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Lecture I: Basic functional analysis

§1 Nonarchimedean fields

Let K be a field. A nonarchimedean absolute value on K is a function | | :
K −→ IR such that, for any a, b ∈ K we have

(i) |a| ≥ 0,

(ii) |a| = 0 if and only if a = 0,

(iii) |ab| = |a| · |b|,
(iv) |a + b| ≤ max(|a|, |b|).
The condition (iv) is called the strict triangle inequality. Because of (iii) the
map | | : K× −→ IR×+ is a homomorphism of groups. In particular we have
|1| = | − 1| = 1. We always will assume in addition that | | is non-trivial, i.e.,
that

(v) there is an a0 ∈ K such that |a0| 6= 0, 1.

It follows immediately that |n · 1| ≤ 1 for any n ∈ ZZ. Moreover, if |a| 6= |b| for
some a, b ∈ K then the strict triangle inequality actually can be sharpened into
the equality

|a + b| = max(|a|, |b|) .

To see this we may assume that |a| < |b|. Then |a| < |b| = |b + a − a| ≤
max(|b+a|, |a|), hence |a| < |a+b| and therefore |b| ≤ |a+b| ≤ max(|a|, |b|) = |b|.
Via the distance function d(a, b) := |b − a| the set K is a metric and hence
topological space. For any a ∈ K and any real number ε > 0 the subsets

Bε(a) := {b ∈ K : |b− a| ≤ ε} and B−
ε (a) := {b ∈ K : |b− a| < ε}

are called closed balls and open balls, respectively. Both systems, for varying ε,
form a fundamental system of neighbourhoods of a in the metric space K. One
checks that addition + : K ×K −→ K and multiplication · : K ×K −→ K are
continuous maps. So K is a topological field.

Lemma 1.1: i. Bε(a) is open and closed in K;

ii. if Bε(a) ∩Bε(a′) 6= ∅ then Bε(a) = Bε(a′);

iii. If B and B′ are any two closed balls in K with B ∩ B′ 6= ∅ then either
B ⊆ B′ or B′ ⊆ B;

iv. K is totally disconnected.
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Proof: The assertions i. and ii. are immediate consequences of the strict triangle
inequality. The assertion iii. follows from ii. To see iv. let M ⊆ K be a
nonempty connected subset. Pick a point a ∈ M . By i. the intersection M ∩
Bε(a) is open and closed in M . It follows that M is contained in any ball around
a and therefore must be equal to {a}.

The assertions i.-iii. hold similarly for open balls. Talking about open and
closed balls in particular does not refer to a topological distinction but only to
the nature of the inequality sign in the definition. The assertion ii. says that any
point of a ball can serve as its midpoint. On the other hand the real number ε
is not uniquely determined by the set Bε(a) and therefore cannot be considered
as the ”radius” of this ball.

Another consequence of the strict triangle inequality is the fact that a sequence
(an)n∈IN in K is a Cauchy sequence if and only if the consecutive distances
|an+1 − an| converge to zero if n goes to infinity.

Definition: The field K is called nonarchimedean if it is equipped with a nonar-
chimedean absolute value such that the corresponding metric space K is complete
(i.e., every Cauchy sequence in K converges).

From now on throughout the course K always denotes a nonarchimedean field
with absolute value | |.

Lemma 1.2: i. o := {a ∈ K : |a| ≤ 1} is an integral domain with quotient field
K;

ii. m := {a ∈ K : |a| < 1} is the unique maximal ideal of o;

iii. o× = o\m;

iv. every finitely generated ideal in o is principal.

Proof: The assertions i.-iii. again are simple consequences of the strict triangle
inequality. For iv. consider an ideal a ⊆ o generated by the finitely many ele-
ments a1, . . . , am. Among the generators choose one, say a, of maximal absolute
value. Then a = oa.

The ring o, resp. the field o/m, is called the ring of integers of K, resp. the
residue class field of K.

Exercise: For any a ∈ o and any ε ≤ 1, the ball Bε(a) is an additive coset a+b
for an appropriate ideal b ⊆ o.

Examples: 1) The completion Qp of Q with respect to the p-adic absolute value
|a|p := p−r if a = pr m

n such that m and n are coprime to the prime number p.
The field Qp is locally compact.
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2) The p-adic absolute value | |p extends uniquely to any given finite field ex-
tension K of Qp. Any such K again is locally compact.

3) The completion Cp of Qp. This field is not locally compact since the set of
absolute values |Cp| is dense in IR+.

4) The field of formal Laurent series C{{T}} in one variable over C with the
absolute value |∑n∈ZZ anTn| := e−min{n:an 6=0}. The ring of integers of this field
is the ring of formal power series C[[T ]] over C. Since C[[T ]] is the infinite disjoint
union of the open subsets a+T ·C[[T ]] with a running over the complex numbers
the field C{{T}} is not locally compact.

The above examples show that the topological properties of the field K can be
quite different. In particular there is an important stronger notion of complete-
ness.

Definition: The field K is called spherically complete if for any decreasing
sequence of closed balls B1 ⊇ B2 ⊇ . . . in K the intersection

⋂
n∈IN Bn is

nonempty.

Any finite extension K of Qp is locally compact and hence spherically complete.
On the other hand the field Cp is not spherically complete.

We mention as a fact that the value group |K×| either is a discrete or a dense
subset of IR×+. In the former case the field is called discretely valued. Examples
of discretely valued fields K are finite extensions of Qp and the field of Laurent
series C{{T}}. The field Cp on the other hand is not discretely valued.

Exercise: Any discretely valued field is spherically complete.

§2 Seminorms and lattices

Let V be a K-vector space throughout this section. A (nonarchimedean) semi-
norm q on V is a function q : V −→ IR such that

(i) q(av) = |a| · q(v) for any a ∈ K and v ∈ V ,

(ii) q(v + w) ≤ max(q(v), q(w)) for any v, w ∈ V .

Note that as an immediate consequence of (i) and (ii) one has:

- q(0) = |0| · q(0) = 0,

- q(v) = max(q(v), q(−v)) ≥ q(v − v) = q(0) = 0 for any v ∈ V ,

Moreover, with the same proof as before, one has

- q(v + w) = max(q(v), q(w)) for any v, w ∈ V such that q(v) 6= q(w).
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The vector space V in particular is an o-module so that we can speak about
o-submodules of V .

Definition: A lattice L in V is an o-submodule which satisfies the condition
that for any vector v ∈ V there is a nonzero scalar a ∈ K× such that av ∈ L.

Exercises: 1. For a lattice L ⊆ V the natural map

K ⊗
o

L
∼=−→ V

a⊗ v 7−→ av

is a bijection.
2. The preimage of a lattice under a K-linear map again is a lattice.
3. The intersection L ∩ L′ of two lattices L,L′ ⊆ V again is a lattice.

For any lattice L ⊆ V we define its gauge pL by

pL : V −→ IR
v 7−→ inf

v∈aL
|a| .

We claim that pL is a seminorm on V . First of all, for any b ∈ K× and any
v ∈ V , we compute

pL(bv) = inf
bv∈aL

|a| = inf
v∈b−1aL

|a| = inf
v∈aL

|ba| = |b| · inf
v∈aL

|a| = |b| · pL(v) .

Secondly, the inequality pL(v + w) ≤ max(pL(v), pL(w)) is an immediate con-
sequence of the following observation: For a, b ∈ K such that |b| ≤ |a| we have
aL + bL = aL.

On the other hand for any given seminorm q on V we define the o-submodules

L(q) := {v ∈ V : q(v) ≤ 1} and L−(q) := {v ∈ V : q(v) < 1} .

We claim that L−(q) ⊆ L(q) are lattices in V . But, since we assumed the
absolute value | | to be non-trivial, we find an a ∈ K× such that |an| converges
to zero if n ∈ IN goes to infinity. This means that for any given vector v ∈ V we
find an n ∈ IN such that q(anv) = |an| · q(v) < 1.

Lemma 2.1: i. For any lattice L ⊆ V we have L−(pL) ⊆ L ⊆ L(pL);

ii. for any seminorm q on V we have co ·pL(q) ≤ q ≤ pL(q) where co := sup
|b|<1

|b|.
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§3 Locally convex vector spaces

Let (Lj)j∈J be a nonempty family of lattices in the K-vector space V such that
we have

(lc1) for any j ∈ J and any a ∈ K× there exists a k ∈ J such that Lk ⊆ aLj ,
and

(lc2) for any two i, j ∈ J there exists a k ∈ J such that Lk ⊆ Li ∩ Lj .

The second condition implies that the intersection of two subsets v + Li and
v′ + Lj either is empty or contains a subset of the form w + Lk. This means
that the subsets v + Lj for v ∈ V and j ∈ J form the basis of a topology on V
which will be called the locally convex topology on V defined by the family (Lj).
For any vector v ∈ V the subsets v + Lj , for j ∈ J , form a fundamental system
of open and closed neighbourhoods of v in this topology.

Definition: A locally convex K-vector space is a K-vector space equipped with
a locally convex topology.

Exercise: If V is locally convex then addition V × V
+−→V and scalar multi-

plication K × V
·−→V are continuous maps.

Since on a nonzero K-vector space the scalar multiplication cannot be continuous
for the discrete topology we see that the discrete topology is not locally convex.
There is an alternative way to describe locally convex topologies with the help
of seminorms.

Let (qi)i∈I be a family of seminorms on the K-vector space V . The topology
on V defined by this family (qi)i∈I , by definition, is the coarsest topology on V
such that

- all qi : V −→ IR, for i ∈ I, are continuous, and

- all translation maps v + . : V −→ V , for v ∈ V , are continuous.

For any finitely many norms qi1 , . . . , qir
in the given family and any real number

ε > 0 we set

V (qi1 , . . . , qir ; ε) := {v ∈ V : qi1 , . . . , qir (v) ≤ ε} .

Lemma 3.1: V (qi1 , . . . , qir ; ε) is a lattice in V .

Proof: Since V (qi1 , . . . , qir ; ε) = V (qi1 ; ε)∩ . . .∩ V (qir ; ε) and since the intersec-
tion of two lattices again is a lattice it suffices to consider a single V (qi; ε). It is
obviously an o-submodule. Choose an a ∈ K× such that |a| ≤ ε. Then V (qi; ε)
contains the lattice aL(qi) and therefore must also be a lattice.
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Clearly the family of lattices V (qi1 , . . . , qir
; ε) in V has the properties (lc1) and

(lc2) and hence defines a locally convex topology on V .

Proposition 3.2: i. The topology on V defined by the family of seminorms
(qi)i∈I coincides with the locally convex topology defined by the family of lattices
{V (qi1 , . . . , qir

; ε) : qi1 , . . . , qir
∈ I, ε > 0}.

ii. A locally convex topology on V defined by the family of lattices (Lj)j∈J can
also be defined by the family of gauges (pLj

)j∈J .

This means that the concept of a locally convex topology is the same as the
concept of a topology defined by a family of seminorms. For the rest of this
section we let V be a locally convex K-vector space.

Exercise: Show that the following assertions are equivalent:
i. V is Hausdorff;
ii. for any nonzero vector v ∈ V there is a j ∈ J such that v 6∈ Lj ;
iii. for any nonzero vector v ∈ V there is an i ∈ I such that qi(v) 6= 0.

Definition: A subset B ⊆ V is called bounded if for any open lattice L ⊆ V
there is an a ∈ K such that B ⊆ aL.

It is almost immediate that any finite set is bounded, and that any finite union
of bounded subsets is bounded.

Exercise: If the topology on V is defined by the family of seminorms (qi)i∈I

then a subset B ⊆ V is bounded if and only if sup
v∈B

qi(v) < ∞ for any i ∈ I.

Lemma 3.3: Let B ⊆ V be a bounded subset; then the closure of the o-submodule
of V generated by B is bounded.

Proof: Let L ⊆ V be an open lattice and a ∈ K such that B ⊆ aL. Since aL is
a closed o-submodule it necessarily contains the closed o-submodule generated
by B.

§4 Banach spaces

Definition: A seminorm q on V is called a norm if q(v) = 0 implies that v = 0.
A K-vector space equipped with a norm is called a normed K-vector space.

It is the usual convention to denote norms by ‖ ‖ (and not by q). A normed
vector space (V, ‖ ‖) will always be considered as a metric space with respect to
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the metric d(v, w) := ‖v − w‖. It is therefore in particular a Hausdorff locally
convex vector space.

Definition: A normed K-vector space is called a K-Banach space if the corre-
sponding metric space is complete.

We mention without proof the following two facts.

Proposition 4.1: Assume V to be Hausdorff; then the topology of V can be
defined by a norm if and only if there is a bounded open lattice in V .

Proposition 4.2: The only locally convex and Hausdorff topology on a finite
dimensional vector space Kn is the one defined by the norm ‖(a1, . . . , an)‖ :=
max

1≤i≤n
|ai|.

