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A MATHEMATICAL THEORY OF THE TOPOLOGICAL
VERTEX

JUN LI, CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

ABSTRACT. We develop a mathematical theory of the topological vertex, an
algorithm proposed by M. Aganagic, A. Klemm, M. Marino, and C. Vafa on
effectively computing Gromov-Witten invariants of toric Calabi-Yau threefold.

1. INTRODUCTION

In [1], M. Aganagic, A. Klemm, M. Marifio and C. Vafa proposed an algorithm
to compute Gromov-Witten invariants in all genera of any toric Calabi-Yau three-
fold. By virtual localization [11], Gromov-Witten invariants of a toric Calabi-Yau
threefold can be reduced to Hodge integrals, which can be computed recursively
[29, 16, 9]. However, the algorithm proposed in [1] does not involve Hodge integrals
and is significantly more effective. It can be summarized as follows.

O1. There exist certain open Gromov-Witten invariants counting holomorphic
maps from bordered Riemann surfaces to C* with boundary mapped to
three particular Lagrangian submanifolds. The topological vertex Cy(A;n)
is a generating function of such invariants, where ji = (u!, u?, %) is a triple
of partitions and n = (n1,n9,ng) is a triple of integers.

02. The Gromov-Witten invariants of any toric Calabi-Yau threefold can be
expressed in terms of Cz(\;n) by explicit gluing algorithms.

03. By the duality between Chern-Simons theory and Gromov-Witten theory,
the topological vertex is given by

(1.1) C(him) = q(Z i) 2y (g)

where ¢ = eV~ and Wii(q) is a combinatorial expression related to the
Chern-Simons link invariants of a particular link. (The precise definitions
of k,, and Wy(q) are given in Section 3.)

To justify the above algorithm mathematically, one encounters the following dif-
ficulties. First of all, open Gromov-Witten theory beyond disc instantons is still in
a very primitive stage, and in particular, a mathematical definition of the invariants
in O1 is not known. Secondly, the gluing algorithms in O2 contradict geometric
intuition because a three dimensional submanifold does not split a six dimensional
manifold into two pieces. Finally, the duality in O3 is not well-understood mathe-
matically.

In this paper, we overcome the above difficulties by developing a mathematical
theory of the topological vertex based on relative Gromov-Witten theory [19, 14,
15, 17, 18]. Our results can be summarized as follows.
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R1. We introduce the notion of formal toric Calabi-Yau (FTCY) graphs, which
is a refinement and generalization of the graph associated to a toric Calabi-
Yau threefold. An FTCY graph I determines a relative FTCY threefold
YEel = (Y, D), where Y is a formal scheme with at most normal crossing
singularities, Disa possibly disconnected smooth divisor in Y and

det (QY(log ﬁ)) = Oy

R2. We define formal relative Gromov-Witten invariants for relative FTCY
threefolds (Theorem 5.7). These invariants include the Gromov-Witten
invariants of (smooth) toric Calabi-Yau threefolds as special cases.

R3. We show that the formal relative Gromov-Witten invariants in R2 satisfy
the degeneration formula of relative Gromov-Witten invariants of projective
varieties (Theorem 7.5).

R4. Any smooth relative FTCY threefold can be degenerated to indecompos-
able ones, whose isomorphism classes are determined by a triple of integers
n = (ni,n2,n3). By degeneration formula, the formal relative Gromov-
Witten invariants in R2 can be expressed in terms of the generating func-
tion Cz(\;n) of formal relative Gromov-Witten invariants of an indecom-
posable FTCY threefold (Proposition 7.4). This degeneration formula
agrees with the gluing algorithms described in O2.

R5. We derive that (Proposition 6.5, Theorem 8.1)

(12) éﬂ()\;l’l) _ Q(Z?Zl Huini)/QWﬂ(q),

where W;(g) is a combinatorial expression defined in Section 3.3. The
expression Wy (q) coincides with W (¢) when one of the partitions is empty
(Corollary 8.8) and in all the low degree cases that have been checked.

By virtual localization, the formal relative Gromov-Witten invariants C'ﬂ(/\; n)
that we define here can be expressed in terms of Hodge integrals (Proposition
6.6). Combined with (1.2) we obtain a formula of three-partition Hodge integrals
(Theorem 8.2):

(1.3) aiw) = 3 H"“ g i SOV (g)

[vi=|pt] i=1

where G5 (A;w) is a generating function of three-partition Hodge integrals, w =
(w1, ws, w3), w3 = —w; — wa, wy = wy (see Section 3 for precise definitions). This
generalizes a formula of two-partition Hodge integrals (Theorem 8.7) proved in
[23].

An important class of examples are local toric Calabi-Yau threefolds, by which
we mean the total space of the canonical line bundle of a projective toric Fano
surface (e.g. O(—3) — P?). In this case, only C’lez)@(/\;n) (or two-partition
Hodge integrals) are involved. The algorithm in this case was described in [2];
explicit formula was given in [13] and derived in [32] by localization, using the
formula of two-partition Hodge integrals.

It is worth mentioning that, assuming the existence of Cz(A;n) and the va-
lidity of open string virtual localization, E. Diaconescu and B. Florea related
Cii(A;n1,m2,n3) (at certain fractional n;) to three-partition Hodge integrals, and
derived the gluing algorithms in O2 by localization [6].
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The rest of this paper is organized as follows. In Section 2, we give an overview
of the theory of the topological vertex, and state the main results of this paper.
In Section 3, we recall some definitions and previous results, and introduce some
generating functions. R1 is carried out in Section 4. R2 is carried out in Section 5;
the case when the relative FTCY threefold is indecomposable gives the mathemat-
ical definition of topological vertex, and the proof of its invariance (Theorem 5.9)
is given in Appendix A. In Section 6, we express the topological vertex in terms
of three-partition Hodge integrals and double Hurwitz numbers. In Section 7, we
establish R3 and R4. In Section 8, we derive the combinatorial expression in Rb5.
Some examples of the identity Wy (q) = Wﬁ(q) are listed in Appendix B.

Acknowledgments. We wish to thank A. Aganagic, A. Klemm, M. Marinio, and
C. Vafa for their explanation of [1] in public lectures and private conversations. We
also wish to thank S. Katz and E. Diaconescu for helpful conversations. We thank
A. Klemm for writing a maple program which computes both Wj(q) and Wﬁ(q).
The first author is supported by NSF grant DMS-0200477 and DMS-0244550.

2. THE THEORY OF THE TOPOLOGICAL VERTEX

In this section, we give an overview of the theory of the topological vertex and
state the main results in this paper.

2.1. Gromov-Witten invariants of Calabi-Yau threefolds. We begin with
the Gromov-Witten invariants (of not necessarily connected domains) of a general
Calabi-Yau threefold Z, i.e., a smooth complex algebraic variety of dimension three
With C1 (Tz) =0. Let
M (Z,d)

be the moduli space of stable morphisms u : X — Z that have not necessarily
connected domains X, have 2x(Ox) = x and have fundamental classes f.([X]) =
d € Hy(Z;7Z). Tt is a Deligne-Mumford stack with a perfect obstruction theory
of virtual dimension zero. When M3 (Z,d) is proper (which is true for any d €
Hy(Z;7Z) when Z is projective), the perfect obstruction theory defines a virtual
fundamental 0-cycle, and the Gromov-Witten invariant is, by definition,

(2.1) deg[ M2 (Z, d)]¥" = / 1eqQ.
(M3 (Z.d)]vi
The topological vertex is an algorithm of computing Gromov-Witten invariants
of toric Calabi-Yau threefolds. Recall that a Calabi-Yau threefold Z is toric if it
contains the algebraic torus (C*)? as an open dense subset, and the action of (C*)3
on itself extends to Z. Note that toric Calabi-Yau threefolds are noncompact.

2.2. The traditional algorithm. Let Z be a smooth toric Calabi-Yau threefold.
The (C*)? action on Z induces a (C*)? action on the moduli space, and we can
apply virtual localization [11] to transform the degree on the left hand side of (2.1)
to an integral over the fixed loci of (C*)? or any subtorus of (C*)3.

For the case we are interested, the fixed loci can be described fairly easily. Under
very mild assumption on Z, one can specify a distinguished subtorus 7" C (C*)3
of rank 2 (see Section 4.1 for details). Let Tg = U(1)? be the maximal compact
subgroup of T. The geometry of Z', the union of 1-dimensional T orbit closures,
can be described by the planar trivalent graph I' which is the image of Z! under
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the moment map of the Tr-action on Z. Each vertex of I' corresponds to a T fixed
point of Z, and each edge of e € I' corresponds to an irreducible component C¢ of
Z'. Let E;(T") denote the set of edges e of I' such that C* is a projective line, and
let V(I') denote the set of vertices of I'.
Let
F3?(\) =Y A Xdeg[M3(Z,d)]"".
X
be the generating function of disconnected Gromov-Witten invariants of degree d in
all genera. Applying virtual localization, we obtain (see Section 7 for convention):

(2.2) F3Z(\) = S [T ol T v 65 00w)

Yeer; ) VelCl=d ecEi(T) veV(T)

where Gﬁ(/\; w) is a generating function of Hodge integrals defined in Section 3.2.
Hodge integrals can be computed recursively [29, 16, 9].

2.3. The algorithm of AKMYV. The topological vertex proposed by AKMV is
an algorithm of computing F7(\) for any toric Calabi-Yau threefold Z (as long
as it is defined). We have summarized the algorithm of AKMV as O1 — O3 at the
beginning of Section 1. Let Cjz(A;n) be the generating function of open Gromov-
Witten invariants described in O1, and let

Ca(A) = Cz(\;0)

be the topological vertex at the standard framing in [1]. In our notation, the gluing
formula in O2 reads

(23)  F37(N) = > [T pesorsigren2 1T Co ),

Yeer; ) VelCel=d ecEi(T) veV(I)
where ¢ = eV~1*. By (1.1) in O3,
(2.4) Ca(A) = Wilg),

where W (q) is defined in Section 3.3. Therefore, the algorithm gives the following
closed formula for F3Z(\):

(25) Fd.Z()\) = Z H (_1)(ne+1)‘ve|ql~iyene/2 H W,jv (A)
ey [VelCel=d ecEi(T) veV(T)

The right hand side of (2.5) is a finite sum involving representations of symmetric
groups. The numbers computed by the formula (2.5) agree with those computed
by the traditional algorithm in all the examples that have been checked.

2.4. Interpretation from relative Gromov-Witten theory. Upon a closer ex-
amination of the gluing formula (2.3), one sees that it is reminiscent to the gluing
formula of Gromov-Witten invariants [15, 19, 18]. Recall that given a smooth va-
riety W5 that degenerates (specializes) to a singular scheme Wy that is a union of
two smooth varieties Y7 and Y5 intersecting along a smooth divisor D, the Gromov-
Witten invariants of W3 can be computed using the relative Gromov-Witten invari-
ants of pairs (Y1, D) and (Y3, D):

(2.6) GW(W1) = GW™((Y1, D), e) + GW™((Y2, D), e).
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Here * is a bilinear operation and e stands for certain combinatoric data associated
to the splitting of stable maps to Wy into pairs of relative stable maps to (Y1, D) and
(Y2, D). Comparing with (2.3), should Cz(\) be interpreted as a generating function
of relative Gromov-Witten invariants, then (2.3) could be proved by applying the
gluing formula (2.6).

On the surface, one can not degenerate a toric Calabi-Yau threefold to a union
of relative Calabi-Yau threefolds so that the relative Gromov-Witten invariants of
each component is exactly the topological vertex proposed in [1]. On the other
hand, the formula (2.2) is the result of localization along the fixed loci

MU(Z,d)"s = M3 (Z,d)",

which is contained in the moduli space M3 (Z 1 d) of stable morphisms to Z* of
identical topological types. To incorporate the obstruction theory of M3 (Z,d), we

shall work with stable maps to the formal completion of Z along Z', denoted Z.
Namely, we consider the moduli of stable morphisms to Z of the given topological
type and show that its formal Gromov-Witten invariants—the ones computed using
the virtual localization formula—is equal to the Gromov-Witten invariants of Z;
we then degenerate Z into a formal scheme with normal crossing singularities, with
each irreducible component the formal completion of the three coordinate axes in
A3. Afterwards, we apply the gluing formula to this degeneration to derive a gluing
formula similar to that in [1], with each entry the formal relative Gromov-Witten
invariants of the indecomposable relative formal Calabi-Yau threefold.

2.5. Main results.

R1. The formal scheme Z and the T action on Z can be recovered from the trivalent
graph T' which is the image of Z' under the moment map of the Tk-action. We
introduce the notation of formal toric Calabi-Yau (FTCY) graphs which generalize
such graphs. By a procedure similar to recovering Z from T, to each FTCY graph
I" we associate a relative FTCY threefold which is a pair

Y = (Y, D)

where Y is a formal scheme with at most normal crossing singularities, Dis a
possibly disconnected smooth divisor in Y, and

det (Q%,(log ﬁ)) = Oy

A FTCY graph is regular if its associated relative FTCY threefolds is smooth.

When T comes from an honest toric Calabi-Yau threefold Z, we have Z = Y\D
The precise definitions of FTCY graphs and detailed construction of relative FTCY
threefolds are given in Section 4.

R2. Let

M3l 1)
be moduli space of relative stable morphisms u : X — Y that have not necessarily
connected domain X with 2y(Ox) = x, fundamental class (mm o u).[X] = d €
H,(Y';7), and ramification pattern /i along D, such that u(X)N D C L, where L
is a T-invariant divisor L of D. Here Yy, is an expanded target with a morphism
Tm : Ym — Y. (Please consult Section 5.1 for precise definitions.) We have
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Proposition 2.1. ./\/l' (YIECI,jL) is a separated formal Deligne-Mumford stack

with a perfect obstructwn theory of virtual dimension zero.

The restriction of the perfect obstruction theory [7! — 772] to the fixed points
set of the T-action on J\/l' (Ylfel, L) decomposes into the fixing part [T/ — T27]
and the moving part [’Tl m —> T2™]. The fixing part is a perfect obstruction theory
on the fixed points set J\/l; M(YIECI, ﬁ) which is a proper Deligne-Mumford stack,
so there is a virtual fundamental cycle

rel 7\T7vir ° rel T
M (Ve D)7 eA(M PRGN )
The formal relative Gromov- Witten invariants of Ylfel are defined by

1 el (T2m)

(2.7) FU (ug,uz) = ——
| Aut(7)] (M2 L (Ve E)T]vie eT(T1m)

X,d, i

€ Q(ua/uy)

where H7(pt; Q) = Q[uq, uz], and Aut(ii) is a finite group determined by fi. (See
Section 5.4 for the precise meaning of the symbol [ in this context.)
If ./\/l' H(Yﬁ“,ﬁ) were a proper Deligne-Mumford stack then its obstruction

theory Would define a virtual cycle

IM® o (L D)) € Ag(M2 4 (W, )
and
. 1 rel 7\7vir
F o (un,up) = Tame)] desMa LD eQ

would be a topological invariant independent of w1, us. Although ./\/l' (YFYCI, ﬁ) i
not a proper Deligne-Mumford stack, we will show that

Theorem 5.7. The function F F (ul,uQ) 1s independent of uy,us; hence is a

rational number depending only on F, X d and i

Therefore, we may write F'® F iz instead of F ol #(ul, us). These are new topolog-

ical invariants which determine Gromov—Wltten invariants of all toric Calabi-Yau
threefolds and contain more refined information. More precisely, if " is associated
to an honest toric Calabi-Yau threefold Z then

o’
2. Flas®
i (dy=d

where i, : Hy(Z';Z) — Ho(Z;Z) is the surjective homomorphism induced by the
inclusion i : Z' — Z, and ] corresponds to the condition that the image curve is
disjoint from the divisor D.

Theorem 5.7 also provides a definition of open Gromov-Witten invariants for
toric Calabi-Yau threefolds (in all genera, with any number of holes). The values
of the invariants F 'F I aeree with physicists’ prediction of the corresponding open

Gromov-Witten 1nvar1ants in all the cases that have been checked.
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Topological vertex. The graph of a topological vertex is determined by a triple of
integers n = (n1,n2,n3) and an ordered basis (wy, ws) of Z®2. Let T'nup, w, denote
such a graph. It turns out that

.Fn;wl,wg

depends only on the topological data n, not on the equivariant data (ws,ws), of
the FTCY graph Ty, w,, and d is determined by ji = (u!, u?, 1i%). Set

Fﬁ()\,n):( 1) . 1”1*1)|#|\/_ (i) 'F"ﬂn wz(/\ Il)
We derive the following expression by virtual locahzatlon:

Proposition 6.3.

(6.10)  Epin)= 3 GH(Awi,ws,ws) HZV@ (\/_( w;fl)x)

2
vt =]p?]

In Proposition 6.3, G:z()\; w1, wa, ws) is the generating function of three-partition
Hodge integrals defined in Section 3.2, w3 = —w; — wo, wg = wy, and @;7#()\) is
the generation function of double Hurwitz numbers defined in Section 3.4. Note
that the right hand side of (6.10) is valid for any complex numbers ny, na, ns.

The generating function C’,;(/\; n) which corresponds to the topological vertex at
the framing n = (n1, ng, n3) is related to I:",;(/\; n) by change of basis of partitions:

> Froun) [ e ().
lvi=[p'] i=1
We have
Proposition 6.5.

Ca(hn) = eV T mandA260 () 0).

Set Cz(\) = C();0), which corresponds to the topological vertex at the stan-
dard framing, and let ¢ = eV=1A. Then

Proposition 6.6. We have

~ —1(0 kK, Ll . )

(6.15)  Ca(y =g 2= 57 Govw) [ (),
i =] i=1

(6.16)  Ghxw)= > HX” g? E i T A ).

[vi=|pt] i=1

Equation (6.16) is a structure theorem of three-partition Hodge integrals.

R3. The formal Gromov-Witten invariants Fd:l;z()‘) satisfy a gluing formula analo-
gous to (2.6):
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Theorem 7.5 (gluing formula). Let I' be a FTCY graph, and let Ty and T'? be its
Jull smoothing and its full resolution, respectively. Let (d, [1) be an effective class of
I's. Then

o’ __ el _ ol
Fd:;(x)_ch(A)_ Z w5 ).

Gelr(d,ji)

The relative FTCY threefold Yﬁ;l is obtained by smoothing all the normal cross-

ing singularities of ¢!, and YILEI is the normalization of Y°!. Please consult Section
5 and Section 7 for the definitions involved in Theorem 7.5.

Rj. One can always degenerate a regular FTCY graph I' to a FTCY graph I such
that Ty = ' and I'? is a union of indecomposable graphs I'n., w,. Proposition
6.5 and the gluing formula (Theorem 7.5) allow us to express Fdill;()\) in terms of

Ca().
Proposition 7.4. Let I be a reqular FTCY gmph. Then
o’ _ (n +1)d —V—1k,en\/2
F = > 1

7eT(d,i) ecE(T)

[ Grey [ )

L(pv)
vEVs(T) eV (F) o (e)mw V=1 1 2w

Please consult Section 7 for the definitions involved in Proposition 7.4. Note
that Proposition 6.6 provides a link between (2.2) and Proposition 7.4.

R5. Tt remains to evaluate Cz(\). We derive the following closed formula for Cz()\):

Theorem 8.1. Let ji € P3. Then
Ca(A) = Wala)

where q¢ = V=12 and Wﬁ(q) is the combinatorial expression defined in Section 3.3.

Theorem 8.1 implies
(28) W#17#27#3 (q) = VN\}#27#37#1 (q) = W#37#17#2 (q)

because the cyclic symmetry is obvious from the definition of Cz(\). On the other
hand, it is hard to verify (2.8) directly from the definition of Wy(q) given in Section
3.3.

In Section 8, we will show that

(2.9) Wila) = Wil(q)

when one of the partitions is empty, where W;(q) is the combinatorial expression
given by AKMV (recall O3 from Section 1). We strongly believe that (2.9) holds
in general — A. Klemm has checked all the cases where |p’| < 6 by computer. We
list some examples in Appendix B.
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Conclusion. The above results give the following closed formula for the formal rel-
ative Gromov-Witten invariants of any smooth relative FTCY threefold.

Theorem 2.2.
TN = )0+ D)dE) =V TrentA 2
Fia®) = Z H
veT(d,ji) e€E(T)
Xoe (1)
- [T Wa(x [ 3w
L(p)
veVs(T) ’UGVl(F),’UO(e):rU V -1 ZNU

In particular, we have a closed formula for Gromov-Witten invariants of any
smooth toric Calabi-Yau threefold. We also obtain the following closed formula of
three-partition Hodge integrals.

Theorem 8.2 (Formula of three-partition Hodge integrals).

Grw) = 30 HXw ) AL Y )

[vi[=[pt| =1

3. DEFINITIONS AND PREVIOUS RESULTS

In this section, we recall some definitions and previous results, and introduce
some generating functions.

3.1. Partitions. Recall that a partition u of a nonnegative integer d is a sequence
of positive integers

po= (1 > po >+ > pp >0)
such that d = g1 + ...+ pp. We write p b= d or |u| = d, and call £(u) = h the length
of the partition. Let () denote the empty partition, the unique partition such that
0] = £(0) =

For each positive integer j, define

mj(p) = [{i: pi = J}.

| Aut(e)] = [ mj(a

The transpose of p is a partition ! defined by

Then

mi(ﬂt) = Hi — Hi+1-
Note that
| = |ul, (1) = p, L") =
A partition p corresponds to a conjugacy class in Sy, the permutation group of
d = |u| elements. Let z, be the cardinality of the centralizer of any element in this
conjugacy class. Then
= aul AU-t(M)lv

where a;, = p1 - - fg(p)-
Define
£(n)

Ky = Zm(ui —2i+1).
=1

Note that k,: = —k.
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Let P denote the set of partitions, and let
Pe=P—{0}, PL=P"—{0.0)}, P{=P"—{(0,0,0)}.
Given i = (ut, u2, pu®) € P3, define

3 3
() = 0", Aut(ji) = [ Aut(u).
=1 i=1

3.2. Three-partition Hodge integrals. Let ﬂgm denote the Deligne-Mumford
moduli stack of stable curves of genus g with n marked points. Let 7 : My 41 —
M, ,, be the universal curve, and let w, be the relative dualizing sheaf. The Hodge
bundle

E=mw,

is a rank g vector bundle over M, , whose fiber over [(C,x1,...,2,)] € My, is
HO(C, we). Let s; ¢ ﬂgm — ﬂg7n+1 denote the section of 7 which corresponds to
the i-th marked point, and let
L; = sfwx
be the line bundle over M, whose fiber over [(C,x1,...,2,)] € M, is the
cotangent line T, C' at the i-th marked point x;. A Hodge integral is an integral of
the form
/ z/z{l---z/zﬁf)\’fl---)\’;g
Mg

where v; = ¢1(L;) is the first Chern class of L;, and \; = ¢;(E) is the j-th Chern
class of the Hodge bundle.

