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Introduction

About ninety years ago, Ramanujan considered

the following power series of q

∆(q) = q ·
∏

n≥1

(1 − qn)24.

Expanding this out formally, we have:

∆(q) =
∑

n>0

τ(n)qn

= q − 24q2 + ...

Ramanujan made a number of conjectures about

the coefficients τ(n). These conjectures have

turned out to be very influential. They say:
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• τ is multiplicative, i.e. if m and n are rela-

tively prime, then

τ(mn) = τ(m) · τ(n)

Moreover,

τ(pk+1) = τ(p)τ(pk) − p11τ(pk−1).

• For all primes p, |τ(p)| ≤ 2 · p11/2. This

implies that for any n,

|τ(n)| ≤ Cǫ · n11/2+ǫ

for any ǫ.

The first conjecture was proved by Mordell

(around 1920), while the second by Deligne

(around 1970).

These conjectures led to the theory of modular

forms. We shall begin with a brief description

of the basic results in this theory, and then

give a reformulation using representation the-

ory. This reformulation leads to a vast gener-

alization of the theory.
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Classical Modular Forms

Upper Half Plane

Let

H = {x + iy : x ∈ R, y > 0}

be the upper half plane. It is a homogeneous

space for SL2(R) under the action:

(

a b
c d

)

: z 7→ az + b

cz + d
.

In fact, this defines an action of GL2(R)+ on

H with center acting trivially. Moreover, it ex-

tends to an action on H∗ = H ∪R ∪ {∞}. The

action on R ∪ {∞} is also transitive. The sta-

bilizer of ∞ is the Borel subgroup B of upper

triangular matrices.
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The stabilizer of i =
√
−1 is

K = SO(2) = {g ∈ SL2(R) : gtg = 1}

which is a maximal compact subgroup of SL2(R).

So we have:

H ∼= SL2(R)/K.

There is an SL2(R)-invariant measure on H,

namely

dx dy

y2
.

This is invariant under SL2(R) because

Im(gz) =
Im(z)

|cz + d|2
.
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Standard notations

- B = the Borel subgroup of upper triangular

matrices

- N = the unipotent radical of B = {
(

1 ∗
0 1

)

}

- T = the group of diagonal matrices

- A = {
(

a 0

0 a−1 : a > 0

)

}

- K = SO(2), the maximal compact.
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Arithmetic Subgroups

If Γ is an arithmetic subgroup of SL2(R), then

Γ acts on H in a properly discontinuous fash-

ion. The quotient Γ\H = Γ\SL2(R)/K pos-

sesses a fundamental domain F and has finite

volume (since Γ\SL2(R) has finite volume).

An example of Γ is SL2(Z). A fundamental

domain for the discrete subgroup SL2(Z) is:

F = {z = x + iy : |x| <≤ 1/2, |z| ≥ 1}

It looks like:
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Cusps

As a Riemann surface, F is a punctured sphere.

It has a natural compactification: by adding

the point i∞. This extra point is called the

cusp at infinity.

More formally, a point x ∈ R ∪ {∞} is cuspidal

for Γ if the stabilizer of x in Γ contains non-

trivial unipotent elements. For the purpose

of this lecture, our Γ is always contained in

SL2(Q), in which case the cuspidal points are

simply Q ∪ {∞}.

A cusp of Γ is a Γ-orbit in Q ∪ {∞}. Because

SL2(Z) acts transtively on Q∪∞ = SL2(Q)/B(Q),

there is one cusp when Γ = SL2(Z).

More generally, the number of cusps of Γ is

#Γ\SL2(Q)/B(Q) (which is finite), and Γ\H
can be compactified by adding these cusps:

Γ\H = Γ\(H ∪ Q ∪ {∞}).
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Siegel sets

It is often useful to have a set which covers the

fundamental domain, but is easier to describe.

One such example is the Siegel set associated

to the cusp i∞:

Sc,d = {x + iy : |x| < c, y > d}

For Γ = SL2(Z), if c is large enough and d

is small enough, this set will cover F. The

volume of Sc,d (with respect to the invariant

measure) is easily computed and seen to be

finite. This shows that F has finite volume.
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Hecke congruence subgroups

Another example of arithmetic group is the

Hecke congruence subgroup:

Γ0(N) = {
(

a b
c d

)

: c ≡ 0 mod N}.

Here the fundamental domain may have more

than one cusp. For example, when N = 2, the

fundamental domain, as shown below, has 3

cusps.

In this case, the fundamental domain cannot

be covered by a single Siegel set. One needs

3 Siegel sets, one for each cusp.

In the following, Γ shall mean Γ0(N) for some

N .
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Modular Forms

Definition: A holomorphic modular form for

Γ is a holomorphic function f on H satisfying

some extra properties:

• (automorphy) for any γ =

(

a b
c d

)

∈ Γ,

f(γz) = (cz + d)k · f(z),

where k is a positive integer.

• (holomorphy) f is holomorphic at every cusp

of Γ.

One motivation for studying these type of func-

tions comes from the theory of elliptic curves,

but we will not go into this here.
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Notations: For g ∈ GL2(R)+ and z ∈ H, set

j(g, z) = (cz + d) · det(g)−1/2

(f |kg)(z) = j(g, z)−k · f(gz).

Then the automorphy condition can be ex-

pressed as:

f |kγ = f

for any γ ∈ Γ.

The integer k is called the weight of f , whereas

if Γ = Γ0(N), then N is the level of f .

Observe that f is necessarily 0 if k is odd (be-

cause −1 ∈ Γ).

Next we want to explain more precisely the

holomorphy condition.
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Fourier Expansion

Because the element

t =

(

1 1
0 1

)

lies in Γ, we have:

f(z + 1) = f(z).

Thus f is really a function on the strip

{x + iy : −1/2 ≤ x < 1/2, y > 0}.
The map z 7→ q = e2πiz sends this strip onto

the punctured open unit disc, and sends the

cusp i∞ to 0.

The function f gives rise to a holomorphic

function f̃(q) on the punctured disc, and f̃(q)

has a Laurent expansion about 0:

f̃(q) =
∑

n
anqn.

By “f is holomorphic at the cusp i∞”, we

mean that the singularity at 0 is removable,

so that an = 0 if n < 0.

14



Thus we can expand f as a Fourier series:

f(z) =
∑

n≥0

an(f)e2πinz.

The numbers {an(f)} are the Fourier coeffi-

cients of f (at the cusp i∞).

One has analogous Fourier expansion at every

cusp of Γ. More precisely, any cusp a ∈ Q can

be moved to ∞ by an element γ of SL2(Z),

and one can consider the Fourier expansion of

f |kγ at i∞ as above.

CUSP FORMS: f is a cusp form (or is cusp-

idal) if f vanishes at every cusp.

Thus f is cuspidal iff the zeroth Fourier coef-

ficient a0(f) in the Fourier expansion of f at

every cusp is zero.
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Moderate growth and rapid decrease

In the presence of holomorphy of f on H, the

holomorphy condition at a cusp is implied by a

weaker assumption, namely that of moderate

growth.

We say that f is of moderate growth at the

cusp i∞ if there exists n such that

|f(x + iy)| ≤ C · yn

as y → ∞ with z in a Siegel set for i∞ (i.e. as

y → ∞ with x bounded).