Further examples: 1) Let X be any set; then

`∞(X) := all bounded functions φ : X → K

with pointwise addition and scalar multiplication and the norm

‖φ‖∞ := sup
x∈X

|φ(x)|

is a K-Banach space. The following vector subspaces are closed and therefore
Banach spaces in their own right:

- co(X) := {φ ∈ `∞(X) : for any ε > 0 there are at most finitely many x ∈
X such that |φ(x)| ≥ ε}; e.g., co(IN) is the space of all zero sequences in K.

- C(X) := {all continuous functions φ : X → K} provided X is a compact
topological space.

2) Let L ⊆ K be a complete subfield, r ∈ |L×|, and a ∈ Ln a fixed point. Let
B := Br(a) := {x ∈ Ln : ‖x − a‖ ≤ r} denote the closed polydisk of radius r
around a. By the first example the K-vector space AK(B) of all power series

f(x) =
∑

i≥0

an(x− a)n with an ∈ K and lim
n→∞

|an|rn = 0

is a Banach space with respect to the norm ‖f‖ = max
n≥0

|an|rn. In fact, it is the

algebra of all K-valued rigid-analytic functions on B, i.e., all power series which
converge for any point of B with coordinates in an algebraic closure of L.
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§5 Fréchet spaces

The next general class of locally convex vector spaces is formed by the metrizable
ones, i.e., those whose topology can be defined by a metric.

Proposition 5.1: For a Hausdorff locally convex K-vector space V the following
assertions are equivalent:

i. V is metrizable;

ii. the topology of V can be defined by a countable family of lattices;

iii. the topology of V can be defined by a countable family of seminorms.

Proof: The implications i.⇒ ii.⇒ iii. are clear. It remains to show that iii.
implies ii. Let (pn)n∈IN be a sequence of seminorms which define the topology of
V . By replacing pn by max(p1, . . . , pn) we may assume that p1(v) ≤ p2(v) ≤ . . .
for any v ∈ V . We define

‖v‖F := sup
n∈IN

1
2n
· pn(v)
1 + pn(v)

for v ∈ V . One checks that d(v, w) := ‖v − w‖F is a metric on V satisfying the
strict triangle inequality. We claim that d defines the topology of V . Because
of p1 ≤ p2 ≤ . . . the lattices

V (n) := {v ∈ V : pn(v) ≤ 2−n}

for n ∈ IN form a fundamental system of neighbourhoods of the zero vector.
Note that for any real number a ≥ 0 and any m ∈ IN one has a ≤ 2−(m−1)

provided a/(1 + a) ≤ 2−m. This implies that

{v ∈ V : ‖v‖F ≤ 2−(2m+1)} ⊆ V (m) .

On the other hand, using that 2−n · pn(v)/(1 + pn(v)) ≤ 2−m for n ≥ m and
2−n · pn(v)/(1 + pn(v)) ≤ pm(v)/(1 + pm(v)) ≤ pm(v) for n ≤ m we obtain

V (m) ⊆ {v ∈ V : ‖v‖F ≤ 2−m} .

Definition: A locally convex K-vector space is called a K-Fréchet space if it is
metrizable and complete.

Any Banach space of course is a Fréchet space. More generally, any countable
projective limit of Banach spaces is a Fréchet space.
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Example: As in Example 2) of the last section we let L ⊆ K be a complete
subfield, r ∈ |L×|, and a ∈ Ln be a fixed point. But this time we consider the
open polydisk B− := B−

r (a) := {x ∈ Ln : ‖x − a‖ < r} of radius r around a.
We define AK(B−) to be the K-vector space of all power series

f(x) =
∑

i≥0

an(x− a)n with an ∈ K and lim
n→∞

|an|εn = 0 for any 0 < ε < r .

With respect to the family of norms

‖f‖ε := max
n≥0

|an|εn

AK(B−) is a Fréchet space. It is the algebra of all K-valued rigid-analytic
functions on B−, i.e., all power series which converge for any point of B− with
coordinates in an algebraic closure of L.

A very basic fact about Fréchet spaces is the following so called open mapping
theorem.

Proposition 5.2: Every surjective continuous linear map f : V −→ W between
two Fréchet spaces is open.

Corollary 5.3: i. Let V be a Fréchet (resp. Banach) space, and let U ⊆ V be
a closed vector subspace; then V/U with the quotient topology is a Fréchet (resp.
Banach) space as well.

ii. Any continuous linear bijection between two K-Fréchet spaces is a topological
isomorphism.

§6 Vector spaces of compact type

In this section we introduce a much more complicated type of locally convex
vector space but which is of basic importance in representation theory. To
simplify the presentation we assume that our field K is locally compact.

Definition: A continuous linear map f : V −→ W between two locally convex
K-vector spaces V and W is called compact if there is an open lattice L ⊆ V
such that the closure of the image f(L) in W is compact.

We consider now a sequence

V1 −→ . . . −→ Vn
in−→Vn+1 −→ . . .
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of locally convex K-vector spaces Vn with continuous linear transition maps in.
The vector space inductive limit V := lim

−→
Vn equipped with the finest locally

convex topology such that all the natural maps jn : Vn −→ V are continuous is
called the locally convex inductive limit of this sequence.

Exercise: A lattice L ⊆ V is open if and only if its preimage j−1
n (L) is open in

Vn for any n.

Definition: A locally convex K-vector space V is called of compact type if it is
the locally convex inductive limit of a sequence

V1 −→ . . . −→ Vn
in−→Vn+1 −→ . . .

of K-Banach spaces with injective and compact transition maps.

Lemma 6.1: Any vector space of compact type is Hausdorff.

Basic example: As before we consider a closed polydisk B = Br(a) in Ln. For
convenience we fix a sequence {rm}m∈IN in |L×| ∩ (0, r] which converges to zero.
A function f : B −→ K is called locally L-analytic if for any point b ∈ B there
is an m ∈ IN such that f |Brm(b) lies in AK(Brm(b)). Let Can(B, K) denote the
K-vector space of all K-valued locally analytic functions on B. In Can(B,K)
we have the increasing sequence of vector subspaces V1 ⊆ V2 ⊆ . . . defined by

Vm := {f ∈ Can(B, K) : f |Brm(b) ∈ AK(Brm(b)) for any b ∈ B} .

Since B is compact we have

Can(B,K) =
⋃

m∈IN

Vm .

Moreover, for each m ∈ IN, there are finitely many points b1, . . . , bnm
such that

the linear map
Vm

∼=−→ ⊕
1≤i≤nm

AK(Brm(bi))

f 7−→ ∑
i f |Brm(bi)

is a bijection. Hence Vm with the norm

‖f‖ := max
i
‖f |Brm(bi)‖

is a Banach space. It is straightforward to see that the inclusion maps Vm ↪→
Vm+1 are continuous. We equip Can(B, K) with the corresponding locally con-
vex inductive limit topology. It then is a vector space of compact type since the
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inclusion maps Vm ↪→ Vm+1 are compact. This latter fact is an elaborate version
of the observation that, for any a ∈ K such that 0 < |a| < 1, the continuous
linear endomorphism

co(IN) −→ co(IN)
φ 7−→ [n 7→ an−1φ(n)]

is compact. The image of the open lattice {φ ∈ co(IN) : ‖φ‖∞ ≤ 1} under this
endomorphism is the o-submodule

A := {φ ∈ co(IN) : |φ(n)| ≤ |a|n−1 for any n ∈ IN} .

One checks that the map

∏
n∈IN

o
∼=−→ A

(an)n 7−→ [n 7→ an−1an]

is a homeomorphism for the direct product topology on the left hand side which
is compact by the compactness of o.
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Lecture II: Duality theory

§7 Vector spaces of linear maps

In this lecture V and W will denote two locally convex K-vector spaces. It is
straightforward to see that

L(V,W ) := {f : V −→ W continuous and linear}

again is a K-vector space. We describe a general technique to construct locally
convex topologies on L(V,W ). For this we choose a family B of bounded subsets
of V which is closed under finite unions. For any B ∈ B and any open lattice
M ⊆ W the subset

L(B, M) := {f ∈ L(V,W ) : f(B) ⊆ M}

is a lattice in L(V, W ): It is clear that L(B, M) is an o-submodule. If f ∈
L(V, W ) is any continuous linear map then, by the boundedness of B, there has
to be an a ∈ K× such that B ⊆ af−1(M). This means that f(B) ⊆ aM or
equivalently that a−1f ∈ L(B, M).

The family of all these lattices L(B,M) is nonempty and satisfies (lc1) and (lc2).
The corresponding locally convex topology is called the B-topology. We write

LB(V,W ) := L(V, W ) equipped with the B-topology.

Examples: 1) Let B be the family of all finite subsets of V . The corresponding
B-topology is called the weak topology or the topology of pointwise convergence.
We write Ls(V, W ) := LB(V, W ).

2) Let B be the family of all bounded subsets in V . The corresponding B-
topology is called the strong topology or the topology of bounded convergence.
We write Lb(V,W ) := LB(V, W ).

If W is Hausdorff both locally convex vector spaces Ls(V, W ) and Lb(V,W ) are
Hausdorff.

Exercise: If V and W are normed vector spaces then the topology on Lb(V, W )
is defined by the operator norm

‖f‖ := sup{‖f(v)‖
‖v‖ : v ∈ V \ {0}}.
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It is technically important to know what the bounded subsets in LB(V,W ) are.
There always are some obvious ones.

Definition: A subset H ⊆ L(V, W ) is called equicontinuous if for any open
lattice M ⊆ W there is an open lattice L ⊆ V such that f(L) ⊆ M for every
f ∈ H.

Lemma 7.1: Every equicontinuous subset H ⊆ L(V, W ) is bounded in every
B-topology.

Proof: Let L ⊆ LB(V, W ) be any open lattice. There is an open lattice M ⊆ W
and a B ∈ B such that L ⊇ L(B,M). Since H is equicontinuous we find an
open lattice L ⊆ V such that f(L) ⊆ M for any f ∈ H. Furthermore, there is
an a ∈ K× such that B ⊆ aL. Hence f(B) ⊆ aM for any f ∈ H which shows
that H ⊆ aL(B, M) ⊆ aL.

To obtain a complete answer we have to impose a mild additional condition
on the topology of V . To understand it we first note that any open lattice
necessarily is also closed.

Definition: A locally convex vector space V is called barrelled if every closed
lattice in V is open.

Proposition 7.2: (Banach-Steinhaus) Suppose that V is barrelled; then in
LB(V,W ), for any B-topology which is finer than the weak topology, the bounded
subsets coincide with the equicontinuous subsets.

Examples: Any Fréchet space and any vector space of compact type is bar-
relled.

§8 Dual spaces

We now specialize the content of the previous section to the case W = K. The
vector space V ′ := L(V, K) is called the dual space of V ; more precisely, we call
the locally convex vector spaces V ′

s := Ls(V,K) and V ′
b := Lb(V, K) the weak

and strong dual, respectively.

Unfortunately it turns out that even if V is Hausdorff (and nonzero) it can have
a zero dual space V ′ = 0. This phenomenon is directly related to the field K
having the property of being spherically complete or not.

Proposition 8.1: (Hahn-Banach) Suppose that the field K is spherically com-
plete, and let U be a K-vector space, q a seminorm on U , and Uo ⊆ U a vector
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subspace; for any linear form `o : Uo −→ K such that |`o(v)| ≤ q(v) for any
v ∈ Uo there is a linear form ` : U −→ K such that `|Uo = `o and |`(v)| ≤ q(v)
for any v ∈ U .

Proof: By a simple application of Zorn’s lemma we may reduce to the case where
U = Uo + Kv1 for some vector v1 ∈ U . Consider, for any v ∈ Uo, the subset

B(v) := {a ∈ K : |a− `o(v)| ≤ q(v − v1)}

of K. For any two vectors v, v′ ∈ Uo we have

|`o(v)− `o(v′)| ≤ |`o(v − v′)| ≤ q(v − v′) ≤ max(q(v − v1), q(v′ − v1))

and hence `o(v) ∈ B(v′) or `o(v′) ∈ B(v). This means that always

B(v) ∩B(v′) 6= ∅ .

If there is a vector v0 ∈ Uo such that q(v0 − v1) = 0 then B(v0) consists of one
point and hence ⋂

v∈Uo

B(v) = B(v0) = {`o(v0)} .

Otherwise each B(v) is a closed ball. Since K is assumed to be spherically
complete the intersection ⋂

v∈Uo

B(v) 6= ∅

is nonempty as well. We therefore find, in any case, a scalar

b ∈
⋂

v∈Uo

B(v) .

We now extend `o to a linear form ` on U by `(v1) := b. We have |`| ≤ q since

|`(v + av1)| = |a| · |`o(a−1v) + b| ≤ |a| · q(−a−1v − v1) = q(v + av1)

for any a ∈ K×.

One of the important applications is the following result.

Proposition 8.2: Suppose that K is spherically complete and that V is Haus-
dorff; the linear map

δ : V −→ (V ′
s )′s

v 7−→ δv(`) := `(v)

is a continuous bijection.
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The map δ in the above proposition is called a duality map for V . We emphasize
that it seldom is a topological isomorphism. In general the strong dual V ′

b is
the more interesting dual space. For example, if V is a Banach space then we
know from the last exercise that V ′

b again is a Banach space. One therefore is
also interested in the following variant

δ : V −→ (V ′
b )′b

v 7−→ δv(`) := `(v)

of the duality map. It is not continuous in general!

