(Mg,h;Q).



Define

Λ∨g (u) = ug − λ1ug−1 + · · ·+ (−1)gλg.

Mariño-Vafa conjecture:
Generating series of triple Hodge integrals

∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏h

i=1(1− µiψi)
,

for all g and all h can be expressed by close for-
mulas of finite expression in terms of represen-
tations of symmetric groups, or Chern-Simons
knot invariants. Here τ is a parameter, µi some
integers.

Conjectured from large N duality between Chern-
Simons and string theory. Proved by using
differential equations from both geometry and
combinatorics.

Example: The Mumford conjecture about gen-
erators of the stable cohomology of the moduli
spaces. This was proved recently by Madsen
et al.



Our current project is to study the geometry of
the Teichmüller and the moduli spaces. More
precisely to understand the various metrics on
these spaces, and their applications. Also in-
troduce new metrics with good property. The
results are contained in

1. Canonical Metrics in the Moduli Spaces of
Riemann Surfaces I, math.DG/0403068.

2. Canonical Metrics in the Moduli Spaces of
Riemann Surfaces II. Preprint.

by K. Liu, X. Sun, S.-T. Yau.

The key point is the understanding of the Ricci
and the perturbed Ricci metric: two new com-
plete Kähler metrics. Their curvatures and
boundary behaviors are studied in details.

Interesting applications to the geometry, like
the stability of the logarithmic cotangent bun-
dle of moduli spaces and more will follow.



There are many very famous classical metrics

on the Teichmüller and the moduli spaces:

(1). Finsler metrics:

Teichmüller metric;

Caratheodory metric; Kobayashi metric.

(2). Kähler metrics:

The Weil-Petersson metric, (Incomplete).

Cheng-Yau-Mok’s Kähler-Einstein metric; Mc-

Mullen metric; Bergman metric; Asymptotic

Poincare metric.

Ricci metric and perturbed Ricci metric.

The above seven metrics are complete Kähler

metrics.



Selected applications of these metrics:

Example: Royden proved that

Teichmüller metric = Kobayashi metric.

This implies that the isometry group of Tg is

exactly the mapping class group.

Example: Ahlfors: the Weil-Petersson (WP)

metric is Kähler, the holomorphic sectional cur-

vature is negative.

Masur: WP metric is incomplete.

Wolpert studied WP metric in great details,

found many important applications in topol-

ogy(relation to Thurston’s work) and algebraic

geometry(relation to Mumford’s work).



Each family of semi-stable curves induces a

holomorphic maps into the moduli space. By

applying the Schwarz-Yau lemma to this map,
we immediately get very sharp geometric height

inequalities in algebraic geometry.

Corollaries include:

1. Kodaira surface X has strict Chern number

inequality: c1(X)2 < 3c2(X).

2. Beauville conjecture: the number of sin-

gular fibers for a non-isotrivial family of semi-

stable curves over P1 is at least 5.

Geometric Height Inequalities, by Kefeng Liu,

MRL 1996.

Finiteness results for families of projective man-

ifolds, like the Mordell type conjecture, follow
from such height inequalities, so from the neg-

ative curvature properties of moduli spaces.



Example: McMullen proved that the moduli

spaces of Riemann surfaces are Kähler hyper-

bolic, by using his own metric which he ob-

tained by perturbing the WP metric.

This means bounded geometry and the Kähler

form on the Teichmüller space is of the form

dα with α bounded one form.

This gives interesting corollaries on the geom-

etry and the topology of the moduli and the

Teichmüller spaces:

The lowest eigenvalue of the Laplacian on the

Teichmüller space is positive.

Only middle dimensional L2 cohomology is nonzero

on the Teichmüller space.



Our Goal:

(1) To understand the known complete metrics
on the moduli space and Teichmüller space,
and their geometry, and introduce new metics.

Most interesting: the two new complete Kähler
metrics, the Ricci metric and the Perturbed

Ricci metric. We have rather complete un-
derstanding of these two new metrics.

(2) With the help of the new metrics we have
much better understanding of the Kähler-Einstein
metric: boundary behavior.

