
Monomial Hopf algebras over fields of positive characteristic ∗

Gong-xiang Liu†

Department of Mathematics

Zhejiang University

Hangzhou, Zhejiang 310028, China

Yu Ye‡

Department of Mathematics

University of Science and Technology of China

Hefei, Anhui 230026, China

September 10, 2004

Abstract

This paper can be looked as a continues work of [3] where the authors classified

all the Hopf structures on monomial coalgebras over a field of characteristic zero and

containing all roots of unity. Let k be a field of characteristic p. We give a necessary

and sufficient condition for the monomial coalgebra Cd(n) to admitting Hopf structure.

We give all graded Hopf structure on Cd(n) and construct a Hopf algebras filtration

on it which will help us to discuss Andruskiewitsch-Schneider conjecture. At last, we

give a description of all monomial Hopf algebras.

1 Introduction

There are several works to construct neither commutative nor cocommutative Hopf alge-

bras via quivers (see [3][4][7]). An advantage for this construction is that a natural basis

consisting of paths is available, and one can relate the properties of a quiver to the ones

of the corresponding Hopf structures.

In [3], the authors have classified all the finite-dimensional Hopf structures on a mono-

mial algebra, or equivalently, on a monomial coalgebra over a field of characteristic zero

and containing all roots of unity. As a continuous work of [3], we want to classify Hopf

structures on a monomial coalgebra when the characteristic of the field is positive.

On the one hand, we note that there do exist Hopf structures on monomial coalgebra

when the characteristic of the field is not zero (see Example 2.1 ). On the other hand,
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2 PRELIMINARIES 2

we note that there exists essential difference on the monomial Hopf structures when the

characteristic of the base field is different. For example, we can get examples of finite-

dimensional monomial (of course pointed) Hopf algebras which can not generated by

group-like and primitive elements when characteristic of the base field is p. But, if the

characteristic is zero, we can not get such examples (see Section 3). These facts stimulate

us to write this paper.

Just like in [3], our main task is to study the Hopf structures on Cd(n), where Cd(n)

is the sub-coalgebra of path coalgebra kZc
n with basis the set of paths of length strictly

smaller than d (see Section 2). It turns out that the coalgebra Cd(n) admits a Hopf

structure if and only if there exists a d0-th primitive root of unity q ∈ k with d0|n and

r ≥ 0 such that d = prd0, where p is the characteristic of k(Theorem 3.4). By this

conclusion, we can get a Hopf algebras filtration for Cd(n) which will help us to discuss

Andruskiewitsch-Schneider conjecture. We give all the graded (with length grading) Hopf

structures on Cd(n) (see Theorem 3.5). As for non-graded case, unfortunately, we can not

give them all. But we show there dose exist non-graded structures on Cd(n) (see Example

3.1).

Then, we discuss any monomial Hopf algebra H, it shows that its every indecomposable

component as coalgebras is isomorphic to Cd(n) (d ≥ 2) or the field k simultaneous (see

Lemma 4.1). At last, by a theorem of Montgomery (Theorem 3.2 in [9]), we can describe

the structure of monomial Hopf algebras.

2 Preliminaries

Throughout this paper, k denotes a field of characteristic p. By an algebra we mean a

finite-dimensional associative k-algebra with identity element.

For completeness, we recall some definitions, notations and results in [3].

Quivers considered here are always finite. Given a quiver Q = (Q0, Q1) with Q0 the set

of vertices and Q1 the set of arrows, denote by kQ, kQa, and kQc, the k-space with basis

the set of all paths in Q, the path algebra of Q, and the path coalgebra of Q, respectively.

Note that they are all graded with respective to length grading. For α ∈ Q1, let s(α) and

t(α) denote respectively the starting and ending vertex of α.

Recall that the comultiplication of the path coalgebra kQc is defined by

∆(p) =
∑

βα=p

β ⊗ α = αl · · ·α1 ⊗ s(α1) +
l−1∑

i=1

αl · · ·αi+1 ⊗ αi · · ·α1 + t(αl)⊗ αl · · ·α1

for each path p = αl · · ·α1 with each αi ∈ Q1; and ε(p) = 0 for l ≥ 1 and 1 if l = 0 ( Note

that l = 0 means p is a vertex). This is a pointed coalgebra.