Let wy,we, w3 be formal variables, and let wy = wy. Write w = (wq, we, w3).
For i = (u*, 2, i) € P, let

dp =0, d%=0(p"), & =0p")+ ().

i1 fi i1
Define
(3.1)
RGNS (A () —
G, (w) = (—y/—T)4) ﬁ iﬁ[) 120 (piwigs + aw;) / 3 A;(wi)wi(”) !
9. T ) ry | 1 ; .
| Aut(i)| i=1 j=1 (1 — 1)!w5ﬂ ' Mg ey i=1 Hj(£1)(wi(wi - Mji/id;ﬂ'))
where

Ay (u) = u? — Mud ™l (=1)9,.
We call Gy (W) a three-partition Hodge integral. We have the following cyclic
symmetry:
(3.2) Gyt 2 ps(wr,we,w3) = Gy 2 s 0 (e, w3, wi) = Gy s 2 (W3, wi, ws)
Note that
V—_lg(ﬁ)Ggyﬁ(w) € Q(wr, wae, w3)

is homogeneous of degree 0, so

Let
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Then ) 1
Gg7#11#21#3(7') = Gg,,uz,,u?’,,ul(_l — ;) = val"Swu'lvl"Q(T—_’_l)
Introduce variables A, p* = (pi,ph,...), i = 1,2,3. Given a partition p, define
p:b :p’i . .p%(u)
for i = 1,2, 3. In particular, pf,) = 1. Write
p=("0"0"), Pi=papp)s
Define generating functions

Ga(hw) = D NG, s(w)
g=0
Gipiw) = > Gu(\w)ps
AeP?
G*(hpsw) = exp(Gpiw)) =1+ > Gr(\w)pa
AEPY
Gh(hw) = S AXDGEs H(w)
XE€2Z,x<20(f1)
Ga(hT) = D NG, H(7)
g=0
GpiT) = Y. Ga(NT)ps
aeP?
G*(hpsT) = exp(GpiT) =1+ Y Gi(Ai7)ps
AP
Ghu(NT) = S ATXHGy (1)

XE2Z,x<2L(fi)

3.3. Representations of symmetric groups. Let x, denote the irreducible char-
acter of S}, indexed by v, and let x, (1) be the value of x, on the conjugacy class
determined by the partition p. Recall that the Schur functions are related to New-

ton functions by
Xu(v
s = 3 Xy

=l 7
where x = (z1, z9, . ..) are formal variables such that

pi(x) = o] + a5+

The Littlewood-Richardson coefficients ¢}, are given by
5,8, = Z oy Sn-
n

The coefficients ¢}},, are nonnegative integers. The skew Schur functions are defined

by
Sn/p = Z ClaSv-
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Definition 3.1.

W) s
B3 Wi —eet T P ] s
1<i<j<I(p) J g
where
[m] = ™/ —q~™/2.
(3.4) Waw(q) = ¢"PW, - 5,(Eu(g, 1)),
where "
Il o (e’
1+q”j ]t tn
(@) Jl;ll L+qt < ;Hi_l(ql_1)>
Ly W)t (W2 0% (9)
(35) Wi 2 s(q) = qﬁu2/2+n s/2 o (,u )t ,
S e W, (a)
where ,
nt ()t (1)
G = 2% 10n<p>
n
(36) V~Vp1 ,p27p3 (q)

—(k,1—2K 2— %k vt ! 3 —2K,+——5%§ 1
=g (12,23 "3)/2ZC(ul)tpchnl)tylCf]s(,ﬁ)tq( 2K, ——57) iy (Q)Z_an (1) X3 (200).
n

We have the following identities (see [33]):

(37) Wy,u,@(Q) = W@.,,u.,v(Q) = Wu,@.,u(‘]) = qnu/2wu,(v)t (Q)
(38) WH,V(Q) = Wl/.,,u(‘])-
(3.9) Wio(a) = Wa(a)-

3.4. Double Hurwitz numbers. Let pu', u~ be partitions of d. Let H® I
denote the weighted counts of Hurwitz covers of the sphere of the type (,u JT)
by possibly disconnected Riemann surfaces of Euler characteristic x. Define a
generating function

s (N = Z A X))

H o
X

H.
Xoptu—

(=x +€(ut) +(p=)

The following is a special case of the Burnside formula of Hurwitz numbers:

+ —
(3.10) :L+ #7(/\) _ Z en,,)\/2XU(/1’ ) X (1 )
7 lv|=d Bt P

Using the orthogonality of characters
Xu(P)xv(p)
3.11 S =6,
(311) > s,

it is straightforward to check that (3.10) implies the following two identities:

(3.12) 0 (M A) =) B (M)z®), (A)
lv|=d
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(3.13) R (1) = Ot

n
whp 2+

Equation (3.12) is a sum formula for double Hurwitz numbers, and Equation (3.13)
gives the initial values for the double Hurwitz numbers.
Introduce variables p™ = (p],p3,...), p~ = (p],py,...). For a partition x,

define
+_ + +
Dy = Puy " Prgy

Define a generating function
(o]
o NptpT) =14+ > O, (Nplp,
d=1|p*|=d

and differential operators

C* =) "(j+kpipf i, JkpT L i
; J 8J+k Z Tk ap 8pk

We have the following cut—and—join equations for double Hurwitz numbers:
8<I>‘
oA

Actually, ®*(\;p*,p~) is the unique solution to the cut-and-join equations (3.14)
with the initial value

(3.14) (O+ +JN)e° = (O* +J7)®

+ —
e (0ptp) =14 Y PuPu
peP+ e

4. RELATIVE FORMAL TORIC CALABI-YAU THREEFOLDS

In this section, we will introduce formal toric Calabi-Yau (FTCY) graphs, and
construct relative FTCY threefolds.

4.1. Toric Calabi-Yau threefolds. Let Z be a smooth toric Calabi-Yau three-
fold. Let Z! be the union of all one-dimensional (C*)3 orbit closures in Z, and let
ZY be the union of (C*)? fixed points. We assume that Z* is connected and Z° is
nonempty; under this mild assumption, there is a distinguished subtorus T' C (C*)3
defined as follows. Let p € Z° be a fixed point of the (C*)? action. Then (C*)? acts
on T,7Z and A3T,Z, where T,,Z is the tangent space of Z at p. The action of (C*)?
on the complex line A3T},Z gives an irreducible character a : (C*)? — C*. By the
Calabi-Yau condition and the connectedness of Z!, the character « is independent
of choice of the fixed point p. Define T' = Kera = (C*)2.
Let Tk = U(1)? be the maximal compact subgroup of T', and let

wiZ —
be the moment map of the Tr-action on Z, where g is the Lie algebra of Tg. Note
that ty, the dual of tg, is canonically isomorphic to A ®z R, where
Ar = Hom(T, C*) = 7%2
is the group of irreducible characters of T. The image of Z! under u is a planar
trivalent graph I'. Some examples are shown in Figure 1.

The map p induces a one-to-one correspondence between irreducible components
of Z' and edges of I', and also between T fixed points in Z and vertices of T
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=

“1)@BO(-1) =P O(-3) — P

FIGURE 1

p2

p; is identified with p)
FIGURE 2. Locally planar trivalent graphs

Moreover, the action of T on an irreducible component of Z! is determined by the
slope of the corresponding edge.

4.2. FTCY graphs. In this subsection, we will define formal toric Calabi-Yau
graphs, which are generalizations of planar trivalent graphs associated to toric
Calabi-Yau threefolds. For example, we will consider graphs which are only locally
planar (Figure 2).

Definition 4.1. A graph T consists of a set of oriented edges E°(T"), a set of
vertices V(T'), an orientation reversing map vev: E°(T') — E°(T'), an initial vertex
map vg:E°(T") — V(I') and a terminal vertex map vy : E°(T') — V(T'), that satisfy
(1) vev is a fized point free involution;
(2) both vy and vy are surjective and v1 = vy o tev.
We say T is weakly trivalent if [o~1(v)| <3 for v € V(T).

For simplicity, we will abbreviate tev(e) to —e. Note that then the equivalence
classes E(T') = E°(T")/{%1} is the set of edges of T" in the ordinary sense. We denote
by Vi(T'), Vo(T') and V3(T") the set of univalent, bivalent and trivalent vertices of T'.

Definition 4.2. A locally planar lattice graph is a weakly trivalent graph T together
with a position map

p: E°(T) — 792 — {0}
so that p(—e) = —p(e). We say T is a formal Calabi-Yau graph if in addition the
position map satisfies the following requirement (see Figure 3):

(1) p(E°(T)) C ZE2, where ZP2 is the set of primitive lattice points in Z9%;

pri’ pri

(2) for bivalent vertices v € Va(T') with vy (v) = {e1,ea}, p(er) = —p(e2);
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v,/ pler)
p(e)
v p(e2) p(es)
vy ' (v) = {e} vy ' (v) = {e1, ez} vy ' (v) = {e1,e2,e3}
FIGURE 3
ife) fler) <. plez)
e el S @2
p(e) pler) afe2)
FIGURE 4

(3) for trivalent vertices v € V3(T') with vy (v) = {e1,e2,e3}, any two vectors
in {p(e1),p(e2),p(e3)} form an integral basis of Z2, and
p(e1) +p(ez) +ples) = 0.
Let
Eip(T) = o7 (Vi(T) U Va(T))
A formal toric Calabi-Yau (FTCY) graph is a formal Calabi-Yau with a framing
map

f: By () — 2% — {0}
so that (see Figure /)
(1) p(e) Af(e) = ur Aug, where we fiz an ordered integral basis (ui,us) of Z9?;
(2) f(e1) +f(e2) = 0 if {e1, e}t = 07 (v) for some v € Va(T).
We say I is a regular FTCY graph if it has no bivalent vertex.
For later convenience, we introduce some notation. Given a FTCY graph, let
Bip =v; '(V3(D)), Eiy =07 (Vi(l) U Va(D)),
where i = 0,1. We will define
pi: Eip(D) = Z%2 — {0}, fi: Eip(T) — Z%* — {0}
for i =0,1, and 7 : E°(T") — Z (see Figures 5, 6, 7, 8).
(1) Given e € Ey,(I"), there exists a unique eg € E°(T") such that
vo(eo) = vo(e), ple) Ap(eo) = ur Aus.
Define po(e) = p(eo).
(2) Given e € Eq,(I), there exists a unique e; € E°(T") such that
Uo(el) = 01(6), p(e) /\p(el) = ui N\ us.

Define pi(e) = p(e1).
(3) Given e € Eyf(T), we have —e € Eyf(T'). Define fo(e) = —f(—e).
(4) Given e € E14(T), define fi(e) = f(e).
(5) Given e € E°(T"), define n® € Z as follows.
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= —fi(e)
p(=e) =—ple)
o
f1(e)
€ € Eop(I'), —e € F1p(I) e € Ep(I'), —e € Eoy(I)
FIGURE 5
po@T ’ p1(e) = po(e) + (1 —n®)p(e)
p(e)

p(—e) = —p(e
p1(—e) = —p(e) — po(e) po(—e) = —po(e) +n°p(e)
= po(—e) + (1 +n°)p(—e)

FIGURE 6. e,—e € E,,(I")

fo(e) f1(e) = fole) — np(e)
4 A
ple)
p(—e) = —p(e)
fi(—e) = —fole) ro .
= jo(—e) + np(—e) fo(—e) = —fo(e) + np(e)

FIGURE 7. e,—e € Ef4(I)

Po(e% A fi(e) = pole) —np(e)
p(e) |
p(—e) = —p(e)
pi(—e) = —p(e) —po(e) ¥ fo(—€) = —po(e) + n°p(e)

= fo(=€) + (1 + n)p(—e)

FIGURE 8. e € Epf(I'), —e € Eyp(T)

(a) € € Fyp(T) = Fop(T) N 1y (T). Then pi(€) = pole) + (1 — n)p(e)
(b) ¢ € Eyy(T) = Bog(T) N Ery(T). Then fi(e) = fo(e) — nplc)
(c) e € Epp(I') = Eos(I') N E1p(I). Then pi(e) = fo(e) + (1 —n)p(e).
(d) e€ Epf(l") = Eop(l") N E1¢(I'). Then fl (e) =pole) —n°p(e).

The map 7 : E°(I') — Z is given by e — n®

Note that pg, p1,fo,f1,7 are all determined by I". They satisfy the following
properties.

(1) For e € Eop(T'), we have p(e) + po(e) + p1(—e) = 0.
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) For e € Eq,(T), we have —p(e) + po(—e) + p1(e) = 0.
) For e € Eys(T), we have fo(e) + f1(—e) = 0.

) For e € Eq1;(T), we have f1(e) + fo(—e) = 0.

) For e € E°(T), we have 7i(—e) = —ii(e).

4.3. Operations on FTCY graphs. In this subsection, we define four operations
on FTCY graphs: smoothing, degeneration, normalization, and gluing.

Let T be a FTCY graph and let v € V5(T") be a bivalent vertex. The smoothing
of I" along v is a new graph obtained by combining the two edges e; and ey of
vy ' (v) a single edge.

Definition 4.3. The smoothing of T' along v € Va(T) is a graph T, that has
vertices V(I') — {v}, oriented edges E°(T') — {%ea}; its initial vertices by, terminal
vertices vy, position map p and framing map f are identical to those of T' except
61(61) = 01(62).

The reverse of the above construction is called a degeneration.

Definition 4.4. Let T be a FTCY graph and let e € E°(T') be an edge. We pick a
lattice point fo € Z%2 so that p(e) A fo = uy A uz. The degeneration of I' at e with
framing fo is a graph T'c;, whose edges are E°(I') U {xe1, Les} — {xe} and whose
vertices are V(I') U {vo}; its initial vertices vy, terminal vertices vy, position map
p and framing mapf are identical to those of I' except

60(61) = 00(6), 61(61) = 60(62) = v, 61(62) = 01(6),
Pler) = Ple) = p(e), fler) = fo, f(—e2) = —fo.

The next operation is the normalization of a graph at a bivalent vertex; and its
inverse operation.

Definition 4.5. Let I' be a FTCY graph and let v € Vo(I') be a bivalent vertex.
The normalization of T' at v is a graph T'V whose edges are the same as that of T
and whose vertices are V(I)U{vy, va} — {v}; its initial vertices vo, terminal vertices
vy, position map p and framing map f are identical to that of T' except

vi(e1) = v1, vi(e2) = v2
where e1 and ey are the two edges in Ul_l(v).
The reverse of the above operation is called gluing.

Definition 4.6. Let I' be a formal toric Calabi-Yau graph and let v1,vo € Vi(T")
be two univalent vertices of T. Let f; = f(e;), where {e;} = v *(v;). Suppose
pler) = —p(e2) and f1 = —f2. We then identify vi and vy to become a single vertex,
and keep the framing f(e;) = ;. The resulting graph TV*-2 is called the gluing of T
at v1 and vs.

Figure 9 shows examples of the above four operations.

It is straightforward to generalize smoothing and normalization to subset A of
Va(I'). Given A C Va(T), let T4 denote the smoothing of I' along A, and let '
denote the normalization of I along A. There are surjective maps

7a: ET) — E(y), 7 : V(4 = V(D).
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A

FIGURE 9

4.4. Relative FTCY threefolds. In this subsection we will introduce relative
formal toric Calabi-Yau threefolds.

A formal toric Calabi-Yau graph I" determines a formal relative Calabi-Yau three-
fold with a T-action, where T 2 (C*)2. It is a threefold Y, possibly with normal
crossing singularities, coupled with a relative divisor Dc }7, so that Ylfd = (Y, ﬁ)
is a formal relative Calabi-Yau threefold:

(4.1) N3Qy (log D) = Oy

The pair (Y, ﬁ) admits a T-action so that the action on A?’TPY is trivial for any
fixed point p. As a set, the scheme Y is a union of P’s, each associated to an edge
of T'; two P! intersect exactly when their associated edges share a common vertex;
the normal bundle to each P! in ¥ and the T-action on Y are dictated by the data
encoded in the graph I'.

In the following construction, we will use the notation introduced in Section 4.2.

4.4.1. Edges. Given e € E°(T'), let T acts on P! by
£X,Y] = [p(e) ()X, Y]
for t € T. Here we view p(e) as an element in
Ar = Hom(T, C*).

The two fixed points are go = [0,1] and ¢ = [1,0]. We construct a T-equivariant
line bundle L¢ — P! by specifying the degree and the T action on the fibers at the
two fixed points gop = [0, 1] and ¢; = [1, 0] (see Figures 6, 7, 8).

e degL¢ Lg L

Epp() n® =1 pole) pile)
Epp(T)  n®  fole) file)
Ep(T) n®—=1 fole) pie)
Eyr(T)  n®  pole) file)

Let 3(e) be the formal completion of the total space of L. @& L_. along the
zero section. The T-actions on L. and on L_. induce a T-action on X(e). By
construction, there is a T-isomorphism

(4.2) S(e) 2 B(—e)



A MATHEMATICAL THEORY OF THE TOPOLOGICAL VERTEX 19

that sends go € X(e) to g1 € ¥(—e) and sends the first summand L. in Np1 5 to
the second summand in Np1/5(_c)-
It is clear that

(4.3) N Q) = p*Opi(c),

where p:3(e) — P! is the projection, and

0, ee€ E,(T),
c= 1, ec Epf (1—‘) U Efp(l—‘),
2, ee€ Eff(l—‘).

4.4.2. Trivalent vertices. Given v € V3(T'), let vy '(v) = {e1,e2,e3}, where the
ordered is chosen such that p(e1) Ap(es) = us A ug. We define

Y (v) = Spec Clx1, x2, 3]
with a T-action defined via
t-x; = p(ei)(t)xi.

forteT.
To glue the formal scheme X(e;), X(e2) and X(e3), we need to introduce the
gluing morphisms

Yepw : B(v) — X(er).

First, we let 3(ey,) be the formal completion of ¥(ez) along gy € P'  X(er). (ex)
is a formal T-scheme and is T-isomorphic to the T-scheme

Spec Clyr, y2,y3]s  t-yi = pleiyr)(t)ys

such that Lgr, L, T,,P! are mapped to (Ca%l, (Caim, (Cai%, respectively. Here

we agree that ey13 = ey, for kK = 1,2, 3. The gluing morphism ., , is the composite
of

(4.4) Spec Clyr, ya, y3] — Sler) — S(ex)

with the T-isomorphism

$(v) = Spec Cllz1, x2, 23] — Spec Cly1, Y2, 3]

that is defined by y; — xj4;, where we agree that z;y3 = x; for i = 1,2, 3.
Using the morphisms ., ,, we can glue X(e1) and 3(ez) and then glue X(e3)
onto it via the cofiber products

S(er) —— B(en) [y Ble2)  Blez) —— Tler) [z Xe2) ) Z(es)

| [ I I

L) —— S(ea) () —— E(er) ) Ble2)

Since the gluing map v, , are T-equivalent, the T-actions on 3(ey) descend to
the glued scheme.
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4.4.3. Bivalent vertices. Next we glue ¥(e1) and S(e) in case {e1, e} = vy (v)
for some v € V5(I"). We have ey, ez € Eg¢(T'), and

fo(e1) +fole2) =0
Let X(v) be the formal T-scheme
Y(v) = Spec Clxy, 2], t-x; = fole;)(t)xs;
we let the gluing morphism v, , be the composite of (4.4) with the T-morphism
Spec C[x1, 2] — Spec Cly1, y2, 3]

that is defined via y3 — 0, y; and y2 map to x1 and o respectively in case k = 1
and to x5 and x; respectively in case k = 2. We can glue X(e;) and X(ez) along
Y (v) via the cofiber product as before.

4.4.4. Univalent vertices. Lastly, we consider the case vg(e) = v for some v € V4 (I).
Let X(v) be the formal T-scheme

Y(v) = SpecClxy, x2], t-x1 =fole)(t)z1, t-x2=F1(—€)(t)z2;

and define ¢, as 1., in Section 4.4.3. We let D" be the image divisor ¥, (X(v)) C
Y (e) and consider it as part of the relative divisor of the formal Calabi-Yau scheme
Yl we are constructing.

Let L(v) C ¥(v) be the divisor defined by x5 = 0, and let LV = 9, (L(v)) C D*.

4.4.5. Final step. Now it is standard to glue X(e), e € E°(T"), to form the scheme
Y. We first form the disjoint union
I =)
)

ecE°(T

because of (4.2), the orientation reversing map E°(I") — E°(T") defines a fixed point

free involution
T H Y(e) — H Y(e);
ec Eo(T) ec Eo(T)

we define Y be its quotient by 7. Next, for each trivalent vertex v of vy '(v) =
{e1,e2,e3}, we glue X(eq),B(e2), X(es) along X(v); for each bivalent vertex v of
v 1 (v) = {e1, ez}, we glue X(e;) and ¥(ez) along X(v). We denote by Y the result-
ing scheme after completing all the gluing associated to all trivalent and bivalent
vertices. The T-action on each (e) descends to a T-action on Y. Finally, for each
univalent vertex v with e = vy ! (v), we let DY C ¥(e) be the divisor defined in
Section 4.4.4. The union of all such D? form a divisor D that is the relative divisor
of Y. Since D is invariant under T', the pair ygel = (Y, D) is a T-equivariant formal
scheme. Because of (4.3), we have

/\39Y (log f)) = OY;

hence Y3! = (Y, D) is a formal toric Calabi-Yau scheme.

Following the construction, the scheme Ylfel is smooth away from the images
Yen(X(v)) associated to bivalent vertices v, and has normal crossing singularities
there. So YIECI is smooth iff I" is a regular. The relative divisor D is the union of
smooth divisor D? indexed by v € Vp(I'). Within each divisor D? there is a divisor
LY ¢ DV defined as in Section 4.4.4.
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For later convenience, we introduce some notation. Let € denote the equivalence
class {e, —e} in E(T), and let C® denote the projective line in ¥ coming from the
P! in ¥(e). For v € Vi(I), let 2V denote the point in D” coming from the closed
point go in X(e), where vg(e) = v.

5. DEFINITION OF FORMAL RELATIVE GROMOV-WITTEN INVARIANTS

In this section, we will define relative Gromov-Witten invariants of relative
FTCY threefolds; the case when the relative FTCY threefold is indecomposable
gives the mathematical definition of topological vertex.

5.1. MOEiuli spaces of relative stable morphisms. Let ' be a FTCY graph
and let YE! = (Y, D) be its associated scheme. The degrees and the ramification

patterns of relative stable morphisms to }71501 are characterized by effective classes
of I':

Definition 5.1. Let I' be a FTCY graph. An effective class of I' is a pair of
functions d: E(I') — Z>o and [i:V1(T') — P that satisfy

(1) 1ji0)] = die) if v € VA(T) and v1(e) = v;

(2) d(ey) = d(es) if v € Va(T') and vy ' (v) = {e1,ea}.
We write p® for ji(v), d for d(e).

To show that an effective class does characterize a relative stable morphism, a
quick review of its definition is in order.
Recall that an ordinary relative morphism u to (Y, ﬁ) consists of
e a possibly disconnected nodal curve X
e distinct smooth points {q} | v € Vo(I'),1 < j < £(u”)} in X such that each
connected component of X contains at least one of these points,
e a morphism u: X — Y
so that
o u (DY) = Zf(:“;) 13 g5 for some positive integers pu¥;
e u is pre-deformable along the singular loci

I =

veVa(T)

of Y, e, if v € Va(T') and vyt (v) = {e1, ez} , then u~'(X(v)) consists of
nodes of X, and for each y € u™'(3(v)), u|y-1(x(e;)) and wly-1(sye,)) have
the same contact order to X(v) at y;

e v coupled with the marked points ¢} is a stable morphism in the ordinary
sense.