Lemma 8.3: Suppose that K is spherically complete and that V is Hausdorff;
then δ : V −→ (V ′

b )′b is a topological isomorphism onto its image.

This leads to the following important definition.

Definition: A Hausdorff locally convex K-vector space V is called reflexive if
the duality map δ : V −→ (V ′

b )′b is a topological isomorphism.

A reflexive vector space V can be completely recovered from its strong dual V ′
b .

Unfortunately, over a spherically complete field K, infinite dimensional Banach
spaces never are reflexive.

But assuming for the rest of this section (and for simplicity) again that K is
locally compact a complete characterization of reflexivity in terms of a compact-
ness property can be given.

Proposition 8.4: A Hausdorff locally convex vector space V is reflexive if and
only if it is barrelled and any closed and bounded o-submodule of V is compact.

In this light it seems promising to examine vector spaces V = lim
−→

Vn of compact

type. Almost by definition the dual space V ′ = lim
←−

V ′
n is the projective limit

of the dual spaces V ′
n. Using the open mapping theorem one shows that this

even holds true topologically, i.e., V ′
b is the topological projective limit of the

dual Banach spaces (Vn)′b. Moreover, as a countable projective limit of Banach
spaces V ′

b is a Fréchet space. Finally, from the compactness of the transition
maps in the inductive system {Vn}n one deduces, using Prop. 8.4, that V and
V ′

b both are reflexive. This raises the question which Fréchet spaces arise as the
strong dual of a vector space of compact type. The answer needs the property
of being nuclear which to explain would be beyond the scope of these lectures.
But at least we want to formulate the precise result.
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Proposition 8.5: The functor V 7−→ V ′
b is an anti-equivalence between the

category of vector spaces of compact type and the category of nuclear Fréchet
spaces.

Despite the fact mentioned above that the concept of reflexivity is useless for
Banach spaces there nevertheless is a counterpart of the last proposition for
Banach spaces. This is made possible by the following compactness result.

Lemma 8.6: Let V be a Banach space; then the o-submodule V d := {` ∈ V ′ :
‖`‖ ≤ 1} is compact in V ′

s .

Proof: One checks that
V d ↪→ ∏

‖v‖≤1

o

` 7−→ (`(v))v

is a topological and closed embedding. As a direct product of compact spaces
the right hand side is compact.

Obviously V d is a linear-topological and torsionfree o-module. On the other
hand, if we start with a linear-topological compact and torsionfree o-module M
then

Md := all continuous o-linear maps ` : M −→ K

equipped with the norm
‖`‖ := max

m∈M
|`(m)|

is a K-Banach space.

Proposition 8.7: The functors V 7−→ V d and M 7−→ Md are quasi-inverse
anti-equivalences between the category of K-Banach spaces (V, ‖ ‖) with norm
decreasing linear maps and the category of linear-topological compact and tor-
sionfree o-modules.
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Lecture III:
Continuous and locally analytic functions

and distributions

§9 p-adic analytic manifolds

See Schneider, p-adische Analysis, Vorlesung in Münster, 2000;
www.math.uni-muenster.de/math/u/schneider/publ/lectnotes

We fix L, a local non-archimedean field of characteristic zero. Let M be a
paracompact topological space.

A chart for M is an open set Mi together with a map

φi : U → Br(i) ⊂ Ld

where Br(i) is a closed polydisc, as defined in lecture I. We say that two charts
(Mi, φi) and (Mj , φj) are compatible if the maps

φi ◦ φ−1
j : Br(j) → Br(i)

are L-analytic functions – meaning given by a collection of convergent power
series.

(i.) A collection of compatible charts that covers M is called an atlas for M .

(ii.) Compatible charts have the same d; this is called the dimension of the atlas.

(iii.) Given an atlas, one can enlarge it by adding all charts compatible with
each element of the given family, giving a maximal atlas.

(iv.) The space M together with such a maximal atlas is called an L-analytic
manifold. If all charts have dimension d, then M is said to be d-dimensional.

(v.) An function f on M is called L-analytic if f ◦φ−1
i is L-analytic for any chart

(Mi, φi). We write Can(M, K) for the space of K-valued L-analytic functions
on M , if K ⊃ L is a complete field.

(vi.) We also have the continuous functions C(M,K) ⊃ Can(M, K).

Lemma 9.1: Any L-analytic manifold is strictly paracompact, meaning: every
open covering has a pairwise disjoint refinement.

All of the L-analytic manifolds we consider have this property.
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§10 Vector valued functions

Let V be a locally convex, Hausdorff topological vector space over K.

We are interested primarily in three classes of V -valued functions on M : con-
tinuous; locally analytic; and locally constant.

The continuous functions are what you might expect.

Definition 10.1: If M is a topological space then we let C(M, V ) be the space
of V -valued continuous functions, with the topology of uniform convergence on
compact sets.

If M is compact and V is a Banach space then so is C(M, V ), with the norm
given by

||f || =
∑

x∈M

||f(x)||V .

Exercise: Show that, if M is compact and V is a Fréchet space with its topology
defined by a countable family of seminorms {qi}i∈IN, then C(M,V ) is a Fréchet
space with seminorms q′i(f) = supx∈M qi(f(x)).

The locally analytic functions are more complicated to define, if we wish to allow
general spaces V .

Definition 10.2: A BH-space for V is a continuous injection f : U → V where
U is a Banach space.

It is a consequence of the Open Mapping Theorem (Proposition 5.2) that if
h : W → V is another BH-space such that h(W ) ⊂ f(U) then the inclusion
W ⊂ U is continuous; thus if U is a subset of V that admits a Banach topology
such that the inclusion is continuous, then that topology is unique.

Let M be a locally analytic manifold and let (Mi, φi) be a chart of M . The
chart φi identifies Mi with a ball B = Br(a) ⊂ Ln. We let AK(Mi, φi) be the
K-Banach space of convergent power series on B, viewed as functions on Mi via
pullback with φi.

Let U be another K-Banach space. The U -valued analytic functions on Mi is
the Banach space

AK(Mi, φi, U) := AK(Mi, φi)⊗̂KU.
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This is the space of convergent power series on the ball φi(Mi) with coefficients
from U . Assuming for simplicity that this ball in Ln is centered at zero and has
radius r ∈ |L×|, we may write explicitly

AK(Mi, φi, U) = {
∑

I

aIxI : ai ∈ U}

with multi-indices I = (i1, . . . , in) of non-negative integers. Here the conver-
gence condition is

||aI ||U r|I| → 0 as |I| =
n∑

j=1

ij →∞.

Now let V be a Hausdorff locally convex K-vector space. We wish to define
V -valued, locally analytic functions on M . Choose a disjoint covering of M by
charts (Mi, φi)i∈I , and for each i ∈ I choose a BH-space Ui for V . The analytic
functions on M relative to these choices is the space

Can({(Mi, φi)}i, Ui) :=
∏

i∈I

AK(Mi, φi, Ui).

A choice of covering Mj{Mij , φij} with associated BH-spaces Uij is called an
index for M . The indices are ordered by refinement of coverings and enlarging
the BH-spaces. The space Can(M, K) is the direct limit over the indices:

Can(M, V ) := lim
−→

Can({(Mi, φi)}i, Ui).

Proposition 10.3: Suppose that M is compact and that V is of compact type.
Then Can(M,V ) is of compact type.

Proof: Since M is compact, we may assume that the direct limit defining
Can(M,V ) is over disjoint finite open coverings of M . Then, we may as-
sume that for a given covering, all of the Banach spaces in the index are
the same. Let {Uj} be a sequence of Banach spaces defining V as a com-
pact inductive limit. In other words, we may choose a cofinal system of indices
({Mij , φij}, Uj). Now consider one map in the direct limit:

Can({(Mij , φij)}i, Uj) → Can({(Mi′j′ , φi′j′)}, U ′
j)

Both sides of this map are Banach spaces. By using charts, we can reduce to
considering the case where Mi is a ball in Ln and is partitioned into sub-balls:
Br(a) = ∪jBr(i)(bi):

AK(Br(a))⊗ Uj →
∏

i

AK(Br(i)(bi))⊗̂U ′
j .
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Using the explicit description of these Banach spaces as power series, it is not
hard to extend the results of the example at the end of Lecture I to see that this
map is compact.

Remark 10.4: One may show that, when M is compact and V is of compact
type, one has an isomorphism

Can(M, V ) = Can(M,K)⊗̂K,πV

where the tensor product has the projective tensor product topology.

If M is not compact, we have the following result.

Proposition 10.5: If V is Hausdorff, and if M =
⋃

Mi is a partition of M
into pairwise disjoint open subsets, then

Can(M,V ) =
∏

i

Can(Mi, V ).

Corollary 10.6: If V is of compact type, and M is strictly paracompact, then
Can(M,V ) is complete, barrelled and reflexive.

Proof: All these properties are preserved by products (See [NFA] Proposition
9.10, 9.11, for reflexivity, 14.3 for barrelled).

Finally we introduce the locally constant functions C∞(M, V ).

Definition 10.7: The space C∞(M,V ) is the subspace of Can(M,V ) consisting
of locally constant functions.

The elements of C∞(M, V ) are the smooth functions of Langlands theory.

§11 Distributions

If M is a topological space, we let Dc(M, K) denote the dual to the space
C(M, K) of continuous K-valued functions on M . If M is compact, then
Dc(M, K) is a Banach space. We will discuss various topologies on Dc(M, K)
later.

If M is an L-analytic manifold and V a locally convex vector space as in §10,
we let

D(M, V ) = Can(M, V )′b

21



be the strong dual space to the space of V -valued locally analytic functions. The
elements of D(M, V ) are called V -valued locally analytic distributions. When
V is of compact type, then by reflexivity (Corollary 10.5) we have

Can(M,V ) = D(M, V )′b.

In particular, when V = K, a p-adic extension field of L, then Can(M,K) is
of compact type. From Lecture II we may conclude that D(M,V ) is a Fréchet
space.

The Dirac distributions δx, for x ∈ M , defined by δx(f) = f(x) are elements of
D(M,K).

Theorem 11.1: If V is a countable union of BH-spaces, then the map

I−1 : L(D(M,K), V )
∼=−→ Can(M, V )

A 7−→ [x 7−→ A(δx)]

is a well defined K-linear isomorphism.

Proof. Clearly the map in the assertion is compatible with disjoint open cover-
ings of M . We therefore may assume that M is compact so that D(M, K) is a
Fréchet space. On the other hand, since the sum of two BH-spaces again is a
BH-space we find, by our assumption on V , an increasing sequence V1 ⊆ V2 ⊆
. . . of BH-spaces of V such that V =

⋃
n∈N

Vn. By the open mapping theorem,

(Proposition 5.2) any continuous linear map from the Fréchet space D(M, K)
into V factors through some Vn. In other words we have

L(D(M, K), V ) = lim
−→
n∈N

L(D(M,K), Vn) .

Moreover, again by the open mapping theorem, any BH-space of V is contained
in some Vn. Since M is compact (so that in the definition of Can(M, V ) we need
to consider only V -indices whose underlying covering of M is finite) this means
that

Can(M, V ) = lim
−→
n∈N

Can(M, Vn) .

Hence we are further reduced to the case that V is a Banach space. The assertion
that, for a Banach space V , we have an isomorphism

C : lim
−→

Can({(Mi, φi)},K)⊗̂V
∼=−→ L(D(M,K), V )

C(f ⊗ v)(`) 7−→ `(f)v.
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is ([Dist], Proposition 1.5.). The only additional observation to make is that the
map

I : Can({(Mi, φi)},K)⊗K V −→ L(Can({(Mi, φi)}, V )

f ⊗ υ 7−→ [λ 7−→ λ(f)υ]

considered there satisfies I(f ⊗ υ)(δx) = f(x) · υ for x ∈ M .

Since any locally analytic function on a compact manifold factors through a
BH-space the arguments in the above proof show that for an arbitrary V we
still have a natural map

I : Can(M, V ) −→ L(D(M, K), V )

such that I(f)(δx) = f(x) for any f ∈ Can(M,K) and x ∈ M . This map
I should be considered as integration: Given a locally analytic function f :
M −→ V and a distribution λ on M we may formally write

I(f)(λ) =
∫

M

f(x)dλ(x).

We now consider briefly the case of continuous functions. Here we assume for
simplicity that M is compact. The strong dual space Dc(M, K)b to C(M,K) is
a Banach space with the usual dual norm

||`|| = sup
f∈C(G,K)

|`(f)|
||f || .

However, we will require another topology on Dc(M,K). Let o[[M ]] be the
unit ball in Dc(M,K)b. (The notation will make more sense later). Alaogolu’s
theorem says that o[[M ]] is compact in the weak topology.