The curvature of KE metric is bounded on the
Teichmüller space: bounded geometry.

(3) Algebro-geometric consequences: the log
cotangent bundle of the DM moduli space of
stable curves is (semi-)stable.

The DM moduli Mg is of log general type....



Conventions:

For a Kähler manifold (Mn, g) with local holo-
morphic coordinates z1, · · · , zn, the curvature
of g is given by

Rījkl̄ =
∂2gīj

∂zk∂z̄l
− gpq̄∂giq̄

∂zk

∂gpj̄

∂z̄l
.

In this case, the Ricci curvature is

Rīj = −gkl̄Rījkl̄ = −∂zi∂z̄j
log det(gīj).

The holomorphic sectional curvature is nega-
tive means

R(v, v̄, v, v̄) > 0.

Two Kähler metrics g1 and g2 are equivalent
or two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if
there is a constant C > 0 such that

C−1g1 ≤ g2 ≤ Cg1

or

C−1‖ · ‖1 ≤ ‖ · ‖2 ≤ C‖ · ‖1.

We denote this by g1 ∼ g2 or ‖ · ‖1 ∼ ‖ · ‖2.



Basics of the Teichmüller and the Moduli

Spaces:

Fix an orientable surface Σ of genus g ≥ 2.

• Uniformization Theorem.

Each Riemann surface of genus g ≥ 2 can be

viewed as a quotient of the hyperbolic plane H2

by a Fuchsian group. Thus there is a unique

KE metric, or the hyperbolic metric on Σ.

The group Diff+(Σ) of orientation preserv-

ing diffeomorphisms acts on the space C of all

complex structures on Σ by pull-back.



• Teichmüller space.

Tg = C/Diff+
0 (Σ)

where Diff+
0 (Σ) is the set of orientation pre-

serving diffeomorphisms which are isotopic to

identity.

• Moduli space.

Mg = C/Diff+(Σ) = Tg/Mod(Σ)

is the quotient of the Teichmüller space by the

mapping class group where

Mod (Σ) = Diff+(Σ)/Diff+
0 (Σ).

• Dimension.

dimC Tg = dimCMg = 3g − 3.

Tg is a pseudoconvex domain in C3g−3. Mg is

a complex orbifold.



• Tangent and cotangent space.

By the deformation theory of Kodaira-Spencer

and the Hodge theory, for any point X ∈Mg,

TXMg
∼= H1(X, TX) = HB(X)

where HB(X) is the space of harmonic Bel-

trami differentials on X.

T ∗XMg
∼= Q(X)

where Q(X) is the space of holomorphic quadratic

differentials on X.

For µ ∈ HB(X) and φ ∈ Q(X), the duality

between TXMg and T ∗XMg is

[µ : φ] =
∫

X
µφ.

Teichmüller metric is the L1 norm. The WP

metric is the L2 norm.



The following theorems are due to Liu-Sun-

Yau:

Theorem. On the moduli space Mg, the Te-

ichmüller metric ‖ · ‖T , the Kobayashi metric

‖ · ‖K, the Kähler-Einstein metric ωKE , the

McMullen metric ωM , the asymptotic Poincaré

metric ωP the Ricci metric ωτ and the per-

turbed Ricci metric ωτ̃ are equivalent. Namely

ωKE ∼ ωτ̃ ∼ ωτ ∼ ωP ∼ ωM

and

‖ · ‖K = ‖ · ‖T ∼ ‖ · ‖M .

As corollary we proved the following conjecture

of Yau made in the early 80s:

Theorem. The Kähler-Einstein metric is equiv-

alent to the Teichmüller metric on the moduli

space: ‖ · ‖KE ∼ ‖ · ‖T .



KE Metric and Consequences:

• Stability of the logarithmic cotangent bundle

of the DM moduli spaces.

Let Ē denote the logarithmic extension of the

cotangent bundle of Mg. Recall that it con-

sists of sections of the form:

m∑

i=1

ai(t, s)
dti
ti

+
n∑

i=m+1

ai(t, s)dsi,

where recall that the compactification divisor

is defined by
∏m

i=1 ti = 0, with n = 3g − 3.