Let C be a coalgebra. The set of group-like elements is defined to be

G(C) := {c ∈ C|∆(c) = c⊗ c, c 6= 0}
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It is clear ε(c) = 1 for c ∈ G(C). For x, y ∈ G(C), denote by

Px,y(C) := {c ∈ C|∆(c) = c⊗ x + y ⊗ c}

the set of x, y-primitive elements in C. It is clear that ε(c) = 0 for c ∈ Px,y(C). Note

that k(x − y) ⊆ Px,y(C). An element c ∈ Px,y(C) in non-trivial if c /∈ k(x − y). Clearly,

G(kQc) = Q0 and (Lemma 1.1 in [3])

Lemma 2.1 For x, y ∈ Q0, we have Px,y(C) = y(kQ1)x⊕k(x−y) where y(kQ1)x denotes

the k-space spanned by all arrows from x to y. In particular, there is a non-trivial element

in kQc if and only if there is an arrow from x to y in Q.

An ideal I of kQa is admissible if JN ⊆ I ⊆ J2 for some positive integer N ≥ 2, where

J is the ideal generated by all arrows. An algebra A is elementary if A/R ∼= kn as algebras

for some n, where R is the Jacobson radical of A. For an elementary algebra A, there is

a (unique) quiver Q, and an admissible ideal I of kQa, such that A ∼= kQa/I. (See [2]).

An algebra A is monomial if there exists an admissible ideal I generated by some paths

in Q such that A ∼= kQa/I. Dually, the authors of [3] gave the definition of monomial

coalgebras.

Definition 2.1 A subcoalgebra C of kQc is called monomial provided that the following

conditions are satisfied:

(1) C contains all vertices and arrows in Q;

(2) C is contained in subcoalgebra Cd(Q) := ⊕d−1
i=0 kQ(i) for some d ≥ 2, where Q(i) is

the set of all paths of length i in Q;

(3) C has a basis consisting of paths.

Consider the following quiver.

•e0HHHHj
• e1

α0

?• e2

α1

····• en−3
HHHY

• en−2

αn−3

6
• en−1

αn−2

´
´

´́3αn−1

We denote this quiver by Zn and call it the basic cycle of length n . Denote by pl
i the

path in Zn of length l starting at ei. Thus we have p0
i = ei and p1

i = αi.
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For each n-th root q ∈ k of unity, Cibils and Rosso [4] have defined a graded Hopf

algebra structure kZn(q) (with length grading ) on the path coalgebra kZc
n by

pl
i · pm

j = qjl


 m + l

l




q

pl+m
i+j

with antipode S mapping pl
i to (−1)lq−

l(l+1)
2

−ilpl
n−l−i, where


 m + l

l




q

is the Gaussian

binomial coefficient defined by


 m + l

l




q

:= (l+m)!q
l!qm!q

where l!q = 1q · · · lq, lq := 1 + q +

· · ·+ ql−1.

In the following, denote Cd(Zn) by Cd(n). That is, Cd(n) is the subcoalgebra of kZc
n

with basis the set of all paths of length strictly less than d.

Clearly, if


 m + l

l




q

≡ 0 for all 0 < m, l < d and m + l ≥ d, then Cd(n) will be a

graded sub-Hopf algebra of kZn(q).

Example 2.1 Let q be a d0-th primitive root of unity with d0|n. Assume q ∈ k. In next

section (Proposition 3.3), we will prove that if d = ptd0 for some nonnegative integer t,

then


 d

l




q

= 0 for all 0 < l < d. By a standard identity about Gaussian binomial

coefficients (See [8]), that is,

 n

k




q

=


 n− 1

k − 1




q

+ qk


 n− 1

k




q

we have


 m + l

l




q

= 0 for all 0 < m, l < d and m + l ≥ d. Therefore, by discussion

above, Cptd0
(n) is a graded sub-Hopf algebra of kZn(q). We denote this Hopf algebra by

C(d0, t, n, q)

Next conclusion (Lemma 2.3 in [3]) shows the importance of Cd(n).