Defintion 11.2: We let Dc(M, K) be the continuous dual to C(M, K) equipped
with the “bounded-weak” topology. This is by definition the finest locally convex
topology such that the inclusion of the unit ball o[[M ]], with its weak topology, is
continuous.

We have the following version of Theorem 11.1 for continuous functions.

Theorem 11.3: Let V be quasi-complete, Hausdorff, and locally convex. Then
evaluation on Dirac distributions gives a K-linear isomorphism

L(Dc(M,K), V ) → C(M, V ).
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Proof: See [Iwasawa], Corollary 2.2.

§12 Distribution Algebras

In the particular case where the manifold M = G is a L-analytic group the
spaces of distributions on G become topological algebras.

Another construction of Dc(G,K) makes its ring structure apparent. As a
compact L-analytic group, G is profinite ( see [DDMS]). Therefore we have the
completed group ring

o[[G]] = lim
←−

o[G/H]

where the limit is over open normal subgroups of G. It carries the projective
limit topology.

(i) o[[G]] is a torsionfree compact o-module, and a topological ring.

(ii) Choose a cofinal sequence Hn of open normal subgroups of G. Any element
µ of o[[G]] is a projective limit of µn =

∑
G/Hn

agg ∈ o[G/Hn]; and any con-
tinuous function f on G may be uniformly approximated by a sequence fn of
locally constant functions that are right Hn-invariant. There is a well-defined
integration pairing ∫

G

fdµ = lim
n→∞

∑

g∈G/Hn

agf(g).

This pairing gives a map o[[G]] → Dc(G, K), and its image can be identified with
the unit ball in Dc(G,K). In fact o[[G]] is naturally the unit ball in Dc(G, K)
equipped with its weak topology.

(iii) Dc(G,K) is a completion of K[[G]] = K ⊗ o[[G]] which sits inside it as a
dense subspace. (When K is finite over L, then K[[G]] = Dc(G,K). As stated
in Definition 3.2, we give Dc(G,K) the finest locally convex topology such that
the inclusion of o[[G]] is continuous.

Proposition 12.1: The ring Dc(G,K) is a K-algebra with a separately con-
tinuous multiplication. (Separately continuous means that the map y → x× y is
continuous for fixed x, and x → x× y is continuous for fixed y).

Next we turn to the locally analytic case. Here the main result is due originally
to Feaux deLaCroix, but one may find a proof in [Duality], Appendix to Section
3).

Theorem 12.2: The ring D(G,K) has a separately continuous multiplication,
with the Dirac distribution δ1 as identity element. When G is compact, D(G, K)
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is a Fréchet algebra – meaning that the separately continuous multiplication is
continous as a bilinear map D(G, K)×D(G,K) → D(G,K).

The proof of this result is too technical for these lectures, but we make a few
remarks. First of all, it is not hard to show that for any compact L-analytic
manifolds M and N we have

Can(M ×N, K) = Can(M,Can(N, K)).

Since Can(N, K) is of compact type, using Remark 2.4 we have

Can(M ×N, K) = Can(M, K)⊗π Can(N, K).

Using reflexivity and [NFA] 20. 13 and 20.14 gives

D(M ×N, K) = D(M, K)⊗̂πD(N, K) = D(M, K)⊗̂ιD(N, K)

since by [NFA] 17.6 the inductive and projective topologies coincide for Fréchet
spaces. To pass from the compact to the general case one uses a covering argu-
ment and the compatibility of the inductive topology with locally convex direct
sums. Then for groups we have

D(G,K)⊗̂ιD(G,K) = D(G×G,K).

The convolution product is then given by the sequence of maps

D(G,K)×D(G,K) → D(G,K)⊗̂ιD(G,K) = D(G×G,K) → D(G,K)

with the last map induced by multiplication m : G×G → G.

§13 Examples

We consider the explicit case G = ZZp.

We take advantage of theorems of Mahler and Amice. As usual we let
(

x

n

)
=

x(x− 1) · · · (x− (n− 1))
n!

.

We first consider continuous functions.

Theorem 13.1: Let f be a continuous function on ZZp. Then any f ∈ C(ZZp,K)
has a unique representation

f =
∞∑

n=0

Tn(f)
(

x

n

)
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where the coefficients Tn(f) ∈ K go to zero as n → ∞. Conversely any
such series converges uniformly to a continuous function. The norm ||f || =
maxn |Tn(f)|.

Theorem 13.1 gives an explicit isomorphism between C(ZZp,K) and c0(K). Con-
sequently from Lecture II we know that the dual Dc(ZZp,K), as a vector space,
is the space `∞ of bounded sequences, and the elements of the unit ball o[[ZZp]]
may be represented as sums

µ =
∑

bnTn with |bn| bounded.

The linear maps Tn give the coefficients of f in the expansion of Theorem 13.1.
In fact the Tn may be computed explicitly as finite differences.

To compute the ring structure on Dc(ZZp,K) we use some Fourier theory. Any
distribution is determined by its values on the dense subspace of locally constant
functions in C(ZZp,K), and the characters of finite order

χζ(x) = ζx for ζ a p-power root of 1

span the locally constant functions. We may compute on the one hand that

Tn(ζx) = Tn(((ζ − 1) + 1)x) = Tn(
∑(

x

n

)
(ζ − 1)n) = (ζ − 1)n

and

Tn ∗ Tm(ζx) = T (x)
n T (y)

m (ζx+y) = Tn(ζx)Tm(ζy) = (ζ − 1)m+n = Tn+m(ζx).

It follows inductively that Tn = Tn
1 and so, writing T1 = T ,

o[[ZZp]] = o[[T ]].

For the locally analytic case we use the generalization of Theorem 13.1 due to
Amice.

Theorem 13.2: An element f ∈ C(ZZp,K) is locally analytic if there is an
r > 1 such that

lim
n→∞

|Tn(f)|rn → 0

as n →∞. The dual space D(ZZp, K) is given by all series

µ =
∞∑

n=0

bnTn
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such that, for all r < 1 in pQ we have |bn|rn → 0. The Fréchet topology on
D(ZZp,K) is defined by the family of seminorms qr for r ∈ pQ, r < 1, with

qr(f) = max
n
|bn|rn.

The computation of the ring structure is similar to that for the continuous case,
except that the locally constant characters are not dense in the locally analytic
functions. Instead one must consider all locally analytic characters

χz = zx

where z is any element of K with |z − 1| < 1. These are dense in Can(ZZp,K)
and a similar computation shows again that Tn = Tn. It follows that

D(ZZp,K) = {power series over K converging on the open unit disc in K̂}.
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Lecture IV:
Continuous and locally analytic representations

In this lecture we turn to the consideration of continuous and locally analytic
representations.

§14 The Lie Algebra of G

We assume that G is an L-analytic group.

The tangent space g at the identity of a locally L-analytic group G has the
structure of a Lie algebra. The Campbell-Baker-Hausdorff formula converges
p-adically in a sufficiently small neighborhood U of the identity of g and gives
an analytic map

exp : U → G.

In fact, there is an open subalgebra U and subgroup V of g and G respectively
so that there are inverse analytic isomorphisms exp and log:

exp : U ⊂ g → V ⊂ G
log : V ⊂ G → U ⊂ g

In the special case G = L∗, the exponential and logarithm maps are given by
the usual power series

exp(x) =
∞∑

n=0

xn

n!

and

log(z) =
∞∑

n=1

(1− z)n

n
.

Exercise: Show that exp(x) converges to an analytic function for |x| < p1/(p−1)

and that log(z) converges to an analytic function for |z − 1| < 1.

In general, given a finite dimensional Lie Algebra g over L with a faithful finite
dimensional representation, the Campbell-Baker-Hausdorff formula gives a map
from a small neighborhood of the identity in g to GLn for some n; introducing
a group operation on g by the formula

xy = log(exp(x) exp(y))

constructs an L-analytic group with Lie algebra g. This construction is func-
torial in the sense that the category of “sufficiently small L-analytic groups” is
equivalent to the category of Lie algebras over L.
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See Schneider’s lectures on p-adic Analysis, esp Chapter 13ff, for more informa-
tion.

We recall also that the universal enveloping algebra U(g) of a Lie algebra g over a
field K is a (canonical) associative K-algebra with a structural map ι : g → U(g)
such that:

(i) Viewing U(g) a Lie algebra via the commutator [a,b]=ab-ba, the structure
map is a Lie algebra homomorphism;

(ii) If A is any other associative algebra (similarly viewed as a Lie algebra) ,
and f : g → A is any Lie algebra homomorphism, then f lifts to a map f ′ from
U(g) → A such that f ′ ◦ ι = f .

The Poincare-Birkhoff-Witt theorem says that, if x1, . . . , xn is an (ordered) basis
for g, then U(g) has the monomials

n∏

i=1

xki
i

as basis.

As in classical differential geometry, The Lie algebra of such a group acts on
Can(G,K) as an algebra of differential operators. For x ∈ g this action is given
by

x(f)(g) =
d

dt
f(exp(−tx)g)|t=0.

In particular, evaluating at 1 gives a linear form on Can(G,K). That this form
is continuous follows from the Banach-Steinhaus theorem which asserts that a
pointwise convergent limit of linear forms on a barrelled locally convex space is
continuous. Consequently we have a map g → D(G, K).

Proposition 14.1: There is an injection t : U(g)⊗L K → D(G,K) where, for
x ∈ g, t(x)(f) = (−x)(f)(1).

In light of Proposition 14.1 we view U(g) as a subalgebra of D(G,K) in the
future without comment.

We also point out that this subalgebra doesn’t change if we shrink G to any open
subgroup, because the Lie algebra depends only on the group near the identity.

§15 Locally analytic and continuous representations

Let V be a K-Banach space, and G a locally L-analytic group. Particularly
important examples of such groups are
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(i) Abelian groups such as the additive group of L or the multiplicative group
L∗. Particularly important are the maximal compact subgroups oL and o∗L.

(ii) The group GLn(L) of invertible n×n matrices over the field L, along with its
subgroup SLn(L) of determinant one matrices and quotient group by its center
PGLn(K). The compact subgroup GLn(oL) is of particular importance. More
generally, the group of L valued points of a connected algebraic group over L is
an L-analytic group.

Definition 15.1: A K-Banach space representation of G (on V ) is a G-action
by continuous linear automorphisms such that the map G × V → V giving the
action is continuous.

Example 15.2: Let G be a compact group and let V be C(G,K). Then the
(left) translation action (y · (f))(x) = f(y−1x) is such a representation. More
generally, the translation action of a non-compact G on the bounded functions
is another example.

Remark 15.3: For any barrelled topological K-vector space and any locally
compact topological group, the requirement that the action G × V → V be
continuous is equivalent to it being “separately continuous”: in other words
that each g act as a continuous linear endomorphism of V and that, for each
fixed v ∈ V , the map g 7→ gv is continuous on G. This is a consequence of the
Banach-Steinhaus theorem. (II.7.2)

Now we define locally analytic representations of G. We assume that G is an
n-dimensional locally L-analytic group.

Definition 15.4: A locally analytic G representation is an action of G on
a locally convex barrelled K-vector space such that, for each v ∈ V , the map
g 7→ gv belongs to Can(G,V ).

By Remark 15.3, a locally analytic representation is continuous as a map G ×
V → V .

The maps ρv(g) = gv are called ”orbit maps.” One may obtain some special
classes of locally analytic representations by further restricting the properties of
these maps. The following special case is particularly important.

Definition 15.5: A locally analytic representation is smooth if the orbit maps
are locally constant.
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§16 Examples of continuous and locally analytic representations

Example 16.1: Let G = ZZp. This group is topologically cyclic and generated
by 1, so the continuous K-valued characters χ : ZZp → K∗ are determined by
the value z = χ(1). Since the image of G must be compact and the powers of z
go to zero, we must have |z − 1| < 1. The function

χ(a) = za =
∞∑

n=0

(z − 1)n

(
a

n

)

is in fact locally analytic as follows for example from Amice’s Theorem (Theorem
13.2). If z is sufficiently close to 1, then

χ(a) = exp(a log(z)).

Example 16.2: Let G = oL where L is finite over K. As a topological group,
or as a Qp-analytic group, oL is just ZZd

p where d = [L : Qp]. The continuous
characters of G are therefore of the form

χ(a) = za1
1 · · · zad

d

where a =
∑d

i=1 aiei for some basis for oL over ZZp, and all such characters are
Qp-analytic and give (one-dimensional) Qp-analytic representations.

Proposition 16.3: A character χ as above is L-analytic if and only if its
derivative dχ, which is a priori a Qp-linear map L → K, is in fact L-linear.

Example 16.4: Let G = L∗ be the multiplicative group. The valuation allows
one to split G as

G = ZZ× o∗L.

A character that is trivial on o∗L is called unramified. There is a subgroup of o∗L
of finite index that is isomorphic, via the exponential and logarithm maps, to
oL. Consequently, given a K-valued L-analytic character χ, there is an element
c(χ) ∈ K so that

χ(a) = exp(c(χ) log(a))

for a ∈ o∗L sufficiently close to one.