Theorem: The first Chern class c1(Ē) is posi-

tive and Ē is semi-stable with respect to c1(Ē).



Remarks:
(1). This means for any sub-bundle F of Ē,
we have

deg (F )

rank (F )
≤ deg (Ē)

rank (Ē)

where the degree is with respect to c1(Ē):

deg (F ) =
∫

Mg

c1(F )c1(Ē)n−1.

(2). The proof is an application of the ex-
istence and the precise boundary behavior of
the KE metric, to make sure the degrees well-
defined.

(3). Corollary: the DM moduli space is of
logarithmic general type for g ≥ 2. Mumford
(1977) proved that, Mg,h is log general type
for h ≥ 3.



• Bounded geometry:

Theorem: The curvature of the KE metric is

uniformly bounded on the Teichmüller spaces,

and its injectivity radius has lower bound.

As corollary we have

Theorem: The Ricci and the perturbed Ricci

metric also have bounded geometry.

Now we discuss the ideas of the proof of the

comparison theorem:

• Compare directly near infinity by estimating

the asymptotic behavior of these metrics.

• Use Yau’s Schwarz Lemma.

We will combine these two methods.



Yau’s Schwarz Lemma:

Let f : (Mm, g) → (Nn, h) be a holomorphic
map between Kähler manifolds where M is com-
plete and Ric(g) ≥ −c g with c ≥ 0.

(1) If the holomorphic sectional curvature of
N is bounded above by a negative constant,
then f∗h ≤ c̃ g for some constant c̃.

(2) If m = n and the Ricci curvature of N is
bounded above by a negative constant, then
f∗ωn

h ≤ c̃ ωn
g for some constant c̃.

What do we need?

A complete Kähler metric on Mg whose holo-
morphic sectional curvature is bounded above
by a negative constant and whose Ricci curva-
ture is bounded from below by a constant.

This metric serves as a bridge to connect these
metrics through the Schwarz Lemma.



Observation:

Since the Ricci curvature of the Weil-Petersson

metric is bounded above by a negative con-

stant, one can use the negative Ricci curvature

of the WP metric to define a new metric.

We call this metric the Ricci metric

τīj = −Ric(ωWP )īj.

It turns out that the curvature properties of

the Ricci metric is not good enough for our

purpose.

New Idea:

Perturbed the Ricci metric with a large con-

stant multiple of the WP metric. We define

the perturbed Ricci metric

ωτ̃ = ωτ + C ωWP .

The perturbed Ricci metric has desired curva-

ture properties.



Theorem. Let τ be the Ricci metric on the

moduli space Mg. Then

• τ is equivalent to the asymptotic Poincaré

metric.

• The holomorphic sectional curvature of τ is

asymptotically negative in the degeneration di-

rections.

• The holomorphic sectional curvature, the bi-

sectional curvature and the Ricci curvature of

τ are bounded.

We can explicitly write down the asymptotic

behavior of this metric: asymptotic Poincaré:

m∑

i=1

Ci |dti|2
|ti|2 log2|ti|

.

ti’s are the coordinates in the degeneration di-

rections: ti = 0 define the divisor.



To get control on the signs of the curvatures,

we need to perturb the Ricci metric. Recall

that the curvatures of the WP metric are neg-

ative.

Theorem. Let ωτ̃ = ωτ + CωWP be the per-

turbed Ricci metric on Mg. Then for suitable

choice of the constant C, we have

• τ̃ is a complete Kähler metric with finite vol-

ume.

• The holomorphic sectional curvature and the

Ricci curvature of τ̃ are bounded from above

and below by negative constants.

Remark:

• The perturbed Ricci metric is the first com-

plete Kähler metric on the moduli space whose

holomorphic sectional and Ricci curvature have

negative bounds, and bounded geometry.



Sketch of the Proofs of Equivalences:

• ‖ · ‖T = ‖ · ‖K was proved by Royden.

• ‖ · ‖T ∼ ‖ · ‖M was proved by McMullen.