Unless otherwise specified, all the stable morphisms in this paper are with not
necessarily connected domain.
Since

(5.1) w(X]) = > de)cr].
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Jen) fe2) Jen)

vo v v U

el e €n
FIGURE 10. A flat chain of length n
The integers p form a partition

H = (ui)v a,uz(uv))
and the map i: V4 (') — P is

fi(v) = p".
With this definition, the requirement (1) in Definition 5.1 follows from (5.1) and

(2) holds since u is pre-deformable.
To define relative stable morphisms to Ylfe}, we need to work with the expanded
schemes of Y£' introduced in [17]. In the case studied, they are the associated

formal schemes of the expanded graphs of T".

Definition 5.2. Let ' be a FTCY graph. A flat chain of length n in ' is a subgraph
I' C T that has n edges ey, - - -, *e,, n+1 univalent or bivalent vertices vg, - -+ , v,
with identical framings § so that

vo(e1) = vo; vi(es) =vo(eig1) =vi i =1,---,n; vi(en) = vp,

and that all p(e;) are identical.

Definition 5.3. A contraction of a FTCY graph I' along a flat chain I' T is the
graph after eliminating all edges and bivalent vertices of I' from I, identifying the
univalent vertices of I' while keeping their framings unchanged.

Given a FTCY graph I' and a function
m: V() U V() — Z>,

the expanded graph I'y, is obtained by replacing each v € V1 (T") U V(T") by a flat
chain T'?,, of length m¥ = m(v) with framings +f(e), where v; (¢) = v. In particular
T'o =T, where 0(v) = 0 for all v € Vi(I') U V2(T'). The original graph T' can be
recovered by contracting I'm, along the flat chains

{0, [ve V() UVa(I)}.

We now study their associated Calabi-Yau scheme. We denote by (Y, ﬁ) the
associated Calabi-Yau scheme of I" and by (Ym, ﬁm) that of I',. We recover the
original scheme Y by shrinking the irreducible components of Y associated to the
flat chains that are contracted. This way we define a projection

WmZYm—>Y.

We define a relative automorphism of Y to be an automorphism of Yo that is also
a Y-morphism; an automorphism of a relative morphism u: X — (Yin, Dm) is a
pair of a relative automorphism o of Yy, and an automorphism h of X so that

uoh=ocou.
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Definition 5.4. A relative morphism to Ylfd is an ordinary relative morphism to
m>, Dm) for some m; it is stable if its automorphism group is finite.
Vn, D it is stable if its aut hism g is finit

Note that an effective class (CZ: i) of an FTCY graph I" can also be viewed as an
effective class of any degeneration of I', and in particular, an effective class of I'y,.
We fix a FTCY graph I', an effective class (cf, i), and an even integer x. We then
form the moduli space M;((YIECI, d, ii) of all stable relative morphisms u to YIECI that
satisfy

e x(Ox) = x/2, where X is the domain curve of u;
e the associated effective class of u is (d, 7).

Since Y is a formal Calabi-Yau threefold with possibly normal crossing singular-
ity and smooth singular loci, the moduli space M;((YIECI, cf, ii) is a formal Deligne-
Mumford stack with a perfect obstruction theory [17, 18].

Lemma 5.5. The virtual dimension of M;(Yﬁd, d, i) is 2vewi(r) Lu?).-
Proof. The proof is straightforward and will be omitted. O

5.2. Equivariant degeneration. Let T act on P! x Al by
t- ([Xo, X1],s) = ([p(t) X0, X1], 5),

where p € Ar = Hom(T,C*). Let 2 be the blowup of P! x Al at (]0,1],0). The
T-action on P! x Al can be lifted to 2) such that the projection 9 — P x Al is
T-equivariant; composition with the projection P! x Al — Al gives a T-equivariant
family of curves
P — A

such that 9, = P! for s # 0 and 9o = P U P

The above construction can be generalized as follows. Let I' be a FTCY graph
and let

Vo) ={v1,...,0n}
Then we have a T-equivariant family
(5.2) Y — A"
such that

) ) ~ yrrel ST ~ vrrel
Vo = y(O ..... 0) = Yr and Vs = y(sl ----- $n) = TT(y;|s;20}

Recall that I'4 is the smoothing of I" along A C V2(T") (Section 4.3). The T-action
A™ is trivial, and the T-action on each fiber is consistent with the one described in
Section 4.

By the construction in [18], there is a T-equivariant family

(5.3) MLV, d, i) — A"
such that ./\/l;(()}, d, [i)s = M;(()A/S, d, 7). In particular,
M (V. d. o = M3 (VE, d. ).
The total space ./\/l;c(j),da7 i) is a formal Deligne-Mumford stack with a perfect
obstruction theory [T! — T?] of virtual dimension

ST et + Va(D)l

veVy(T)
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For each v € V5(T") there is line bundle LY over M;(()},cf,ﬁ) with a section s’ :
MY, d, i) — L" such that
MV d. i) = M3, d; o
is the zero locus
{s* =0|ve @)} c MU, dfi).
The pair (LY, sV) corresponds to (Lg,rg) in [18, Section 3].

5.3. Perfect obstruction theory. Let I' be a FTCY graph, and let (cf, i) be
an effective class of I'. We briefly describe the perfect obstruction theory on
MS(YE d, ji) constructed in [18].

Let M3 (Y, d, ji) — AV2(D1[TT — T?], and {L* | v € V3(I')} be defined as in
Section 5.2. Let [7! — T?] be the perfect obstruction theory on M;(Yﬁel, d, i).
Let u : (X,q) — (Ym,Dm) represent a point in M;(f’ﬁel,ci:ﬁ) C M;((j)ud:ﬁ)?
where

a={gj [veW(),1 <j<L(un)}
We have the following exact sequence of vector spaces at u:
(5.4) 0—-7!—T. - @ LY — 772 -T2 0.
veVa(T)
We will describe T}, T2, and LY explicitly. When T is a regular FTCY graph, i.e.,
Vo(T') = 0, the line bundles LV do not arise, and M;((J}, d, i) = MY, d, [i).

We first introduce some notation. Given m : V;(T') U Va(T) — Zsg, let T'%,, be

the flat chain of length m” = m(v) associated to v € V(") U V(T"), and let

V(ITy) ={0,..., 0.},
where 0., € V1(T'm) if v € V4 (T).

Let v € Vi(I') and 0 <1 <m" — 1, or let v € V5(T') and 0 <1 < m". We define
a line bundle LY on the divisor DY = %(7;) in Y by

Li = Npusie,) @ Npp rsier)

where vy 1(77) = {e,, ¢, }. Note that LY is a trivial line bundle on D}.
With the above notation, we have

m”

(5.5) L, = @ H (D}, L}).
1=0
The tangent space T and the obstruction space T2 to M;(()A), d, fi) at the moduli
point
[u: (X,q) — (Ym, Dm)]

are given by the following two exact sequences:
(5.6) 0 — Ext®(Qx(Rq), Ox) — H(D*) — T}

' — Ext'(Qx(Rq),O0x) — H'(D®*) - T2 —0

(5.7) 0 — H° <X,u* (Qym(logbm))v)—»HO(D')
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m¥—1 mv
- D D mme P PHR?
veVy (') =0 veVa(T") 1=0

— H (X, u* (Qym(logf)m))v> — H'(D*)

m¥—1 m?
- P P HR"Me P PHLR) -0
veVy(T) 1=0 veVa(T) 1=0
where
o)
Rq = Z Z q_;)v
veVi(T') j=1
(5.8)
HLRP) = @ Tyu™ (S(e)T; (u ' (5(e})) = CH o5 (07) = {ew, €}
geu1(D})
(59) HL(RY*) = HO(D}, L™ | HO(D}. L),

and n; is the number of nodes over ﬁ}’ In (5.9),
HO(Dy, L) — H°(Dy, L§)®"
is the diagonal embedding.

We refer the reader to [18] for the definitions of H?(D®) and the maps between
terms in (5.6), (5.7).

5.4. Formal relative Gromov-Witten invariants. Usually, the relative Gromov-
Witten invariants are defined as integrations of the pull back classes from the target
and the relative divisor. In the case studied, the analogue is to integrate a total
degree 2 Zvevl(r) £(u?) class from the relative divisor D. The class we choose is

the product of the “Poincaré dual” of the divisor L' c D”, one for each marked
point g;. Equivalently, we consider the moduli space

M3 (5 L) = { (. X {ah) € MY 4o ) | ula)) € L)

X

Its virtual dimension is zero. More precisely, let [71 — T?2] be the perfect obstruc-

tion theory on M; qﬁ(ffﬁel,ﬁ), and let [T' — 72| be the perfection obstruction
theory on M;((Ylfd, cf, ). Given a moduli point

(X, %) = (Vo Din)] € M2 5 (3, £) € M3, ),
we have

(1*)
(5.10) T -TI=T1 -1~ @ DWipua
veVi (') j=1
as virtual vector spaces.
We now define the formal relative Gromov-Witten invariants of YIECI by applying
the virtual localization to the moduli scheme M; Czﬁ(f/lf"l, ﬁ) We use the equivari-
ant intersection theory developed in [7] and the localization in [8, 11].
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Since Y2 is toric, the moduli space ./\/l‘ (Yrml, L) and its obstruction theory

are T-equivariant. We consider the fixed 1001 of the T-action on J\/l (YIECI, ﬁ)

rel 7
Mx7 du(Y )T,
Its coarse moduli space is projective. The virtual localization is an integration of
the quotient equivariant Euler classes. When [u] varies in M, the vector spaces
7.} and 7.7 form two vector bundles. We denoted them by 7' and 72. Since the
obstruction theory are T-equivariant, both 7% are T-equivariant. We let 7%/ and
T%™ be the fixed and the moving parts of 7¢. Since fixed part 7%7 induces a

perfect obstruction theory of /\/l' (Ylfd, f/)T, it defines a virtual cycle
[M (Yrel i/) ]v1r c A, (M (Yrel i/) )7

where A, (./\/l' (YIECI, fL)T) is the Chow group with rational coefficients.

The perfect obstruct1on theory [74/ — T?2/] together with the trivial T-action
defines a T-equivariant virtual cycle

[M (Yrel i/) ]Ver EAT(M (Yrel i/)T)

x,d, i
Since T' acts on ./\/l' n(YIECI, L)T trivially, we have
(5.11) AT(M® o (VD)) =AM 5 (V1) © Ag
where

Ar = Hom(T,C*) = AT (pt) = Q[uy, us).
Under the isomorphism (5.11), we have

[M (Y'lrel7 i/) ]v1r,T _ [M (Y'lrel7 i/)]vir ®1.

X,d

The moving part 7™ is the virtual normal bundles of ./\/l' (le L)T. Let
eT(TH™) € Ap (M ; (Y L))

be the T-equivariant Euler class of T%™ where A (J\/l' (Ylfel,L) ) is the T-

equivariant operational Chow group (see [7, Section 2. 6]) For i=1,2, el(THm)
lies in the subring

ATMS, 5 (Yr Ve, L)T) @ Qlua, ug] C Ap(MS, ; (Yrel L")
and is invertible in
A (M;)djﬁ(ylrdv i’)T) ® Q[ulv u2] C AT(M (Yrelv A)T) ® Q[uh U'Q]m

where Q[u1, uz|m is Q[u1, us] localized at the ideal m = (uq, usg).
For later convenience, we introduce some notation. Let X be a Deligne-Mumford
stack a T-action, and let XT be the T-fixed points. Recall that

(5.12)  AT(X) @ Qluy, ua)m = AT(XT) @ Quy, uz)m = Au(XT) @ Qluy, uz)m
The degree of a zero cycle defines a map deg : Ag(X7T) — Q. We define
deg,, : Ag(X") ® Qluy, ua]m — Q[us, uglm
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by
deg(a)b d =0,

“‘X’bH{o d#0.

This gives a ring homomorphism

degm : Az(X) ® Q[ulaUQ]m = A*(XT) ® Q[ULUQ]m - Q[ulaUQ]m
Given ¢ € A%(X) ® Qu1, uz)m and o € AT (X) ® Q[uq, uz]m, define

/ ¢ =deg,(cNa) € Qui, us)m

Following the lead of the virtual localization formula [11], we define

1 eT(Tl’m)
|Aut( )| Me Yrel)i)T]vir,T eT(T2,m)

Eﬂ

(513) F;Z#(ul,UQ)

where we view [./\/l;< Jﬁ(YIECI, L)T) as an element in AT (./\/l; Jﬂ(ffgd, L)TY@Q[u1, ts)m
Note that h -
eT(Tl,m)

erm VG O DYTIT € (AT MG (0 D)) @ Qlus el )

where (AI(M; Jﬁ(ffﬁel, 0)7T) @ Qui, ug]m)o is the degree zero part of the graded

ring A*T(M;yd:ﬂ(f/lfd, L)7) @ Q[u1, ug)m. Therefore,
Fey (u1,u2) € (Qlua, uz)m)” = Qua/ua)

where (Q[u1, uz]m)° is the degree zero part of the graded ring Q[u1, ua)m

Remark 5.6. For our purpose of defining F'F (ul,ug) we may consider the

equivariant Borel-Moore homology HI' (M) = HT]R (M) instead of the equivariant
Chow group AT (M), and consider the equivariant cohomology H; (M) = Hy, (M)
instead of the equivariant operational Chow group A% (M), where M is any of the
moduli spaces involved in the above discussions.

If ./\/l' H(Yﬁ“,ﬁ) were a proper Deligne-Mumford stack then its obstruction
theory Would define a virtual cycle

(5.14) M (Ve D) € Ay (M e, L))

and

1 . .
d Mo L YrCl,L vir c
|A t( )| eg[ X,d,,u( I )] Q
would be a topological invariant independent of uy,us. However, (5.14) does not
exist. Nevertheless, we will show that

P ) =

Theorem 5.7. The function F'F (ul,ug) is independent of uy,us; hence is a
rational number depending only on F X d and i

In Section 6 and Section 7, we will reduce the invariance of F'F (ul, uz) (The-

orem 5.7) to the invariance of F #(ul,uQ) for a special topologlcal vertex I'°
(Theorem 5.9).



28 JUN LI, CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

F1GURE 12. The graph of a topological vertex

Definition 5.8. A topological vertex is a FTCY graph that has one trivalent vertex
and three univalent vertices.

The topological vertex I' (see Figure 11) is the one whose three edges e1, e and
es share vy as their initial vertices and have position vectors

uy, o and uz = —uy — us
and have framings

fle1) = u2, f(e2) =us and f(es) = u1.

Theorem 5.9. Let I'Y be the topological vertex defined, let (d_’7 i) be an effective class
of T9, and let x be an even integer. Then the formal Gromov- Witten invariant
ol
Fx,tf,ﬁ(ul’ UQ) S Q(ug/ul)
is a constant function in ua/u;.

The proof of Theorem 5.9 will be given in Appendix A.

6. TOPOLOGICAL VERTEX, HODGE INTEGRALS AND DOUBLE HURWITZ NUMBERS
Let I'nip, w, be the FTCY in Figure 12, where
fi =was —nqwi, fo=ws—nows, f3=w —ngws, wz=—wi— Wy,

and n = (ny,n2,n3) € ZP3. Any topological vertex is of this form.
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In this section, we will compute

Ty
(6.1) F? 2(n; w1, we) = ;d:ﬁl ? (w1, u2)

To simplify the notation, we will fix n = (n1,ne,n3) and (wy,ws) and write T’
instead of I'nw, ws -

6.1. Torus fixed points and label notation. In this subsection, we describe
the T-fixed points in M3 (') = M; Jﬁ(Yﬁel, L), and introduce the label notation.
Each label corresponds a disjoint union of connected components of
° T ° Ti
Mxﬂ(r) _Mx,ﬁ(F) Rv

or equivalently, a collection of graphs in graph notation.

Let Yl = (Y, D) be the FTCY associated to I', and let

D'=Dv, C'=C"

fori=1,2,3.

Given o

u: (X,q) — V3 = (YVim, D)
which represents a point in J\/l;(_’ﬂ(l")T, let @ = mmou : X — Y£ where mp, :
Yin — Y be the projection defined in Section 5.1. Then @(X) C C'UC2UC3. Let
2% and 2% be the two T fixed points on C?, and let
Vi=a"1(z%

for i = 0,1,2,3. Let E* be the closure of 4~ (C%\ {29, 2%}) for i = 1,2,3. Then E*
is a union of projective lines, and u|g: : E* — C is a degree d' = || cover fully
ramified over 20 and 2%

Define o ‘

P'(m') = mp,' (2")

which is a point if m? = 0, and is a chain of m® copies of P! if m? > 0.

Fori=1,2,3, let

@' =uly: V' = Pi(m'),

' =ulg: E' — C.

The degrees of @’ restricted to connected components of E? determine a partition
vt of d'.

For i =0,1,2,3, let Let V{,...,V}, be the connected components of V*, and let
g be the arithmetic genus of V;'. (We define g% = 0 if V} is a point.) Define

ki

X=) (2 - 2g)).

j=1

Then
3 . 3 .
=Y X2 M) = —x
i=0 i=1
Note that x* < 2min{l(u?), £(v*)} for i = 1,2,3, so
X+ )+ L(pT) 2 0

and the equality holds if and only if m’ = 0. In this case, we have v' =y,
X' = 20(u").
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For each i € {1,2,3}, ‘there are two cases:
Case 1: m" = 0. Then u is a constant map from ¢(u*) points to p’.
Case 2: m' > 0. Then 4’ represents a point in

TPl i x
M (P vt ut)//Cr.

We refer to [23, Section 5] for the definitions of H; (P, v, 1)/ /C* and the target v
classes 1%, 9>,

Definition 6.1. An admissible label of M3, +(I') is a pair (X, V) such that

(1) x= (x x; X2, x%), where x* € 27Z.
(2

) 7= (v, 02,13, where v is a partition such that |vt| = |u'].
(3) X° <23, ().
4) x* <2m1n{€( H, 04} fori=1,2,3.
(5) = X0 X +2X, L) = —x.

Let G, (') denote the set of all admissible labels of M3, ;(T').

For a nonnegative integer g and a positive integer h, let M, , be the moduli
space of stable curves of genus g with h marked points. M, j, is empty for (g, h) =
(0,1),(0,2), but we will assume that Mg ; and My 2 exist and satisfy

fotm - @
ﬂo,ll_dw d?

1 1
/mo,z (1= o) (1 — porpa) 1+ pio

for simplicity of notation. Such an assumption will give the correct final results.
For a nonnegative integer g and a positive integer h, let /\/l ., be the moduli of
possibly disconnected stable curves C' with h marked points Such that

o If Cy,...,C} are connected components of C, and g; is the arithmetic genus
of C;, then

k
> (2-2g) = x.
i=1
e Each connected component contains at least one marked point.

The connected components of H; 5, are of the form

M917h1 XX Mgkﬁhk'

where
k k

d2-29)=x. Y hi=h

i=1 i=1
The restriction of the Hodge bundle E — M; 5, to the above connected component
is the direct sum of the Hodge bundles on each factor, and

k
AY(u) =[] Ay, (w)
i=1
We define ;
ﬂ)z v = Hm;’,ﬁv
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where
—0 —e
Mz = Myous)
My = {{pt}v —x'+ L) + L) = 0
X,V A 1,4 4 * 7 i i
x My (P10, i)/ /T, =+ 6) + £") > 0

For each (Y, %) € G, ;(I'), there is a morphism

iz Mgz — M3 (D)7,

whose image Fy 7 is a union of connected components of M}, ﬁ(I‘)T.

The morphism iy induces an isomorphism

where

if —x" 4+ £(v") + £(p') =0, and

2w
1— H Ly — Aiiyﬁ — Aut(v') — 1
j=1
if —x* 4+ £(v%) + £(p?) > 0.
The fixed points set J\/l;(_ﬂ(l")T is a disjoint union of

{Feo | (X, 9) € G5 i)}
Remark 6.2. There are two perfect obstruction theories on Fy z: one is the fizing
part [TY — T27F] of the restriction of the perfect obstruction theory on M; (T);
the other comes from the perfect obstruction theory on the moduli spaces ﬂ;075(,7)
and m;l (P, vt ut)//C*. It is straightforward to check that they coincide.

6.2. Contribution from each label. Let w3 = —w; — wa, wy = wi. We view w;
and f; as elements in

Zuy & Zuy = Ar = HE(pt, Q).
Recall that Hi(pt; Q) = Q[u1,u2]. The results of localization calculations will
involve rational functions of w; and f; which are elements in Q(ug,u2).
If mé > 0, let 4?42 denote the target 1 class of ﬂ;)ﬁ. Let N%ig denote the

virtual bundle on My 7 which is the pull back of 71™ — 7™ under ig ;.
With the above notation and explicit description of [T1 — 72] in Section 5.3,
calculations similar to those in [22, Appenix A] show that

3 3

1
W}({fg) :1_[14117L HAeiu

=0 =1
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where

A = ﬁ a,ﬂAV(wi)wf(D)il
’ i T (wi (w; — vigh))

Au = 1 X )+ L) =0
) f X )+’ . | |
e wo X ) + ) > 0
2w
A . = ( )‘VII”Z +é(U) ‘VII H Ha 1 w“rly +awz)
(’/ —1)'w -
Define
1 ( )wf(u) 1
(6.2) Vx,g(wl,MQ,wg):f/_
L(v)
j=1 ( Vi — 1).:17 J
3
(o4 G3 (w1, wy,ws) = (—V/=1)" DV, 5(wy, wa, ws) [ [ Evi (wig1, wi)
i=1
C(x+tw) + o
6.5 H® v, z/] )t
(6.5) Xl | Aut (v )XAut ,u| ‘o Vu)//((C*)]v:r( )

It is known that HY , , coincides with disconnected double Hurwitz numbers
defined in Section 3.4. See [23, Section 5] for a derivation. Note that (6.4) is
consistent with the definition in Section 3.2.

We have

Ii717(n; wy, w2)
_ / L
[Fs. ,]vir er (NYiE)

e 1|A |/ < o]vir €T NX‘E)
IAut(u)l(—l)Zizl("i_l)'“'(— —D OOV 0 (w1, w2, w)

V-1
£ ) X)) e
V-1

3
. h . . i —\/ =1 Xtvtpt -
EEU (wzauh-‘rl)zu ( V :[u)Z (—XZ +€(y1) —|—€(‘u1))'

_1)5(;7)@;(0717(1”1, wa, ’LU3)

3 , =X ) He, . .
Wi+1 PaRAN
Ilz,, vV—=1{(n, — —— - —.
Pl ( ( w; )) (=X +£(v") + £(p"))!

