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Today I want to explain to you the oldest unsolved major problem
in mathematics (called the congruent number problem). It can
be traced back at least to the 10-th century in Arab manuscripts (Al-
Kazin) but it is possibly much older. It turns out to be a beautiful
example of the modern theory of the arithmetic of elliptic curves,
but it is more accurate to say that this theory grew out of the study
of this problem.

In the 17-th century, Fermat gave a wonderful proof of the first
special case of this problem. I want to explain his proof to you today.
It also led Fermat to his so called Last Theorem (now solved by
Andrew Wiles). But the original congruent number problem remains
unsolved, despite the fact that conjecturally there is a very simple and
beautiful answer to it.

Basic Facts about Numbers
All the basic facts about numbers which we shall need were certainly
known to the Greek mathematicians (Euclid, Pythagoras, ...). We
recall the set of integers:
Z ={0,%+1,£2,--- }.

Definition 1. If a and d are integers with d # 0, we say d divides a
(or d is a divisor of a) if we have a = da’ for some integer a'.

e.g. 3 divides 12: 12 =3 - 4.

Notation. d|a means d divides a. We also say a = dd’ is a factor-
ization of a.
The positive integers

2,3,5,7,11,13,17,19, - -
stand out because they have no factorizations except the trivial ones.

Definition 2. We say a positive integer p is a prime if its only divisors
are £1, +p.
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Theoretically, it is obvious that we can write any integer as a product
of powers of primes.
Basic Problem. Find a "fast” way of factoring large integers.

¢.g. an integer with 200 digits.

This problem has important applications to cryptography.
Fundamental Theorem of Arithmetic.

Each integer n > 1 can be written as a product of powers of primes

n=pitplr (pi distinet),

and this decomposition is unique up to order.
The uniqueness is not at all obvious; it depends on Euclid’s algorithm.

Corollary 1. (Existence of greatest common divisor)
Let ay,--- ,a, be any finite set of positive integers. Then there exists a
unique positive integer d satisfying:

(1) d[a’l’ Tty dlan;
(ii) if e is any positive integer such that e|ay, - - - ,e|an, then e|d.

We call d the greatest common divisor of a;,--- ,a,, and write
Notation. d = (as, -+ ,a,).

The oldest unsolved major problem in mathematics is concerned with
right-angled triangles with sides a,b and c.

a

The basic result about these triangles is called Pythagoras’ theorem,
but it was certainly known in India before 800 B.C. ( and so long before
Pythagoras).

Pythagoras’ Theorem.
a® + b =2

This theorem inexorably led to the introduction of irrational num-
bers once one accepts the idea that every length should be measured
by a number e.g., a triangle with two perpendicular sides have length
1.

b
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‘v/2’ is the length of the hypothenuse of this triangle.

Definition 3. We say a positive number a is rational if a = =, where

m and n are positive integers. We say a is irrational if o is not ratio-
nal.

Important Exercise. Use the fundamental theorem of arithmetic to
prove that /2 is irrational.

Thus irrational numbers exist! It is the first step in creating larger
systems of numbers in mathematics. Although it is not at all obvious,
it turns out that 7 is irrational. But it is a much more ” complicated”
irrational number than v/2. It is a transcendental number.

Notation: For simplicity, I am going to use the symbol A to denote the
right-angled triangle with sides length a, b, c.

a

Usnally, A will have at least one of its side lengths a, b, ¢ irrational.
But from long ago in the history of mankind it was noted that some
triangles have all of a, b, ¢ rational numbers. For example,

5

. 41/6
4 40/6
2 2 2
2442 = 52

Er+Er = G

Definition 4. We say A is rational if all three lengths a,b,c are ra-
tional.

We also need an important subset of the rational triangles.

Definition 5. We say A is primitive if all three of a, b, c are positive
integers and (a,b,c) = 1.
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Exercise. Every rational A is similar to a unique primitive A. For
example,

41/6 41
,-l 9/6 ’-l 9
rational and similar to
40/6 40

Lemma 1. Assume A is primitive, then precisely one of a and b is
even.
Proof. It all hinges on the fact that a? + b* = 2.
(i) Assume 2|a and 2|b, then 2|c. But this contradicts our assumption
that A is primitive.
(i) Assume both a and b are odd, i.e., a = 2a; +1, b = 2b; +1. Then
we get
o’ +b?=4k+2, forsome k€ Z.