Say that f is rapidly decreasing at i∞ if, for

any k, there exists Ck such that

|f(x + iy)| ≤ Cky−k

as y → ∞ in a Siegel set for i∞.
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Because |e2πikz| = e−2πky, we see that if f

is holomorphic on H and satisfies automorphy

condition, then

• f is of moderate growth at i∞ iff f is holo-

morphic at i∞.

• f is rapidly decreasing at i∞ iff f vanishes

at i∞.
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Natural Question: Suppose we are given a

q-series f(z) =
∑

n≥0 anqn which converges for

z ∈ H. Under what conditions can we conclude

that f(z) is a modular form, with respect to Γ?

Such a result is called a converse theorem.

We will come to this type of result later.

Remarks: We know that Γ is finitely gener-

ated. For example, SL2(Z) is generated by the

following two elements:

t =

(

1 1
0 1

)

, w =

(

0 1
−1 0

)

So to check that a given Fourier series is mod-

ular with respect to Γ, it suffices to check the

transformation property for w. But this is not

apparent from the Fourier series at all!
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Finite Dimensionality

Let Mk(N) denote the space of modular forms

of weight k and level N , and let Sk(N) be

the subspace of cusp forms. These spaces are

finite-dimensional. For example:

dimMk(1) =







k
12 + 1, if k 6= 2 mod 12,
k
12, if k = 2 mod 12.

Ring structure

Observe that if fi ∈ Mki
(N), then f1 · f2 ∈

Mk1+k2
(N). Thus

⊕

k Mk(N) has a ring struc-

ture. Moreover, if one of fi’s is cuspidal, so is

f1 · f2.
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Examples

(i) Eisenstein series E2k.

E2k(z) =
1

2ζ(2k)

∑

m,n∈Z,(m,n) 6=(0,0)

(mz + n)−2k.

This converges absolutely for all z ∈ H pro-

vided that k ≥ 2. We claim that this is a

modular form of weight 2k and level 1. Given

g ∈ SL2(Z), we have:

(E2k|2kg)(z) = (cz+d)−2k·
∑

(

m(
az + b

cz + d
) + n

)−2k

=
∑

((ma + nc)z + (mb + nd))−2k .

Since g ∈ SL2(Z), (m, n) 7→ (ma + nc, mb + nd)

is a bijection of Z2 onto itself. Thus the last

expression is equal to E2k. This shows the

automorphy condition.
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For the holomorphy at i∞, we need to find the

Fourier expansion of E2k. It turns out that

E2k(z) = 1 +
(−1)k4k

B2k
·
∑

n≥1

σ2k−1(n)qn

where B2k is the 2k-th Bernoulli number and

σ2k−1(n) is the sum of the (2k − 1)-powers of

the divisors of n.

As a corollary, we see that for k > 2 even,

Mk(1) = C · Ek ⊕ Sk(1)

dimMk(1) = dimSk(1) + 1.

So dimSk(1) = 0 if k < 12 and dimS12(1) = 1.
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(ii) Ramanujan ∆ function. The easiest way

to construct cusp forms is to use linear combi-

nations of Eisenstein series. For example, let

us set

f(z) = E4(z)
3 − E6(z)

2.

One computes to see that its Fourier expansion

looks like:

f(z) =
1

1728
(q + 24q2 + ......);

so it is indeed a cusp form of weight 12 and

level 1.

It turns out that this cusp form is precisely

equal to a multiple of the Ramanujan ∆-function:

q
∏

n≥1

(1 − qn)24 = q + 24q2 + ......

Ramanujan showed that this is an element of

S12(1). Because this latter space has dimen-

sion 1, and so this is equal to our definition

given above.
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(iii) Theta functions. Another source of mod-

ular forms is the so-called theta functions. Let

A = (aij) be a positive definite symmetric ma-

trix with integer entries. Assume for simplicity

that A has determinant 1 and A is even, i.e.

xtAx is even for all x ∈ Zk. Define a quadratic

form by

Q(x) =
1

2
xtAx

and consider the series

θQ(z) =
∑

x∈Zk

qQ(x) =

=
∑

n≥0

an(Q)qn

where

an(Q) = #{x ∈ Zk : Q(x) = n}.

Then θQ(z) is a modular form of weight k/2

and level 1. This is a consequence of the Pois-

son summation formula.
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Bounds on Fourier Coefficients

We have the following trivial bound of Hecke.

Proposition: If f(z) =
∑

n>0 an(f)e2πinz is a

cusp form of weight k, then

|an(f)| ≤ Cf · nk/2.

Proof: Consider the function F(z) = yk/2|f(z)|,
if z = x + iy. Then F(γz) = F(z) for any

γ ∈ Γ. Thus, F is a continuous function on

Γ\H. Since f is cuspidal, F(z) tends to 0 as

z approaches the cusps. Thus, F is bounded

and we have:

|f(x + iy)| ≤ Cf · y−k/2.

Now, for fixed y,

|an(f) · e2πny| = |
∫ 1

0
e−2πinx · f(z) dx| ≤
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≤
∫ 1

0
|f(x + iy)| dx.

Thus

|an(f)| ≤ Cfe−2πnyy−k/2

and putting y = 1/n gives the result.

Ramanujan-Petersson Conjecture: Let f be

a cuspidal Hecke eigenform form of weight k.

Then for all primes p,

|ap(f)| ≤ 2 · p
k−1
2 .

This implies that

|an(f)| ≤ Cǫ · n
k−1
2 +ǫ

for any ǫ > 0.

This conjecture has been proved by Deligne

in 1971 as a consequence of his proof of the

Weil conjectures. This bound on Fourier coef-

ficients have many number theoretic applica-

tions.



Petersson Inner Product

The space Sk(N) comes equipped with a nat-

ural inner product:

〈f1, f2〉k =

∫

Γ\H
f1(z)f2(z)y

k · dx dy

y2
.

This is convergent because yk/2fi(z) tends to

zero at the cusps. It remains convergent as

long as one of the functions is cuspidal. Thus

it makes sense to take the inner product of a

cusp form with any modular form.
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L-functions and Hecke theory

Given a cusp form of weight k,

f(z) =
∑

n≥0

an(f)e2πinz,

one may consider the Dirichlet series:

L(f, s) =
∑

n≥1

an(f)

ns
.

This converges for Re(s) > k
2 + 1, because

|an(f)| = O(nk/2). It is related to f by a Mellin

transform. Indeed,
∫ ∞

0
f(iy) · ys · dy

y

=

∫ ∞

0

∑

n≥1

an(f)e−2πnyys · dy

y

=
∑

n
an(f) ·

∫ ∞

0
e−t(2πn)−sts · dt

t
(t = 2πny)
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= (2π)−sΓ(s) ·
∑

n

an(f)

ns

where

Γ(s) =
∫ ∞

0
e−tts · dt

t

is the so-called Gamma function, which satis-

fies Γ(z + 1) = zΓ(z) and Γ(n + 1) = n!.

Here is an important theorem about the L-

functions attached to cusp forms (for simplic-

ity, we state it for level 1 forms only):

Theorem: Let f be a cusp form of weight k

of level 1. Then we have:

(i) (analytic continuation) L(s, f) extends to

an entire function on C.