= | Aut(@)|(—1)X = =Dl
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6.3. Sum over labels. We have

1
FY 2(nywi,wp) = Z I p(nywi, wo).
[ Aut(j7)| .5 ()

Define generation functions

(6.6) Frumwy,wy) = Y AR (niwy,w,)
X€2Z,x<l(ji)

(6.7) FE(/\§n;w1,w2) (— 1)21 (=Dl /T F~()\ n; wy, ws)

Then

(6.8)

- . o Wit
(5w, ws) Z GH(A\ wr, wa, w3 HZW(I) (V ( T w3 )A)’

lvi=[p?]

where G7(A; w1, w2, ws) is defined as in Section 3.2, and @3 ,()) is defined as in
Section 3.4.
Equations (6.8), (3.12), and (3.13) imply that

(6.9) F (A m; wy, we) Z F~ (A0, w1, wo Hz,,lfbw \/ 1n; )

v =]p?]
By Theorem 5.9,

F2 (X 05wy, we) = Z/\*erl( )FoF (w17w2)
X

does not depend on wy, wa. So by (6.7) and (6.9), F3(A;n; w1, w2) and Fﬂ'»(/\; n; wy, wa)
do not depend on wy,ws. From now on, we will write

F2(Ain), F2(\in)

instead of Fl;()\;n;wl,wg), Fl;(/\;n; w1, ws). To summarize, for each ji € P} and
each n € Z3, we have defined an generating function F 7(A;n) which can be ex-
pressed in terms of Hodge integrals and double Hurwitz numbers as follows.

Proposition 6.3.

3
e (\:n) = *(\; o (=T, — Lt
(6.10) ﬁ()\,n) = Z GU()\,wl,wg,wg)Hz,ﬂfﬁylw < 1 <n1 " > /\) ,

vt = i=1 '

Proposition 6.3 and the sum formula (3.12) of double Hurwitz numbers imply:

Corollary 6.4.

3
(6.11) Fram) = > 30 [[2i® 0 (V=1ni))

v =[pt] =1

Note that (6.11) is valid for any three complex numbers n1, na, ns.
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6.4. Representation basis. The framing dependence (6.11) is particularly simple
in the representation basis used in [1]. Define C,(A;n) by

3
(6.12) Cahm) = > Fs(sm) [ xu (v
i=1

lvil=Ipn’|

which is equivalent to

(6.13) = Y G H Xot

vt |=[n|
Then (6.11) is equivalent to
Proposition 6.5.
(6.14) Sa(Am) = eV I ma A2 60 () 0).

Define Cz(\) = Cz();0), and let ¢ = V=™, Then (6.12), (6.10), and the
Burnside formula (3.10) of double Hurwitz numbers imply

Proposition 6.6. We have
3
~ CL(yB g Wit . i
(6.15) Ci(N) =q¢ 2 =) g Go(\;w) | |XH1'(I/ ).

vt |= i i=1

(6.16) anw) = Y HX'” ) AELim S A .

[V =|pt] i=1

7. GLUING FORMULAE OF FORMAL RELATIVE GROMOV-WITTEN INVARIANTS

In this section, we will calculate

(7.1) Fe (w1 uz) € Quz/us)

where I' is a FTCY graph, and (d, i) is an effective class of T'. We will reduce
the invariance of F;' i (Theorem 5.7) to the invariance of the topological vertex

at the standard framing (Theorem 5.9). We will derive gluing formulae for such
invariants.

7.1. Torus fixed points and label notation. In this subsection, we describe the
T-fixed points in ./\/l' (YIECI, L), and introduce the label notation.

Given a morphlsm
u: (X,q) — (Ym, Dm)
which represents a point in M*® - i (le )T, let & = mmou: X — Y, as before.

Then
U c°
ecE(T)
where C€ is defined as in Section 4.4.
Let z¥ be the T fixed point associated to v € V(I'), as in Section 4.4, and let

VU =aml(2).
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Let E° be the closure of @~ 1(C¢\ {z°0(¢) 2°1(&)1) for ¢ = {e, —e} € E(T'). Then
E? is a union of projective lines, and u|ge : E¢ — C€ is a degree d(&) cover fully
ramified over vg(e) and vy (e).

For v € V4 (T") U V5(T"), define

P (m®) = mok (V)
which is a point if m? = 0, and is a chain of m? copies of P! if m¥ > 0. Let
@’ = ulye : VY — P(m").
For € € E(T"), define
u® =u|ge : B¢ — C°.

The degrees of u° restricted to connected components of E¢ determine a partition
ve =v~°¢ of d(e).
For v € V(I'), let V¥, ..., V}% be the connected components of V', and let gj be

the arithmetic genus of V. (We define gj = 0 if V" is a point.) Define

kU
X' = (2—2g)).

j=1

Then
B SR S .
veV (T') ecE°(T")
Given v € V4 (T) with v;*(v) = {e}, we have x¥ < 2min{f(v¢), £(1")}, so

(7.2) ' =x"+L0°)+ L) >0

and the equality holds if and only if m” = 0. In this case, we have v¢ = u",

Xx¥ = 2¢(uY). For each v € Vi(T'), there are two cases:
Case 1: m” = 0. Then @V is a constant map from ¢(u”) points to z".
Case 2: m” > 0. Then 4" represents a point in

M. (P08, 1)/ /C
Given v € Va(T) with vy (v) = {e, ¢}, we have x¥ < 2min{¢(v°, £(v<')}, so
(7.3) XU H LW + L) >0

and the equality holds if and only if m” = 0. In this case, we have v¢ = v¢
XV = 20(v°). For each v € V5(T'), there are two cases:

Case 1’: m” = 0. Then 4" is a constant map from ¢(x) points to zv.

Case 2: m” > 0. Then u" represents a point in

A 1 e € *
qu(]P),V,I/ )//(j
Definition 7.1. An admissible label of J\/l; Jﬁ(Yﬁ"I, L) is a pair (Y, 7) such that
(1) X:V(T) — 2Z. Let x¥ denote X(v).
(2) 7 : E°(T) — P, where i(e) = #(—e) and |7(e)| = d(€). Let v® denote
v(e).

For v € Vi(T) with v, (v) = {e}, we have x* < 2min{¢(v°), {(u")}

) v) :

) For v € Va(T') with v7*(v) = {e, €'}, we have x* < 2min{l(v®), L(v®)}.
) Forv e V3(T'), define {z(v) = Zeebgl(v) 0(v°). Then x¥ < 2lz(v).
)

- ZUGV(F) X" +2 ZeeE‘(F) £(ve) = —x.
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Let G5,(T, d, i) denote the set of all admissible labels of ./\/l;( Jﬂ(YlfCI, L).

Given (X,7) € G%(T,d, fi), define r* as in (7.2) and (7.3) for v € V;(T') and
v € Vo(T), respectively. We define

mg_’“ = miﬁg
veV(I)
where
{pt}, ve VMUV, r =0,
T M. (Pl,ye,m/)//c*, ve Vi), vy (v) = {e}, ¥ >0,
Xs MXU(]P’l,I/e,I/e )//C*, v e Va(), nll(v)z{e,e’}, rY >0,
Mx“,ég(v)v RS ‘/3(1—‘)

For each (y,7) € G(T, d, i), there is a morphism
v My — MY (VEe d i),

whose image Fg 7 is a union of connected components of M;((YIECI, d,ii)".
The morphism iy induces an isomorphism

m>Z,z7/ H ALy | = Feo

ecE(T)
where
L(v°) )
1— Zy: — A% — Aut(v®) — 1,
j=1
unless

{vo(e), vi(e)} NVi(T) = {v} # 0

and r¥ = 0. In this case,

2(v°)
As = H Zys.
j=1

The fixed points set M® (V2! L)T is a disjoint union of
X d, [

{Feo | (X, 7) € GL(T, d, i)}

7.2. Perfect obstruction theory on fixed points set. There are two perfect
obstruction theories on Fy 7: one is the fixing part [71/ — T2/] of the restriction
of the perfect obstruction theory on M; djﬁ(f/ﬁel,f/); the other comes from the
perfect obstruction theory on the moduli spaces M;uygﬁ(v) and ﬂ;u (P, v, 1)/ /C*.
Let [Mg 7" denote the virtual cycle defined by [71/ — 72/]. By inspecting
the T-action on the perfect obstruction theory on M;iﬁ(ffﬁel, L) (see [18] and the
description in Section 5), we get

U

[ﬂi,ﬁ] vir _ H [ﬂy)ﬁ]vir
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where
[{pt}], . v e Vi) U Va(I), r* =0,
s g = ] @ p)//CT, v e D), ot (@) = {e}, >0,
v c1(L) N Mo (BY, v, v) /T, v e Va(D), vt (v) = {e,e'}, 1 >0,
M 009 v e V(D)

where L is a line bundle on m;ﬂj coming from the restriction of the line bundle L
on M;()Ai, d, i) (see Section 5.3).
We now give a more explicit description of L. Let
U (Xa q) - (Pl(m)7p07pm)
represent a point in ﬂ;u (P, v, v7)//C*, where P!(m) is a chain of m > 0 copies
of P! with two relative divisors py and p,,,. Let AA; be the I-th irreducible component
of P1(m) so that Ay N A1 = {p}. The complex lines

=T, Ap.

u

m—1
Lg = TpoAl, L}J = ® TplAl ® TplAlJr17 Lee
=1

form line bundles L°, L', L°° on M;v (P, v+, v7)//C* when we vary u in M;v (P vt v7)//Cx
The line bundle L is given by
L=L'®L'®@L>.
Note that
C1 (LO) = _1/107 C1 (LOO) = —1/1007
where 1%, 9> are target v classes.

Let D be the divisor in ﬂ;v (P',v*,v7)//C* which corresponds to morphisms
with target P'(m), m > 1. Then L' = O(D). Let I,. ,+,- be the set of triples
(xT,x ", 0) such that

XTxT €22, o €P, o] =T =], —xT+2l(0) - x =X

X"+ L) +L(0) >0, —x +4(o)+L(vT) > 0.
For each (x*,x,0) € I, ,+ .-, there is a morphism
Tyt (Mos (B 0,0)//C) x (M- (P, 0,07)//C*) — Mo (P, vt,07) /T
with image contained in D. Moreover,

M. (P, vt v7)//CTY M e (LY
Qo —® *7vir Vhi - *]vir
= Z m(ﬂ')ﬁ,xia}* ([MX+(P1’V+’U)//C I x [MX7 (]P’l,a,u )T )
xtx—0)€l v 4 -
where a, = 01 0y(0)-

7.3. Contribution from each label. In this subsection, we view p(e) and f(e) as
elements in
Zuy © Zug = Ap = H%(pt, Q)
Recall that H7(pt; Q) = Q[uy, uz]. The results of localization calculations will
involve rational functions of p(e) and f(e).
Let N;XHB denote the pull back of 7h™ — T%™ of Fp » under ig 7. Let 7V be
defined as (7.2) and (7.3). For e € E°(T), let € = {e, —e} € E(T) as before.
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With the above notation and the explicit description of [T — T?] in Section
5.3, calculations similar to those in [22, Appendix A] show that

NVII‘ H H Ae’

veV () eEE(F)
where
Ay, = 1, veVi(DHUuWT), r*=0
A'u _ 1) —x"/2 e f(e)T
=1 “ ple) — 90
v e (D), Ufl(v) ={e},r" >0,
A'u _ -1 L(v®)—x"/2 Ape e’ f(e)r“
& p(0) — 0 (—p() — )"
v e Va(T), 07 (v) = {e, e}, r" >0,
v VY (p(e))p(e)t# )
A, = a4 . ve VD),
H I (p(e)(ple) — vius)) ’

ecvy t(v)

(=) B, (p(e ) ( DEve(p(=€)),po(—e)), €€ Epp(I)
Ae=1 (- 1)"6 é”(”ﬁ) A Bye (p(e), pole) e € Epy(I)
(=" e € Epp(I)

Recall that F,(z,y) is defined by (6.3).
For v € V5(T"), we have

/ fle)”
s v (—p(e) = ¢0)(=p(e’) —¥>)

f(e)” er(L)

PO)(p(e) — )

(e) =" +p(e) —v> + 1 (L))
p(e) = ¢0)(p(e) —¥>)

/[M;u P1,ve,pe’)/ /Cx]vie (—p(e)

-l o) (-
[M (Pt,pe,pe’)//C*]vir

_ / ) / f(e)
R (P1ve,ve’) /o ]vir P(€) — M (B1ve v’ )/ jorpvie —P(€) — Y0

ag f(e) <+

* 2 TAut(o)]

p(e
(=

(T4 (B1,0e,0) /jCe]vie —P(€) — 9P

Otxmo)el y e e
I o)
(M (P1,0,ve')/ /CH]vix ple) — 9>
’ r ’I‘+ H e H.— e’
= [Aut(v®) x Aut(v®)] He) Z (—1) xte XLv0o X0
p(e rto r !
(xT.x.0)ed_, / Xt XTho

xV,ve,ve

where r;)a = Xt L)+ o), 1. =—x" + (o) + L), and

X0
’

T e e = Lo e yor UL(2000°), x, v%), (x, 20(v°"), %)}
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Given v € V3(T), we have vy (v) = {e1, eq,e3}, where p(er) A p(e2) = ur A ua.
Then (e, e2, e3) is unique up to cyclic permutation. Let
DVU:(VEIaV@vVeS)v WU:(p(el)ap(eQ)ap(e3))'
Then Viv s»(W") is independent of choice of cyclic ordering of ey, ez, e3, where
Vi, o(wi, wa, w3) is defined by (6.2). We have

I 5(u1,u2)

1
B \/[1].: g]vir eT(Nl’ii)

eGE(F |A | / <oV er NXIE)

| Aut ()] H( Ed(e) o [T Ve T Eelple)pile))

ecE(T) veVs(T) e€Egp(T)

H \/_—1e(ue)+€(u”)( )J .<\/—f( ))T XU

v
veVi(T),v1(e)=v ( ) T

(v ()
(&
vEVa(D),07 ' (v)={e,e’}

° H.
3 His oo (=1)H) 5, v o
i) ro_ |
(xT.x—,0)€J xt.o X0

’
xV,ve,ve

— JAu() [ 0™ @ I V=16 (w?)

ecE(T) veVs(T)

H \/_—1€(Mv)+é(Vu)(_1)(i(é) (\/__1@)7“ H;(“,u”,ui

v
veV; (D),01 (e)=v p(e) rY!

H <\/__1e(l’e)+f(ue/) . (\/__1@) o

e
veVa(I), 07t (v)={e,e'} ble)

° H*
T+ ! 7 r__ |
(XFXT0)ET o e e x*.o XT
7.4. Sum over labels. We have
1
F'F I .
N (U1,U2) |Aut( 7| Z ) #(u1, u2)
(X,7)eG(T,d,f)
Define
(7.4) F3l (X ur,uz) = >oooa X”(“)F'F (1 uz).
XE2Z,x<I(ji)
Then

(75) F(})l;[(/\;ul,uQ)
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= 3 I oo I v e v w)
|ve|=d(e) e€E(T) veVz(T)

[ otV e, (Vi)

veVi(T),v1(e)=v p(e)
H V —U(Ve)-l—f(ye )(I);e - (\/ —1%/\) (_1)5(0)20 .,
’ e ve o

vEVa(D),07 ' (v)={e,e'}

where

(7.6) V=1 G (A p(er), plea), ples))

~ 3
= VT Y oo, (v
i=1

v =] (€)
3 , .
- (—1)Xiide) F2(X0 _1é(u )—L(p )z,ﬂ-fb'i . (_ _1P0(ei)/\)
(1) > BNV o (VTS
lvi|=|pf| =1
7.5. Invariance. Let I be a FTCY graph, and let
Ty =Ty,m, IZ=1"0.

Then Ty, T'? are regular FTCY graphs. We call I's the full smoothing of T', and I'?
the full resolution of I". We have surjective maps

T2 = Ty B°(T) — E°(T2), 2 =20 y(r?) - V().

Definition 7.2. Let I’ be a FTCY graph, and let T? be the full resolution of T,
Let (cf, i) be an effective class of T'. A splitting type of (cf, i) is a map & :
Va(T) — P such that |3(v)| = d(€) if vy(e) = v.
Given a splitting type & of an effective class (d, i) of T, let (d, il &) denote the
effective class of T% defined by d : E(T%) = E(T') — Z>¢ and
IR (72 (v)), w2(v) € (T
70 = { 5ol 7o) A

Let Ip(dj i) denote the set of all splitting types of (cf, i).
The following is clear from the expression (7.5).

Lemma 7.3. Let I' be a FTCY graph, and let (cf, i) be an effective class of T.
Then
(] (] 2
ngl;z(/\;ul,uz) = Z Z&FJ:EU&(/\§U17UQ)
oelr (d,fi)

Zg = H Zg(v).

veVa(T)

where

By Lemma 7.3, it suffices to consider regular FTCY graphs. For a regular FTCY
graph T, (7.5) reduces to

(77) F(})I;[(/\;ul,uQ)
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- Y I v @ T v e w,)

‘Vélzlf(é) ecE(T") UEV3(I‘)

ie v® f(e)
H ot (i

veVi(D),v1(e)=v (e)
since V5(T') = 0.

Let (CZ: i) be the effective class of a regular FTCY graph. Let P(cf, ii) be the set
of all maps v : E°(I') — P such that

. |ﬁ( )| = d(e).
v(e) = fi(v) if vg(e) = v € V4(T).

Note that we do not require (e) = (—e). Denote v/(e) by v°. Given v € V3(T),
there exist e, es,e3 € E(T'), unique up to a cyclic permutation, such that nal (v) =
{e1,e2,e3} and p(e1) A p(e2) = us A ug. Define

(7.8) V0= (VU 0%, zpe = Zyer Zyea Zyes.

Note that F2.,(A;0) and zp are invariant under cyclic permutation of eq, es, e,
thus well-defined.

Using (7.6) and the sum formula (3.12) of double Hurwitz numbers, we can
rewrite (7.7) as follows:

(79) F(})I;[()\;ul,uQ)

= Y I B&0my [I v ey e (=i,

veP(d,ji) vEVs(V) ecE()

Note that the right hand side of (7.9) does not depend on u,us. This completes
the proof of Theorem 5.7. From now on, we write Fdil;j()\) instead of Fd!I;[()\; Uy, usg).

We define
Fol" FOF (U17U2)

X d,fi

to be formal relative Gromov-Witten invariants of Y.

7.6. Gluing formulae. Let (cf, i) be an effective class of a regular FTCY graph
I. Let T(d, i) be the set of all maps 7 : E(I') — P such that

7(e)| =

(
7(—e) = v(e)t.
Note that we do not require 7(e) = fi(v) if vg(e) = v € V1(E). We have
o X (1)
_ Cs(\) H AviA\it )
(i) Z v i
V-1 i =] =

where C(\) = C(\; 0). Applying (7.10) and the Burnside formula (3.10) of double
Hurwitz numbers, we see that (7.9) is equivalent to the following.

1)l

(7.10) F3(%0) = (
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Proposition 7.4. Let I' be a regular FTCY graph. Then
ol _ (n +1)d(e) 7\/771/{,,@716)\/2
Frvy o= > Il

7eT(d,fi) e€E(T)
= Xve (Mv)
H Cre (V) H \/—1e(uv)
veVa(T) veV1(D),vo(e)=v V Zpv
Note that
Ky—en” ¢ = K(yey (—n°) = Kyen®.

Theorem 7.5 (gluing formula). Let I' be a FTCY graph, and let Ty and T'? be its
full smoothing and its full resolution, respectively. Let (d, [i) be an effective class of
T which can also be viewed as an effective class of I'a. Then

(r.11) PN = FEN = 30 P 0.

Felr(d,i)
Proof. By Lemma 7.3 and Proposition 7.4, it suffices to show that if |u| = |v| = d,

then () ()
Xu\o Xv O d
> o) 20 =iy~ = (1))
et /=1 ( )Zg /=1 ( )Zg

which is obvious. O

7.7. Sum over effective classes. Given a regular FTCY graph, let Eff (T') denote
the set of effective classes of I'. Introduce formal Kéahler parameters

t={t:ec ET)}
and winding parameters
p={p" = (pi,p5,...) ;v e Vi(l)}
We define the formal relative Gromov-Witten partition functz’on of Yﬁel to be
ol e d(e)t®
(712) rel()\a t; p) Z F(iﬁ(A) erm H pH
(d,ji) €EF(T) veVi(T)
where
P = Py Py
Let TT denote the set of pairs (7, fi) such that
e /: E°(T') — P such that 7(—e) = v/(e)".
e [i:Vi(T) —P.
o [F(e)] = [f(v)] if vo(e) = v.
Let v¢ denote #/(e) for e € E°(T"), and let ¥ denote u(v) for v € V4 (T"). Define ¥
by (7.8) for v € V3(I"). The following is a direct consequence of Proposition 7.4.
Corollary 7.6.

Za(X;t;p) ST e (e Tenta2

(7,0)€TT € B(T)

M oy [ 2zl
1 z

)
veVa(T) veV1(T),vo(e)=v V Y
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8. COMBINATORIAL EXPRESSIONS FOR THE TOPOLOGICAL VERTEX
In this section, we will derive the following combinatorial expression for Cz()):
Theorem 8.1. Let [i € Pi. Then
Ca(\) = Wala),
where ¢ = eV~ and Wﬂ(q) is defined as in Section 3.3.

We now outline our strategy. We use the notation introduced in Section 3.3. By
Proposition 6.6,

3
~ . _ 1 3 L Wit1
G = Y Thuetha == g w),
vi|=|pi]i=1
where w = (w1, wa, w3), ws = —w; — wa, wg = wy. In particular,

3
81)  Ce) = S [[nuea brertreting  aax,1,-2).
Vi =l =1

In Section 8.1, we will show that the main result in [23] gives a combinatorial ex-
pression of G5, , 4(A; w) (Theorem 8.7). In Section 8.2, we will relate G;(A; 1,1, —2)
to G 10,2 (A1, 1,—2). This gives the combinatorial expression Wi(q) in The-
orem 8.1. Moreover, (6.16) and Theorem 8.1 imply the following formula of three-
partition Hodge integrals.

Theorem 8.2 (Formula of three-partition Hodge integrals). Let w = (wy, wa, w3),
where w3 = —wy — wa. Let [l = (ul,u2,u3) S ’Pf‘r, wyg = w1. Then

3 (b)) 1 3 Wiy
82 Guw= ¥ ¥ [TREAER ),

[t [=lu | [vi=|pt] =1

The cyclic symmetry of C’g()\) is obvious from definition. By Theorem 8.1 we
have the following cyclic symmetry

Wﬂl#zy‘us (q) = Wﬂz#s#l (q) = W#37#17#2 (q)
which is far from obvious.

Finally, we conjecture that the combinatorial expression Wﬁ(q) coincides with
Wii(q) predicted in [1]:

Conjecture 8.3. Let ji € Pf’r. Then
Wi(a) = Wila),
where ¢ = eV~ and Wii(q) is defined as in Section 3.5.

We have strong evidence for Conjecture 8.3. By Theorem 8.1 and Corollary 8.8,
Conjecture 8.3 holds when one of the three partitions is empty. When none of the
partitions is empty, A. Klemm has checked by computer that Conjecture 8.3 holds
in all the cases where

') <6, i=1,2,3.

We will list some of these cases in Appendix B.
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8.1. One-partition and two-partition Hodge integrals. We recall some no-
tation in [22].
\u\
(8.3) Cr(NT) =V~ M@@()\;LT, -7 —1).