Lemma 2.2 Let A be an indecomposable monomial coalgebra. Then A is coFrobenius

(i.e. A∗ is Frobenius) if and only if A = k or A ∼= Cd(n) for some positive integers n and

d, with d ≥ 2.

The following lemma (Lemma 3.3 in [3]) is needed in our proof of Theorem 3.4.

Lemma 2.3 Suppose that there is a Hopf algebra structure on Cd(n). Then up to a Hopf

algebra isomorphism we have

pl
i · pm

j ≡ qjl


 m + l

l




q

pl+m
i+j (mod Cl+m(n))

for 0 ≤ i, j ≤ n− 1, and for l, m ≤ d− 1, where q ∈ k is an n-th root of unity.
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3 Hopf structures on Cd(n) and Andruskiewitsch-Schneider

conjecture

The aim of section is to give an equivalent condition for Cd(n) to admitting Hopf structures

(Theorem 3.4), and then classify all the graded Hopf structures on Cd(n). At last, we will

construct a Hopf algebras filtration of Cd(n) which will help us to discuss Andruskiewitsch-

Schneider conjecture.

By a direct analysis from the definition of the Gaussian binomial coefficients we have

Lemma 3.1 Let q be above. Then


 m + l

l




q

= 0 if and only if

[
m + l

d0

]
+

[
m + l

pd0

]
+

[
m + l

p2d0

]
+ · · ·+

[
m + l

pid0

]
+ · · ·

−(
[
m

d0

]
+

[
m

pd0

]
+

[
m

p2d0

]
+ · · ·+

[
m

pid0

]
+ · · ·)

−(
[

l

d0

]
+

[
l

pd0

]
+

[
l

p2d0

]
+ · · ·+

[
l

pid0

]
+ · · ·) > 0

Lemma 3.2 Let m > 1 be a positive integer. Then

[m] +
[
m

p

]
+

[
m

p2

]
+ · · ·+

[
m

pi

]
+ · · ·

−([n] +
[
n

p

]
+

[
n

p2

]
+ · · ·+

[
n

pi

]
+ · · ·)

−([m− n] +
[
m− n

p

]
+

[
m− n

p2

]
+ · · ·+

[
m− n

pi

]
+ · · ·) > 0

for all 0 < n < m if and only if m = pt for t ≥ 1

Proof: For simplicity, denote

[m] +
[
m

p

]
+

[
m

p2

]
+ · · ·+

[
m

pi

]
+ · · ·

−([n] +
[
n

p

]
+

[
n

p2

]
+ · · ·+

[
n

pi

]
+ · · ·)

−([m− n] +
[
m− n

p

]
+

[
m− n

p2

]
+ · · ·+

[
m− n

pi

]
+ · · ·)

by Im,n

“If Part: ” Clearly,
[

m
pi

]
−

[
n
pi

]
−

[
m−n

pi

]
≥ 0 for all i ∈ N . So, in order to prove the

conclusion, it is enough to find one j ∈ N such that
[

m
pj

]
−

[
n
pj

]
−

[
m−n

pj

]
> 0. In fact, let

j = t, 1 =
[

pt

pt

]
>

[
n
pt

]
+

[
m−n

pt

]
= 0 for all 0 < n < m. Thus, we proved the sufficiency.
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“Only if Part: ” Clearly, p ≤ m. At first, we claim that p|m. Otherwise, assume

m = kp + r with k ≥ 1 and 0 < r < p. Let n = kp, then it is easy to see that Im,n = 0

now. It is contradict to the assumption.

Thus, generally, let m = pr(alp
l + · · · + a1p + a0) where r ≥ 1 and ai < p for i =