(ii) (functional equation) The function Λ(s, f) =

(2π)−sΓ(s)L(s, f) satisfies the functional equa-

tion

Λ(s, f) = (−1)k/2Λ(k − s, f).



(iii) (boundedness in vertical strips) Λ(s, f) is

bounded in vertical strips.

proof: When Re(s) is large, we have:

Λ(s, f) =

∫ ∞

0
f(iy) · ys · dy

y
.

But the RHS is convergent for all s (and thus

gives (i)). This is because:

• f(iy) is exponentially decreasing in y as y →
∞, since f is cuspidal.

• since f is modular with respect to w,

f(iy) = (−1)k/2y−kf(i/y).

So as y → 0, f(iy) → 0 faster than any

power of y.



To see (ii), note that

∫ ∞

0
f(iy) · ys · dy

y

=

∫ ∞

0
(−1)k/2y−k f(i/y) ys dy

y

=(−1)k/2 ·
∫ ∞

0
f(it) tk−s · dy

y
(t = 1/y).

This proves (ii), and (iii) is clear.

The L-function of f turns out to be a very

important invariant of f .



Hecke Operators

The theory of Hecke operators explains why

the Fourier coefficients of certain modular forms

are multiplicative functions. Let us assume

that Γ = SL2(Z) for simplicity. For each posi-

tive integer n, we are going to define a Hecke

operator Tn which is a linear operator on Mk

preserving Sk.

A general construction: Let g ∈ GL+
2 (Q) and

write the double coset ΓgΓ as a union of single

cosets:

ΓgΓ =
⋃

i

Γai.

Here the union is over a finite indexing set and

the ai’s are in GL+
2 (Q). We then set

f |k[g] =
∑

i

f |kai.

This defines an operator Mk(Γ) → Mk(Γ). It

is independent of the choice of the ai’s.
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Hecke operator Tn: Now let M(n) be the in-

tegral 2 × 2 matrices with determinant n By

the theory of elementary divisors,

M(n) =
⋃

d|a,ad=n

Γ t(a, d) Γ

where

t(a, d) =

(

a 0
0 d

)

.

We set

f |Tn = nk/2−1
∑

d|a,ad=n

f |k[t(a, d)].
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For example, Tp is simply the operator defined

by the double coset t(p,1). More explicitly,

because

M(p) = Γ

(

p 0
0 1

)

Γ

=
p−1
⋃

k=0

Γ

(

1 k
0 p

)

∪ Γ

(

p 0
0 1

)

,

we have:

(f |Tp)(z) = pk−1f(pz) +
1

p

p−1
∑

k=0

f(
z + k

p
).
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Proposition:

• (Effects on Fourier coefficients) we have:

an(Tpf) = apn(f) + pk−1an/p(f)

where the second summand is interpreted

to be 0 if p does not divide n. More com-

plicated formulas exist for Tn.

• Tn preserves Sk.

• Tn is self-adjoint with respect to the Pe-

tersson inner product:

〈f1, Tnf2〉 = 〈Tnf1, f2〉.

• if (n, m) = 1, then TnTm = Tnm = Tmn.

Moreover,

TpTpr = Tpr+1 + pk−1Tpr−1.
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Thus we see that the linear span of the

Tn’s form an algebra and this algebra is

generated by Tp’s with p prime. Moreover,

this algebra is commutative.

As consequences of the above properties, we

have:

Corollary:

• The action of {Tn} on Sk can be simulta-

neously diagonalized.

• If f is a cuspidal Hecke eigenform with

eigenvalues λn for Tn, then

an(f) = λn · a1(f).

Thus if f is non-zero, then a1(f) 6= 0, and

we can normalize it by scaling to make

a1(f) = 1.



• Multiplicity One Theorem: If f is a nor-

malized cuspidal eigenform, then f is com-

pletely determined by its Hecke eigenval-

ues.

• If f is a normalized cuspidal eigenform, then

the Fourier coefficients of f are multiplica-

tive, and satisfy:

apapr = apr+1 + pk−1apr−1.



Euler products

The fact that the Fourier coefficients of f (a

normalized cuspidal eigenform) are multiplica-

tive implies that L(f, s) has an Euler product

(when Re(s) is large):

L(f, s) =
∏

p
(
∑

k

apkp
−ks)

=
∏

p

1

1 − ap(f)p−s + pk−1−2s
.

For example, ∆ is a normalized cuspidal Hecke

eigenform, and this explains the first of Ra-

manujan’s conjectures on the coeffcients τ(n).

We say that an L-function defined by a Dirich-

let series in some right half plane is nice if

it has analytic continuation, satisfies ap-

propriate functional equation, is bounded

in vertical strips and possesses an Euler

product. Thus L(s, f) is nice if f is a cuspidal

Hecke eigenform.
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Hecke operators for Γ0(N)

The above theory of Hecke works beautifully

for modular forms with respect to SL2(Z), but

there are complications when Γ = Γ0(N) (N >

1). We can still define the operators Tn as be-

fore, the algebra is still commutative and gen-

erated by all the Tp ’s. But Tn is self-adjoint

only if (n, N) = 1. So we can only simul-

taneously diagonalize the actions of Tn with

(n, N) = 1.

If f happens to be an eigenfunction for all Tn’s,

then L(f, s) will still have an Euler product as

before. But now, we have no guarantee that

Sk(N) has a basis of this type.

This shows that the theory of modular forms

can be quite sensitive to the group Γ.
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Old and new forms

Another complication is that the eigenvalues

of the Tp’s, with (p, N) = 1, do not separate

the forms.

Example: ∆(z) and ∆(2z) are both elements

of S12(2), but have same eigenvalues for Tn for

all odd n.

This is not so surprising since both these func-

tions are built out of a single function ∆. They

are so-called old forms:

Definition: Suppose that m ·n divides N , then

for f ∈ Mk(m), the function f(nz) is an el-

ement of Mk(mn) and thus of Mk(N). The

subspace of Mk(N) spanned by elements of this

type is the space of old forms. Its

orthogonal complement in Sk(N) is the space

of new forms.

This definition is due to Atkin-Lehner.
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Results of Atkin-Lehner

What Atkin and Lehner showed is that when

one restricts to the space of new forms, then

the neat results for SL2(Z) are restored. Namely,

• the action of ALL Tn’s can be simultane-

ously diagonalized, so that the L-function

of a cuspidal Hecke eigen-newform has an

Euler product.

• we have the multiplicity one theorem:

the newforms can be distinguished from

one another by their eigenvalues with re-

spect to the Tp’s with (p, N) = 1.
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Converse theorems.

We have seen that the L-function of a cuspidal

Hecke eigen-newform is nice. Hecke showed

the following converse:

Theorem: Suppose that |an| = O(nr) for some

r so that L(s) =
∑

n>0 ann−s converges abso-

lutely when Re(s) is large. If L(s) has analytic

continuation, is bounded in vertical strips and

satisfies the functional equation

Λ(s) = (−1)k/2Λ(k − s)

then f(z) =
∑

n>0 anqn is a cusp form of weight

k and level 1. If L(f, s) has Euler product, then

f is a Hecke eigenform.