(8.4) Vilg) = "/ V=1" W, ().

where W,,(q) = W,,0,0(¢) is defined in Section 3.3. The main result of [22] is the
following formula conjectured by Marino and Vafa [25]:

Theorem 8.4.

z
wl=lpl "
Theorem 8.4 can be reformulated in our notation as follows:

Theorem 8.5 (Formula of one-partition Hodge integrals). Let w = (w1, wa, ws),

where w3 = —wy —wa. Let p € Py. Then
XU Ly, w2
(8.6) Goooiw) = > q>" Wy 0.0(q)-
wi=lul *
Let
(8.7) - (N T) = (—1)'“7‘4(”7)6?:#)”7 N1, —1—7).

The main result of [23] is the following formula conjectured in [31]:

Theorem 8.6. Let (u*, =) € P2. Then

M= > X'ﬁ(/ﬁ)XV*(M_)q(“"”“v”*l)/zw,ﬁ,f(Q).

Zu

(]
ptp -

z
pt=lut]
We now reformulate Theorem 8.6 in the notation of this paper.
GH M2 @(A,l,T -1 —7')
1) 2
_ ( \u [—L(p Z le XI/2 (M )q(mle+mV2771)/2WV17U2 (Q)

Z 2
v =lpf| a

1 2
Xt (1 xuw(u) R, ) /2 8
_ Z ) X(v2) q( ATHE2 )/Qq u2/2WU17(U2)t)q)(q)

2#2

(
m

— Z Xvl (:u )XV2 (,LL )q(l{ul7'+l€u2 —— )/QWul,lﬂ,@(q)
m

u2
Theorem 8.6 is equivalent to the following:
Theorem 8.7 (Formula of two-partition Hodge integrals). Let w = (w1, wa, ws),

where w3 = —wy — wa. Let (pt, p?) € P3. Then
(8.8)

. ) Xot (1) X2 (%) 3 (k122 4,222
G = T 2 bt
lvil=lpt] vt =|p’|

Note that Theorem 8.5 corresponds the special case where (ut, u?) = (u,0).
Theorem 8.7 and (6.15) imply
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Corollary 8.8. Let [i = (u*, p?, p*) € P2, and let ¢ = eV=I\. Then
Ca(A) = Wala)
when one of ut, p?, 1 is empty.
8.2. Reduction. Recall that
Ggi(1) =Ggp(l,7,—7 —1).

We have
Lemma 8.9. Let ji = (u', p?, ) € P3. Then
(8.9)
Gy (A1) = (—1)w'1—e) Zulon? Ao s(A 1)+ 25 5 ﬂ
9,2\ PR g,0,ptUp?,p3 90 1(m 2003 (2m)
H H m>1
Proof. Let
3 ()1
AV (w;
R B | o
Mgy i=1 H (wi(wi - Nj¢d;+j)
lya(t) = Ilga(l,7,—7—1)
Then
o ()3
__(r=r -1 T L B I
(810) Io,ﬁ(T) - ng(#Q)(_T _ 1)2g(#3) | + T + —r—1
Note that I, 7(7) has a pole at 7 = 1 only if
(8.11) g=0, fi=((m),0,(2m)) or (0, (m),(2m)),
where m > 0. Let
uj—l
oz Tug + a)
(8.12) H 1 .
Jj=1
Then E,,(7) is a polynomial in 7 of degree |p| — ¢(p), and
Bu(~7 = 1) = (-1 B, (),

(=v/=1)m _ 1

Ggqﬂ(T) = [ Aut(7)] E,ul (T)E#Z(_l -7 1)E#3 -1 Igvﬁ(T)
£(i) 1
_ ey SV B ]
1) L e L e L

ngQ;HIUH27M3 (7’)
(—/=1)4 3 B 1
= |Aut('u1 Ulu2) > Aut(‘ug)|E'u'1(_1 — T 1)E#2(—1 — T I)E#S ﬁ Ig,(]),plu,u2,p3(7-)'

Suppose that (g, /i) is not the exceptional case listed in (8.11). Then neither is
(g,0, ut U p?, 43). Tt is immediate from the definition that

Lo pr 2 (1) = 9,0,utUp?,u3 (1),
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SO
Vgt | Aut(p' Up?)|
(8.13) Gy (1) = (— 1)l =t )|Aut(u1) ~ Aut(u2)|Gg’®’”1U”2’“3(1)
For the exceptional case (8.11), we have
Go,(m).0,(2m)(T)
- m—1 m—1 2m—1 2m,
B (7' + 1)( - 1) (2m _1 a:l a:l;IJrl(_T -1 ! a)
Go,0,(m),(2m)(T)
m—1 m—1 2m—1
-1 —7 =1 2m
- ( ( +a)
(t4+ 1)(m—1!(2m —1)! Pt e azl:n[Jrl -T—1
So
) -1
(8.14) Go,(m),0,c2m)(1) = BT Go,0,(m),zm)(1) = o

Combining the general case (8.13) and the exceptional case (8.14), we obtain (8.9).

We have

GNp; 1) =G\p; 1,1, -2) =

pePy 9=0
where p = (p',p*,p%), p' = (1,15, .. .), and
)
Pu = HPLJ--
j=1
By Lemma 8.9,
G(/\'p; 1)
- Z Z/\m; QH(M)G%W pup2 o (1 )Z#IU# (— )‘H 4! )pl p;ﬂpu
‘uepg g—=0 2#12#
(=™t
+ Z m pmp2m

m>1

- Z Z)\2‘(]—2+€(”+)H(“3)G9,®,u+,u3(1)

2 =
(ut,pu®)eP? 9=0

> =
Zu1z

plup?=pt ut 2

_qym—1
T PR KN
m>1
Let pf = (—1)""!p} + p?, and let

SO S ARG (0 )L pRapl,

1)|“ll_é(“l)pilpiz
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It is easy to see that

Z+ 1 1
1 Byt L 2
(8 5) 5 ) 2#12#2( ) p‘u,lp'u,2 pMJr
prupl=p

So

0 -1 m—1
(8.16)  G\p'p®p% 1) =GN 0,pT,p% 1) + ) i

m=1 m
Let

G* (A p;7) = exp(G(A; p; 7).

We have
Lemma 8.10.

_1)m71
8.17 G*(Nphp?p 1) = G (X 0,pT, p% 1 EV"
( ) ( PP ,Ps ) ( sU,p D )eXp 7nz>1 m pmp2m

8.3. Combinatorial expression.

Lemma 8.11.
(8.18)

3 7
G*(\0.pT 93 1) = vt . (—2r,+—%%)/2 " 1 18 =11 Xvi (1
(A:0.p7 P 1) > et =Wt s (@)(-1) 1:[1 Zui

vtoviptep

Proof. By Theorem 8.7,

+ 3 .

G*(X0,p"p% ) = ) Yot 7)o U) (2w =202 Ly a(g)p, s,
i x sep  ont Zud T pes

pE vt

Recall that
VV@,I/JF,IJ3 (Q) = qﬁus/QWer,(v:g)f (q)7
Zu+ L _p(ut
Py = 22#7 — 1)l =D p2s
plup2=pt K=
SO

G*(X;0,p%,p% 1)
+ 3 K
_ Z Xot+ (1) X (p )q(—2nu++%)/2wﬁ)(

2+ z
pt vE P H

o+ () Xy (BP) (Lo o _rus
_ Z VZ‘qu ( Z)#S q( 26,4+ =5 )/2WV+,V3(Q)piS
pEvE pudeP

2+ 1 1
Z m —/ 1,2
m(_l)m e )pulp;ﬁ
plup2=pt H

- vy (Q)pF Ps
%

“w

1 2 3
v U E _ Ry _
_ Y X DU XD oy, g (-1
X 2l 2,2 A
prvtudep © ® ®

,)p

i
pie

1
K p el
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1 2 1 2 s
=y XU U ) Sz () (<) ) 2

php? vt viep ut E
1 2 1 2
+ @] 1 2 5,3
-y el e el S s )shasasta
TR

2 vt vieP

K,3
— Z c’(/:l)tyzq(_%ﬂﬂr_T)/2WU+7U3 (q)Sll,l 832S?U3)t

vt viep
+ 2 WS 3 —1(ud > Xoi (1)
y _ Y ERT i ,
- Z C(l,1)t,,2q( Rt =52V, s () (—1) I )H Tp:‘
vt vt pteP i=1 w

In the above we have used (8.15) and the following identity:

CHJr o Z Xp+ (V+)Xu* (V_)XH(V+ U I/_) '
O
Lemma 8.12. We have
(_1)m—1 (_1)|M|—4(M)
(8.19) exp | — Z Tp}npgm = Z Zipipi
m>1 HEP H

where 2 is the partition (241,242, - - ., 24 )-

Proof. Let (z%,..., %, ...) be formal variables such that
Pl =D (@)™

Then we have by standard series manipulations

B Z (D™,
exp m PmPom
m>1

m2>1 n1,m3
_1)m .
= [[ex| > L (ph, (P2,)%)
ni,ng m>1
= [ a+ah 5,

ni,n3
Now recall (cf. [24], p. 65, (4.1)):

1)l =L()
[0+ = ¥ S—p@pt).

4] HEP
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hence we have

_1)ym-1 —1)lnl—ew)
e [ 2 ) = 2 E e
m>1 HeEP B
(—1) =4k
= > P! )Py ()
Zp
neP
O
By Lemma 8.10, Lemma 8.11, and Lemma 8.12, we have
G* (X', 0%, 0% 1)
. + 3 (=)™t
m>1
k.3
= Z Cl(’:l)tyzq(fmﬁrz** 2 )/QWV+,U3511/1512/2S:(3U3)t
vt,vieP
— 1)l =)
> D (@ )pop ()
&
neP
_ Z cl(’,jl)tl,zq(72'{”+7 53)/QWU+7U3((])511/18325?U3)t
vt,viepP
—1)Inl—€(p)
> ()Zixnl (1)Xy3 (242) 371 83
wnt mPEP a
1 3 k.3 1yt 3(2
D S e S S IR LI L )
vt 3t nd ueP K
. Z ot pt p° (—2k +7'{%3)/2 Xnt (M)X’I]3(2:u) 1 .2 .3
= Conyt2Cpyn Cpa sy d Wit (@) =5, 5,25,-
vt,wlvd nl nd ueP “n
By Proposition 6.6,
2w (1)
®/\. .. _ ~ (ky1—2K,, —lﬁw)/2 1’17 i
OB = Y Cogtna b [ 2l
pnhvteP =1 H
3
= Y Cog e b2 [T s (af).
viep i=1
Hence
ot 1 3 ok L w3 1 3(2
ZC(Vl)tu2c€771)tu1Cza(VS)tq( e )/QWW#V?’(‘J)MS}#S?PSE‘*

Zp
3
— Z Cﬁ()\)q(%l—%yz—%%s)/? H st

ptvteP i=1

Therefore,
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where

A —(k 1—2Kk o—1k as 1 3 9w o w3 1 5(2
WE(Q) =q (Rp1 =22 =5 p?’)/zZC(ul)tp20€nl)tyl023(y3)tq( 2+ V2Wv+,1ﬂ(‘])%in(m

This completes the proof of Theorem 8.1.

APPENDIX A. PROOF OF THEOREM 5.9

We begin with our strategy in proving the invariance of the integral®
1 eT (Tl,m)

(A1) P (ug,us) = E )
X,d, [ |Aut( )l M;,cﬁﬁ(ylfgl’i)T]Vir eT(T2,m)

S Q(Ul/UQ)

that should define the values of the topological vertex I'°. (Recall the precise
meaning of the symbol [ from Section 5.4.) For any integer x and effective class

(CZ ji) of TV, we first come up with a moduli space of relative stable morphisms
./\/l' (VVTCl L) and a T-equivariant morphism

®: M (VL) — M2 (W L)
so that the induced map on the T-fixed loci
M VL DT — M2 (e LT
is an open and closed embeddmg In addition, we require that the obstruction

theories of /\/l (VV’rel L) along its fixed loci is identical to that of J\/l' (YIESI, L)

via @7, Because the two obstruction theories are identical, the 1ntegrals

(A.2) / el (Thm) :/ el (Thm)
(Mo ﬂ‘(Yrgl_’I:)T]vir eT(T2m) [(Me ‘a(WrelyL)T]vir eT(T2,m)’

where ./\/l' (VVTCl L)F is the image of the fixed loci of ./\/l' (YIESI, L). (Here by

abuse of notatlon we denotfz by 7%™ the moving parts of the obstructlon complex
[T — T?] of M 5 (YIESI, L) as well as M i (VVTCl L) along their fixed loci.)

In case the 1ntegral (A.2) vanishes along the fixed loci of ./\/l' (VVTCl L) other

than M*® Jﬁ(Wml, L)X, the right hand side of (A.2) becomes

(T .

— deg[M (Wre L)]vnr7
/[ . (Wml L)T]vir € (TQ m)

which is a topologlcal number; hence is independent of uq/us. This was how the

invariance of the two partition topological vertex was proved in [23].

This time we do not have a similar vanishing result. What we will do is to
devise a local contribution of deg[J\/l' (VV’rel L)]¥' along J\/l' (Y15§1,L) this

local contribution is a sum of the desured term (A.1) with some other terms; we
will then show that this some other terms vanish completely. This will settle the
invariance of the topological vertex I'° (Theorem 5.9).

We now outline in more details of our proof. To proceed, a quick review of the
construction of the virtual cycles of the moduli stack is in order. For notational
simplicity, in the remainder of this Appendix we will abbreviate ./\/l' (W’fel L)

1n the previous sections, T 2 (C*)2 and Tk = U(1)? is its maximal compact subgroup; in this
Appendix, we will only consider the compact torus U(1)2, denoted T instead of Tk.
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to M and abbreviate ./\/l; i
cycle [M]VI" is constructed by

ﬁ(YIE(?l,L) to My. As shown in [3, 4, 20], the virtual

a. identifying the perfect obstruction theory of M;
b. picking a vector bundle (locally free sheaf) £ on M so that it surjects onto
the obstruction sheaf of M and
c. constructing an associated cone C C & of pure dimension rank £.
The virtual cycle [M]'" is the image of the cycle [C] € H.(E,€ — M) under the
Thom isomorphism

ve H(E,E = M) — H._9.(M), r=ranké.

Here as usual, we denote by £ the total space of £ and denote by M C & its
zero section that is isomorphic to M. Also, all (co)homologies are taken with Q
coefficient.

Following [11], we can make the above construction T-equivariant. We choose
a smooth DM T-stack Z and a T-equivariant embedding ¢: M — Z; we choose
& to be T-equivariant and extend ¢,€ to a T-equivariant vector bundle F over Z.
Then the cone C alluded before is a T-invariant subcone of F that lies entirely over
M C Z. Because C C F is T-equivariant, the composite

TxC¥%C— F

defines a T-equivariant class [C]T € HI (F, F—Z); its image under the T-equivariant
Thom isomorphism ¢ is the T-equivariant virtual moduli cycle

pr(lC]7) = M € H(2).

(Indeed, this class lies in the image of HI (M) — HZI(Z).) Note that the equivari-
ant homologies are H! (pt) = Q[u1, uz] modules.
Next, we apply the localization theorem to the class [M]VI"7. Let

I Ma=M"
acA

be the decomposition of the T-fixed loci into connected components; let
Ta t HY (Ma) ® Qlur, ug)m — H' (M) @ Qus, uo)m

be induced by the inclusion. According to [11], to each M, there is a canonically
defined virtual cycle [M,]V"T € HI(M,) and a virtual T-equivariant normal
bundle NYI* = T1™ — T2™m g0 that, after localized at m = (u1,uz),

vir, T
M = 3o iy ) € () © Qo
a€A e

where _
[Ma]wr,T B 1
TN W)
and (HI' (M) ® Q[u1, ua]m)o is the degree zero part of the graded ring HI (M) ®
Q[u1, uz)m (with intersection product). Let

) [Ma]vir,T

vir Ma vir,T
M = 3 7o (i) € (HE ) © Qs vzl
a€Ap @
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where Ay is the collection of those M, that lies entirely in Mg. Since the M we
will work with has the property that either M, C Mg or M, N Mg = 0, such A
is well-defined. In this format, the formal relative GW invariant defined in (A.1) is

0 1 .
o’ _ vir,T'
(i ue) = mrr degn ML € Qua/uz)

where
degm : HE(M) ® Q[ulu Ug]m — Q[ula u?]m
is defined as in Section 5.4 (with AT replaced by HT).
To show that the above sum is independent of the (u1,us), we shall devise a way
to show that this partial sum is the localization of a purely topological quantity.

We pick a T-equivariant Riemannian metric on Z; we form a T-invariant closed
tubular neighborhood of My:

YMo ={u e Z|dist(u, Mo) <€} C Z.
For sufficiently small € > 0, 3. My is a smooth orbifold with smooth boundary
XMy = {u ez | dist(u, Mo) = 6}.

We then close the boundary of ¥, M by picking a subgroup S' C T and contract
individual S* orbits S' -z C 9%, My to points [S! - 2]. For this purpose, we
pick a subgroup S! C T so that MT = MS'. To stay away from the S'-fixed
points (5. Mo)S" in 8% My, we shall take Mo — (95 Mp)S and then contract
individual S'-orbits in 0% .M — (BEEMO)SI. We denote the resulting space by Z.
It is a smooth orbifold; its construction depends on the choice of ¢ and S' C T.
Because M N (826M0)Sl = (), the image of M N .M, in Z, denoted by M, is
compact. We let Z. be (826./\/10 — (825/\/10)51)/5’1 and let Moo = Zoo N M.

We next define the virtual cycle of M. Because F is a T-equivariant vector
bundle, and because points in X Mg — (826/\/{0)51 have finite stabilizers, F de-
scends to a vector bundle F on Z. For the same reason, the cone C descends to a
cone C C F. Since C stay away from fibers over (95.Mg)S", C defines an element

[C] € HT(F, F — Z); since all data are T-equivariant, it also defines an equivariant
class

C" € HI'(F,F - 2).
Their respective images under the obvious Thom isomorphisms give the virtual and
equivariant virtual cycles:

M € Ho(Z) and [M]Y™T e HF(2).
We now apply the localization theorem to the cycle [M]V"7T. Let Hoen Z, be
the connected components decomposition of Z7; let
o HY(2) — HI(2,Z2 - 2,) — H[ (Z))
be the composites of the homomorphisms induced by the inclusion and the Thom
isomorphism.

Lemma A.1. In case 2, is contained in Zoo, then fb([,/\;l]“"vT) =0.

Proof of Theorem 5.9. We let ZNOTO be the union of those Z; that are contained
in Z5 and let Z{;F the union of the remaining Z;. Since Z is the quotient of
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EeMo — (02.Mg)S", ZT is disjoint from ZZ . Because of Lemma A.1, the image
of [M]Vi"T" under
HI(2) — H[(2,2 - 20)) — H[(2))
is zero. Hence if we let
7o : H (25) ® Qlu, uzlm — HY(Z) ® Qu, ua]m

be induced by the inclusion, then [M]VI"T € Tm(7). On the other hand, Z is a
DM-stack near ZI'; by following the proof of [11] line by line we conclude that

. ~ Ma vir, T
e = 3 (B,
MqCZF
where
Fo:HY (Mg) ® Quy, us]m — HI(Z) @ Qlu, ug]m
is the obvious homomorphism. So

desn W3 e (30 ().

M CZF

But the right hand side is exactly F F (ul,uQ) and it is independent of uy/us
since

deg[M]"T = degM]"™ € Q.
This completes the proof of Theorem 5.9. O

The proof of Lemma A.1 will occupy the remainder of this Appendix. We shall
first construct the moduli space ./\/l' #(VV’rel L) and the equivariant morphism &7

This will be the done in the next subsectlon Afterwards, we will study fixed loci
of M of any subtorus T;, of T' that are small deformations of M. We will prove a
structure theorem of such loci and study the obstruction theory of such loci. The
details of these will occupy the remainder of this Appendix.

A.1. The relative Calabi-Yau manifold W' and the morphism ®. Our first
task is to come up with a toric Calabi-Yau manifold W as mentioned. Looking at
the graph I'? that we chose, the obvious choice of W is the blowing up of P! x P! x P!
along three disjoint lines

(A.3) {1 = oo x P! x 0, ly=0x00xP' and ¢3="P" x0x oo

Here we follow the convention that (21, 22, 23) is the point ([z1, 1], [22, 1], [23,1]) in
(PY)3. We let D C W be the exceptional divisor and let D; C D be its connected
component that lies over ;. Each D; is isomorphic to P! x P!. Clearly,

(A.4) A3 Qw (log D) = Ow,

and hence the relative pair W™ = (W, D) is a relative Calabi-Yau threefold. We
next let Cy,Cs and Cs be the proper transforms of

P! x 0 x 0, O0xP'x0 and 0x0xP!,
and let Ly C Dy, Lo C Do, L3 C D3 be the preimage of
(O0,0,0) € l, (0,00,0) €/ly; and (0,0,00) € ls.
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For later discussion, we agree that under the isomorphisms D; = P! x P! and
¢; = P!, the tautological projection D; — ¢; is the first projection. Under this
convention, the line L; C D; is the line 0 x P! and the intersection p; = C; N D; is
the point (0,0). (See Figure 13 for details.)

As to the torus action, we pick the obvious one on (P*)? via
(A.5) (21,22,23)(t1’t2’t3) = (t121,t229,t323), (t1,t2,13) € (C*)°.

It lifts to a (C*)3-action on W that leaves D; and L; invariant. Within (C*)3
there is a subgroup defined by titat3 = 1; it is isomorphic to (C*)? and is the
subgroup that leaves (A.4) invariant. We let T' be the maximal compact subgroup
of {titat3 = 1} C (C*)2. In the following, we shall view W™ = (W, D) as a
T-relative Calabi-Yau manifold.

Next we will define the moduli space /\/l' (W’fel L). Clearly, each C; induces

a homology class [C;] € Ho(W;Z). For
fi= (' p? ut) e Py,
we let d be the homology class
= |pH[C1] + [?][C2] + |17 [C5] € Ha(W; Z).
The pair (d, /i) is an effective class of I'°:
d(&) = |p'], filv)=p', i=1,2,3.
We then let
rel
~d M(W ,L)
be the moduli of relative stable morphisms
u: (X, Rl, Rg, Rg) — (W[m], D[m]l, D[m]g, D[m]3)

having fundamental classes d, having ramification patterns p! along D[m];, and
satisfying u(R;) C L[m];, modulo the equivalence relation introduced in [18]. Tt is
a proper, separated DM-stack; it has a perfect obstruction theory [17, 18], and thus
admits a virtual cycle?.

It follows from our construction that the scheme Yro is the union C; UC3UC5 in
W and the formal scheme YFO is the formal completion of W along Yro. Further,

the relative divisor Dy of Ypo is the preimage of the relative divisor D C W; the
induced morphism

(A.6) ¢: (Yro,D,L) — (W, D, L)

is T-equivariant; and the two effective classes (cf, i) are consistent under the map
. Therefore, it induces a T-equivariant morphism of the moduli spaces

(A7) © M (VL L) — M (WL L),
which induces a morph1sm

/\/l' ( Ifgl,f)) — ./\/l' (Werl LT
between their respective ﬁxed loci.