Hence 2|c? but 4 does not divide ¢2. This contradicts the funda-
mental theorem. O

Proposition 1. Assume A is primitive. Then there exist positive
integers m,n with (m,n) =1 such that

a=n?—-m? b=2nm, c=n?+m?

or

a=2nm, b=n?—m? c=n%+m

Note. (n®+m?)? = (n? —m?)? + (2nm)2

Proof. Since A is primitive, say a is odd and b is even. Then ¢ is odd
and (a,c) = 1. Put
1 1
wy = E(c—a), wy = §(c+a).

Thus w; and wy are both positive integers. We will prove that w; and
wy are relatively prime. Suppose d|w; and d|ws. Then djw; + wy and
d!’LUQ - Wj. But

W1 + We = ¢, Wy — Wy = Q.
Hence d = 1 because (a,c) = 1. But we can rewrite a® + b* = ¢? as

b

5

Hence w; and w, are relatively prime and their product is a square.
Hence by the fundamental theorem each must be a square

)2 = W1 Wws.

w; =m?, wy =n?and (m,n) = 1.

This finishes the proof. O

o '.
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Areas of Triangles. Our deep problem arises when we consider the
areas of our right-angled triangles with sides length a, b and ¢, a®>+b? =
c2. We all know that for

Area(A) := Area of A = %ab.

Now, suppose we fix a positive integer N. Clearly there exist always
infinitely many A such that

Area(A) =N

(just choose rational numbers a and b such that ab = 2N and positive).

Key Question. Does there exist a rational A with Area(A) =N 7

Sometimes the answer is yes, e.g.
N = 5, right-angled A with sides: 3, %, %; Area(A) =

D.

N = 6, right-angled A with sides: 3,4,5; Area(A) = %x 3x4 =6.

40
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Definition 6. We say N is congruent if there exists a rational A
with Area(A) = N.

Note. This is a classical example of a diophantine problem. The
problem has a trivial answer if we drop the hypothesis that A is ratio-
nal.
Arab mathematicians (and possibly Indian mathematicians before
them) made tables of integers which are congruent. They found
5,6,7,13, 14,15, 21, 22,23, 29, 30, 31, 34, 37, 38, 39,41, 46,47, - - -

are all congruent.

Challenge. In each case you should try and find a rational A with
Area(A) = N.

Remark 1. If N is congruent and N' = d*N, where d is an integer,
then N' is also congruent. So I have left out in the above list all integers
which are of the form d?N, where N is already known to be congruent.

Definition 7. We say N is square free if N = p; - - - p,, where the p;
are distinct prime numbers.
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In looking, it suffices to consider only square free N.
Dilemna of the Ancients. Is 1 congruent ?

No one could find a rational A with Area(A) = 1. People began to
try to prove that there was no such A, and many people falsely claimed
a proof (e.g., Fibonacci).

Theorem 1. (Fermat) ! is not a congruent number.

Later in this talk, I want to tell you the marvellous proof found by
Fermat. But first I want to discuss some related material.

Corollary 2. The cquation z* — y* = 22 has no solution in integers
z,y,z with zyz # 0.

Proof. (Assuming theorem) Suppose there is a solution in integers
z,y,2 with zyz # 0. Let

n=z% m=y
Put a =n? —m? b=2nm, ¢ =n?+m? so that a + b2 = 2 and the
area of A with sides length a, b, c is

1
Area(A) = §ab = nm(n® — m?) = 2%y%2%

a a'

Take another A’ with edges o/, ¥, ¢ and parameter A = zyz (can assume
z,y, z are all positive) so that

! a / b / c

ad=— == =<

A A’ A
and Area(A’) = 1, which shows that A’ is rational and leads to a
contradiction. O

In particular, the corollary shows that the equation
2t =yt 4t
has no solution in integers z,y,w with zyw # 0. This is the only
written evidence we have of what led Fermat to conjecture that, for
any integer n > 3, the equation
xn - yn + zn
has no solution in integers z,y, z with zyz # 0.
Returning to the problem of showing that integers N are not con-

gruent, later mathematicians have used Fermat’s ideas to find many
others.