The role of the functional equation is that it

allows us to deduce automorphy with respect

to w.
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How does one characterize the cusp forms of

level N? Weil proved an analog of the above

theorem, but with a crucial “twist”. More pre-

cisely, instead of just requiring L(s) to satisfy a

single functional equation, his theorem requires

functional equat

ions for twists of L(s) by various Dirichlet char-

acters χ, i.e. for

Lχ(s) =
∑

n

an · χ(n)

ns
.

The reason why this extra functional equations

are needed is because Γ0(N) usually have more

than 2 generators! For the precise statement

of the theorem and a proof, see [Bump, Thm.

1.5.1].



Maass Forms

Maass introduced certain analogs of modular

forms which are not holomorphic. More pre-

cisely, one says that a function f on H is a

Maass form with respect to Γ with paramater

s if

• f is smooth;

• f(γg) = f(g) for any γ ∈ Γ;

• f is of moderate growth at the cusps of Γ;

• f is an eigenfunction for the hyperbolic

Laplacian

∆ = −y2

(

∂2

∂x2
+

∂2

∂y2

)
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with eigenvalue 1
4 − s2.

From this, one can show that f is in fact real-

analytic.

Say that f is cuspidal if it vanishes at the cusps

of Γ. Then f is rapidly decreasing at the cusps

and thus is bounded on Γ\H. In particular, a

Maass cusp form belongs to L2(H).



Nonholomorphic Eisenstein series

An example of a Maass form is a nonholomor-

phic Eisenstein series, constructed as follows.

Consider the function

φ(z) = y
1
2+s.

This satisfies:

∆φ =

(

1

4
− s2

)

φ.

Moreover, because

φ(γz) =
φ(z)

|cz + d|2s+1

we see that φ(γz) = φ(z) if γ ∈ N(Z). If we

set

E(z, s) =
∑

γ∈N(Z)\SL2(Z)

φ(γz),

then this converges absolutely if Re(s) > 1/2.

In that case, E(z, s) is SL2(Z)-invariant and

∆E(z, s) = (1/2−s2)E(z, s). Note that E(z, s)

is not cuspidal.
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Fourier expansion

Assume that Γ = SL2(Z) for simplicity. Be-

cause f(z + 1) = f(z), we also have a Fourier

expansion of f at the cusp i∞. But because

f is not holomorphic, the Fourier expansion is

not as clean:

f(x + iy) =
∞
∑

n=−∞
αn(y, s)e2πinx,

for some functions αn(y, s). These functions

are not random, because αn(y, s)e2πinx is also

an eigenfunction of ∆ with eigenvalue 1/4−s2.

For example,

α0(y) = ay1/2+s + by1/2−s.

Moreover, f is cuspidal iff α0(y) = 0.

In general, it turns out that

αn(y) = an · √y · Ks(2π|n|y)
where an is a constant, and Ks is the normal-

ized Bessel function.
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L-functions

As in the holomorphic case, one can develop a

Hecke theory by attaching to f an L-function.

The map

ι : x + iy 7→ −x + iy

gives an involution on the space of Maass forms.

We say that f is even (respectively odd) if ιf =

f (respectively −f), in which case a−n(f) =

an(f) (resp. −an(f)).

For an even or odd f , we set

L(s, f) =
∑

n≥1

ann−s

which converges when Re(s) > 3/2, because

an = O(n1/2). Then one can show that L(s, f)

has analytic continuation and functional equa-

tions. Moreover, there are also actions of Hecke

operators and if f is a Hecke eigenform, then

L(s, f) has Euler product.
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Existence of cusp forms

It is not easy to show the existence of cuspidal

Maass forms. Selberg used the trace formula

to show that many such functions exist. In

fact, the trace formula give a count of these

cuspidal functions (the so-called Weyl’s law).

Perhaps this will be covered in Labesse’s lec-

tures.

There are, however, not many explicit con-

structions. One such construction is due to

Maass, but let’s not go into this here. He

showed that there is a Maass form whose L-

function is the same as that of a Hecke char-

acter of a real quadratic extension of Q. This

was the initial question which led to the dis-

covery/definition of Maass forms. For more

details, see [Bump, Thm. 1.9.1].
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Selberg’s conjecture

Because ∆ is a positive definite operator (on

L2(Γ\H)), the eigenvalue λ = 1/4 − s2 is >

0 if f is cuspidal. It implies that one of the

following 2 situations occurs:

• s is real and |s| < 1/2, in which case, λ <

1/4;

• s is purely imaginary, in which case λ ≥ 1/4.

Selberg proved that when Γ = SL2(Z), the

first possibility never occurs, so that λ ≥ 1/4

always. He conjectured that the same holds

for any congruence subgroups.
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Selberg’s Conjecture:

For any congruence subgroup Γ, if f is cuspidal

with respect to Γ with parameter s, then s is

purely imaginary and λ ≥ 1/4.

It is known that this is not true for some non-

congruence Γ.

Later, when we reformulate everything in terms

of representation theory, we shall see that the

Selberg conjecture and the Ramanujan conjec-

ture (on size of Fourier coefficients) are basi-

cally the same phenomenon.
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Automorphic Forms on Real Groups

GOAL: to reformulate the theory of modular

forms and Maass forms in a single framework,

which is susceptible to generalization to gen-

eral reductive groups.

A classical modular form f is a function on

SL2(R)/K, which is “quasi-invariant” on the

left under Γ with respect to the factor of au-

tomorphy

j(g, z) = (cz + d) · det(g)−1/2.

One can generalize this to certain general group

G (in place of SL2), namely those real semisim-

ple G such that the symmetric space G/K has

a complex structure. In that case, G/K is a

hermitian symmetric domain.
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An example is the symplectic group G = Sp2n,

where

G/K = {Z = X + iY ∈ Mn(C) : Zt = Z, Y > 0}

is the so-called Siegel upper half space. In this

case, one has the theory of Siegel modular

forms, with

j(g, Z) = CZ + D, g ∈ Sp2n(R), Z ∈ G/K

if

g =

(
A B
C D

)
.

However, it is not clear what is the analog of

this for general groups, e.g. G = SLn (n ≥ 3).
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The key insight in the refomulation is to trans-

form f to a function which is left-invariant by

Γ and only “quasi-invariant” on the right by

K. This can be achieved by setting

φf(g) = (f |kg)(i)

for g ∈ SL2(R) and k is the weight of f . Thus

we will consider φf rather than f and for gen-

eral G, an automorphic form will be a func-

tion on Γ\G for an arithmetic subgroup of G,

satisfying some extra properties. We shall ex-

plain what are these properties. Then we shall

explain how representation theory enters the

picture.

Let’s examine some properties of φ = φf .
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Γ-invariance and K-finiteness

• φ is a smooth function.

• φ(γg) = φ(g) for any γ ∈ Γ. This is because

(f |γg)(i) = ((f |γ)|g)(i) = (f |g)(i)

Thus f is a function on Γ\SL2(R). (Note

that SL2(R) acts on the space of functions

on Γ\SL2(R) by right translation).

• φ(grθ) = eikθ · φ(g) where

rθ =

(
cos θ sin θ
− sin θ cos θ

)

is a typical element in K. This is because:

(f |grθ)(i) = (−i sin θ + cos θ)−k · (f |g)(i).