2The scheme Wm)] is defined in subsection A.2; the L; are line in the relative divisor D; in
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Lemma A.2. The morphism ®T is an open and closed embedding; the obstruction
theories of /\/l' (YIE(?I,L) and /\/l' (VV’rel L) are identical under ® along the

. rel T . rel
fized loci ./\/lX_’dﬂ_ﬂ(YFO )T and its zmage in MX,cZﬂ(W ,L).

Proof. Let [u] € J\/l; Jﬁ(f/lfgl’ L)T be a closed point and let [@] € J\/l; Jﬂ(Wrd’ g
be the image of [u] under ®. To prove the first statement it suffices to show that any
deformation [is] € /\/l' 7 (VV’rel L)T of [a] lies entirely in Im ®. But this follows

from a stralghtforward analysm of the maps in J\/l' (WIel L)T. This settles the

first part of the Lemma.
For the second part, we note that the similarly defined moduli ./\/l' (YIESI, L)is

a closed substack of /\/l' (VV’rel L), the moduli space /\/l' (Ylf(?l, L) is the formal
completion of /\/l' (VV’rel L) along /\/l' (Ylf(?l, L). Hence the obstruction theory

of J\/l' (YIE(?I, L) is the one induced from that of /\/l' (VV’rel L). This proves
the second statement of the Lemma. (]

In the remainder of this Appendix, we shall fix x, cf i1 and the relative variety
Wrel once and for all. For notational simplicity, we will abbreviate M® . (Wl L),

Mx)liﬁ(Ylf{fl, L) and M;@ﬁ(YIE(‘fI, L) to M, My and M, respectively.

x.d. i

A.2. Invariant relative stable morphisms. Let a1, as, a3 € Z with a1 +as+as =
0 be three relative prime integers; 7 = (a1, ae, a3) defines a subgroup

T, = {(eV71m0 eV=la20 oV=lastly | g e [0 27]} C T.

Our next task is to characterize those stable relative morphisms that are invariant
under 73, C T" and are small deformations of elements in M.

To begin with, we sketch the variety W by its image under the moment map Y :
W — R3 of the (S*)3-action on W. The image is a polytope that is diffeomorphic
to the quotient W/(S')3. As shown in Figure 13, all faces of this polytope represent
the (C*)?3 invariant divisors of W; the point pg is the image of the point (0,0,0) € W
and the line pop, is the image of the curve Cj; the rectangle face containing the
edge D;q; is the image of the relative divisor D;.

To investigate relative stable morphisms to W, we need the expanded relative
pair (W[m], D[m]), m = (my, ma,m3). The main part W[m] is the result after
attaching three chains, of length mq, mo and mg respectively, of a ruled variety A
over P! x P! to Dy, Dy and D3 in W. Here A is the projective bundle ]P)(O[plx[pl @
Op15p1 (0, 1)) with two sections

D+ = ]P)(O[pl «p1 D 0) and D_ = P(O D O[pl %P1 (0, 1)),

an m-chain of A is the gluing of m ordered copies of A by identifying the D_ of
one A to the D of the next A via the canonical isomorphism pr: Dy — P! x P;
the chain is attached to D; by identifying the D4 of the first A in the chain with
D; and declaring the D_ of the last A be D[m];; the union

D[m] = D[m]; U D[m]s U D[m]3

is the new relative divisor of W[m]. Note that our construction is consistent with
that the normal bundle of D; in W has degree —1 along L.
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L3 43 A

FIGURE 13. This is a sketch of the scheme W[m] for m = (0, 2,0).
The main part is the image of W under the moment map T; the faces
are the images of T-invariant divisors; the point pg is the image of
(0,0,0), the z; indicates the choice of coordinate chart of the line Cj;
The D; are the blown-up divisors with points p; and ¢; shown; the line
L; are the thickened lines in D;. The added two solids to the left are
the two A’s attached to Ds, resulting the scheme Wm] with
m = (0,2,0). The shaded faces are the relative divisor D[m] of W[m)].
The straight diagonal line contained in the bottom face indicates the
image of ¢y, in case n = (1, —1,0); the curved line indicates the image
of ¢ . in the other case.

For future convenience, we denote by A[m;] the chain of A’s that is attached to
D;; we denote by Lm]; C D[m]; the same line as L; C D;. The new scheme W [m]
contains W as its main irreducible component; it also admits a stable contraction
W[m] — W. Unless otherwise mentioned, the maps W — W[m] and W[m] — W
are these inclusion and projection.

The pair (W, D) contains (Yo, p), p = p1 + p2 + p3, as its subpair. Accordingly,
the pair (W[m], D[m]) contains a subpair (Yro[m], p[m]) whose main part Yro[m)]
is the preimage of Yro under the contraction W[m] — W. The relative divisor
p[m] is the intersection Yro[m] N D[m]. It is the embedding Yro[m] C W[m] that
induces the embedding Mgy C M.

Now let ug be a relative stable morphism in My, considered as an element in M;
let u, be a small deformation of uy in M™ that is not entirely contained in M.
Each uy is a morphism from X to W[m] for some triple m possibly depending on
s. We let u4: Xy — W be the composite of us with the contraction Wim] — W;
ug is a flat family of morphisms. Further, us specializes to @ as s specializes to 0.
Hence as sets,

(A8) hn% QS(XS) = ao(Xo).
Because u(X;) are union of algebraic curves in W and @y(Xy) is contained in
C1 U Cy U (5, for general s the intersection u4(Xs) N D is discrete. Hence every

connected component Y C 3 '(D;) must be mapped to a fiber of Alm;]/D;; in
particular us(Y) N D[m]; # 0. Because of the requirement us(Y) N D[m]; C L[m];
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we impose on the M, we have
(A.9) us(X)ND; C L.
This leads to the following definition.
Definition A.3. We let Mng be the union of all connected components of
{(u, X) € M™ | @(X)N D is finite}
that intersect My but are not entirely contained in it.

In short, elements in ./\/lérgf are those u that are 7T;-invariant and are small defor-
mations of elements in M. Following the discussion before Definition A.3, all uw in
J\/ldTgf satisfies (A.9). In case a; 1 # 0 (we agree ay = a1), the only T, -fixed points
of L; are p; and ¢;; hence all u in /\/ldT;’f satisfies a strengthened version to (A.9):
(A.10) us(X)ND; Cp, when a;41 # 0.

. T, .
Here ¢; is ruled out because each connected component of M7, intersects M.

‘We now characterize elements in MdTgf. We comment that we shall reserve aq, as
and ag for the three components of 7; we always assume the three a;’s are relatively
prime and that a; + a2 + a3 = 0. In this and the next two Subsections, we shall
workout the case a; > 0 and as,as < 0; the case n = (1, —1,0) will be considered
in Subsection A.5. Now let (u,X) € /\/ldT;’f and let V' C 4(X) be any irreducible
component. Since v is T),-invariant, V' is T))-invariant. Hence V' must be the lift of
the set

V = {(c1t™, caot§?, c3t3®) | t € CU {0} } C (P1)?
for some (c1,c2,c3). In case all ¢; are non-zero, then VN D ¢ {p1,p2,ps}, which
violates the requirement (A.8); when ¢; = 0 but the other two are non-zero, then
V' N D # ps, which is impossible. Similarly, in the case c; = 0 but the others are
not zero, the set V' contains g1, which is impossible.

This leaves us with the only two possibilities: when only one of ¢; is non-zero or
c3 = 0 but the other two are non-zero. In the first case we have V = C; for some
i; in the later case V' is the image of the map

(A.11) brc i Pt — W, keZ", ceC*

that is the lift of P* — (P1)*? defined by & s (£Fa1 ckazgkaz (). Clearly, ¢y is
T,-invariant. It is easy to see that these are the only 7T),-equivariant maps ¥ — W
whose images are not entirely lie in C; U Cs U C5 and the divisor D. This proves

Lemma A.4. Suppose a1 > 0 and az and a3 < 0. Then any (u, X) € Mng has at
least one irreducible component Y C X and a pair (k,c) so that uly = ¢pc.

Here by u|y & ¢ . we mean that there is an isomorphism Y 2 P! so that under
this isomorphism uly = ¢, c.
When c specialize to 0, the map ¢y, . specializes to
ro:PUP — W

defined as follows. We endow the first copy (of P* UP!) with the coordinate & and
the second copy with &; we then form the nodal curve P! LI P! by identifying 0 of
the first P! with 0 of the second P!; we define ¢y o to be the lift of the maps

& — (&1,0,0) and & — (0,&7%2,0).
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Since & = 0 and & = 0 are both mapped to the origin in (P1)*3, they glue together
to form a morphism ¢y o:P* LUPL — W.
This leads to the following definition:

Definition A.5. A deformable part of a (u, X) € J\/lng consists of a curveY C X
and an isomorphism uly = ¢y . for some (k,c).

Suppose (u, X ) has at least two deformable parts, say (Y1, ¢, ¢,) and (Y2, ¢k, ¢, ),
then the explicit expression of ¢y, . ensures that Y7 and Y5 share no common irre-
ducible components. Should Y7 NY3 # (), their intersection would be a nodal point
of X that could only be mapped to either Dy or Dy of W under u. (Note that it
could not be mapped to pg since then both ¢; and ¢y = 0, and that node would be
in more than two irreducible components of X.) However, the case that the node
is mapped to Dy or Dy can also be ruled out because it violates the pre-deformable
requirement of relative stable morphisms [17]. Hence Y; and Y5 are disjoint. This
way, we can talk about the maximal collection of deformable parts of (u, X); let it
be

(Ylv ¢k1,c1)7 Tty (}/la ¢kl,cz)-
Definition A.6. We define the deformation type of (u, X) € J\/lng be the unordered

collection {ki,--- ,ki}. It defines a function on ./\/lng, called the deformation type
function.
Let (u, X) be an element in ./\/lérgf of type {ki,--- ,k;} as before. Intuitively, we

should be able to deform u within Mg;’f by varying u

y; using ¢y to generate an

Al-family in ./\/lg;’f. It is our next goal to make this precise.

To proceed, we need to show how to put ¢ into a family. We first blow up
P! x Al at (0,0) to form a family of curves 9 over Al. The complement of the
exceptional divisor 9 — E = P! x Al — (0,0) comes with an induced coordinate
(&,t). We define

Dply-p: YD —E—W; (&1t)— (hn - Rezghez ),

We claim that ®x|y_p extends to a @5 : Y — W. Indeed, if we pick a local
coordinate chart near E, which is (£, v) with ¢t = v, then

(I)k|2J—E : (§7U) = (gkalv (5”)_ka2§ka270) = (57”) = (gkalvv_kazvo)v
which extends to a regular
DY — W.

Note that for ¢ € Al, the fiber of (®1,Q)) over c is exactly the ¢y . we defined earlier.
Henceforth, we will call (®4,9)) the standard model of the family ¢y ,; we will use
2. to denote the fiber of 2) over ¢ € Al

To deform w using the family @y, we need to glue ) onto the domain X. We let
D1 be the proper transform of 0 x A € P! x Al and let ®5 = oo x Al in ). Both
D, and D, are canonically isomorphic to A' via the second projection. For Y C X,
we fix an isomorphism Y 2 Q). so that u|y = ¢p; we specify v1, v2 € Y so that
u(v;) € Dy; we let X be the closure of X —Y in X.

We now glue 2) onto Xy x Al. In case both v; and vy are nodes of X, we glue
2 onto Xo x Al by identifying ®; with v; x Al and D, with vy x Al, using the
their standard isomorphisms with Al; in case v; is a marked point of X and v, is
a node, we glue 9 onto Xy x Al by identifying D, with vy x Al and declaring D
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to be the new marked points, replacing v;; in case v; is a node and vy is a marked
points, we repeat the same procedure with the role of v; and ve and of ®; and
®4 exchanged; finally in case both v; and vy are marked points, we simply replace
Y x Al in X x Al by 9 while declaring that ©; and D, are the two marked points
replacing v; and vo. We let X — A! be the resulting family.

The morphisms
7J,|X0

Xox A Xg — S Wm] and @Y ——W
glue together to form a morphism
U: X — Wimj.

The pair (U, X) is the family in ./\/lg;’f that keeps u|x, fixed.
More generally, we can deform u inside Mg;’f by identifying and altering its
restriction to the deformable parts of X simultaneously. This way, any u € ./\/lérgf

of type {k1,--- ,k;} generates an A! family of elements in Mg;’f.

A.3. Global structure of the loci of invariant relative morphisms. Before
we move on to the next part, we shall give a complete description of all infinitesimal
deformations of an element in /\/ldT;’f. At the moment, we continue to concentrate
on the case as and a3z < 0.

Let w: X — W/m] be any such element and let R C X be the divisor of the
marked points of X. Unlike the case of ordinary stable morphisms, infinitesimal
deformations of u may involve the smoothing of the nodal divisors of the target
W([m]. In the case studied, we are fortunate that the nodes u=*(D) C X will stay
intact when u varies as T;-invariant morphisms.

We now make this precise. We let S be the convex hull of the infinitesimal
deformations of [u] in M§2f§ its quotient under a finite group (as a stack) is the

formal completion of ./\/lg;’f at [u]. We let

U:X—-W and RcCX
be the tautological family over S and its divisor of its marked points; its only closed
fiber is u: X — W[m] and R C X. We denote by D C W the relative divisor and
L C D the flat family of three lines in D associated to Lim] C D[m]. We then let
N be the closed substack of nodes of X. We say that a node v € X stays intact

when u deforms in J\/ldTgf if the stack N is flat over S at v.
We have the following Lemma about the possible smoothings of nodes of X.

Lemma A.7. Let v € X,04e be a node in u_l(D). Then v stays intact when u
. T,
deforms in M2,

The key to the proof relies on the fact that the restrictions of the automorphisms
induced by 7}, on one irreducible component of X that contains v are infinite while
on the other irreducible component are finite.

More precisely, since u is Tj-invariant, there are homomorphisms hy : T, —
Aut(X) and hy:T,, — Aut(W[m]) so that

X 2= Wm] —— W
(A.12) lhl(g) ha(o) la’ VoeT,
X 2= Wm —— W
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is commutative. Now let v € =1 (D;) be a node of X that is mapped to D; under
u; let V_ be the irreducible component of X that contains v that is mapped onto
C; and let Vi be the other irreducible component of X that contains v. Then
u(Vy) either is contained in A[m;]. Since hy(id) = id and that 7;, is connected,
hi(o)(Vx) C V4. Hence h;(o) are automorphisms of V4 that fixed v. We let

Tylve = {hi(0) | o € Ty} € Aut(Va, v);
it is a subgroup.

Lemma A.8. The group T, |v._ is an infinite group while the group T)|v, is a finite
group.

Proof. The group Ty|v_ is infinite is obvious. Since u(v) = p; and w(V_) C W,
u(V_) must be the line C;. Since the induced action on C; is infinite, T} |y must
be infinite because v is T),-invariant.

We now show that in case Tj|v, is infinite, then the automorphism group of
w is infinite, violating the stability requirement on u. For this, we will construct
homomorphisms b} : T;, — Aut(X) and hb :T,, — Aut(W[m]/W) that makes the
diagram (A.12) commutative with h; replaced by h. and the last vertical arrow
replace by the identity?.

For o € T,), we let h(c): X — X be hy (o) when restricted to u='(A[m;]) and be
the identity in its complement. The homomorphism A is slightly tricky since ho (o)
does not commute with W = W. In our case this does not pose any problem since
the image u(u~'(A[m;])) is entirely contained in the fiber of A[m;] over p; € D;.

We let 7:A[my] — Dq be the projection and let ha|,-1(,,) be the restriction of
hs to the this fiber. We then extend hg|r-1(,,) to a D;-automorphism of A[m,];
namely, it is an equivariant automorphism of the pair A[m4] — Dy with T}, acting
trivially on D;. Lastly, we extend this action (on A[m;]) to W[m)] by identity. Such
hy: T,y — Aut(W[m]/W) and satisfies the required commutativity. This proves the
Lemma. (]

We have the following easy observation:

Lemma A.9. Let V_ and Vi be the two connected components of X as before.
Then the node v stays intact when u deforms in ./\/lng.

Proof. Suppose N is not flat over v, then v is smoothed at least of first order
within S. Since X / S is T)-equivariant with T}, acting on S trivially, that v has
been smoothed of first order and Ty is mﬁnlte forces T),|v, to be infinite as well.
This violates the assumption that T77|V+ is finite. This proves the Lemma. O

Because all nodes u=(D) C X stay intact when u varies in Mg;’f, the domain
of the universal family X over S will split into four parts: those that are mapped
D; under the composite of U and the contraction W — W, and the one that is
mapped to W.

To begin with, we first divide X into connected components according to their
images in W[m]. We let Alm;] be the chain of ruled varieties attached to D;; for
i=>1, we let X1 = u=1(A[m;]); we endow X[ with the marked points R that

3The automorphisms ¢ € Aut(W[m]) that makes the right square commutative with hz (o)
replace by ¢ and with o replace by id are called relative automorphisms of W[m]/W; the group
of all such automorphisms is denoted by Aut(W [m]/W).
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is the union of R N X[ with u=(D;); we let X[O] = u~Y(W) with marked points
u~ (D). (In case m; = 0, we simply take X/ = ().) Because of the discussion so
far in this subsection, the nodes u~1(D) of X all stay intact when u varies in S.
Therefore, there is a family of subcurves X! in X that is flat over S and has X[ as
its only closed fiber. We let Rl c Xl be the divisor of marked points extending
R - x,

For each i > 0, ul! £ u|yy is a relative stable morphism to A, relative to both
D_ and D, . Because of the cond1t1on (A.10), the family ¢/l £ L{|X[] is a family
of relative stable morphisms in M*®(P!,0,00)//C* — the moduli of relative stable
morphisms to P! relative to 0 and oo in P! up to an additional equivalence: dilation
b%l}(C* on P! fixing 0 and oo. We let Sl be the convex hull to deformations of such
ut.

We next look at the part X[°); we will divide its connected components into four
classes. The class I consists of those V' C X [0 that satisfy u|y = ¢ .. for some (k, c);
these are the deformable components. We let [ be the number of such components.
Singe each deformable component varies in a family A!, this class contributes an Al
to S.

The class I consists of those connected components V of X% so that

(A13) V=PIUPY, |y :& V™ €Oy, and & — 6V e 0y, &, € Z*.

Such V = P! U P! has two marked points v1 = {£& = oo} and vy = {& = oo}
An easy calculation shows that there is a finite order T;-equivariant deformation of
uly :P'UPY — W satisfying u(v;) € p;; the deformation space is Spec C[t]/(tFv 13]).

The class I consists of connected components V € X% that have u="(po) NV =
{pt} but are not in the class I and I It is easy to see that they do not admit even
first order deformations as 7),-equivariant maps; they are rigid.

The class IV consists of those V' C X% so that u='(py) £ Vj is a curve. Since
V is connected, Vj is also connected. We endow Vjy with the marked points Ry =
{nodes of V' —nodes of Vy}. Then the space of T, -equivariant deformations of u|y
coincide with the deformations of the pointed curve (Vy, Ro). We let g, be the
arithmetic genus of V' and let n,, be the number of nodes in V5. The convex full
J\;lgvmv of deformations of (Vo, Ry) contributes to S.

Combined, we have proved

Lemma A.10. The convez hull S of the infinitesimal deformations of [u] in J\/lng
is isomorphic to the formal completion of

3
I[5" it TT soeeciof@ =0« ( TT )

Ve class II Ve class IV

at its only closed point.

We next prove a structure theorem to the stack /\/ldT;’f; we shall show that each
of its connected component is a trivial Al-bundle over its intersection with M.

We let (u, X) be any element in ./\/lggf; let Y1,---,Y; C X be all its deformable
parts so that uly, = ¢x, ¢,; we let v;1 and v; 2 € Y; be the marked points so that
u(v; ;) = p;j. Then according to the discussion in the previous Subsection, by

in ./\/lg;’f; together they provide a copy Al in
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./\/lzgf. This is one of the fiber of the fiber bundle structure on ./\/lérgf we are about
to construct.

To extend this Al C J\/ldTgf to nearby elements of [u], we need to extend all ¥; in
X to a flat family of subcurves.

Lemma A.11. The deformation type function on Mng 18 locally constant.

Proof. We pick a disk 0 € S and a morphism :S — ./\/ldT;’f so that ¥(0) = [u]. The
morphism ¢ pulls back the tautological family on J\/ldTgf to a family U: X — Z over
S. The central fiber Xy = X and thus contains Y;. We let N' C X be the subscheme
of the nodes of all fibers of X'/S. Since v; ; is either a marked point or a node of
X, v;; € NUR. Let P; ; be the connected component of N'UR that contains v; ;.
We claim that P; ; is a section of NUR — S. First, P; ; is flat over S at v; ;. This
is true in case v; ; is a marked point since R is flat over S by definition; in case v; ;
is a node it is true because of Lemma A.9. Therefore, P; ; dominates over S. Then
because N'UR is proper and unramified over S, dominating over S guarantees that
Pi,; is finite and étale over S. But then since S is a disk, P; ; must be isomorphic
to S via the projection.

We now pick the desired family of curves ;. In case P; ; is one of the section of
the marked points of X' /S, we do nothing; otherwise, we resolve the singularity of
the fibers of X along P; ;. As a result, we obtain a flat family of subcurves J; C X
that contains Y; as its central fiber. We let Uf;:); — W be the restriction of U to
Yi. Because U;(Y;) C W C Wiml], U;(YV;) C W x S C W as well.

Since U : X — W is a family of T;-equivariant relative stable maps, U;: V; — W is
also a family of T)-equivariant stable morphisms. Then because U; |y, is isomorphic
to @k, c;, each member of U; must be an ¢y, . for some ¢ € C. This proves that the
deformation type of U|x, contains that of U|x, as a subset. Because this holds true
with 0 and s exchanged, it shows that the deformation type function stay constant
over S.

Finally, because any two elements in the same connected component of J\/ldTgf
can be connected by a chain of analytic disks, the deformation type function does
take same values on such component. This proves the lemma. O

We are now ready to exhibit a fiber bundle structure of any connected component
of J\/ldTgf.

Let Q C /\/ldT;’f be any connected component. According to the previous subsec-
tion, all elements in Q are of the same deformation types, say {k1,---,k}. In case
Q is not entirely contained in My, [ > 0. To get the fiber structure, we need to
take a finite (branched) cover of Q, which we now construct.

Definition A.12. We define the groupoid Q over Q as follows. For any scheme
S over Q, we let Q(S) be the collection of data {{U, X, W), pi, Vi,m; |i=1---,1}
of which

(1) U:X — W is an object™ in Q(S)

(2) pi are morphisms from S to AL, Al = Al;

(3) Vi are flat families of subcurves in X over S with all marked points dis-

carded;
(4) mi: Vi — piDr, an isomorphism over S

4Here we consider Q as a groupoid and Q(S) is the collection of objects over S.
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that satisfies
Uly, = pi Py, om; : Vi — WL
An arrow from {({U, X, W), pi, Vi, mi} to {U', X' W), pi, VI, i} consists of an
isomorphism hy: X — X' and an isomorphism ho: W — W' relative to W so that
under these isomorphisms Y; = Y., pi = pl, mi =7} (for alli) and U =U'.

Here we use Al to denote the target of p;, which is Al though, since later we
need to distinguish them for different i.