1, 2, . . . , l. Let n = a0p
r and then m− n = pr(alp

l + · · ·+ a1p). Then, for any 0 ≤ j ≤ r,[
m
pj

]
= pr−j(alp

l + · · ·+a1p+a0),
[

m−n
pj

]
= pr−j(alp

l + · · ·+a1p) and
[

n
pj

]
= a0p

r−j . This

implies
[

m
pj

]
=

[
m−n

pj

]
+

[
n
pj

]
when j ≤ r. If j > r, then m = pj(alp

l−(j−r) + · · ·+ aj−r) +

aj−r−1p
j−1 + · · · + a0p

r. But, aj−r−1p
j−1 + · · · + a0p

r ≤ (p − 1)pj−1 + · · · + (p − 1)pr =

pj − pr < pj . Thus
[

m
pj

]
= alp

l−(j−r) + · · · + aj−r,
[

m−n
pj

]
= alp

l−(j−r) + · · · + aj−r and[
n
pj

]
= 0. This implies

[
m
pj

]
=

[
m−n

pj

]
+

[
n
pj

]
for j > r. Summarizing above discussion,

we have
[

m
pj

]
=

[
n
pj

]
+

[
m−n

pj

]
for all j and thus Im,n = 0. It is contradict to assumption.

Therefore we know that a0 = 0 or ai = 0 for all l ≤ i ≤ 1. We claim there is only one

ai 6= 0. In fact, if a0 6= 0, then above conclusion asserts ai = 0 for all l ≤ i ≤ 1. If a0 = 0,

then repeat above discussion shows that a1 = 0 or ai = 0 for all l ≤ i ≤ 2. So, at last, we

have a unique ai such that m = aip
r+i.

If ai > 1, then we can write ai = l1 + l2 with l1l2 6= 0. Let n = l1p
r+i, then it is easy

to see that Im,n = 0. It is also contradict to the assumption. Thus m = pr+i and we get

the desire conclusion. ¤

With these preparations, we can give the following conclusion which will help us to

give our main results (Theorem 3.4) in this section.

Proposition 3.3 Let q ∈ k be a d0-th primitive root of unity. Then


 d

n




q

= 0 for all

0 < n < d if and only if d = prd0 for some nonnegative integer r.

Proof: For simplicity, denote
[
m

d0

]
+

[
m

pd0

]
+

[
m

p2d0

]
+ · · ·+

[
m

pid0

]
+ · · ·

−(
[

n

d0

]
+

[
n

pd0

]
+

[
n

p2d0

]
+ · · ·+

[
n

pid0

]
+ · · ·)

−(
[
m− n

d0

]
+

[
m− n

pd0

]
+

[
m− n

p2d0

]
+ · · ·+

[
m− n

pid0

]
+ · · ·)

by Im,n,q.

“If Part ” Similarly to the proof of Lemma 3.2, 1 =
[

prd0

prd0

]
>

[
n

prd0

]
+

[
prd0−n

pt

]
= 0

for all 0 < n < prd0. That’s to say, Id,n,q = 0 for all n < d and thus


 d

n




q

= 0 for all

0 < n < d according to Lemma 3.1.
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“Only if Part ” Clearly, d ≥ d0. We claim d0|d. If not, d = kd0 + r with k ≥ 1 and

0 < r < d0. Let n = kd0, then it is easy to see that Id,n,q = 0 and thus


 d

n




q

6= 0 by

Lemma 3.1. It is contradict to the assumption.

So, we now have d
d0

is an positive integer and denote it by m. If m = 1, then d = p0d0.If

m > 1, then Lemma 3.1 and Lemma 3.2 assert that m = pr and thus d = md0 = prd0 for

some r ≥ 1. Therefore, d = prd0 for some r ≥ 0. ¤

Theorem 3.4 Cd(n) admits a Hopf algebra structure if and only if there exist a d0-th

primitive root of unity q ∈ k with d0|n such that d = prd0 for some r ≥ 0.

Proof: “If Part ” By Proposition 3.3,


 d

n




q

= 0 for all 0 < n < d. So, Example 2.1

implies the sufficiency.

“Only if Part ” If there is a Hopf structure on Cd(n), then Lemma 2.3 implies there is

a n-th root of unity q ∈ k such that

pl
i · pm

j ≡ qjl


 m + l

l




q

pl+m
i+j (mod Cl+m(n))

There is no harm to assume that q is a d0-th primitive root of unity. Since the length of all

paths in Cd(n) is strictly less than d,


 m + l

l




q

= 0 for all 0 < l,m < d. In particular,


 d

n




q

= 0 for all 0 < n < d. Thus, by Proposition 3.3, d = prd0 for r ≥ 0. ¤

Theorem 3.5 Any graded Hopf structure (with length grading) on Cd(n) is isomorphic

to some C(d0, t, n, q), where C(d0, t, n, q) is given in Example 2.1.