E
=



CONGRUENT NUMBER PROBLEM 7

Non-Congruent square free N:
1,2,3,10,11,17,19, 26, 33, 35,42,43, - - - .

Very extensive tables of both congruent and non-congruent numbers
are known today, and are available on the web.
We can now state the two problems which remain unsolved !

Oldest Problem I. Prove that there is an algorithm (i.e. a procedure)
for deciding in a finite number of steps whether a given positive integer
N is congruent or not.
Oldest Problem II. Prove that every square free integer of the form
8n+5 or 8n+6 or 8n+7 (n=0,1,2,---)

is congruent.

These problems are one of the great challenges remaining in number
theory, and probably in all of mathematics.

I hope to explain at the end of my lecture that conjecturally there is
a very simple answer to both problems - if only we could prove it !

Proof of Fermat’s Theorem.

Fermat’s Theorem is equivalent to that there is no primitive triangle
whose area is a square.

Remark 2. When I say “square”, I always mean the “square of an
J )
integer”.

Fermat introduced in the proof the fundamental idea of "infinite
descent”.

Key Step.

c
Al : 1 Ag : ‘2

b, arithmetic argument

a1 . ag

We always start with a primitive A; (with sides length as,b1,c1)
whose arca is a square and construct a new primitive Ay (with sides
length as, by, co) whose area is again a square and

Key Point: always c; < ¢;. ( In fact, we shall show that 5 < ¢;.)
Repeating the argument, we construct an infinite sequence of primitive
A;’s whose area is always a square, and

Cl >Cy>C3 >+ .

This gives a contradiction because one cannot have an infinite strictly
decreasing sequence of positive integers.

HoTnee ..

e
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Heart of the Argument. How do we construct A, from A; 7

Note. I will only speak about positive integers.
We know from our earlier lemma that there exist integers n;, m; with
(n1, my) = 1 such that

— 2 2 _ — 2 2
a1 = ny —mj, by =2nymy, ¢; = nj +m7,

Area(A;) = nymy(ny +my)(ny — my).

Claim. All four factors on the right are relatively prime in pairs.
Only have to worry about n; +m; and ny; — my. If d|(n; +m1) and

d|(ny —my),d|2n; and d|2m;, which implies that d =1 or 2. But d = 2

implies 2|a; which is impossible since 2|b; and so we would have 2|c;.

Key Conclusion. Since Area(A)) is a square, we must have that each
of the four factors
ni, M1, M +m11 ny—m

are squares (clear from unique factorization into primes). Hence there
exist integers x,y, u, v such that

2 2 2
ny=2x, m =Y, n1+m1:u,n1—m1:1}2.

Of course (u,v) = 1 and u,v are odd since a; = u?v? is odd. Also we
have
u? = v? + 2%
(Check: (ny +my) = (ng — my) + 2my.)
We can rewrite this last equation as

2% = (u+v)(u—v). (1)

Next Step. We carry out a second factorization with equation (1)

Claim. (u—v,u+v)=2.

In fact, since u, v both odd, 2|u—v and 2|u+v. If dju—v and d|u+v,
we have d|2u and d|2v, which leads d|2 since (u,v) = 1.

Hence unique factorization together with (1) tells us that one of u+wv
and u — v must be of the form 2r? and the other must be of the form
452, where r,s are integers. But we do not know which is of which
form! But we still can say that

u =12+ 252
+v =12 —25%
Yy = 27s.
But

1
?=n; = §(u2 +0?) = r* 4 45%,

(Check: (12 + 252)% + (12 — 25%)? = 2(r* + 45%).)
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Now at last we can specify the triangle Ay:
First define

JAVES “2 , right-angled
: (65)* = (a3)* + (B)?,

with

Key Observations.

(i) Area(A}) = (rs)? - a square !
(ii) ¢y =z < c1 = a* + y* (in fact, (ch)* < ).
If Aj is not primitive, let d = (a}, b, c}), we consider

Ag : ‘2 a2=a’2/d,
b2 bgzba/d,
P e = cy/d.

Now A, is primitive and has all the desired properties ! We have proven
Fermat’s Theorem. U

In the rest of today’s lecture, I would like to talk about a deep
conjecture related to the Oldest Problem I and IT which we have
mentioned before. The conjecture originated from B. Birch and H.P.F.
Swinnerton -Dyer in the 60’s and was put in a simpler form by the
work of J.B. Tunnell in the 80’s.