Proposition A.13. The groupoid Q is a DM-stack; it is finite and étale over
Q. The morphisms p; in each object in Q glue to a morphism p;: Q — Al Let
Qo = (p1,- , ) H(0). Then there is a canonical projection 7:Q — Qg making it

a Cl-vector bundle over Qu. Finally, the morphism
(7T, (pla"' 7/31)) : Q - QO X Al
is an tsomorphism of DM-stacks.

Proof. The proof is straightforward, following Lemmas A.10 and A.11, and will be
omitted. (]

A.4. The obstruction sheaves. In this subsection, we will investigate the ob-
struction sheaf to deforming a [u] in ./\/lérgf for the case ag, az < 0; we will follow
the convention introduced in Subsection A.3.

According to [18], the obstruction sheaf 72 over S of the obstruction theory of

J\/ldTgf fits into the long exact sequences

(A.14) — Eatly 5(25,5(R), Og)r, Lo LT o

(A.15) — B%} — R'7, (U*QWT/S(IOgT))V)Tn inAlTn —>B%n —0

and

(A.16) —»7}1 —>HT —>’72 —>’f2 — 0.

Within these sequences, B? = Bl each summand Bl is a sheaf that associates

to the smoothing of the nodes of the fibers of X that are mapped under U to
D; and the singular loci of A[m;]; the W is the scheme W with the log structure
defined in [18] and € is the sheaf of log differentials. In our case, u* Qi) S(D)

u *Qw (log D), where U:X — W is the obvious induced morphism.

Without taking the T -invariant part, the top two exact sequences define the
obstruction sheaf 72 to deforming [u] in J\/l' (Wrel) the moduli of relative
stable morphisms without requiring w(R) C L Taking the invariant part and
adding the last exact sequence defines the obstruction sheaf 77 . The sheaf H is
the pull back of the normal line bundle to £ C D. For the n 7;7\76 are interested,
Hr, = 0; hence the last exact sequence reduces to TT%, = ’Z~'T2n

In the following we shall show that the { families Y; C X of deformable parts of
(U, X) each contributes to a weight zero trivial quotient sheaf of ’qun.

We begin with the sheaf

(A.17) R'mps (@5 Qw (log D)),

where @, : 9) — W is the family constructed before and 7 : 9 — Al is the
projection. We let Z15 (resp. Zs1) be the T-invariant divisor of W that contains
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Cy and Co (resp. Cy and Cs); let mo: W — Zyo, m31: W — Z3p and m: W — C4
be the obvious projections. By definition, Qw (log D)V |z,, has a quotient sheaf
NZ12/W = 17O(—1). However, the projection m3; gives us a subbundle

Tr;lQZSI (log Ll)v|Z12 B QW(IOg D)V|Z12'
Note that L is a divisor in Z3;. Because

QZSI (log Ll)v|cl = NC1/231 S ch (Ingl)a

we obtain
WTNCH/ZM |Cl I QW(log D)|Z12 — NZ12/W = WTNcl/ZSI |Cl'

Because their compositions is the identity homomorphism, Qu (log D)V |y,, has a
direct summand 77N, /z,,. Consequently, ®;Qyy (log D) has a direct summand
3 (miNey 24 )-

Because of our choice, the weight of dz; is a;; the weight of Ty, at 0 is 1/k;
and the weight of @} (7iN¢, )z, ) at 0 x A C 9 is —as. Hence, the sheaf A.17
splits to line bundles of weights

1
_as_a1+E’_a3_al+E’ """ , a3 — 7.
Since all a; are integers, and a3 < —1 and —a3 — a1 = as < —1, within the above
list there is exactly one that is zero. Hence

(A18) Rlﬂk* (‘I)ZQw(IOg D)V)Tn = Op.

We now let p;: S — Al be so that Z;{|y >~ prdy,. Since V; C X is a flat family of
subcurves,

R17T* (L?*wa/g(log @)V)Tn — R17T* (L?*wa/g(log @)V|j)i)Tn

is surjective; but the last term is isomorphic to the pull back pf of (A.18); hence
we obtain a quotient sheaf

(A.19) @i R (U Q5 /S(log@)V)Tn — p;Op.

In the next part, we will show that this homomorphism canonically lifts to sur-
jective

(A.20) Di : Tﬁn — p;‘OAli.

The default proof is to follow the construction of the sheaves and the exact
sequences in (A.14-A.16); once it is done, the required vanishing will follow imme-
diately. However, to follow this strategy, we need to set up the notation as in [18§]
that itself requires a lot of efforts. Instead, we will utilize the decomposition of S
to give a more conceptual argument; bypassing some straightforward but tedious
checking.

We let X7 © X be the families of subcurves derived in the previous Subsection.
Since U X0 — W is a family of T})-equivariant relative stable morphisms, and
since U is a family of T}-equivariant relative stable morphisms to A relative to
D_ and D4, modulo an additional equivalence induced by the C* action on A,
the obstruction sheaves 7112 over S to deforming T;-equivariant maps U fit into
similar exact sequences

5[ B 1 sl a2
(A.21) — Extln 5 g (R1), Ogi)r, = AP = T2 — 0
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and
i i A ol % %

(A.22) — B Rix, (Z/{[Z]*QWT/S(logD)V)T R
n n n n

Now let Nyp € U~1(D; x S) be any section of nodes of X that separates X[°)
and X[, Because the induced T)-automorphisms on the connected component of
X9 adjacent to Ny, is infinite and on X1 is finite,

3 AL ~
,L_E:BO gl’t];\}[l]/g(giv[l]/g(']z[z]% O/—,%m)Tn = 5xtie/g(ﬂ)2/§(7€), O?’E‘)Tﬂ'

For the similar reason, because the tangent bundle 7T},, W has no weight 0 non-trivial
T,-invariant subspaces,

3 N . . .
(A.23) & Rz, (U Q51,5 (10g D)) 1. = R'ma (U Q1 5(10g D)),
Further, if we follow the definition of the the sheaves B* and A?, we can prove that
3oAlild _ g 3 plili _ pi

(A.24) & Ap” = Ay, and iejo By, = Br, ;
that under these isomorphisms,

3 3 . 3
(A.25) dl=a, &p0=p and & s =y;

i=0 i=0 i=0
and
3 i],2

(A.26) & 7 = T2

The exact sequences (A.14) and (A.15) become the direct sums of the exact se-
quences (A.21) and (A.22).

Now we come back to the weight zero quotient p; in (A.19). By its construction,
; is merely the canonical quotient homomorphism
(A.27)

R'm, (Z;I[O}*QWT/S(log’ﬁ)v)Tn — R'm, (L?[O]*wa/g(log T))Vb’i)Tn =p;Op.

under the isomorphism (A.23). Because of (A.26), to lift ¢, to ¢; we only need to
lift (A.27) to T1"* — pfOy.

For this, we need to look at the exact sequence (A.22) for X%, Since ¢% is a
relative stable map to (W, D) — namely no A’s has been attached to W — the
sheaf B[?7 = 0. Therefore the sequence (A.22) reduces to al’! = id. On the other
hand, ’TT[S]"Q is the obstruction sheaf on S to deformations of I/ ' since deforming
one connected component is independent of the geometry of the other connected
components, the exact sequence (A.21) decomposes into direct sum of individual

exact sequences
(A.28)

1

6[3}]

A . . s,
(R),05),, = R'm (U Q3515 (l0g D) 3) 1, =T —0,

y/8 y)Tn

one exact sequence for each connected component yc xll,
For );, since it is smooth, it has expected dimension zero and has actual dimen-

sion one, the obstruction sheaf TT[fi]’z must be a rank one locally free sheaf on S.
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Then because the middle term in (A.28) is p;Ou, Which is a rank one locally free
sheaf, the arrow 61 must be an isomorphism while ﬁD} I'= 0. Hence ; lifts to
= @ T TP = pro,,
ycxwo K ‘
and lifts to ¢; :TTQW — p; Oy, thanks to (A.26).

The above lift works over the stack Q. We let U : X — W be the tautological

family over Q; we let V; and pi:Q — Ali be the [ families of subcurves and mor-
phisms given by Definition A.12 and Proposition A.13. Let TTQn be the obstruction

sheaf over Q. Then according to the discussion above, the quotient homomorphism
R (U Qi 5 (log D)V)Tn — iiél R (U Q5 (log D) |yi)Tn = iilBl pi O

lifts to a quotient homomorphism

(A.29) 2 —>ié piOu.

In the remainder part of this Subsection, we shall apply the knowledge gained
to investigate the obstruction theory to deforming [u] in S; we shall prove that the
obstruction classes to deforming [u] lies in the kernel of

l l
Tor, =ker{ ® @i : T — @ p;Ou}.
”’ i=1 K i=1 ¢
For this purpose, a quick review of the set up of the obstruction theory is in order.

We say the vector space T%n = TT%, ®o, k([u]) is the obstruction space to de-
forming [u] in S if the following holds. Let (A, m, I) be a triple of an Artinian ring,
its maximal ideal and an ideal of A so that m- I = 0; let ¥4,7:Spec A/I — S be a
morphism containing [u] in its image. Then there is a canonical obstruction class

Ob(Aa Ia dJA/I) S T'12"n ®C 1

whose vanishing is the necessarily and sufficient condition for extending 14,7 to a
Ya:Spec A — S. The assignment

(A, I,9as1) — ob(A, I, ¢a/1)

is canonical in that it satisfies the obvious base change property. (See [18] for
details.)
We let T&Tn = ’ZB%TH ®o, k([u]). What we will show is that

Proposition A.14. The obstruction class ob(A, I,z/JA/I) lies in the subspace I ®c
T027T17 - T%7 ®c I.

Proof. Let (A, 1,14/1) be as before; let Uy r: Xs/1 — Wa 1 over Spec A/I be the
pull back of the universal family U over S. The decomposition X = uXl divides
X 41 into four parts XK]/I. Let UK]/I = MA/1|XX]/I. First, in case (Ua/r, Xa/r)
extends to (Ua, Xa), the decomposition Xy,; = UXE]/ ; remains valid; hence ex-
tending X4 /; to X4 is equivalent to extending each XX]/ ; to XX], Secondly, if we
can extend L{K]/ ; to Ty-equivariant L{K], because U has to map its marked points

either to {p1, p2, p3} or to the relative divisors of the target of Wa, Z/{E] glue together
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to a map Uy : X4 — Wa, after gluing XX} accordingly. Therefore, extending U, 1
to Tj-equivariant U4 over Spec A is equivalent to extending Z/{K]/ ; to Ty-equivariant
Z/{X] for each 7. Hence the obstruction class

3
i 3 i
ob(A, IUp) = > ob(A, LU, ;) € ) 7 @0, I.
=0

To complete the proof, we need to show that ob(A, I ,L{f} ;) lies in the kernel of

l
(A.30) ) @0, I — @ piOn ®o, 1.

But this is obvious. For extending L{f} ; is equivalent to extending each of its

connected components to over Spec A; to each connected component ),y of XLO/] I

the obstruction class ob(A, I,Ua/r|y,,,) to extending it and the map Uy rly,,,

to over Spec A lies in ’TT[TJ]}]’2 ®o, I. Here Y C X is the connected component

that contains )4 ,;. For the components J4,; that contains one of the deformable
parts Yi,---,Y, the obstruction class ob(A,1,Y4,r) = 0 since each uly, varies

within a smooth family. Because ’TT[S]’Q is the direct sum of TTE}]"Q for all connected

components Yof X O] the obstruction class ob(A, I ,L{f} ;) does lie in the kernel of
(A.30). This proves the Proposition. O

A.5. The case for n = (1,—1,0). We now investigate the structures of maps
[u] € /\/ldT;’f in case n = (1, —1,0). Let (u, X) be any such map, let R be the marked
points and let @ be the contraction X — W. Because ag = 0, u(X) intersects Dy
at pp; intersects D3 at ps while intersects Dy can be any point in L. Thus being
T,-equivariant forces @(X) to be a finite union of a subset of Cy, Cs, C3 and the
lifts of the sets {2122 = ¢, z3 = 0} C (P*)3.

In case all irreducible components are mapped to UC; under @, [u] € M. For
those that are not in My, there bound to be some Y C X so that @(Y") is the lifts
of {z122 = ¢,23 = 0}. Such u|y are realized by the morphism ¢y, .: P! — W that
are the lifts of

(A.31) € (cF€F,€7F,0) € (B

When ¢ specializes to 0, the map ¢y . specializes to ¢y o: P UP — W that is
the lift of & — (£F,0,0) and & — (0,£,",0). Indeed, there is a family 9 — Al
and a morphism ®;:9) — W so that its fiber over ¢ € Al is the @k, defined; also
this is a complete list T} -equivariant deformations of ¢y .. Since the argument is
exactly the same as in the case studied, we shall not repeat it here.

Here comes the main difference between this and the case studied earlier. In
the previous case, Im ¢y . N D; = p; for both ¢ = 1 and 2; hence we can deform
each uly 2 ¢y, . to produce an Al family in /\/ldT;’f. In the case under consideration,
though Im ¢y . N Dy = p1, if we fix an embedding A' C Ly so that 0 € Al is the
D2 € Lo, then Im ¢y, . N Dy = c® € Lo. In other words, if we deform ulp = Pic, We
need to move the connected component of X[? that is connected to Y.

This leads to the following definition.
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Definition A.15. We say that a connected component Y C X is subordinated
to a connected component E C X2 if Y N E # (); we say a connected component
E c X is deformable if every connected component of X0 that is subordinate to
E is of the form ¢y . for some pair (k,c).

We say u has deformation type [ if it has exactly [ deformable connected com-

ponents in X[/, The deformation types define a function on ./\/lzgf.

Lemma A.16. The deformation type function is locally constant on ./\/lng.

Proof. The proof is parallel to the case studied, and will be omitted. O

As in the previous case, any [u] € /\/ldT;’f of deformation type | generates an Al

in J\/ldTgf so that its origin lies in M. Let Eq,--- , B C X2 be the complete set
of deformable parts of u; let Y; ;, j = 1,---,n; be the complete set of connected
components in X% that are subordinate to E;. By definition, each u Vi = Ohijieiy-
To deform u, we shall vary the ¢; ; in each ¢y, and move F; accordingly to get
a new map.

In accordance, we shall divide X into three parts. We let Xy be the union of
irreducible components of X other than the E;’s and Y; ;’s. The variation of v will
remain unchanged over this part of the curve. The second part is the moving part
E;’s. Recall that each u|g, is a morphism to A[ms]. Suppose it maps to the fiber
Almgs]. of A[ms] over ¢ € Lo C Dy. To deform u, we need to make the new map
maps E; to A[mg].. Since the total space of A[msg] over Ly is a trivial P![ms]
bundle, there is a canonical way to do this. We let

1,5:Ci,j

Pe,e! - A[m2]c ;) A[mQ]c’
be the isomorphism of the two fibers of A[mg] over ¢ and ¢’ € Ly induced by the
projection A[mz] — P1[my] that is induced by the product structure on A[ma] over
Lj. The third parts are those Y; ; that are subordinate to F;.
We now deform the map v using the parameter space Al. We let K; be the least

common multiple of (k; 1, , kin,); we let e; ; = K;/k; ;. Since Y; ; and Y; j» are
o k. .
connected to the same connected component E; ¢ X2 cfljlj =5 we let it be
c;. For t = (t1,--- ,t;) € Al, we define
t t t
(A.32) u'lx, = ulx,, uly, = e i and u'ly,; = ¢kiyj7t:i,j.

Here in case Y; ; = P!, which is the case when ¢; ; # 0, by u®ly, , = ¢, ;.0 we mean
that we will replace Y; ; by P! LIP! with necessarily gluing if required; and vice
versa.

The A! family «? is a family of T -equivariant relative stable morphisms in /\/ldT;’f;
the map u” associated to 0 € A! lies in My; the induced morphism A! — J\/ldTgf is
an embedding up to a finite quotient.

By extending this to any connected component Q of ./\/lggf, we obtain

Proposition A.17. Let Q be any connected component of Mng that is not entirely
contained in Mo. Suppose elements of Q has deformation type l. Then there is a
stack Q, a finite quotient morphifm Q_—> 9, a closed substack Qy C Q, | projections

pi:Q — Ali and a projection w:Q — Qq so that
(m,(p1o-++ o)) Q—— Qg x A
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is an isomorphism. Further, given a [u] € Q, the fiber Al in Q that contains a lift
of [u] € Q is the Al family {u® | t € A'}; its intersection with the zero section Qg
is u®. Finally, the intersection Q N My is the image of Q.

Proof. LetU:X — W be the tautological family over Q. We choose Q so that there
are families of subcurves &1, - -+ ,& C X so that foreach z € Q, E1NAX,, -+ ,ENX,
are exactly the [ deformable parts of X,. Then the composite & — W — W factor
through L, C W, and the resulting morphism & — Ly factor through Q — Lo.
Because each &N X, has a ¢y, . connected to it, the image of Q — Lo liesin Lo — q2-
We then fix an isomorphism A' 22 Ly — g5 with 0 corresponding to py. This way we
obtain the desired morphism

pi:Q—>Ali%L2—q2.

The proof of the remainder part of the Proposition is exactly the same as the case
studied; we shall not repeat it here. 0

The last step is to investigate the obstruction sheaf over Q, or its lift to Q.

Let R C X the divisor of marked points. By passing to an étale covering of Q,
we can assume that R — Q is a union of sections; in other words, we can index the
marked points of [u] in Q@ globally. We then pick an indexing so that for i <[ the
i-th section of the marked points R; lies in &. We let U;: Q — Lo be

Ui U, i Ri =2 Q — Ly CW.

Since Lo C Dy is isomorphic to Ls x @ C Dy x Q under the contraction W — W x Q
and since R; lies in &;, for ¢ < [ the morphism U; is exactly the p;, under the
isomorphism Al & Ly — g9, and U N, /D is canonically isomorphic to pfNr,/p,-
Because D, is fixed by T;), Np,,p, is fixed as well, and hence p; Ny, ,p, is a trivial
line bundle on Q with trivial T,-linearization.

Because H is the direct sum of U Ny p, ®'_,p; Ny, p, becomes a direct sum-
mand of H. Because it has weight zero, it induces a canonical homomorphism

l 2
69i:lprj\]lzz/Dz T,
a weight zero subsheaf of TTQ,,'

Lemma A.18. The homomorphism @©"p;Nr,/p, — TTQ,, in (A.16) is injective;
thus ng,, contains " p; Np,/p, as its subsheaf. Indeed, this subsheaf is canonically
a direct summand of Tﬁn.

Proof. First the first | marked points lie in the connected components of X [? that
are connected to the domain of at least one ¢ . in W. Because all deformations
of ¢r. as T,-invariant maps are ¢ ., and they intersect Dy in Ly only; hence
for these i even if we do not impose the condition U(R;) C Lo the condition will
be satisfied automatically. In short, the arrow ’ZN'Tln — Hr, has image lies in the
summand @DIL{;*NE/D. This proves that the homomorphism ®"p; Ny, ,p, — ’qun
is injective.

We now show that this subsheaf is canonically a summand of the obstruction
sheaf. The ordinary moduli of stable relative morphisms ./\/l; Jﬂ(W”l) requires
that the marked points be sent to the relative divisor. The moduli space M =

M; Jﬁ(Wrel, L) we worked on imposes one more restriction: the marked points be
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sent to L C D. The obstruction sheaves of the two moduli spaces are related by
the exact sequence (A.16) because of the exact sequences

0— Nr,y)p, — Np,yw — Np,yw|p, — 0.

In our case, L; is a P! and the above exact sequence splits T-equivariantly. Hence
the sheaf TT%, splits off a factor that is the kernel of TTln — Hr,. Therefore
@®!_1p; Ny, p,, which is a summand of Hy, and a subsheaf of TT%,? becomes a
summand 77 . O

We next investigate the obstruction theory of Q. Let [u] be any closed point;
then the canonical obstruction theory of Q at [u] takes values in
2 42
17, =11, Qo4 k([u]).
We let

!
762,:&, 2 ker{Tﬁn — 1_6291 PfOAli} and To2,:n7 = %Q,Tn ®og k([u).

Proposition A.19. The obstruction to deformation of [u] in J\/lng takes value in
T, -

Proof. The proof is exactly the same as the proof of the first statement of Lemma
A.18. O

A.6. The proof of Lemma A.l. Following the convention set up in the intro-
duction of this Appendix, the class ?b([J\/l]Xfr’T) is the summand in H(Z,) of the
image of the equivariant class [C|]T € HT (F, F — Z) under the composites
~ o~ ~_ Thom ~ ~ o~ ~ ~
HI(F,.F=2)— HI(2)— H[ (2,2 - 2,) — H[(Z)).
This is the same as the summand of the image under the composite
~ o~ ~ L ~ o~ ~ ba ~

(A.33) HIY(F,F - 2)—HI(F,F - 2,) — HI(Z)).
Here 1 is the homomorphism induced by the inclusion and ¢, is the equivariant
Thom-isomorphism. B }

Now we localize the above sequence. Let a and b be indices so that M, C Z,.
We let A, be the restriction to M, of the normal bundle to Z, in F. We then

consider the normal cone to C: N2, in C. It is a cone contained in the total space
of [T,y Na (we say a < bif My C 2p). We let C, be its part in N,. We let

(A.34) 7,: HY Ny, N, = M) — HY(M,) and ¢, : HY(M,) — HI(Z})
be the Thom homomorphism and the one induced by the inclusion. Then obviously

S G0 ma(IC)T) = ¢ o w([CT) = A (IM]T).

a<b

Hence to prove Lemma A1, it suffices to show that 7, ([C4]T) = 0 for all M, C M.
Before we prove this, we need two structure results: one is on M, and the other
is on the bundle N, x1,- We will show that each connected component M, of ML,

up to a finite branched cover M, — M,, admits a T-equivariant map

(A.35) Ta: Mg — Poe
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to a weighted projective space Pj« with trivial T" action; that there is a rank n, +1
vector bundle V, on Pje with trivial T-action and a T-equivariant quotient vector
bundle homomorphism

(A.36) Ny — 7TV,

of the lift N, to M, of J\7'a on Ma.

We first construct 7,. Let Z € J\;lg; be any closed point. By the construction of
Moo, % is an T,-orbit [T, - 2] of some z € IX. .My N M; therefore Z is fixed by T
if and only if the T),-orbit T}, - z is identical to the T-orbit T - z, which is possible
only if dimg staby(z) > 1. Because Z € 9%, Mo, it is not in M7T'; hence there must
be a subgroup 7, C T so that z € MTn. Finally, because ¢ is sufficiently small,

z € Mg;’f. This shows that

ME = TT (M3 N 9mMo) /T,
T,CT

We now analyze its individual connected components. Before we move on, we
remark that we only need to consider the case n = (a1,a2,as3), for a3 > 0 and
as,a3 < 0, and the case n = (1, —1,0). Indeed, since the symmetry of (P*)? defined
by (21, 22,23) — (22,23, 21) lifts to a symmetry of W, any statement that holds
true for the n = (a1, az, a3) holds true for 7' = (as,as,a;). Consequently, we only
need to work with those 7 so that |a1]| > |az| and |as|. Then because T, = T—,,, we
can assume further that a; > 0. Hence either as and a3 < 0 or one of them is zero.
For former is the case one; in the later case, by applying the S3 symmetry we can
reduce it to the case n = (1,—1,0).