Example 16.5: Let V be a representation of G such that the subgroup of
G stabilizing any vector v ∈ V is open in G. Then V is a locally analytic
representation, because the orbit maps are locally constant and therefore locally
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analytic. In fact, this is a smooth representation. The notion of smoothness
can be defined without reference to a topology on V . Given an abstract vector
space V with a smooth G action, one may give V a topology by viewing it as the
direct limit of its finite dimensional subspace. This makes V a locally analytic
representation.

Example 16.6: Let G be the group of L-points of an algebraic group over
L, and let V be a finite dimensional algebraic representation of G. Then V is
locally analytic, because the orbit maps are polynomial functions on G, which
are locally analytic.

Example 16.7: Let V be as in Example 3.5, and W be as in Example 3.6.
Then V ⊗ W , with the diagonal action, is locally analytic, because the orbit
maps are ”locally polynomial” functions.

Example 16.8: Let G be a locally analytic group and let P be an analytic
subgroup such that the homogeneous space G/P is compact. Let V be a locally
analytic representation of V . The analytic induction IndG

P (V ) is the represen-
tation

IndG
P (V ) = {f ∈ Can(G,V ) : f(gb) = b−1 · f(g)}

where G acts on the left by g · f(h) = f(g−1h). By [Feaux] Satz 4.1.5, IndG
P

is locally analytic. For example, if G is the group of L-points of a connected
reductive algebraic group (i.e. GLn), P is a parabolic subgroup with Levi de-
composition P = MU , and V is a representation of M extended to P by making
it trivial on U , then IndG

P (V ) is locally analytic.

Example 16.9: A particularly important case for us is when G = GLn(L),
P is the lower triangular Borel subgroup, and V is given by a character χ of
the maximal torus T ⊂ B. The family of representations IndG

P (χ) is called the
locally analytic principal series of G.

To give a concrete example, suppose that G = GL2(Qp) and let χ be the trivial
character 1. Then G/P is the projective line P1 over Qp and IndG

P (1) is the
space of locally analytic functions on P1.

Example 16.10: The construction in Example 3.8 has a continuous version.
Suppose that G is compact, B is a closed subgroup, and V is a Banach space
representation of P . Then one may form c-IndG

P (V ) as a subspace of the Banach
space of V -valued functions on G equipped with the supremum norm.

If G is locally analytic but not compact, but G/P is compact, then one may
show ([Feaux] 4.1.1) that the map G → G/P has a section and one may find an

32



analytic splitting ι : G/P × P → G of the projection map as manifolds. Then,
given a Banach space representation of P , one may define

c-IndG
P (V ) = {f : G → V : f continuous, f(gp) = p−1(f(g))}

and give this the norm

||f || = sup
(gP,1)

||f(ι(gP, 1))||.

Different choices of splittings give equivalent norms.

If G = GLn(L), P is the lower triangular Borel, χ is a continuous character of
the maximal torus, and one chooses the splitting corresponding to the Iwasawa
decomposition G = GLn(oL)P , then one obtains the continuous principal series.

Example 16.11: Let X denote the p-adic upper half plane over L. This is the
rigid space whose K points are the elements of K\L. It has a natural action
of G = GL2(L). Let Ω1 be the nuclear Fréchet space of 1-forms on X , with
its associated G-action. Then the strong dual V of Ω1 is a locally analytic
representation. In fact, a theorem of Morita says that, if P is a Borel subgroup
of G, then V is isomorphic to

IndG
P (1)/K = Can(P1,K)/K.

We conclude with a definition of another special class of locally analytic repre-
sentations.

Definition 16.12: Let G be the group of L-points of an algebraic group, and
let V be a K vector space on which G acts through a representation π. We say
that this representation is locally algebraic if

(i) The restriction of π to any compact subgroup H of G is a sum of finite
dimensional H-representations;

(ii) For any vector v ∈ V , there is a compact open subgroup H of G so that Hv
is contained in a finite dimensional space U and the action of H on U comes
via restriction to H of a finite dimensional algebraic representation of G.

Representations as in Example 16.7, where the smooth representation is admis-
sible, are locally algebraic.
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§17 Modules over distribution algebras

The main tool for studying Banach space and locally analytic representations is
to make the problem algebraic by viewing the representations as modules over
the distribution algebras.

Proposition 17.1: Let G be a compact locally analytic group, and let V be
a Banach space representation of G on V . The G-action on V extends to a
separately continuous Dc(G,K)-module structure on V . Moreover, G-invariant
linear maps extend to module homomorphisms.

Proposition 17.2: Let G be a compact locally analytic group, and let V be
a locally analytic representation of G on V . Then the G-action extends to a
separately continuous D(G,K)-module structure on V . Moreover, G-invariant
linear maps extend to module homomorphisms.

These results are applications of the integration results of Lecture III. In the
locally analytic case, the discussion of Section 11 gave an integration map

I : Can(M, V ) → L(D(G, K), V ).

This allows us to define a module structure by setting µ∗v = I(ρv)(µ) where ρv

is the orbit map for v ∈ V belonging to C(G,V ) or Can(G,V ). The map I(ρv)
is continuous as a function of µ. Since D(G,K) is metrizable (it is a Fréchet
space), any µ is the limit of a sequence of Dirac distributions µi → µ. Therefore,
for any fixed v, we have I(ρv)(µ) is the limit of I(ρv)(µi). Since each I(·)(µi)
is continuous as a function of v – it is the G-action – and V is barelled, by
Banach-Steinhaus I(·)(µ) is continuous as a function of v. The module property

(µ ∗ ν) ∗ v = µ ∗ (ν ∗ v)

also follows by continuity, since it holds for Dirac distributions.

In the continuous case, we may use the fact that Ls(V, V ) is quasi-complete
(which follows from Banach-Steinhaus and the Ascoli theorem) and then we
may apply Theorem 11.3 directly.

In fact it is more useful to consider, not the spaces V , but their dual spaces V ′.
Via the transpose action these, too, are modules for the distribution algebras.

In the locally analytic case, we assume that V is of compact type, and therefore
is reflexive. It follows that we may recover the original space V from the strong
dual Fréchet space V ′

b . Even more we may characterize those Fréchet spaces
that are duals of compact type spaces by the nuclearity property (Proposition
8.5) We have the following equivariant version of Proposition 8.5:
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Theorem 17.3: Assuming G compact, the functor V → V ′
b is a category (anti-

)equivalence between the category of locally analytic G representations on K-
vector spaces of compact type, with continuous linear G-maps, and the cate-
gory of continuous D(G,K) modules on nuclear Fréchet spaces, with continuous
D(G,K) module homomorphisms.

Remark: If G is not compact, one obtains a similar result except that one
obtains only a separately continuous module structure.

In the Banach space case, we are somewhat hampered by the lack of reflexivity.
It is certainly true that, if V is Banach space representation of G, then V ′ is a
Dc(G,K) module. However, to identify the essential image of this functor we
must use the ideas at the end of Section 8. The unit ball in the dual V ′ is the
linear-topological torsion free o-module denoted V d in Section 8, Lemma 8.6 and
Proposition 8.7. One can show that, taking into account the Dc(G,K) action
on V one may construct such an o-module with an action of the ring o[[G]].

Theorem 17.4: Let M(o[[G]])Q be the category of linear topological compact
o-torsion free o[[G]] modules, localized at Q. Then the functors V → V d and
M → Md are inverse category equivalences between M(o[[G]])Q and the category
of K-Banach space representations with G-invariant continuous linear maps.

We will discuss this further in Lecture V.
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Lecture V: Admissible continuous
representations

§18 The duality functor

In this lecture K will be assumed to be a finite extension of Qp. Let Ban(K) de-
note the category of K-Banach space with continuous linear maps and Ban(K)≤1

its subcategory with the same objects but only norm decreasing maps. We re-
mark that Ban(K) can be reconstructed from Ban(K)≤1 by “localization in Q”;
this simply means that, for any two Banach spaces V and W , one has

HomBan(K)(V,W ) = HomBan(K)≤1(V,W )⊗Q .

At the end of Lecture I (Prop. 8.7) we had seen that the functor

Ban(K)≤1 −→ M(o)
V 7−→ V d = {` ∈ V ′ : ‖`‖ ≤ 1}

is an anti-equivalence of categories where M(o) denotes the category of linear-
topological compact and torsionfree o-modules.

Let now G be a compact locally Qp-analytic group. In §11 of Lecture III the
identification

Dc(G, K) = K[[G]] = K ⊗o o[[G]]

was explained. It is an important point that the completed group ring o[[G]]
as an o-module is linear-topological, compact, and torsion free, i.e., lies in the
category M(o).

Another important technical point (as already indicated in Def. 11.2) is to con-
sider on L(V,W ), for two Banach spaces V and W , not the natural Banach space
topology but the bounded weak topology which is the finest locally convex topol-
ogy which restricts to the weak topology on some open lattice in L(V,W ). We
write Lbs(V,W ) in this case. Observe that by the above equivalence of categories
we have a natural linear isomorphism

L(V, W )
∼=−→HomM(o)(W d, V d)⊗Q .

On the other hand, for two modules M and N in M(o), the natural topology
to consider on HomM(o)(M, N) is the topology of compact convergence.

Proposition 18.1: The bounded weak topology on L(V,W ) induces the topology
of compact convergence on HomM(o)(W d, V d).
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Let now BanG(K) denote the category of K-Banach space representations of
G with continuous linear and G-equivariant maps. By Prop. 18.1 (which was
based on Thm. 11.3), to give a continuous representation of G on the Banach
space V is the same as to give a continuous algebra homomorphism

K[[G]] −→ Ls(V, V ) .

Because o[[G]] is compact this furthermore is the same as to give a continuous
algebra homomorphism

K[[G]] −→ Lbs(V, V ) .

Remark 18.2: On any Banach space representation V of G there is a G-
invariant defining norm.

Proof: Let L ⊆ V be any bounded open lattice. By the continuity of the G-
action there is an open normal subgroup H ⊆ G and an open lattice L0 ⊆ L
such that H · L0 ⊆ L. The G-invariant intersection

L1 :=
⋂

g∈G

gL

contains the finite intersection
⋂

g∈G/H gL0 and therefore is an open lattice in
V . The corresponding gauge pL1 is a G-invariant norm on V which defines the
topology.

Going back to the above discussion we therefore see, by using Prop. 18.1, that to
give a continuous representation of G on the Banach space V up to isomorphism
is the same as to give a continuous module structure

o[[G]]× V d −→ V d .

If we let M(o[[G]]) denote the category of all continuous (left) o[[G]]-modules
such that the underlying o-module lies in M(o) then we have established the
following result.

Proposition 18.3: The functor

BanG(K) −→ M(o[[G]])Q
V 7−→ V ′ = V d ⊗Q

is an anti-equivalence of categories.
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§19 Admissibility

In order to motivate what is to come we want to mention the following two
pathologies of Banach space representations.

1. In general there exist non-isomorphic topologically irreducible Banach space
representations V and W of G for which nevertheless there is a nonzero G-
equivariant continuous linear map V −→ W .

2. Even such a simple commutative group like G = ZZp has infinite dimensional
topologically irreducible Banach space representations. We mention the follow-
ing examples constructed by Diarra. Consider V := Cp as a K-Banach space.
It was explained in Example 16.1 that any z ∈ Cp such that |z| < 1 gives rise to
the continuous character (1 + z)a on ZZp. We therefore may let ZZp continuously
act on V by a · v := (1 + z)av. We write Vz for this Banach space represen-
tation of ZZp. Diarra proves that Vz is topologically irreducible provided z is
transzendental over Qp, and that Vz1 and Vz2 are non-isomorphic if |z1| 6= |z2|.

It is clear that in order to avoid such pathologies we have to impose an additional
finiteness condition on our Banach space representations. For the moment we
keep assuming that the group G is compact and locally Qp-analytic. We have
the following fundamental result by Lazard (Publ. Math. IHES 26, 1965).

Theorem 19.1: The rings o[[G]] and K[[G]] are noetherian.

The most natural finiteness condition one can impose on modules over a ring
is to be finitely generated. If the ring is noetherian then the finitely generated
modules over it form a nice abelian category. In view of Prop. 18.3 we therefore
propose the following definition.

Definition: A K-Banach space representation V of G is called admissible if
the dual V ′ as a K[[G]]-module is finitely generated.

We let Bana
G(K) denote the full subcategory in BanG(K) of all admissible Ba-

nach space representations. We also letMfg(o[[G]]), resp. Mfg(K[[G]]), denote
the category of finitely generated and o-torsionfree o[[G]]-modules, resp. finitely
generated K[[G]]-modules. We remark that because of the anti-involution g 7−→
g−1 there is no need to distinguish between left and right modules.

Since the ring o[[G]] is compact and noetherian the following facts are more or
less exercises.

Lemma 19.2: i. A finitely generated o[[G]]-module M carries a unique Haus-
dorff topology - its canonical topology - such that the action o[[G]] ×M −→ M
is continuous;
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ii. any submodule of a finitely generated o[[G]]-module is closed in the canonical
topology;

iii. any o[[G]]-linear map between two finitely generated o[[G]]-modules is con-
tinuous for the canonical topologies.