To begin with, let us consider the formal power series

ap+ T+ ogT*+ -+, T + - --

in T" whose coefficients lie in Z. We just add and multiply these formal
power series as though they were polynomials in 7" with coefficients in
Z (we are not concerned at all here with questions of convergence). For
cxample, to multiply two such series

h(T) = ianT", k(T) = i B, T"
n=0 n=0

we simply pick any integer r > 0, and chop them off after the term in
T", getting

T T

he(T) =T, k(T) =Y BT
n=0 n=0

We then multiply the two polynomials h,.(T), k.(T). We see immedi-

ately the terms T°,T1,--- | T" in this product determine the terms of

g
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the same degree in h(T)k(T). Moreover, it is clear that you can casily
work out these terms by hand once you know the coefficients ay, - - - , @,

and o, -+, By

Now I also need to consider a formal infinite product as a power series
in T' with coefficients in Z. For each integer r > 1, let us consider the
polynomial in T" with coefficients in Z defined by

T) T H TSn Tl()'n )

Clearly,

gr1(T) = gr(T) = go(T)((1 ~ TH+V)(1 = THOC+) — 1)
T8 +D+1 4 terms of higher degree.

In other words, ¢,41(T) and g,.(T) agree in all terms 79, ..  T80+1),

Thus it clearly makes sense to talk about g(T) = lim,_ g,(T) as a

well defined formal power series in 7" with coefficients in Z. Informally,

we can write

=T ﬁ T8n _ Tlﬁn)

n=1

where the meaning of the infinite product is explained above. Let j = 1
or 2, and define the formal power series

T)=1+2) T%%

n=1

We now consider the two products of formal power series

9(T)0(T) = 3" a(m)T™,
9(T)6x(T) = Y b(n)T"

In other words, the integers a(n) and b(n) are defined to be coefficients
when we take these products. It is clear that you can systematically
work out the values of a(n) and b(n) for any given n by a simple fi-
nite calculation (in other words, there is a simple algorithm for finding
them). Here is a sample of the values you will find.

e
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a(1)=1 b(1)=1
a(3)=2 b(3)=0
a(5)=0 b(5)=2
a(7)= b(7)=
a(11)=-2 b(11)=0
a(13)=0 b(13)=-2
a(15)=0 b(15)=0
a(17)=-4 b(17)=0
a(19)=-2 b(19)=0
a(21)=0 b(21)=-4
a(23)=0 b(23)=0

Table of values of a(n) and b(n) for n square free, n < 23.

As an exercise, I suggest you extend this table up to all square free
n < 100.

I wonder if someone has noticed something miraculous in this table?
In fact, for n square free and n < 23 it verifies the following:

Deep Conjecture. (Birch-Swinnerton-Dyer-Tunnell) Let N be any
odd square free positive integer. Then

(i) N is congruent if and only if a(N) =0,

(i1) 2N 1s congruent if and only if b(N) = 0.

If the conjecture is true, it clearly answers our Problem I since I have
already explained that there is a simple algorithm for calculating a(N)
and b(N) in a finite number of steps. It can also easily be shown to
answer Problem II. I leave this as an exercise for you.

Let me end by telling you what we know about this conjecture. In
fact, the implication in one direction was proven long ago by Andrew
Wiles and myself.

Theorem 2. (Coates-Wiles) Let N be an odd square free positive in-
teger. If a(N) # 0, then N is not congruent. If b(N) # 0, then 2N is
not congruent.

Our proof relies on ideas that have their origin in Fermat’s proof.
The great challenge to number theory is to prove the implication in
the other direction !

I want to end with one other mysterious observation. If you compute
a(N) and b(N), when N is odd and square free, and you find them to
be non-zero you find the surprising fact that they are divisible only by
small primes. In fact, if you look at N square free with N < 10%, the
largest prime which occurs in an a(N) # 0 is the prime 349. In fact,
there would be great theoretical interest in showing that there exist
arbitrarily large primes dividing a(N) # 0, where N is square free,
and similarly for b(N). It is just possible that this could be done by
ingenious elementary arguments. Let me leave this with you as a final
unknown challenge !