We fix a T, C T belongs to the two classes just mentioned. We let Q, be a
connected component of ./\/lérgf associated to M. According to Proposition A.13
and A.17, after a finite branched covering 0 — Q, Q is isomorphic to Qg x Al for
some integer [ > 0; the T,-action on Q is the product of the action on Q, induced
by that on My and the action

(A.37) (w1, yup)® = (W uy, -, 0%uy) € Al
for some w = (wy,--- ,w;). Hence if we let P,:Q — Al be the projection, which is
(p1,-++ , p1) by our convention, and if we endow A! with the 7),-action (A.37), then

0 — Alis T,-equivariant.

We now pick an T, -invariant Riemannian metric on Al; we let S2~1 C A! be the
e-sphere under this metric. P, 1(S2~1). Without lose of generality, we can assume
that the metric on Al and on Z are chosen so that P, 1(S?~!) C Q is the preimage
of QN IX .M, in Q. Hence P, induces an T,-equivariant map

(A.38) P82 — 82
and thus induces a map between their quotients
Ta: Mo 2 P7Y(S2Y /T, — S271T, = Phe.

(Here we use the subscript w to indicate the weighted and the superscript n, to
denote the dimension of weighted projective space; to be precise, we shall view the
weighted projective spaces as DM-stack. Since the specific weight is irrelevant to
our study, we shall not keep track of it in our study.)

We next construct the quotient bundle (A.36). Let Q C ./\/ldT";’f be the connected
component that gives rise to the fixed loci ./\;la; let @ — Q be the finite branched
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covering alluded to in Propositions A.13 and A.17; let TTQN be the obstruction sheaf

on Q. By (A.29) and Lemma A.18, there is a canonical quotient sheaf homomor-
phism

l
(A.39) 17 — © pfOu,
1=1 N

both with trivial 7},-actions.

A direct check shows that to each i there is a T),-linearization on O so that
the above homomorphism is T}, -equivariant. Because T}, - T;, = T', the ad(;pted T,-
linearization and the trivial T;-linearization on Oy makes (A.39) T-equivariant.

Since the obstruction sheaf 72 on M is a T-equivariant quotient sheaf of F| 4,

restricting to Q and then composing with (A.39) give us a T-equivariant quotient
sheaf

l
(A.40) f|Q — ‘@1 p;—kOAli.

Here F|g is the lift of F|g to Q. Their descents to M, then give rise to a quotient
homomorphism -

a M, — T V.
Here V), is the descent (or the T,-quotient) of ®!_ 1041 [s2-1 — a vector bundle on
Pre with trivial T-action; F| gy, is the lift of .7:|M to M.

Finally, since the normal bundle N, has F| x1, as its quotient sheaf, its lift to M.,
denoted by N, has 7}V, as its T-equivariant quotient. This is the homomorphism
we aimed at.

We next prove the following Lemma.

I_Jemm_a A.20. Let éa be the part in ./\7a of_the normal cone to C N éa m é let
C. C N, be the canonical lift of Cq under N, — N; and let Nao be the kernel

of N, — T2 Va. Then there is a T:equivariant cone B, C Ny so that Cq is T-
equivariant rationally equivalent to B,.

The desired vanishing Ta([éa]T) = 0 follows immediately from this Lemma. In-
deed, let
Ta: HI (Noy No — Ma) — HI (M)
and
Ta0 : HI (Na0, Nao — Ma) — H (M)

be the T-equivariant Thom homomorphisms and let 7: M, — M, be the projec-
tion. Then

deg - Ta([éa]T) = 7_'a([Ba]T) = eT(ﬁZVa) ) 7_'a,O([Ba]T) = 7T*eT(Va) ) 7_'a-,O([Ba]T) =0.
Here the first equality follows from the projection formula and the rational equiv-

alence of the Lemma; the second follows from the fact that B, C Na,O; the last
follows from that V, is T-trivial and its rank is bigger than dimPje.

Pmof of Lemma A.20. We let Z, be the connected component of ZT that contains
M,; let 2, be the connected component of 277 so that (277 N 9% Mo)/T, is Zp;
and let Q as before be the connected component of ME that gives rise to M,. We
next let AV be the normal bundle to Z; in Z; it admits a canonical T-linearization.
Since 0%. My intersects Z; transversally along QNIY.. Mo, Np|onos. m, is identical
to the restriction to @ N 0¥ My of the normal bundle to Z, N 90X . Mg in 0¥ M.
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Hence the descent of Ny|onas. m, t0 Mg, which we denote by N, is canonically
a subbundle of ./\/ — the restriction to ./\/l of the normal bundle to Zb in Z.
Further, the quotient Ea = Na /No is an R2-bundle on J\/la that admits a canonical
T-linearization that makes the following exact sequence T-equivariant:

(A.41) 0— No — Ny — Ly — 0.

For later application, we now exhibit explicitly the 7T-linearization on L, and
show that the above exact sequence splits canonically. For this we need to use the
complexified subgroup C} of (C*)2. Namely, C; C (C*)? is the algebraic subgroup
that contains the 7, as its maximal compact subgroup. For any o € T,, we let
oR* be the obvious real subgroup in C}. For any z € Q the tangent of the orbit
oRT - 2 at 0z defines an element

ne(z) 2 di(ot . z)|t:1 eT,.Z.
t

Since C} acts on Z algebraically, the vector n,(z) is never zero. Descending to
M., these vectors {n,(z) | ¢ € T,} are loci of an T, orbit of the fiber Ea|[z] at
[2] € M,. Here [z] is the point in M, that is the T,-orbit T} - z of z. The vectors
also span an R2-subspace in Na|[z] and generate the R? normal vector space £~a|[z].
Therefore, it induces a splitting of the exact sequence (A.41) at [z]. Because this
splitting is canonical, it extends to a splitting of the exact sequence along Ma,.

the following we will fix this splitting and write N, = Ny & L,. We remark that
this splitting is induced by the C}-action on Z; it does not depend on the choice of
the Riemannian metric.

We now consider the pair (Q, /\;la) Following its construction, M, is the quo-
tient of Q N OX. My by T),. If we replace Q by its covering Q studied before, we
obtain M, after quotient out @ N P, (S?~!) by T,. (See (A.38) for notations.)
Parallel to that of symplectlc reduction, M, and /\/l are canonically isomorphic
to the quotient of Q+ = 9 — My by C}; and of Q+ £90-0, by C;.

As to the cone Ca, the part of the normal cone to Cx s Zb in C that lies over /\/la,
there is a similar quotient description which we now descrlbe We let C, be the
part of the normal cone to C x z 25 in C that lies above Q; we let Co4 be Co X o 9.
Obviously, Coy is a Ck-equivariant subcone of the vector bundle N,y = N,|g -
Because C* acts on Q4 with finite stabilizers everywhere, the quotient Q1 /C? is a
DM-stack and is canonically isomorphic to M,; the quotient Ny /C# is canonically
1somorphlc to No, the quotient Ca+/C} is a subcone of No and its direct product
with L over /\/la is the cone Ca, that is

(A.42) Ca =Cat/C X 1. Lo CNa =Ny @ Lo

Our next step is to construct a C; x C;-equivariant subcone B, C N, whose
quotient by C* will give us the cycle B,; we shall construct also a C;, xC}-equivariant
rational equivalence between C, and B, whose descent to ./\;la will give the required
T-equivariant rational equivalence relation.

The cone B, and the equivalence relation was already constructed in [11]. We
consider the moduli space M and the open substack @ ¢ M. Following the
proof in [11, Section 3], we can construct a (C*)2-invariant cone cycle B, C A, so
that it is rational equivalent to C, and its intersection with the C; fixed part of N,
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c
namely B, NN, ", is the cone cycle constructed in [20, 4] that defines the virtual
cycle of the C; fixed part [Q]%n;

We now let NV, be the lift of NV,|o, to Q4 ; let Flg, be the lift of F|g, . Since
Flo, is canonically a quotient bundle of N, F|g, is a quotient bundle of N7, .
Then the homomorphism (A.40) induces a quotient homomorphism

_ !
ar — f:Bl p;Onla, -
We let /\_/;70 . be the kernel of this homomorphism.
Because of Lemma A.14 and A.19, the lifting B/, C ./\744r of B, C N, satisfies
o
B, NN, C N(;,On-l"
Therefore, Bl, C N}, .

Now let C!, be the lift of C, to Q, which is a subcone of N/, . Because the whole
construction is Cj x C¢ equivariant, the cycle B! and the rational equivalence of C,
and B/, are C;, x Ct-equivariant. Then because Cj, acts on Q. with finite stabilizers,
we can take the quotient B!, /C# and the similar quotient of the rational equivalence.
The former lies in Ay and the later is a C-equivariant rational equivalence between
B, /C% and C! /C%. Then because of (A.42), if we define

B, =B.,/C} x 51, Lo C Ny =Ny @ L,
then the direct produce of £, with the quotient of the rational relation by C;, defines

the desired rational equivalence between B, and C,. This completes the proof of
the Lemma. (]

APPENDIX B. EXAMPLES OF CONJECTURE 8.3
Conjecture 8.3. Let ji € Pf’r. Then
Wilq) = Wala),
where ¢ = eV~ and Wii(q) is defined as in Section 3.3.
We have seen in Section 8 that Conjecture 8.3 holds when one of the three

partitions is empty. When none of the partitions is empty, A. Klemm has checked
by computer that Conjecture 8.3 holds in all the cases where

') <6, i=1,2,3.
We list some of these cases here.

4 3 2
5 ¢ —q¢+q —q+1
W, =W, =
(1)7(1);(1)(q) (1);(1)7(1)(q) ql/z(q — 1)3

6 5 3
7 - +q¢ —qg+1
Wo..2)(@) = Wo,0.0@) = =g —pye =y

6 5 3
7 - +q¢ —qg+1
Wy, ), (@) =Way,),a,1(@) = (2 =1 g= 1)

3/2(,8 _ T 4
i ¢ —q"+q —q+1)
W04 =Wy, = <5 e -1y - 1
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8 7 6 5 4 3 2
~ q° —2q¢"+3¢° —3¢° +3¢° —3¢° +3¢g° —2q+1
Way.w.en(@) = Wa,a.en () = (@ —1)(qg—1)*
8 _ T4 A4

; ¢ —q¢' +q —q+1

)4% =W =
(1)7(1),(171,1)(q) (1)7(1),(171,1)(q) 2@ —1) (g —1)(qg— 1)

"=+ "+ —q+1)

Wy 2.2 (@) = Way.2).2)(@) = e
5 9 _ .8 6 _ 05 193 — o2 — 1
Way,a.0.@(@) = Waya.@ (@) = —— ;g(qf_ Bz(‘; - 1‘1)3 g+
_ 9 _ 8 _ 0T 4905 — gh 4 od — .
Wa,@),0,0(@) = Way,@),0,1)(0) = i ql/q2(;; _‘11)2(‘; j1q)3 q+
T 8 7., 5 4, 3 1
W, .0.0.0(@) = Wy, an,anle) =2 qqs/;?; - 1(1)2(2(1_ 1)3q -

4010 9 5
- B 4@ -+ —q+1)
Wo,o.0(@) =Wo.0.0@ = i@ D s D= 17
a(¢"” — 2¢° +2¢° — 2¢° + 3¢° — 2¢" +2¢> — 2 + 1)

Way,m,.0(@) = Way,0),6.0(a) = D@ -Dg=1
: 0(¢® —2¢° + " +¢* +¢* —2¢° + 1)
Wi, ),2:2)(@) = Wa),).22)(@) = @ D@ -1 (g1
10 9 8 6 5 4 2
~ g —2¢" +2¢° —2¢° +3¢° —2¢" +2¢° —2q¢ +1
Wy, (),2,1,0(0) = Way, )21, (9) = 2l =D = 1)(q— 1)

10 9 5
7 ¢ —q¢ +¢ —q+1
Way,ay,a,1,1,0(@) = Way,a),a,1,1,1(0) = 2@ D@ D@ -1)(g—1)7°
e —d"+d—d"+¢’—q+1)

W@, (@) = Way.@).6(@) = @ - D(E-1)g -1

W(1),(3)7(2) (@) = Way,3).2)(0) = q2(q1(()qg 3914)—(3: : ?jz?—qu I)3q U
Wi.@.20(@) = Way.@).en(0) = - quo(;zEgl;(Zz - i];(;gﬁl;f e
W 2),2)(@) = W 2).2) (@) = - :(;137 - 11)5(:2(1_4 I)?;jf)(f =
W(1),(2),(1,1,1)(Q) = W(l),(2),(1,1,1)(‘1) = - qllq(_qgl_o ;—)E]:gtqf)g_(jiﬁ;]: A
Wy, @) = Way,ai.2 () = - q;z;f__l;](ﬁq:_qi;f;__f;_ !

Wa.1.0.6)(@0) = Way,a,e)(@) = - ql;(zsqi ]{Ziqi;{f__{ii 4t

W(l),(B),(l,l)(Q) = W(l),(B),(l,l)(Q) = q(q12 — qll(q_3 ‘1_101;;291'1‘1)82(_(1‘53 ;;3(]4 —47 1)
Way.w1).e0(@) = Way,a.en@) = - qm;gg__(f);gqi_l)q;tiq; —a

11 10 9 8 7 6 4
7 ¢ —2¢"+2¢ —q¢+q¢" —¢+q —qg+1
Way,2,),0,10)(0) = Way,e1.21)(@) = @ =g 1)
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10 9 7 6 4
7 ¢ —¢+q¢ -+ —q+1
Way,a,0,0,1,0)(@) = Way,a,n,a,1,10(@) = 2 D@ =12 = 1)

10_ .9, 6_ 4, .3
7 ¢ —q¢ +q¢ —q¢ +q¢ —q+1
Wy, (@) = Way,a,1.1),0,0(9) = 2@ - D@ —1)2(q=1)°

q(q"® —3¢® +3¢" +2¢% — 5¢° +2¢* +3¢> — 3¢> + 1)
(¢ —1)3(g—1)3

12 11 10 9 7 6 5 3 2
7 T°-q¢ —q " +2¢ —q¢"+q¢ - +2¢"—q¢" —qg+1
Wiz).2.0.0(@) = Wa),2.0.0(@) = J(E—1P(g=1)

Wi2).2).2(@) = W).@.2(@) =

12 11 10 9 7 6 5 3 2
7 T —q —q " +2¢ —q¢'+¢ —¢°+2¢° —q¢ —q+1
Wi2),1,1),1,1) (@) = Wiz),1,0),01,1) (@) = @@ —1)3(q—1)

g% —3¢® +3¢" +2¢° —5¢° +2¢* + 3¢ —3¢° + 1
7*(¢> = 1)*(g — 1)

Wy, (), (@) = Wiy, (@) =

Wy, 2),3.1)(q) = W(1),(2),(3,1)(Q)
q3/2(q13 _ 2q12 4 qll 4 2q10 _ 3q9 4 2(]8 _ 2(]6 4 2q5 —q+ 1)
(¢* = 1)(¢? = 1)2(¢ — 1)*

Wi,2.1).3) (@) = W(1,1),(2,1),(3)(Q)
@ g T g B gt — 0 P g — ¢® — 2
—1
+2¢* +¢* =29+ 1) - (¢*(¢* = 1)*(¢" —1)*(¢ — 1))

W(z),(2),(2,1,1,1)(‘1) = W(z),(2),(2,1,1,1)(Q)
_ (q22 . q21 . 2q20 + 3q19 + q18 . 3q17 +3q15 . q14 . 2q13 +q12
+¢" + ¢ —2¢° —®* +3¢" —3¢° + ¢* +3¢° —2¢° —q + 1)

: (qm(ff’ -1 - 1)(* = 1)*(q— 1)4)71

Wy, 2,2),3.2) (@) = W(l),(z,z),(g,z)(Q)
(P =202+ P g — ¢ 4 ¢ = 2g" 4+ ¢ 4 g 4 g1 — 3¢2
10 9 8 o7 o,6 4 3 _ 9,2
+q¢ U +2¢°+ ¢ —2¢" —2¢° +2¢" +2¢° —2¢° —q+ 1)

(ala* = D)@~ 1P - 1) (g - 1))

Wy, (3),2,2.1)(@) = Wy, 3).(2,2,1)(0)
= (@2 = T — 5 2070 4 2¢% — 3% — 3¢2" + 2¢%° + 3¢ + 2" — 4g"7
—3¢16 12415 4+ 3¢ 4 243 — 3912 — 4g" 4 240 4 3¢° + 245 — 37 — 3¢°

+2¢° +2¢* —¢* —q+1)- (ql/?(ffl —1)(¢* = 1)*(¢" —1)*(q - 1)4)71

Wia,1),(4),3,2)(@) = W(2,1),(4),(3,2)(Q)
— qQ(q:)’l _ 2q30 + 2q29 _ 2q28 + q27 + q26 _ 2q25 +4q24 _ 5q23 +4q22 _ 4q21
202 + 2419 — 30" 4+ 5¢17 — 7" + 5¢'® — 2™ + 2¢'2 — 4¢™ + 5¢'0 — 3¢°
—1
4 -+ = —q+ 1) ((¢" = 1) - D = 1)*(¢—1)°)
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Wii1,1,1),2.2),2,2.0 (@) = Wa,1,1.1),2,2),2.2,1) (@)

_ (q35_q34_2q33+2q32+2q31_3q29_2q28+3q27+2q26+2q25_5q24

(1]
2]

[3]

[9]

(10]
(11]
(12]
(13]
14]
(15]
[16]
(17)
(18]

(19]

_3q23+3q22+4q21+4q20_9q19_3q18+3q17+4q16+6q15_7q14_3q13
_2q12+3q11 +7q10 _4q9 _q8 _2q7+3q5 _q4 _q2 _q+ 1)

: (q13/2(q4 - 1)*(¢* = 1)*(¢* = 1) (g — 1)4)71

W(2),(3),(3,2,2,1,1)(Q) = W(z),(s),(3,2,2,1,1)(‘1)
(q37 . q36 . 3q35 + 5q34 . 5q32 + 6q31 . 3q30 . 5q29 + 10q28 . 4q27 . 5q26

189 — 5g®* — g% 4 6622 — 5¢2 + ¢®° + q'° — 248 4 317 — 246 + 3¢ — 5¢'3

+3¢" + 3¢ — 7¢"° +4¢° + 2¢® — 5¢" +5¢° — ¢® — 4¢* +4¢> —2¢+ 1)
-1
(ald" = 1) = )(¢" = 1D*(¢* = D(@® - D) (g - 1)°)

REFERENCES

M. Aganagic, A. Klemm, M. Marino, C. Vafa, The topological vertex, preprint, hep-
th/0305132.

M. Aganagic, M. Marino, C. Vafa, All loop topological string amplitudes from Chern-Simons
theory, Comm. Math. Phys. 247 (2004), no. 2, 467-512.

K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no.
3, 601-617.

K. Behrend, B. Fantechi, Intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88.

J. Bryan, R. Pandharipande, Curves in Calabi-Yau 3-folds and topological quantum field
theory, preprint, math.AG/0306316.

D.-E. Diaconescu, B. Florea, Localization and gluing of topological amplitudes, preprint, hep-
th/0309143.

D. Edidin, W. Graham, Fquivariant intersection theory, Invent. Math. 131 (1998), no. 3,
595-634.

D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue
formula, Amer. J. Math. 120 (1998), no. 3, 619-636.

C. Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with
an application to the class of the locus of Jacobians, New trends in algebraic geometry
(Warwick, 1996), 93-109, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press,
Cambridge, 1999.

I.P. Goulden, D.M. Jackson, A. Vainshtein, The number of ramified coverings of the sphere
by the torus and surfaces of higher genera, Ann. of Comb. 4 (2000), 27-46.

T. Graber, R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no.
2, 487-518.

T. Graber, R. Vakil, Relative virtual localization and vanishing of tautological classes on
moduli spaces of curves, preprint, math.AG/0309227.

A. Igbal, All genus topological amplitudes and 5-brane webs as Feynman diagrams, preprint,
hep-th/0207114.

E.-N. Ionel, T. Parker, Relative Gromov-Witten invariants, Ann. of Math. (2) 157 (2003),
no. 1, 45-96.

E.-N. Ionel, T. Parker, The symplectic sum formula for Gromov-Wiltten invariants, preprint,
math.SG/0010207.

M. Kontsevich, Intersection theory on the moduli space of curves and the matriz Airy func-
tion, Comm. Math. Phys. 147 (1992), no. 1, 1-23.

J. Li, Stable Morphisms to singular schemes and relative stable morphisms, J. Diff. Geom.
57 (2001), 509-578.

J. Li, Relative Gromov-Witten invariants and a degeneration formula of Gromov-Witten
invariants, J. Diff. Geom. 60 (2002), 199-293.

A. Li, Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds,
Invent. Math. 145 (2001), no. 1, 151-218.



78

JUN LI, CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

[20] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties,

J. Amer. Math. Soc. 11 (1998), no. 1, 119-174.

[21] A.M. Li, G. Zhao, Q. Zheng, The number of ramified coverings of a Riemann surface by

Riemann surface, Comm. Math. Phys. 213 (2000), no. 3, 685-696.

[22] C.-C. Liu, K. Liu, J. Zhou, A proof of a conjecture of Maririo-Vafa on Hodge Integrals, J.

Differential Geom. 65 (2003), no. 2, 289-340.

[23] C.-C, Liu, K. Liu, J. Zhou, A formula of two-partition Hodge integrals, preprint,

math.AG/0310272.

[24] I.G. MacDonald, Symmetric functions and Hall polynomials, 2nd edition. Claredon Press,

1995.

[25] M. Marino, C. Vafa, Framed knots at large N, Orbifolds in mathematics and physics (Madi-

son, WI, 2001), 185-204, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002.

[26] H.R. Morton, S.G. Lukac, The HOMFLY polynomial of the decorated Hopf link, J. Knot

Theory Ramifications 12 (2003), no. 3, 395-416.

[27] A. Okounkov, R. Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol.

8 (2004), 675-699.

[28] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121

(1989) 351-399.

[29] E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in

differential geometry (Cambridge, MA, 1990), 243-310, Lehigh Univ., Bethlehem, PA, 1991.

[30] J. Zhou, Hodge integrals, Hurwitz numbers, and symmetric groups, preprint,

math.AG/0308024.

[31] J. Zhou, A conjecture on Hodge integrals, preprint, math.AG/0310282.
[32] J. Zhou, Localizations on moduli spaces and free field realizations of Feynman rules, preprint,

math.AG/0310283.

[33] J. Zhou, Curve counting and instanton counting, preprint, math.AG/0311237.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CA 94305, USA
E-mail address: jli@math.stanford.edu

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138, USA
E-mail address: ccliu@math.harvard.edu

CENTER OF MATHEMATICAL SCIENCES, ZHEJIANG UNIVERSITY, HANGZHOU, CHINA; DEPART-

MENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT LOS ANGELES, Los ANGELES, CA 90095-
1555, USA

E-mail address: 1iu@cms.zju.edu.cn, liu@math.ucla.edu

DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING, 100084, CHINA
E-mail address: jzhou@math.tsinghua.edu.cn