It follows that equipping a module in Mfg(o[[G]]) with its canonical topology
induces a fully faithful embedding

Mfg(o[[G]]) −→M(o[[G]]) .

This then in turn induces a fully faithful embedding

Mfg(K[[G]]) −→M(o[[G]])Q .

Together with Prop. 18.3 we obtain the following.

Theorem 19.3: The functor

Bana
G(K) −→ Mfg(K[[G]])

V 7−→ V ′

is an anti-equivalence of categories.

In particular the category of admissible K-Banach space representations of G
is abelian and is completely algebraic in nature. One also deduces easily the
following consequences.

Corollary 19.4: i. The functor V 7−→ V ′ induces a bijection

set of isomorphism classes
of topologically irreducible ∼−→ set of isomorphism classes
admissible K-Banach space of simple K[[G]]-modules;

representations of G

ii. any nonzero G-equivariant continuous linear map between two topologically
irreducible admissible K-Banach space representations of G is an isomorphism.

Our category Bana
G(K) in particular avoids the pathology 1. But also the pathol-

ogy 2 disappears. We claim that for the group G = ZZp any topologically irre-
ducible admissible Banach space representation is finite dimensional over K.
By Cor. 19.4.i this reduces to the assertion that any simple K[[ZZp]]-module is
finite dimensional which is equivalent to any maximal ideal in K[[ZZp]] being of
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finite codimension. But we know from §13 that K[[ZZp]] = K ⊗o [[T ]] is a power
series ring in one variable. By Weierstrass preparation any ideal in this ring is
generated by a polynomial.

Another indication that admissibility is the correct concept is the fact that it
can be characterized in an intrinsic way. To formulate the result we recall that
an o-module N is called of cofinite type if its Pontrjagin dual Homo(N, K/o) is
a finitely generated o-module.

Proposition 19.5: A K-Banach space representation V of G is admissible if
and only if there is a G-invariant bounded open o-submodule L ⊆ V such that,
for any open normal subgroup H ⊆ G, the o-submodule (V/L)H of H-invariant
elements in the quotient V/L is of cofinite type.

Proof: Let us first assume that V ′ is finitely generated over K[[G]]. There is
then a finitely generated o[[G]]-submodule M ⊆ V ′ such that V ′ = K ⊗o M .
After equipping M with its canonical topology we have V = Md. Moreover
L := Homcont

o (M,o) is a G-invariant bounded open o-submodule in V . One
checks that V/L = Homcont

o (M, K/o) and hence that

(∗) (V/L)H = Homcont
o (M, K/o)H = Homcont

o (M/IHM,K/o)

where IH denotes the kernel of the projection map o[[G]] −→ o[G/H]. Hence
(V/L)H is of cofinite type.

On the other hand fix now an open normal subgroup H ⊆ G which is pro-
p (there is a fundamental system of such) and let L ⊆ V be a G-invariant
bounded open o-submodule such that (V/L)H is of cofinite type. One checks
that the G-invariant o-submodule M := {` ∈ V ′ : |`(v)| ≤ 1 for any v ∈ L} in
V ′

s is compact. Since L is bounded we have V ′ = K ⊗o M . So the identities (∗)
apply correspondingly and we obtain that Homcont

o (M/IHM, K/o) is of cofinite
type. But since IH is finitely generated as a right ideal the submodule IHM is
the image of finitely many copies M×. . .×M under a continuous map and hence
is closed in M . By Pontrjagin duality and the Nakayama lemma over o applied
to the compact o-module M/IHM the latter therefore is finitely generated over
o. The Nakayama lemma over o[[G]] finally says that M is finitely generated
over o[[G]] and hence that V ′ is finitely generated over K[[G]].

The above proof shows that the condition of this proposition in fact only needs
to be checked for a single open normal subgroup H ⊆ G which is pro-p. We also
point out that the condition in this proposition is rather similar in spirit to Har-
ish Chandra’s admissibility condition for smooth representations (see the next
lecture). In fact, it implies that L/mL is an admissible smooth representation
of G over the residue class field of K.

We no drop the condition that the group G is compact. A Banach space rep-
resentation of an arbitrary locally Qp-analytic group G is called admissible if
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it is admissible as a representation of every compact open subgroup H ⊆ G.
Obviously this again gives rise to an abelian category.

Exercise: Admissibility can be tested on a single compact open subgroup H ⊆
G.

Example: The continuous principal series representations c-IndG
P (χ) of Exam-

ple 16.10 are admissible. It was explained there that using the Iwasawa de-
composition G = HP with H := GLn(o) we have c-IndG

P (χ) = c-IndH
H∩P (χ) ⊆

C(H,K). The latter inclusion dualizes into a surjection K[[H]] = Dc(H, K) −→
→ c-IndG

P (χ)′.
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Lecture VI: Locally analytic admissibility

§20 Overview of main features

In this lecture L ⊆ K are finite extensions of Qp and G is a locally L-analytic
group. Since admissibility in all its forms is a concept which only depends on
the action of a compact open subgroup we loose nothing by assuming, as we do
throughout this lecture, that G in fact is compact.

In the last lecture we have constructed the category Bana
G(K) of admissible

Banach space representations as a full subcategory of BanG(K). The point was
to avoid all kinds of pathologies which occur in BanG(K). In particular:
– The category Bana

G(K) is abelian;
– all maps in Bana

G(K) behave nicely from a topological point of view: they are
strict and have closed image.

The basic principle was to pass from a representation V in BanG(K) to its
continuous dual V ′, view it as a module over the distribution algebra Dc(G,K),
and impose an appropriate finiteness condition on this module. The latter was
made possible by the fact that the algebra Dc(G,K) = K[[G]] is noetherian. In
addition o[[G]] is compact which meant that for an admissible V the topology
on the dual V ′ is entirely rigid.

In this lecture we start with the category RepG(K) of locally analytic G-repre-
sentations on K-vector spaces of compact type with continuous linear and G-
equivariant maps. We again want to single out a full subcategory Repa

G(K)
which:
– is abelian,
– contains only strict maps,
– and still is “rich” enough.
Naturally we try to do this by the same principle as above. And indeed we
have seen in Lecture IV that for any V in RepG(K) the strong dual V ′

b carries a
natural continuous D(G, K)-module structure from which V can be completely
reconstructed. But then we run into a basic difficulty: The algebra D(G,K) is
not noetherian! It will require a major theory, to be described in Lectures VII
and VIII, to construct a reasonable abelian module category over D(G,K), to
be called the category CG of coadmissible modules. In the next section all of
this will be illustrated in the case G = ZZp. The algebra D(G,K) also has no
compactness properties. Therefore a coadmissible D(G,K)-module will have a
natural but not unique topology. This forces us to make the following slightly
modified definition.

Definition: An admissible G-representation over K is a locally analytic G-
representation on a K-vector space of compact type V such that the strong dual
V ′

b is a coadmissible D(G,K)-module equipped with its canonical topology.
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We let Repa
G(K) denote the full subcategory in RepG(K) of all admissible rep-

resentations. As a rather straightforward consequence of the theory of coadmis-
sible D(G,K)-modules one then obtains the following facts.

Theorem 20.1: i. The functor

Repa
G(K) ∼−→ CG

V 7−→ V ′

is an anti-equivalence of categories.

ii. Repa
G(K) is an abelian category; kernel and image of a morphism in Repa

G(K)
are the algebraic kernel and image with the subspace topology;

iii. any map in Repa
G(K) is strict and has closed image;

iv. the category Repa
G(K) is closed with respect to the passage to closed G-

invariant subspaces.

So we have achieved our goal except we still have to justify the claim that this
category Repa

G(K) is “rich” enough. For this we will relate this category to our
previous category Bana

G(K) as well as to the “classical” smooth representation
theory.

1) Relation to smooth representations.

In Example 16.5 the category Rep∞G (K) of smooth G-representations was de-
fined. We also recall that a smooth representation carries no topology. Apart
from that the G-action on a locally analytic G-representation V is smooth if
and only if the derived action of the Lie algebra g on V is trivial, i.e., gV = 0.
Harish Chandra introduced the following notion.

Definition: A smooth G-representation V is called admissible-smooth if for any
open subgroup H ⊆ G the subspace V H of H-fixed vectors is finite dimensional.

Let Rep∞,a
G (K) denote the full subcategory in Rep∞G (K) of admissible-smooth

G-representations. Suppose that V is admissible-smooth. We equip V with
the finest locally convex topology. On the other hand we find a decreasing
fundamental sequence of open subgroups G ⊇ H1 ⊇ . . . ⊇ Hn ⊇ . . .. Then V is
the increasing union

V =
⋃
n

V Hn

of the finite dimensional spaces V Hn and therefore is of compact type. This
means we have the fully faithful embedding of categories

Rep∞,a
G (K) −→ RepG(K) .
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Theorem 20.2: Rep∞,a
G (K) is the full subcategory in Repa

G(K) of all admissible
locally analytic representations V such that gV = 0.

The reason for this fact is the following. Let I(g) be the 2-sided ideal in D(G, K)
generated by g and put

D∞(G,K) := D(G,K)/I(g)

(the algebra of locally constant distributions on G). Then admissible-smooth
G-representations correspond to coadmissible D∞(G,K)-modules.

2) Relation to Banach space representations.

Let V be a continuous Banach space representation of G. A vector v ∈ V is
called locally analytic if the V -valued function g 7−→ gv on G is locally analytic.
We denote by Van the vector subspace of all analytic vectors in V . It is clearly
G-invariant. Moreover the G-equivariant linear map

Van −→ Can(G,V )
v 7−→ [g 7→ g−1v]

is injective. We always equip Van with the subspace topology with respect to
this embedding. One checks that Van is closed. Let us now suppose that V is
admissible. The finite generation of V ′ over Dc(G,K) then implies the existence
of finitely many continuous linear forms l1, . . . , lm that the map

Van −→ Can(G,K)m

v 7−→ ([g 7→ li(g−1v)])1≤i≤m

also is a closed embedding. Since the right hand side is a vector space of compact
type by Prop. 10.3 the left hand side is of compact type as well and we obtain
the functor

Bana
G(K) −→ Repa

G(K)
V 7−→ Van .

Proposition 20.3: For any V in Bana
G(K) we have

Van = (D(G,K) ⊗
Dc(G,K)

V ′)′b .

Theorem 20.4: Suppose that L = Qp; we then have:

i. Van is dense in V for any V in Bana
G(K);

ii. the functor V 7−→ Van on Bana
G(K) is exact.

44



In view of the Proposition it is rather plausible that the Theorem reduces to the
claim that, in case L = Qp, the ring extension

Dc(G,K) −→ D(G,K)

is faithfully flat. This latter result will be discussed in Lecture IX.

§21 The case G = ZZp

Let L = Qp and G = ZZp. From §13 we know that

Ob := Dc(G,K) = bounded power series over K

and
O := D(G,K) = power series over K converging in X

where X := {|z| < 1} is the open unit disk. As a consequence of Weierstrass
division Ob is a principal ideal domain all of whose nonzero ideals are of fi-
nite codimension. The elementary divisor theorem then implies that any V in
Bana

ZZp
(K) is of the form

V = C(ZZp,K)r ⊕ V0

where V0 is a finite dimensional continuous ZZp-representation.

Surely O is an integral domain and therefore is flat over Ob. But O is not
noetherian although it is hard to write down an explicit example of an ideal
which is not finitely generated. From Lazard one knows that in O the following
three classes of ideals coincide:
– finitely generated ideals,
– principal ideals,
– closed ideals.
Moreover, any nonzero closed ideal is of finite codimension.

We choose a sequence of rational numbers 0 < qn < 1 converging to 1 and let
Xn denote the closed disk of radius qn. Then

O = lim
←−

On

whereOn denotes the ring of power series converging on the disk Xn. Weierstrass
division again shows that the rings On are principal ideal domains.

Definition: An O-module M is called coadmissible if
– Mn := On ⊗O M is finitely generated over On for any n and
– M = lim

←−
Mn.
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The reason that the coadmissible O-modules form a well behaved abelian cate-
gory is that X is a Stein space. We list a few features of this category:

– Since the number of generators of Mn can increase with n a coadmissible
module need not be finitely generated.

– Vice versa, if the ideal I ⊆ O is not closed then the module M := O/I is
finitely generated but not coadmissible.

– Any finitely presented O-module is coadmissible.

A certain weaker form of the elementary divisor theorem still holds for X and
implies:

– Any V in Repa
G(K) such that V ′ is finitely presented is of the form

V = Can(ZZp,K)r ⊕ V0

where V0 is a finite dimensional continuous ZZp-representation.

– Simple coadmissible O-modules are finite dimensional.

Question: Is there a topologically simple coadmissible O-module which is not
simple?
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Lecture VII:
Fréchet-Stein Algebras

and
Coadmissible Modules

§22 Banach algebras

In this lecture we give the general definitions for the algebras (Fréchet-Stein
algebras) and modules (coadmissible modules) that make it possible to apply
reasoning similar to that used for ZZp to general p-adic Lie Groups.