• ωP ∼ ωτ is proved by comparing their asymp-

totic behavior.

• ωτ ∼ ωτ̃ :

Consider the identity map:

id : (Mg, ωτ) → (Mg, ωWP ).

Yau’s Schwarz Lemma ⇒ ωWP ≤ C0ωτ . So

ωτ ≤ ωτ̃ = ωτ + CωWP ≤ (CC0 + 1)ωτ .

• ωτ̃ ∼ ωKE:

Consider the identity map:

id : (Mg, ωKE) → (Mg, ωτ̃)

and

id : (Mg, ωτ̃) → (Mg, ωKE).



Yau’s Schwarz Lemma ⇒

ωτ̃ ≤ C0ωKE

and

ωn
KE ≤ C0ωn

τ̃ .

The equivalence follows from linear algebra.

• ωM ∼ ωτ̃ :

Consider the identity map

id : (Mg, ωM) → (Mg, ωτ̃).

Yau’s Schwarz Lemma ⇒

ωτ̃ ≤ C0ωM .

The other side is proved by asymptotic analysis

and linear algebra.



Curvature formulas:

• Weil-Petersson metric

Let X be the total space over the Mg and π

be the projection map.

Pick s ∈ Mg, let π−1(s) = Xs. Let s1, · · · , sn

be local holomorphic coordinates on Mg and s

and let z be local holomorphic coordinate on

Xs.

Recall

TsMg
∼= HB(Xs).

The Kodaira-Spencer map is

∂

∂si
7→ Ai

∂

∂z
⊗ dz̄ ∈ HB(Xs).

The Weil-Petersson metric is

hīj =
∫

Xs

AiĀj dv



where dv =
√−1

2 λdz ∧ dz̄ is the volume form of
the KE metric λ on Xs.

By the work of Siu and Schumacher, let

ai = −λ−1∂si∂z̄ logλ.

Then

Ai = ∂z̄ai.

Let η be a relative (1,1) form on X. Then

∂

∂si

∫

Xs

η =
∫

Xs

Lviη

where

vi =
∂

∂si
+ ai

∂

∂z

is called the harmonic lift of ∂
∂si

.

In the following, we let

fīj = AiĀj and eīj = T (fīj).

Here T = (2+1)−1 is the Green operator. The
functions fīj and eīj will be the building blocks
of the curvature formula.



• Curvature formula of the WP metric.

By the work of Wolpert, Siu and Schumacher,

the curvature of the Weil-Petersson metric is

Rījkl̄ =
∫

Xs

(eījfkl̄ + eīlfkj̄) dv.

Remark:

The sign of the curvature of the WP metric

can be seen directly.

The precise upper bound − 1
2π(g−1) of the holo-

morphic sectional curvature and the Ricci cur-

vature of the WP metric can be obtained by

spectrum decomposition of the operator (2 +

1).

The curvature of the WP metric is not bounded

from below. But surprisingly the Ricci and the

perturbed Ricci have bounded curvatures.



• Curvature formula of the Ricci metric

The curvature R̃ījkl̄ of the Ricci metric is

R̃ījkl̄ =hαβ̄
{
σ1σ2

∫

Xs

T (ξk(eīj))ξ̄l(eαβ̄) dv

}

+ hαβ̄
{
σ1σ2

∫

Xs

T (ξk(eīj))ξ̄β(eαl̄) dv

}

+ hαβ̄
{
σ1

∫

Xs

Qkl̄(eīj)eαβ̄ dv

}

− τpq̄hαβ̄hγδ̄
{
σ1

∫

Xs

ξk(eiq̄)eαβ̄ dv

}
×

{
σ̃1

∫

Xs

ξ̄l(epj̄)eγδ̄) dv

}

+ τpj̄h
pq̄Riq̄kl̄.

Here σ1 is the symmetrization of indices i, k, α.

σ2 is the symmetrization of indices j, β.

σ̃1 is the symmetrization of indices j, l, δ.

ξk and Qkl̄ are combinations of the Maass op-

erators and the Green operators.