Thus the right K-translates of φ span a

one-dimensional vector space. In particu-

lar, φf is right K-finite.

4



Holomorphy on H

What does the holomorphy condition on H and

the cusps translate to? To explain this, need

some notations. To say that f is holomorphic

on H means that

∂f

∂z̄
= 0

where

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

So we expect that this will translate to some-

thing like: “φf is killed by some differential

operator”.
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Review on differential operators

One source of differential operators on smooth

functions on Γ\SL2(R) is the complexified Lie

algebra sl2(C), acting by right infinitesimal trans-

lation: if X ∈ g0 = sl2(R), then

(Xφ)(g) =
d

dt
φ(g · exp(tX))|t=0.

This defines a left-invariant first-order differen-

tial operator on smooth functions on SL2(R).

We extend this action to g = sl2(C) by linear-

ity. The left-invariance of X implies that X

preserves functions on Γ\G.

The differential operator we need will arise in

this way.
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Iwasawa decomposition

SL2(R) = N · A · K ∼= R × R×
+ × S1.

Explicitly,

g =

(
1 x
0 1

)
·

(
y1/2 0

0 y−1/2

)
·

(
cos θ sin θ
− sin θ cos θ

)
.

Thus we can regard φf as a funciton of (x, y, θ):

φf(x, y, θ) = eikθyk/2f(x + iy).

Lemma: f is holomorphic on H iff

Lφf = 0

where

L = −2iy
∂

∂z̄
+

i

2

∂

∂θ
.
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How to think about L

In the discussion on representations of SL2(R),

we have come across the raising and lowering

operator. Namely, the following 3 elements

form an sl2-triple:

H = i ·

(
0 −1
1 0

)
∈ k = Lie(K) ⊗R C,

E =
1

2
·

(
1 i
i −1

)
F =

1

2
·

(
1 −i
−i −1

)
.

They satisfy:

[H, E] = 2E, [H, F ] = −2F, [E, F ] = H

Thus F lowers eigenvalues of H by 2, whereas

E increases it by 2.

It turns out that if we think of F has a differ-

ential operator on functions of SL2(R), then

F = e−2iθ · L.

Thus L is basically the lowering operator in the

representation theory of SL2(R).
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Holomorphy at cusp

Recall that holomorphy of f at the cusp i∞ is

implied by holomorphy of f on H and the fact

that f does not grow too fast at i∞:

|f(x + iy)| ≤ C · yN

for some N , as y → ∞ with x bounded. This

condition translates to: as y → ∞ with x bounded,

|φf(g)| ≤ C · yn

for some n (where g has coordinates (x, y, θ)).

This last condition is a very important one. It

is called the condition of moderate growth at

the cusp i∞. Of course, we also need to verify

it for the other cusps.

We would like to formulate it in a “coordinate-

free” manner, and we will do this for a general

real reductive linear algebraic group G, say G =

GLn, Sp2n or SOn.

9



Norm functions

Since G is linear algebraic, we may choose an

embedding

i : G →֒ GLn.

For g ∈ G, define:

||g|| = maxj,k{i(g)jk, i(g−1)jk}

The norm function || − || gives a measure of

the size of elements of G. Though it depends

on the choice of i, different choices lead to

norm functions which are comparable. In other

words, if || − ||1 and || − ||2 are 2 such norm

functions, we have:

C · ||g||
1/r
1 ≤ ||g||2 ≤ D · ||g||r1

for some C, D and r > 0.

For our purpose, having such bounds is good

enough. So the choice of i is not a serious

one.
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An important property of || − || is:

• if K is a compact set, then there are con-

stants CK and DK such that for any g ∈ G

and k ∈ K

CK||g|| ≤ ||gk|| ≤ DK||g||.

We write: ||g|| ≍ ||gk||. Thus if g = nak in the

Iwasawa decomposition, then ||g|| is more or

less the same as ||na||.

In the case, G = SL2, if g has coordinates

(x, y, θ), then

||g|| ≍ ||

(
y1/2 xy−1/2

0 y−1/2

)
||

= max{y1/2, y−1/2, xy−1/2}.

Thus as y → ∞ with x bounded,

||g|| ≍ y1/2.
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Moderate growth

In particular, the moderate growth condition

for φf can be reformulated as:

Definition: A function φ on G is said to be

of moderate growth if there is a constant n

such that for all g ∈ G,

|φ(g)| ≤ C||g||n

for some C.

This definition is independent of the choice of

the norm function.

The advantage of this definition is that it si-

multaneously encompasses the condition at all

the cusps! See [Borel, Prop. 5.11].
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Cusp forms

A cusp form is defined by the vanishing of the

zeroth Fourier coefficient at each cusp. At the

cusp i∞,

a0(f) =

∫ 1

0
f(x + iy) dx for any y.

We see that a0(f) = 0 iff

φN(g) :=

∫

Z\R
φf

((
1 x
0 1

)
g

)
dx = 0

for all g.

Recall that the cusps of Γ are in bijection with

Γ\SL2(Q)/B(Q). If x is a cuspidal point, its

stabilizer in SL2 is a Borel subgroup Bx defined

over Q. Then the zeroth coefficient of f at x

vanishes iff
∫

(Γ∩Nx)\Nx

φf(ng) dn = 0.

Thus f is cuspidal iff the above integral is

0 for any Borel subgroup defined over Q.
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Of course, it suffices to check this for a set of

representatives for the Γ-conjugacy classes of

Borel Q-subgroups.

We have noted before that a cuspidal f satis-

fies: for any k,

|f(x + iy)| ≤ Cky−k.

as y → ∞ with x bounded.

Definition: A function φ on Γ\G is rapidly

decreasing on a Siegel set S if, for any k,

|φ(g)| ≤ Ck · ||g||−k, g ∈ S.

One knows by reduction theory that Γ\G can

be covered by finitely many Siegel sets. It is

easy to see that if f is cuspidal, then φ is rapidly

decreasing on each of these Siegel sets.



Now we have translated all the defining prop-

erties of a holomorphic modular form f on H

to properties of φf . In other words, we have:

Proposition: The map f 7→ φf defines an iso-

morphism of Mk(Γ) to the space of smooth

functions φ of Γ\SL2(R) satisfying:

• φ is smooth;

• φ(grθ) = eikθφ(g);

• Fφ = 0 (F is lowering operator)

• φ is of moderate growth.

Moreover, the image of the space of cusp forms

consists of those functions φ such that for ANY
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Borel Q-subgroup B = T ·N , the constant term

φN along the unipotent radical N is zero. Fur-

ther, the image of cusp forms is contained in

L2(Γ\SL2(R)).

One has a similar proposition for the Maass

forms, except that instead of Fφ = 0, we have

a condition about the Laplace operator. We

will come to this next.



Casimir Operator

The action of g = sl2(C) on smooth functions

of SL2(R) as left-invariant differential opera-

tors extends to an action of the universal en-

veloping algebra Ug. Those differential opera-

tors which are right-invariant as well form the

center Zg of Ug. It is well-known that there

is a canonical element in Z(g) (at least up to

scaling) called the Casimir operator ∆. In the

case of SL2, one has:

∆ = −
1

4
H2 +

1

2
H − 2EF

and

Z(g) = C[∆].

As a differential operator on C∞(SL2), we have:

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ y

∂2

∂x∂θ
.