Proof: By Lemma 2.3 and the proof of Theorem 3.4 we see that any graded Hopf struc-

ture (with length grading) is isomorphic to C(d0, t, n, q) for some d0-th primitive root of

unity q with d0|n and d = ptd0. ¤

The following example will show that there exist non-graded Hopf structures on Cd(n).

But, unfortunately, we can not give a complete classification in this case.

Example 3.1 We give a non-graded Hopf structure on Cpd0(n). Let q ∈ k be a d0-th

primitive root of unity and d0|n. We also denote pl
i the path in Zn of length l staring at

ei. Define, for s1d0 + r1 ≤ pd0 and s2d0 + r2 ≤ pd0,

ps1d0+r1
i ps2d0+r2

j = 0 if r1 + r2 ≥ d0



3 HOPF STRUCTURES ON CD(N) AND ANDRUSKIEWITSCH-SCHNEIDER CONJECTURE8

and

ps1d0+r1
i ps2d0+r2

j = qr1j


 (s1 + s2)d0 + r1 + r2

s1d0 + r1




q

p
(s1+s2)d0+r1+r2

i+j

if r1 + r2 < d0 and (s1 + s2)d0 + r1 + r2 < pd0

and

ps1d0+r1
i ps2d0+r2

j = qr1j ((d0)!q)p((s1 + s2)d0 + r1 + r2)!q
(s1d0 + r1)!q(s2d0 + r2)!q

(p(s1+s2−p)d0+r1+r2

i+j −p
(s1+s2−p)d0+r1+r2

i+j+pd0
)

if r1 + r2 < d0 and (s1 + s2)d0 + r1 + r2 ≥ pd0 with

S(pl
i) := (−1)lq−

l(l+1)
2

−ilpl
n−l−i

for l ≤ pd0. This is indeed a Hopf algebra with identity element p0
0 = e0 and note that it is

not graded with respect to length grading. We can see that, as an algebra, it is generated

by p0
1, p

1
0 and pd0

0 . An advantage of this construction is that we have a natural basis. We

can also get this Hopf algebra through generators and relations.

Let n, d0, p, q be above. We define A(n, d0, p, q) as follows. As an algebra, it is generated

by g, x, y with relations

gn = 1, xd0 = 0, yp = 1− gpd0 , xg = qgx, yg = gy, yx = xy

Its comultiplication ∆, counit ε and the antipode defined by

∆(g) = g⊗g, ∆(x) = x⊗1+g⊗x, ∆(y) = y⊗1+gd0⊗y+Σd0−1
i=1

1
(d0 − i)!q(i)!q

gixd0−i⊗xi

ε(g) = 1, ε(x) = ε(y) = 0

S(g) = gn−1, S(x) = −gn−1x, S(y) = −gn−d0y

Through tedious but straightforward computation, we can prove A(n, d0, p, q) is indeed a

Hopf algebra. We can also see that A(n, d0, p, q) ∼= Cpd0(n) as Hopf algebras by g 7→
p0
1, x 7→ p1

0 and y 7→ pd0
0 .

Let q ∈ k be a d0-th primitive root of unity with d0|n, then Theorem 3.4 implies that

we have a series of Hopf algebras

Cd0(n)  Cpd0(n)  Cp2d0
(n)  · · ·  Cpid0

(n)  · · · (∗)

Noth that, if d0 = 1, C1(n) is indeed not a monomial coalgebra since it does not contain

any arrow. But it is a Hopf algebra and clearly isomorphic to a group algebra.

If d0 ≥ 2, then Cd0(n) contains all vertices and arrows. By Lemma 2.1, all group-like

and primitive elements of kZn(q) lie in Cd0(n). Thus any path β whose length is not

less than d0 can not be generated by group-like and primitive elements since β /∈ Cd0(n).

Therefore, if d0 ≥ 2, then for any t ≥ 1, Cptd0
can not be generated by group-like and
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primitive elements as Hopf algebras. This supplies many counter-examples for the fol-

lowing Andruskiewitsch-Schneider Conjecture (see [1]) when the characteristic of field is

positive.