A K-Banach algebra A is a K-Banach space (A, | |A) with a structure of an
associative unital K-algebra such that the multiplication is continuous, which
means that there is a constant c > 0 such that

|ab|A ≤ c|a|A|b|A for any a, b ∈ A .

The norm will be called submultiplicative if it satisfies the stronger condition
that

|1|A = 1 and |ab|A ≤ |a|A|b|A for any a, b ∈ A .

We let MA denote the category of finitely generated (left) A-modules.

Proposition 22.1: Suppose that A is a (left) noetherian K-Banach algebra; we
then have:

i. Each module M in MA carries a unique K-Banach space topology (called
its canonical topology) such that the A-module structure map A × M → M is
continuous;

ii. every A-submodule of a module in MA is closed in the canonical topology;
in particular, every (left) ideal in A is closed;

iii. any map in MA is continuous and strict for the canonical topologies.

Exercise: Starting with the fact that a finitely generated module M can be
presented as a quotient An → M → 0, and using the open mapping theorem,
prove this proposition.

Example 22.2: The Tate algebra K << T1, . . . , Td >> consisting of all power
series

f =
∞∑

n1=0

· · ·
∞∑

nd=0

an1,...,nd
Tn1

1 · · ·Tnd

d
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such that

an1,...,nd
∈ K, |an1,...,nd

| → 0 as all ni →∞

is the prototypical K-Banach algebra. The norm is given by:

||f || = max
n1,...,nd

|an1,...,nd
|.

The Tate algebra is Noetherian, and its maximal ideals are in bijection with
points of the closed unit disk in K modulo the action of the Galois group of
K/K.

§23 Fréchet-Stein algebras

The definition of admissibility for the D(G,K) modules associated to locally
analytic representations is based on special properties of the ring D(G, K).

These properties are inspired by some ideas from complex analysis, in particular
the notions of Stein algebra and Stein module.

The underlying principle is that, when G is a compact p-adic Lie Group, the
ring D(G,K) is a non-commutative version of the ring of functions on an open
p-adic polydisc.

Such a polydisc is an example of a (rigid analytic) Stein space. The ring of
functions O on such a space is a projective limit of Banach algebras where the
transition maps are flat. The essential properties of Stein spaces are that:

(i) (Theorem A) The stalks of coherent sheaves are always generated by global
sections.

(ii) (Theorem B) Stein spaces have trivial sheaf cohomology (so that one may
pass from coherent sheaves to modules over O and back without obstructions).
Since coherent sheaves form an abelian category, so do the associated modules
of global sections.

We will see how these properties, suitably reinterpreted, play a crucial role in
the definition of local-analytic admissibility.

Let A be a K-Fréchet algebra.

A continuous seminorm on A induces a norm on the quotient space A/{a ∈ A :
q(a) = 0}. The completion of the latter with respect to q is a K-Banach space
which will be denoted by Aq.

Aq comes with a natural continuous linear map A → Aq with dense image.
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For any two continuous seminorms q′ ≤ q the identity on A extends to a con-
tinuous, in fact norm decreasing, linear map φq′

q : Aq −→ Aq′ with dense image
such that the diagram

Aq

φq′
q

²²

A

::uuuuuuu

$$IIIIII

Aq′

commutes.

For any sequence q1 ≤ q2 ≤ . . . ≤ qn ≤ . . . of seminorms on A which define the
Fréchet topology (such a sequence always exists), the map

A
∼=−→ lim

←−
n∈IN

Aqn

where on the right hand side the projective limit is formed with respect to
the φqn

qn+1
as the transition maps is an isomorphism of locally convex K-vector

spaces.

A continuous seminorm q on A will be called an algebra seminorm if the multi-
plication on A is continuous with respect to q, i.e., if there is a constant c > 0
such that

q(ab) ≤ cq(a)q(b) for any a, b ∈ A .

In this case Aq in a natural way is a K-Banach algebra and the natural map
A → Aq is a homomorphism of K-algebras.

If the sequence q1 ≤ . . . ≤ qn ≤ . . . consists of algebra seminorms then the
transition maps φqn

qn+1
are algebra homomorphisms and

A
∼=−→ lim

←−
n∈IN

Aqn

is an isomorphism of Fréchet algebras.

Definition 23.1: The K-Fréchet algebra A is called a K-Fréchet-Stein algebra
if there is a sequence q1 ≤ . . . ≤ qn ≤ . . . of continuous algebra seminorms on A
which define the Fréchet topology such that
(i) Aqn is (left) noetherian, and
(ii) Aqn is flat as a right Aqn+1-module (via φqn

qn+1
)

for any n ∈ IN.
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Definition 23.2: A coherent sheaf for (A, (qn)) is a family (Mn)n∈IN of modules
Mn in MAqn

together with isomorphisms Aqn
⊗Aqn+1

Mn+1

∼=−→Mn in MAqn

for any n ∈ IN.

The coherent sheaves for (A, (qn)) with the obvious notion of a homomorphism
form a category Coh(A,(qn)).

The flatness hypothesis in the definition of Fréchet-Stein algebras means that,
given a compatible family of maps fn : Mn → Nn, the kernels of the fn again
define a coherent sheaf.

It is the noncommutative realization of the fact in geometry that “localization
is flat.”

It follows that the category of coherent sheaves over a Fréchet-Stein algebra is
abelian, with the obvious notions of (co)kernels and (co)images.

For any coherent sheaf (Mn)n for (A, (qn)) its A-module of “global sections” is
defined by

Γ(Mn) := lim
←−
n

Mn .

We may now give a crucial definition.

Definition 23.3: A (left) A-module is called coadmissible if it is isomorphic to
the module of global sections of some coherent sheaf for (A, (qn)).

We let CA denote the full subcategory of coadmissible modules in the category
Mod(A).

A cofinality argument shows that CA is independent of the choice of the sequence
(qn)n. Passing to global sections defines a functor

Γ : Coh(A,(qn)) −→ CA .

The crucial properties (i) and (ii) for coherent sheaves on Stein spaces are cap-
tured in our case by the following theorem.

Theorem 23.4: Let (Mn)n be a coherent sheaf for (A, (qn)) and put M :=
Γ(Mn); we have:

i. (Theorem A) For any n ∈ IN the natural map M −→ Mn has dense image
with respect to the canonical topology on the target;

ii. (Theorem B)
lim
←−
n

(i)Mn = 0
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for any natural number i ≥ 1. Expressed differently: the projective limit functor
from coherent sheaves to modules is exact.

Proof: Both of these results follow from the Mittag-Leffler property, which as-
serts in general terms that if one has a projective system (Mn)n of complete
metrizable spaces, and if the transition maps for fmn : Mm → Mn for m > n
are uniformly continuous and have dense image, then the two conclusions of the
theorem are valid for (Mn)n. See [EGA] III.0.13.2.2 and III.0.13.2.4.

Corollary 23.5: For any coherent sheaf (Mn)n for (A, (qn)) and M := Γ(Mn)
the natural map

Aqn
⊗A M

∼=−→Mn

is an isomorphism for any n ∈ IN.

Proof: By Theorem A the Aqn-submodule of Mn generated by the image of M
is dense in Mn. Prop. 22.1.ii. then says that this submodule, in fact, must be
equal to Mn. This establishes the surjectivity of the map in question and, more
precisely, that Mn as an Aqn -module is generated by finitely many elements in
the image of the map M −→ Mn.

Corollary 23.6: The functor Γ : Coh(A,(qn))
∼−→CA is an equivalence of cate-

gories.

Proof: By definition the functor is essentially surjective. According to the previ-
ous corollary it is fully faithful. Both properties together amount to the functor
being an equivalence of categories.

Corollary 23.7: i. The direct sum of two coadmissible A-modules is coadmis-
sible;

ii. the (co)kernel and (co)image of an arbitary A-linear map between coadmis-
sible A-modules are coadmissible;

iii. the sum of two coadmissible submodules of a coadmissible A-module is coad-
missible;

iv. any finitely generated submodule of a coadmissible A-module is coadmissible;

v. any finitely presented A-module is coadmissible.

Proof: The first assertion is obvious. The last three assertions are immediate
consequences of the first two. Hence it remains to establish the second assertion.
By the previous corollary any map between coadmissible modules comes from a
map between coherent sheaves. But, by Theorem B, the functor Γ into Mod(A)
commutes with the formation of (co)kernels and (co)images.
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These properties amount to the essential property of admissible representations,
as discussed in Lecture VI:

Corollary 23.8: CA is an abelian subcategory of Mod(A).

Write
M = lim

←−
n

Mn .

By Prop. 22.1.i, each Mn carries its canonical Banach space topology as a
finitely generated Aqn-module.

We equip M with the projective limit topology of these canonical topologies.
This makes M into a K-Fréchet space. Moreover, the A-module structure map
A×M → M clearly is continuous. This topology is called the canonical topology
on M .

One can show that this topology is always nuclear, so that the strong dual of
such a module is of compact type.

Lemma 23.9: For any coadmissible A-module M and any submodule N ⊆ M
the following assertions are equivalent:

i. N is coadmissible;

ii. M/N is coadmissible;

iii. N is closed in the canonical topology of M .

iv. Any A linear map f : M → N between coadmissible A-modules is continuous
and strict for the canonical topologies.

v. In particular, any finitely generated left ideal of A is closed.

The following two propositions are useful in two special situations. If G is locally
L-analytic, the L-analytic functions are a subspace of the Qp analytic functions;
dually, D(G,K) is a quotient of D(GQp

,K) where GQp
is the restriction of scalars

of G to Qp. This proposition makes it possible to pass from Qp to L.

Proposition 23.10: Let I be a closed two sided ideal in a K-Fréchet-Stein
algebra A; then A/I is a K-Fréchet-Stein algebra as well.

The next result makes it possible to deduce that, if the algebra D(H,K) is
Fréchet-Stein, and H is of finite index and open in G, then D(G,K) is also
Fréchet-Stein.
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Proposition 23.11: Let A −→ B be a continuous unital algebra homomor-
phism between K-Fréchet-Stein algebras such that B is coadmissible as a (left)
A-module, and let M be a (left) B-module; then M is coadmissible as a B-module
if and only if it is coadmissible as an A-module.

Example 23.12: Let G = ZZp viewed as a locally analytic group. The dis-
tribution algebra D(G,K) = O, discussed in §21, is the ring of power series
convergent on the open unit disk. For each x ∈ K with |x| < 1 we have the
seminorm qx defined by qx(f) = |f(x)|. For each radius 0 < r < 1, with r ∈ pQ

we have the supremum norm

qr(f) = max
x∈K,|x|<=r

qx(f).

These norms are the same as those from the discussion in Theorem 13.2, though
presented differently.

If r ∈ pQ, then the Banach algebra Ar = Aqr
is the so-called “affinoid algebra”

of rigid analytic functions on the closed disk of radius r. In explicit terms we
have that Ar consists of the power series

f =
∞∑

n=0

anTn

where |an|rn → 0 as n → ∞. If K contains an element π so that |π| = pr

(which can always be achieved by making a finite extension of K) then a change
of variables U = T/π identifies Ar with K << U >>.

The algebra Dc(ZZp,K) is the subalgebra of D(G,K) consisting of power series
with bounded coefficients. It corresponds to the bounded functions on the open
unit disk.

Theorem 23.13: D(ZZp,K) is a Fréchet-Stein algebra.

Because D(ZZp,K) really is the ring of functions on a Stein space, this fact follows
from the theory of rigid analytic geometry (Kiehl’s Theorem A and Theorem
B). Of course D(ZZp,K) has even more properties (for example closed ideals are
finitely generated, and even principal) as discussed in Lecture VI.

In the next Lecture we will prove the following main result.

Theorem 23.14: Let G be a compact locally L-analytic group, and assume
that K is a complete discretely valued extension field of L. Then D(G,K) is a
Fréchet-Stein algebra.
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As a consequence of this theorem we have the definition proposed in Lecture VI:

Definition 23.15: A locally analytic G-representation on a vector space V is
called admissible if V is of compact type and the strong dual V ′

b is a coadmis-
sible D(H, K)-module with its canonical topology for one (or all) compact open
subgroups of H of G.

The reason one may check the condition for one compact open alone is Propo-
sition 23.11.

The properties of coadmissible modules tells us that, as discussed in Lecture
VI, we have the hoped-for properties: Repa

K(G) is an abelian category; kernels
and image are the algebraic kernel and image (as subspaces). Any map in the
category is strict and has closed image. If V is admissible, so is any closed
G-invariant subspace.

Example: The locally analytic principal series representations IndG
P (χ) for

G = GLn(L) are admissible. In fact by the Iwasawa decomposition G = GoP

where Go = GLn(o), any function f ∈ IndG
P (χ) is determined by its restriction

to Go, and in fact as a representation space for Go we have

IndG
P (χ) = IndGo

Po
(χ|Po).