Because ∆ is bi-invariant, it acts on C∞(Γ\SL2)

as well as C∞(SL2/K).
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• the action of ∆ on a function on SL2/K is

the action of the hyperbolic Laplacian.

• If f is a holomorphic modular form, then

∆φf =
k

2
(1 −

k

2
)φf .

This is because Hφf = kφf and Fφf = 0.

Proposition: The space of Maass forms is

equal to the space of smooth functions which

are right K-invariant, of moderate growth and

satisfy

∆φ = (
1

4
− s2) · φ.

Thus we see that the theory of holomorphic

modular forms and Maass forms can be sub-

sumed in a single framework.



Passage from SL2 to GL2

We have yet to translate the Hecke operators

from the classical picture to the new frame-

work. For this purpose, it is convenient to

pass from SL2 to GL2; for example, the Hecke

operator Tp is defined by the diagonal matrix

diag(p,1) which is not in SL2.

There is nothing deep in this passage. It relies

on the following identification:

Γ\SL2(R) ∼= Z(R)Γ′\GL2(R).

Here, Γ = Γ0(N) and

Γ′ = {

(
a b
c d

)
∈ GL2(Z) : c = 0 mod N}.

A function φ of Γ\SL2(R) is thus naturally a

function on GL2(R), or rather PGL2(R).
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Now we can restate the last two propositions

using GL2 instead of SL2.

Proposition: The map f 7→ φf defines an

isomorphism of Mk(Γ) to the space Vk(Γ
′) of

functions φ of Z(R)Γ′\GL2(R) satisfying:

• φ is smooth;

• φ(grθ) = eikθφ(g);

• Fφ = 0;

• φ is of moderate growth.

Similarly, the space of Maass forms with pa-

rameter s can be identified with the space of
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φ on Z(R)Γ′\GL2(R) which are smooth, right-

K-invariant, of moderate growth and such that

∆φ = (1/4 − s2)φ.

Moreover, the image of the space of cusp forms

consists of those functions φ such that for ANY

Borel Q-subgroup B = T · N , the constant

term φN along the unipotent radical N is zero.

Moreover, the image of cusp forms is contained

in L2(Z(R)Γ′\GL2(R)).

Observe that the maximal compact subgroup

K ′ of GL2(R) is the orthogonal group O2, which

contains SO2 with index 2. The span of the

K ′-translates of φf (for f holomorphic) is now

2-dimensional.



Hecke operators

Now we come to the Hecke operators. For

α ∈ GL2(Q), we have the Hecke operator Th

on the space of functions on Γ\GL2(R) by:

(Tαφ)(g) =
r∑

i=1

φ(aig)

if

ΓαΓ =
r⋃

i=1

Γai

The definition is independent of the choice of

representatives ai. The reason that left Γ-

invariance is preserved is that if γ ∈ Γ, then

{Γaiγ} is a permutation of {Γai}.

This operator can be understood geometrically

as a correspondence on Γ′\PGL2.
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Let αp denote the diagonal matrix diag(p,1).

Earlier, we have defined an action of ΓαpΓ on

a modular form f :

Tαpf := f |k[αp] =
∑

i

f |kai

if ΓαpΓ =
⋃

i Γai. This operator is basically the

Hecke operator Tp:

Tp = pk/2−1Tαp.

Proposition: The isomorphism Mk(Γ) −→ Vk(Γ
′)

is an isomorphism of Hecke modules, i.e. for

any prime p,

φTαf = Tαφf .

Proof:

φTαf(g) = ((Tαf)|kg)(i) = ((
∑

j

f |aj)|g)(i)

∑

j

(f |(ajg))(i) = (Tαφf)(g).
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Automorphic forms

Let G be a reductive linear algebraic group de-

fined over Q, and let Γ be an arithmetic group.

We shall assume for simplicity that Γ ⊂ G(Q).

By an automorphic form on G with respect to

an arithmetic group Γ, we mean a function φ

on Γ\G(R) satisfying:

• φ is smooth

• φ is of moderate growth

• φ is right K-finite

• φ is Z(g)-finite
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Z(g)-finiteness

Say that a function φ on G is Z(g)-finite if

dim(Z(g)φ) is finite. Equivalently, if φ is an-

nihilated by an ideal of finite codimension in

Z(g).

In the case of SL2 above, if φ is an eigenfunc-

tion for ∆ with eigenvalue λ, then φ is anni-

hilated by the ideal (∆ − λ) which is of codi-

mension 1 in C[∆]. Such φ’s are in particular

Z(g)-finite.

Observe that if φ is Z(g)-finite and X ∈ Z(g),

then φ is killed by some polynomial in X. For

if φ is killed by J (of finite codimension), then

the kernel of

C[X] −→ Z(g)/J

has finite codimension.
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The space of automorphic forms

Let A(G,Γ) denote the space of automorphic

forms on G. Also, if ρ ⊂ K̂ is a finite set of

irreducible representations of K and J is an

ideal of finite codimension in Z(g), then we let

• A(G,Γ, J) be the subspace of A(G,Γ) con-

sisting of functions which are killed by J;

• A(G,Γ, J, ρ) be the subspace of A(G,Γ, J)

consisting of functions φ such that the finite-

dim representation of K generated by φ is

supported on ρ. Shall see later that this

space is finite-dim: this is a fundamental

result of Harish-Chandra.

For example, when G = SL2, J = 〈∆−k
2(

k
2−1)〉

and ρ consists of the single character rθ 7→ eikθ

of K, we have seen that

A(G,Γ, J, ρ) ⊃ Mk(Γ).
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Analytic Properties of automorphic forms

We are going to list some basic analytic prop-

erties of an automorphic form f . For this, we

shall need some analytic inputs. Two of the

most useful ones are:

• (Elliptic regularity theorem) If f is killed

by an elliptic differential operator, then f

is real analytic.

• (Abundance of K-invariant test func-

tions) If f is a right K-finite and Z(g)-finite

function on G, then given any neighbour-

hood U of 1, one can find α ∈ C∞
c (G) such

that

– support of α is in U

– α(kgk−1) = α(g) for any k ∈ K and g ∈

G
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– f ∗ α = f , where

(f ∗ α)(g) =

∫

G
f(gh−1)α(h) dh.

The first result is a standard result in the the-

ory of differential operators. The second one is

actually best viewed in the framework of rep-

resentation theory. It was proved by Harish-

Chandra. We shall take these for granted, but

see [Borel, Thm. 2.14].

Proposition: Let f be an automorphic form

on Γ\G. We have:

• f is real analytic.

• f is of uniform moderate growth, i.e. there

exists a N such that for any X ∈ U(g),

|(Xf)(g)| ≤ CX||g||N .



Proof: For (i), we show that a K-finite, Z(g)-

finite function on G(R) is real analytic.

We know that f is annihilated by some poly-

nomial P(∆) of the Casimir element ∆. Un-

fortunately, the Casimir element is not elliptic.

To create an elliptic operator, we let ∆K be

the Casimir element of the maximal compact

K. Then ∆ − 2∆K is elliptic (but it is not an

element of Z(g)).

We claim however that f is killed by some poly-

nomial in ∆ − 2∆K.