Andruskiewitsch-Schneider Conjecture Let H be a finite-dimensional pointed Hopf

algebra over a algebraically closed field of characteristic zero, then it is generated by group-

like and primitive elements.

When the characteristic of k is zero, above Hopf algebras serious (∗) will not happen.

In fact, in [3], the authors have shown (See the proof of Theorem 3.1 of [3]) that d = d0,

that is Cd(n) = Cd0(n) now. In this case, we can not deny above conjecture since Cd0(n)

is indeed generated by group-like and primitive elements (See Theorem 3.6 in [3]).

4 On monomial Hopf algebras

The main aim of this section is to discuss the structures of monomial Hopf algebras. Recall

that a Hopf algebra is monomial if it is monomial as coalgebra. We firstly prove a result

which is similar to Theorem 5.1 in [3].

Lemma 4.1 Let C be a monomial coalgebra. Then C admits a Hopf algebra structure if

and only if C ∼= k ⊕ · · · ⊕ k as a coalgebra, or

C ∼= Cd(n)⊕ · · · ⊕ Cd(n)

as a coalgebra for some d = prd0 ≥ 2 with d0|n and there exists a d0-th primitive root of

unity q ∈ k.

The proof of this lemma is also similar to that of Theorem 5.1 in [3]. For completeness,

we write it out.

Proof: “If Part ” By assumption, we have C = C1 ⊕ · · · ⊕ Cl as a coalgebra, where

each Ci
∼= C1 as coalgebras for 1 ≤ i ≤ l and C1 admits a Hopf structure H1 by Theorem

3.4. Then H1 ⊗ kG is a Hopf structure on C, where G is any group of order l. This gives

the sufficiency.

“Only if Part ” Let C be a monomial coalgebra admitting a Hopf structure. Since a

finite-dimensional Hopf algebra is coFrobenius, it follows follows from Lemma 2.2 that as

a coalgebra C has the form C = C1 ⊕ · · · ⊕Cl with each Ci indecomposable as coalgebra,

and Ci = k or Ci = Cdi
(ni) for some ni and di ≥ 2.

We claim that if there exists a Ci = k, then Cj = k for all j. In fact, otherwise, let

Cj = Cd(n) for some j. Let α be an arrow in Cj from x to y. Let h be the unique group-

like element in Ci = k. Since the set G(C) of the group-like elements of C forms a group,
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it follows that there exists an element g ∈ G(C) such that h = gx. Then gα if a h, gy-

primitive element in C. But according to the coalgebra decomposition C = C1 ⊕ · · · ⊕ Cl

with Ci = kh, C has no h, gy-primitive elements. A contradiction.

Thus, by claim above, if C 6= k ⊕ · · · ⊕ k, then C is of the form

C = Cd1(n1)⊕ · · · ⊕ Cdl
(nl)

as coalgebras, with each di ≥ 2. Assume that the identity element 1 of G(C) is contained

in C1 = Cd1(n1). It follows from a theorem of Montgomery (Theorem 3.2 in [9]) that C1

is a sub-Hopfalgebra of C, and that

g−1
i Cdi(ni) = Cdi(ni)g−1

i = Cd1(n1)

for any gi ∈ G(Cdi(ni)) and for each i. By comparing the numbers of group-like elements

in Cdi(ni) and in Cd1(n1) we have ni = n1 = n for each i. While by comparing the

k-dimensions we see that di = d1 = d for each i. Now, since C1 = Cd(n) is a Hopf algebra,

it follows Theorem 3.4, there exist a d0-th primitive root of unity q ∈ k with d0|n and

r ≥ 0 such that d = prd0. ¤

Theorem 4.2 Let H be a non-semisimple monomial Hopf algebra over k. Then there

exist a d0-th primitive root of unity q ∈ k with d0|n, r ≥ 0 and d = prd0 ≥ 2 such that

H ∼= Cd(n)⊕ · · · ⊕ Cd(n)

as coalgebras and

H ∼= Cd(n)#σk(G/N)

as Hopf algebras, where G = G(H) and N = G(Cd(n)).

Proof: By Theorem 3.2 in [9] and Lemma 4.1 above, we can get this conclusion directly. ¤
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