But the right side of this inequality is a closed subspace of Can(Go,K), so its dual
is a (Hausdorff) quotient of D(Go,K). Consequently the dual is coadmissible
and therefore the principal series is admissible.
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Lecture VIII:
Distribution Algebras of p-adic Lie groups

are
Fréchet-Stein

§24 Distribution algebras of p-adic Lie Groups

In this lecture we outline a proof of the following theorem.

Theorem 24.1: Let G be a compact locally L-analytic group, and suppose that
K is discretely valued. Then D(G,K) is a Fréchet-Stein algebra.

The proof of this result relies on two main ingredients:

(i) The theory of p-valued groups. ([Laz], [DDMS])

(ii) The theory of filtered and graded rings. ([LVO])

We briefly recall aspects of each of these areas.

§25 p-Valued groups.

A p-valuation on a group G is a real valued function ω : G\{1} −→ (1/(p−1),∞)
such that

ω(gh−1) ≥ min(ω(g), ω(h)),
ω(g−1h−1gh) ≥ ω(g) + ω(h), and
ω(gp) = ω(g) + 1

for any g, h ∈ G ([Laz] III.2.1.2).

As usual one puts ω(1) := ∞.

For each real number ν > 0 we define the normal subgroups

Gν := {g ∈ G : ω(g) ≥ ν} and Gν+ := {g ∈ G : ω(g) > ν}

of G, and we put
gr(G) :=

⊕
ν>0

Gν/Gν+ .

To simplify the following discussion we assume that p is odd. However this
assumption is not necessary for the truth of the theorem.

Theorem 25.1: Any compact locally Qp-analytic group has an open subgroup
H with an (ordered) set h1, . . . , hd of topological generators such that:
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(i) The map
ψ : ZZd

p → H
(x1, . . . , xd) → hx1

1 · · ·hxd

d

is a global chart for the manifold H.

(ii) The function
ω(hx1

1 · · ·hxd

d ) = inf
1≤i≤d

(1 + ωp(xi))

is a p-valuation on H.

(iii). Every element of H2 = {h : ω(h) ≥ 2} is a pth power in H.

The coordinates given by the map ψ give us explicit coordinates for Can(H, K)
and D(H, K). In fact we have isomorphisms

ψ∗ : Can(H,K)
∼=−→Can(ZZd

p,K)

and
ψ∗ : C(G, K)

∼=−→C(ZZd
p,K).

The multivariate version of the results in Section 13 tell us that C(H, K) can
be viewed as the space of all series

f(x) =
∑

α∈INd
0

cα

(
x

α

)

with cα ∈ K and such that |cα| −→ 0 as |α| −→ ∞. Here we put, as usual,

(
x

α

)
:=

(
x1

α1

)
· · ·

(
xd

αd

)

and

|α| :=
d∑

i=1

αi

for x = (x1, . . . , xd) ∈ ZZd
p and multi-indices α = (α1, . . . , αd) ∈ INd

0.

The multivariate version of Theorem 13.2 (Amice’s theorem) says that the
Mahler expansion f lies in the subspace Can(ZZd

p,K) if and only if |cα|r|α| −→ 0
for some real number r > 1 as |α| −→ ∞.

For h = ψ(x) we have

h(f) = δψ(x)(f) = ψ∗(f)(x)
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for any f ∈ C(H, K) and any x ∈ ZZd
p.

Write bi := hi − 1 and bα := bα1
1 bα2

2 · · · bαd

d , for α = (α1, . . . , αd) ∈ INd
0.

We let

|α| =
d∑

i=1

αi.

We have
bα ∈ ZZp[H] ⊆ D(H, K).

If cα denote the coefficients of the Mahler expansion of ψ∗(f) for some f ∈
C(H,K) then

bα(f) = cα .

Any distribution λ ∈ D(H, K) has a unique convergent expansion

λ =
∑

α∈INd
0

dαbα

with dα ∈ K such that, for any 0 < r < 1, the set {|dα|r|α|}α∈INd
0

is bounded.
Conversely, any such series is convergent in D(H,K). The Fréchet topology on
D(H,K) is defined by the family of norms

‖λ‖′r := sup
α∈INd

0

|dα|r|α|

for 0 < r < 1.

Since the multiplication in D(H, K) is jointly continuous, we obtain the ex-
pansion of the product of two distributions by multiplying their expansions,
inserting the expansions

bβbγ =
∑
α

cβγ,αbα ,

and rearranging. Here the coefficients cβγ,α belong to ZZp.

The inclusion ZZp[H] ⊆ D(H, K) extends to an embedding of topological rings

ZZp[[H]] ↪→ D(H, K).

A distribution λ =
∑

α dαbα lies in ZZp[[H]] if and only if all dα ∈ ZZp.

Proposition 25.2: (Lazard) The norm ‖ ‖1/p is multiplicative, satisfies ‖h −
1‖1/p ≤ p−ω(h), and induces the natural compact topology on ZZp[[H]].
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Corollary 25.3: Each norm ‖ ‖r, for 1/p ≤ r < 1, is submultiplicative on
D(H,K).

Proof. This is an exercise using the Proposition and the expansion of bαbβ

given above.

Our goal is to show that Dr(H, K) is a Fréchet-Stein algebra for the structure
given by the family of norms ‖ ‖r.

Let Dr(H, K) be the completion of D(H, K) in the norm ‖ ‖r. Explicitly we
have

Dr(H, K) = {f =
∑

dαbα : ‖dα‖r|α| → 0 as |α| → ∞}.

In addition we define

D<r(H, K) = {f =
∑

dαbα : |dα|r|α|is bounded as |α| → ∞}

We have

⊆ Dr(H,K) ⊆ D<r(H, K) ⊆ Dr′(H, K) ⊆ . . . ⊆ D1/p(H, K)

when 1/p ≤ r′ ≤ r < 1. Also

D(H,K) = lim
←−

Dr(H, K) = lim
←−

D<r(H,K).

§26 Filtered Rings

The second key ingredient in our proof is the theory of filtered rings.

The general principle is that a filtered ring R inherits properties from its asso-
ciated graded ring.

In our situation the graded rings we will consider are commutative and thus are
much simpler than the original rings.

We begin with some general definitions.

Let R be an associative unital ring. We call R filtered if it is equipped with a
family (F sR)s∈IR of additive subgroups F sR ⊆ R such that, for any r, s ∈ IR,

– F rR ⊇ F sR if r ≤ s,

– F rR · F sR ⊆ F r+sR,

–
⋃

s∈IR F sR = R and 1 ∈ F 0R.
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For any s ∈ IR put

F s+R :=
⋃
r>s

F rR and grsR := F sR/F s+R .

Then
gr·R :=

⊕

s∈IR

grsR

with the obvious multiplication is called the associated graded ring.

The filtration is called quasi-integral if there exists an n0 ∈ IN such that {s ∈
IR : grsR 6= 0} ⊆ ZZ · 1/n0.

We say that the filtered ring R is (separated and) complete, if the natural map

R
∼=−→ lim

←−
s

R/F sR

is bijective.

If x ∈ R, then the representative of x in grR (denoted σ(x)) is called the
principal symbol of x.

Exercise: Let K be a complete discretely valued extension field of Qp. Filter
K by

F sK = {x : |x| < p−s}.
Show that the associated graded ring gr·K is the ring IF[σ(π), σ(π)−1] where IF
is the residue field of K and π is its uniformizing parameter.

Any homomorphism φ : R −→ A between filtered rings which respects the
filtrations induces in the obvious way a homomorphism of graded rings gr·φ :
gr·R −→ gr·A.

In the following we consider two complete filtered rings R and A whose filtrations
are quasi-integral and a unital ring homomorphism φ : R −→ A which respects
the filtrations.

Proposition 26.1: (i) If the graded ring gr·R is (left) noetherian then R is
(left) noetherian as well.

(ii) Suppose that gr·R and gr·A are left noetherian and that gr·A as a right
gr·R-module (via gr·φ) is flat; then A is flat as a right R-module (via φ).
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§27 The main steps of the proof

We now combine the ideas of §25 and §26 to show that D(H, K) is a Fréchet-Stein
algebra.

The algebras Dr(H, K) for each 1/p ≤ r′ ≤ r, have the filtrations:

F s
r′Dr(H, K) = {a ∈ Dr(H, K) : ‖a‖r′ ≤ p−s}.

The same filtrations make sense for D<r(H, K) provided that 1/p ≤ r′ < r.
Also, all of these filtrations coincide on K with the natural one.

Theorem 27.1: For 1/p < r < 1, and r ∈ pQ the ring gr·rDr(H, K) is a
polynomial ring over gr·K in the principal symbols σ(bi) for i = 1, . . . , d.

Proof. It is easy to see, from the explicit presentation of Dr(H, K), that
gr·rDr(H, K) is a free gr·K module generated by the principal symbols of the
monomials σ(bα). However, since the norms are multiplicative for monomials
by definition, we see that

σ(bα) =
d∏

i=1

bαi
i

Therefore the graded ring “looks like” a polynomial ring; the key question is the
ring structure. For this we use the following fact:

(∗) ‖bibj − bjbi‖r < ‖bibj‖r.

This implies that the σ(bi) are commuting variables and this implies the claimed
result.

Now we must see why (*) holds. Since i < j we have ‖bibj‖r = r2. To estimate
the left hand side in the assertion we use that the properties of a p-valuation
imply that h := h−1

i h−1
j hihj = gp for some g ∈ H. Hence

bibj − bjbi = hihj − hjhi = hjhi(h− 1)

= hjhi(gp − 1) = hjhi(((g − 1) + 1)p − 1)

= hjhi(g − 1)p +
p−1∑
n=1

(
p
n

)
hjhi(g − 1)n

and therefore, by the submultiplicativity of ‖ ‖r and the fact that ‖hi‖r = 1,

‖bibj − bjbi‖r ≤ max(‖g − 1‖p
r , |p|‖g − 1‖r) .
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Since 1/p ≤ r < 1 the inequality ‖g − 1‖1/p ≤ p−ω(g) implies that ‖g − 1‖r ≤
rω(g). To see this let 0 < z ≤ 1 such that (1/p)z = r and consider the expansion
g − 1 =

∑
α dαbα. We have |dα|p|α| ≤ p−ω(g). By exponentiating this latter

inequality and using that |dα| ≤ 1 we have

|dα|r|α| ≤ |dα|zp−z|α| ≤ p−zω(g) = rω(g) .

Combining this with the previous estimate we obtain

‖bibj − bjbi‖r ≤ max(rpω(g), p−1rω(g)) .

From the properties of a p-valuation we deduce that

ω(g) = ω(h)− 1 ≥ ω(hi) + ω(hj)− 1 = 1 .

We therefore get
‖bibj − bjbi‖r ≤ max(rp, r/p) .

The inequality r/p < r2 is obvious from 1/p < r. It remains to be seen that
2 < p. Here is where our assumption that p is odd comes in! (The result is still
true when p=2, but the p-valuation is more complicated).

Corollary 27.2: The Banach algebras Dr(H, K), for 1/p < r < 1, and r ∈ pQ,
are Noetherian.

Proof: This follows from Proposition 26.1 since the filtration is quasi-integral
and complete.

We remark that ZZp[[H]] is a Noetherian integral domains, but it is not commu-
tative – this is due to Lazard. From this fact one sees that D1/p(H,K) is also
Noetherian.

The second part of the Fréchet-Stein property is the flatness of the transition
maps.

Theorem 27.3: For 1/p < r′ ≤ r < 1 in pQ, the map Dr(H, K) → Dr′(H, K)
is flat.

Proof: We attack this in stages. First we show that D<r(H, K) is (left and
right) Noetherian. Then we show that the maps

Dr(H, K) → D<r(H, K)

and
D<r(H,K) → Dr′(H, K)
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are each flat. Each of these facts can be checked after making a faithfully flat
base extension, and so we may extend K so that r = |π|m and r′ = |π|m′

are
integral powers of |π|, where π is the uniformizer of K. Then a calculation using
the grading shows that

gr0
rD<r(H,K) = k[[u1, . . . , ud]]

where ui is the principal symbol of bi/πm. Then

gr·rD<r(H, K) = gr·K ⊗ gr0
rD<r(H, K)

is a Noetherian ring. Furthermore, it is not hard to see that gr0
rDr(H, K) is the

subring of polynomials k[u1, . . . , ud]. Thus on the level of graded rings the map
from Dr(H, K) to D<r(H, K) is a flat base change of the map of a polynomial
ring into formal power series, and this is known to be flat. Now we apply
Proposition 26.1.

Next we consider the map D<r(H, K) → Dr′(H, K). It suffices to consider the
inclusion of the unit ball

F 0
r′D<r(H, K) → Dr′(H,K)

and to show that this is flat. The key point here is that the image of F 0
r′Dr(H, K)

in the target is compact (at least if K is locally compact; more sophisticated
methods work if K is only discretely valued). Therefore the filtration Fr′ on
F 0Dr(H,K) is complete. Once again one computes explicitly the graded ring
and, without giving details, one finds the map is given by “localization at σ(π)”
and is therefore flat. One more application of Proposition 26.1 completes the
proof.
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