Indeed, because f is K-finite, f is contained in

a finite-dim K-invariant subspace, and because

every finite-dim representation of K is semisim-

ple, the action of ∆K on this space can be di-

agonalized. So we can write: f = f1 + ... + fr

so that each fi is an eigenfunction of ∆K, say



∆Kfi = λifi. Moreover, fi is Z(g)-finite as

well, and is still killed by P(∆).

If P(∆) =
∏

j(∆− cj), then it follows that fi is

killed by

Pi(∆ − 2∆K) =
∏

j

(∆ − 2∆K + 2λi − cj).

Taking a product of the Pi’s gives the result.

For (ii), choose α as in the proposition, and

note that

Xf = X(f ∗ α) = f ∗ Xα.

Then

|Xf(g)| ≤
∫

U
|f(gh−1)| · |Xα(h)|dh

≤ C · ||g||n · ||Xα||1.



Cusp forms

Definition: If f is automorphic, then f is cus-

pidal if for any parabolic Q-subgroup P = MN

of G, we have

fN(g) :=

∫

(Γ∩N)\N
f(ng)dn = 0.

The function fN on G is called the constant

term of f along N .

Remark: The restriction of fN to M(R) is an

automorphic form on M . This is not that triv-

ial, namely one needs to deduce Z(m)-finiteness

from Z(g)-finiteness.

To check for cuspidality, it suffices to check

for a set of representatives for the Γ-orbits of

maximal parabolic Q-subgroups.

We let A0(G,Γ) be the space of cusp forms.
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Fourier coefficients: The constant term is

but one Fourier coefficient of f along N . For

any unitary character χ of N which is left-

invariant under Γ\N , we set:

fN,χ(g) =

∫

(Γ∩N)\N
f(ng) · χ(n) dn.

This is the χ-th Fourier coefficient of f along

N .



Fourier expansion for abelian N

If N is abelian, then

f(g) =
∑

χ
fN,χ(g)

so that f can be recovered from its Fourier

coefficients along N . To see this, consider the

function on N(R):

Φg(x) = f(xg).

It is in fact a function on

(Γ ∩ N)\N ∼= (Z\R)r.

So we can expand this in a Fourier series:

Φg(x) =
∑

χ
aχ(g)χ(x)

where

aχ(g) =

∫

(Γ∩N)\N
χ(x) · f(xg) dx = fN,χ(g)

Putting x = 1 in the Fourier series gives the

assertion.
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An important estimate

The following is an important estimate:

Proposition: Let P = MN be a maximal

parabolic Q-subgroup, and A the split com-

ponent of its Levi subgroup M (so M = M0 ·A

with M0 having compact center and A ∼= R×
+

is in the center of M).

Then f −fN is rapidly decreasing on any Siegel

set

S = ω · At · K

where ω is a compact set of N · M0.

Here

At = {a ∈ A : δ(a) > t}

where δ is the unique simple root occurring in

N .

26



We sketch the proof, under the simplifying as-

sumption that N is abelian. In the general

case, one can find a filtration of N by nor-

mal subgroups whose successive quotients are

abelian, and one can apply induction.

Basically the proof is by repeated integration

by parts.

We have, by Fourier expansion:

(f − fN)(g) =
∑

χ 6=1

fN,χ(g).

So we need to estimate fN,χ(g) for g ∈ S. In

particular, we would be done if we can show:

for any k,

|fN,χ(g)| ≤ Cχ,k||g||
−k,

with
∑

χ Cχ,k < ∞.
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Let’s examine fN,χ(g).

Firstly, since g is the Siegel set S, there is no

loss in assuming that g = a ∈ At with t large.

Then ||a|| ≍ maxαα(a), with α ranging over

the roots in N . It is easy to see that there is

a c > 0 so that for any root α in N ,

α(a) > ||a||c.

Now we shall make another simplifying assump-

tion. We suppose that we can choose a basis

{Xα} of Lie(N) such that

• each Xα is a root vector for A for the root

α:

a · Xα = α(a) · Xα

• under the natural identification of N with

Lie(N), Γ∩N is identified with the Z-span
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of the Xα’s. This gives an isomorphism

Γ ∩ N\N ∼= Zr\Rr.

The assumption is satisfied if, for example, G
is a Chevalley group defined over Z and P is a
parabolic subgroup defined over Z.

The non-trivial character χ is then of the form

χ(x) = e2πik·x

for some k ∈ Zr.

Now

fN,χ(a) =

∫

Zr\Rr
f(exp(

∑
xαXα) · a) e−2πik·x dx.

Choose β so that |kβ| is maximum among the
coordinates of k. Then using integration by
parts repeatedly, we have:

fN,χ(a) =

(
−1

2πikβ

)p ∫
e−2πik·x·

∂p

∂x
p
β

(
f(exp(

∑
xαXα) a)

)
dx.



Now we have

∂p

∂x
p
β

(
f(exp(

∑
xαXα) a)

)

=(X
′p
β f)(exp(

∑
xαXα( a))

where X ′
β = Ad(a−1)(−Xβ) = −β(a)−1 · Xβ.

So

fN,χ(a) =
1

(2πikβ)
p
·

1

β(a)p
·

∫

Zr\Rr
e−2πik·x · (X

p
βf)(exp(

∑
xαXα) a) dx.
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Now using the fact that f is of uniform moder-

ate growth, say of exponent N , we get a bound

of the type:

|fN,χ(a)| ≤ Cf,p ·
1

||k||p
· ||a||N−cp

where ||k|| = maxα|kα| = |kβ|.

Since p can be arbitrarily large, and
∑

k
1

||k||p

converges for large p, we are done.
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Analytic properties of cusp forms

One consequence of the above estimate is:

Theorem: Suppose that G is semisimple.

(i) If f is a cusp form, then f is rapidly de-
creasing on any Siegel set for Γ\G.

(ii) Conversely, suppose that f satisfies all the
properties of an automorphic form, except for
the condition of moderate growth, but sup-
pose that fN = 0 for all P = MN . Then the
following are equivalent (G semisimple):

• f is of moderate growth

• f is bounded

• f is in Lp(Γ\G) for all p ≥ 1

• f is in Lp(Γ\G) for some p ≥ 1.
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Proof: The only thing that remains to be

proven is that if f is in Lp, then f is bounded.

Choose a K-invariant α ∈ C∞
c (G) such that

f = f ∗ α. Then

|f(g)| = |(f ∗ α)(g)|

≤
∫

G
|f(gx−1)| · |α(x)| dx

≤ ||lg−1(f)||p · ||α||q

= ||f ||p · ||α||q

by the Holder inequality (with p−1 + q−1 = 1).
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The (g, K)-module structure

We now consider the vector space A(G,Γ) as

a whole. The main result is:

Theorem: A(G,Γ) is naturally a (g, K)-module.

Proof: It is easy to see that if A(G,Γ) is pre-

served by K. Further, the action of g and K

are compatible in the usual sense:

kXf = (Ad(k)X)kf.

Next we show that A(G) is invariant under the

g-action. If X ∈ g, then it is again clear that Xf

is smooth, left-invariant under Γ, Z(g)-finite

and right K-finite. The only thing left to check

is the condition of moderate growth. But this

follows from uniform moderate growth of f .