Too complicated to see the sign. We work out

its asymptotics near the boundary.



Asymptotics:

• Deligne-Mumford Compactification

For a Riemann surface X, a point p ∈ X is a

node if there is a neighborhood of p which is

isomorphic to the germ

{(u, v) | uv = 0, |u| < 1, |v| < 1} ⊂ C2.

A Riemann surface with nodes is called a nodal

surface.

A nodal Riemann surface is stable if each con-

nected component of the surface subtract the

nodes has negative Euler characteristic. In this

case, each connected component has a com-

plete hyperbolic metric.

The union of Mg and stable curves of genus g

is the Deligne-Mumford compactification Mg,

the DM moduli.



D = Mg \Mg is a divisor of normal crossings.

• Principle

To compute the asymptotics of the Ricci met-

ric and its curvature, we work on surfaces near

the boundary of Mg. The geometry of these

surfaces localize on the pinching collars.

• Model degeneration (Wolpert)

Consider the variety

V = {(z, w, t) | zw = t, |z|, |w|, |t| < 1} ⊂ C3

and the projection Π : V → ∆ given by

Π(z, w, t) = t

where ∆ is the unit disk.

If t ∈ ∆ with t 6= 0, then the fiber Π−1(t) ⊂ V

is an annulus (collar).

If t = 0, then the fiber Π−1(t) ⊂ V is two

transverse disks |z| < 1 and |w| < 1.



This is the local model of degeneration of Rie-

mann surfaces.

• Difficulties

(1) Find the harmonic Beltrami differentials Ai.

(2) Find the KE metric on the collars.

(3) Estimate the Green function of (2 +1)−1.

(4) Estimate the norms and error terms.

• Solution

We construct approximation solutions on the

local model, single out the leading terms and

then carefully estimate the error terms one by

one.

We have the following precise asymptotic re-

sults:



• Asymptotics in pinching coordinates.

Theorem. Let (t1, · · · tm, sm+1, · · · sn) be the

pinching coordinates. Then WP metric h has

the behaviors:

(1) hīi = 1
2

u3
i

|ti|2(1 + O(u0)) for 1 ≤ i ≤ m;

(2) hīj = O(
u3

i u3
j

|titj| ) if 1 ≤ i, j ≤ m and i 6= j;

(3) hīj = O(1) if m + 1 ≤ i, j ≤ n;

(4) hīj = O(
u3

i
|ti|) if i ≤ m < j.

Here ui = li
2π, li ≈ − 2π2

log |ti| and u0 =
∑

ui+
∑ |sj|.

Theorem. The Ricci metric τ has the behav-

iors:

(1) τīi = 3
4π2

u2
i

|ti|2(1 + O(u0)) if i ≤ m;

(2) τīj = O

(
u2

i u2
j

|titj| (ui+uj)

)
if i, j ≤ m and i 6= j;

(3) τīj = O
(u2

i
|ti|

)
if i ≤ m < j;

(4) τīj = O(1) if i, j ≥ m + 1.



Finally we derive the curvature asymptotics:

Theorem. The holomorphic sectional curva-

ture of the Ricci metric τ satisfies

R̃īiīi =
3u4

i

8π4|ti|4
(1 + O(u0)) > 0

if i ≤ m and

R̃īiīi = O(1)

if i ≥ m + 1.

To prove that the curvatures are bounded, we

noticed that the holomorphic sectional curva-

ture of the perturbed Ricci metric

ωτ̃ = ωτ + C ωWP

remains negative in the degeneration directions

when C varies and is dominated by the curva-

ture of the Ricci metric.



When C large, the holomorphic sectional cur-

vature of τ̃ can be made negative in the in-

terior and in the non-degeneration directions

near boundary from the curvature of the WP

metric.

The estimates of the Ricci curvature are long

and complicated computations.

The proof of the semi-stability needs the de-

tailed understanding of the boundary behaviors

of the KE metric to control the convergence

of the integrals of the degrees.

Bounded geometry: Ricci flow and the higher

order estimates of curvature. Injectivity radius

bounded.