Thus we see the entrance of representation

theory.
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Remarks: Note that A(G,Γ) is not invariant

under right translation by G. Indeed, the K-

finiteness condition is not preserved.

What properties does this (g, K)-module have?

The following is a fundamental result of Harish-

Chandra:

Theorem: Fix an ideal J of finite codimen-

sion in Z(g). Then A(G,Γ, J) is an admissible

(g, K)-submodule. Equivalently, if ρ is an irre-

ducible representation of K, then A(G,Γ, J, ρ)

is finite-dimensional.

This theorem has many applications. Let us

list two of them.

Corollary: Any irreducible (g, K)-module π oc-

curs as a submodule of A(G,Γ) with finite mul-

tiplicity, i.e.

dimHomg,K(π,A(G,Γ)) < ∞.



Proof; π has an infinitesimal character; let J

be its kernel. Fix a K-type ρ of π. Then

Hom(π,A(G,Γ)) = Hom(π,A(G,Γ, J)).

If this space is infinite dimensional, then ρ will

occur infinitely often in A(G,Γ, J), contradict-

ing the fact that A(G,Γ, J) is admissible.

Corollary: The space A0(G,Γ) of cusp forms

is a semisimple (g, K)-module, with each irre-

ducible summand occurring with finite multi-

plicities.

Proof: By the theorem, A0(G,Γ, J) is admis-

sible and we know it is contained in L2(Γ\G);

so it is also unitarizable. It is a standard re-

sult in representation theory that a unitariz-

able, admissible (g, K)-module is semisimple.

So A0(G,Γ, J) is semisimple.

Because A0(G,Γ) is the union of the A0(G,Γ, J),

an argument using Zorn’s lemma shows that

A0(G,Γ) is also semisimple.



Hecke algebra

Besides the structure of a (g, K)-module, A(G,Γ)

also possesses the action of Hecke operators.

This is defined as before: if α ∈ G(Q) and

ΓαΓ =
r⋃

i=1

Γai

then

(Tαf)(g) =
r∑

i=1

f(aig).

We think of ΓαΓ as the characteristic function

of this double coset. The Hecke algebra for

Γ is the algebra of fuctions on G(Q) which are

bi-Γ-invariant and supported on finitely many

Γ-double cosets. The multiplication is by con-

volution.
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The above formula makes A(G,Γ) into a mod-

ule for the Hecke algebra. Observe:

• the action of the Hecke algebra commutes

with the action of (g, K).

This is because the (g, K)-action is by right

translation, whereas the action of a Hecke op-

erator is a sum of left translation.

Thus, if π is an irreducible (g, K)-module, then

the Hecke algebra acts on

Homg,K(π,A(G,Γ)).

Note that this Hom-space is finite dimensional,

by the fundamental theorem of Harish-Chandra.
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Classical modular forms

We have seen that a classical modular form f

corresponds to certain automorphic form φ on

SL2. One can ask: what is the (g, K)-module

generated by φ?

Now we have seen that φ is annihilated by the

lowering operator F whereas the set

{φ, Eφ, E2φ, .....}

are eigenfunctions are eigenfunctions of K with

eigenvalues k, k +2,.... Moreover, the span of

these is invariant a (g, K)-submodule.

Thus we conclude that φ generates the holo-

morphic discrete series πk of minimal weight k,

and

Mk(Γ) ∼= Homg,K(πk,A(G,Γ)).

This is an isomorphism of modules for the

Hecke algebra.
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Given l ∈ Homg,K(πk,A(G,Γ)), the correspond-

ing classical modular form is obtained by tak-

ing the lowest weight vector in l(πk) and then

transforming it back to the upper half plane.

Similarly, if πs is the principal series represen-

tation

πs = Ind
SL2
B δ

1/2+s
B ,

then the space of Maass forms with respect to

Γ with parameter s is isomorphic to

Homg,K(πs,A(G,Γ))

in a Hecke equivariant fashion.



Selberg’s conjecture again

We can now provide a representation theoretic

interpretation of the Selberg conjecture for

cuspidal Maass forms: λ ≥ 1/4, or equivalently

that s is purely imaginary.

Now s is purely imaginary iff πs is a so-called

tempered (g, K)-module. Thus Selberg’s con-

jecture says that if the only πs which can em-

bed into A0(G,Γ) are the tempered ones (if Γ

is a congruence group).

As we shall see later, the theory of Eisenstein

series shows that for most s, one can embed

πs into A(G,Γ).
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Relation with L2(Γ\G)

In Labesse’s lectures, one encounters the ques-

tion of decomposing the unitary representation

L2(Γ\G(R)) of G(R). This is of course a very

natural question.

What does one know about this problem from

Labesse’s lectures?

One of the results discussed is that when Γ\G(R)

is compact, then L2(Γ\G(R)) decomposes into

the direct sum of irreducible unitary represen-

tations, each occurring with finite multiplicity.

In other words,

L2(Γ\G(R)) ∼= ⊕̂π∈ĜHomG(π, L2(Γ\G)) ⊗ π

with

dimHomG(π, L2(Γ\G)) < ∞.
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More generally, even if Γ\G is not compact,

the above result holds if we consider the space

L2
0(Γ\G) of cuspidal L2-functions.

When Γ\G is non-compact, then L2(Γ\G) will

not decompose into a direct sum of irreducibles.

Rather, there will be a part which decomposes

as a direct sum (called the discrete spec-

trum) and a part which decomposes as a direct

integral (called the continuous spectrum).

Thus,

L2(Γ\G) = L2
disc(Γ\G) ⊕ L2

cont(Γ\G).

For example, the space L2
0 is contained in the

discrete spectrum L2
disc.

The (very non-trivial) theory of Eisenstein se-

ries shows that L2
cont can be described in terms

of the discrete spectrum of the Levi subgroups

of G and thus can be understood inductively.

Thus the fundamental problem in the study

of L2(Γ\G) is the decomposition of L2
disc.
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What is the relation, if any, between the uni-

tary representation L2(Γ\G) and the (g, K)-

module A(G,Γ)?

Well, a priori, not much. These two spaces of

functions are certainly different: an L2-function

is not necessarily an automorphic form (since it

may not be smooth), and an automorphic form

needs not be L2 (for example, the Eisenstein

series). So none of these spaces is contained

in the other.

It turns out, however, that the two problems

are very much related. Let us explain this.

We have seen that

A0(G,Γ) ⊂ L2
0(Γ\G).

In fact, A0(G,Γ) is the subspace of smooth,

K-finite and Z(g)-finite vectors in the unitary

representation L2
0(Γ\G)!
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Representation theoretically, if

L2
0(Γ\G) ∼=

⊕̂

π
mππ

(Hilbert direcct sum), then we have

A(G,Γ) =
⊕

π
mππK

(algebraic direct sum) where πK is the (g, K)-

module underlying π. Note that this is slightly

smaller than the (g, K)-module underlying the

unitary representation L2
0(Γ\G).

Thus the decomposition of L2
0 into irreducible

unitary representations is the same problem

as the decomposition of A0 into irreducible

(g, K)-modules.



More generally, if we consider the intersection

A2(G,Γ) := A(G,Γ) ∩ L2(Γ\G)

then A2(G,Γ) (the space of square-integrable

automorphic forms) is precisely the space of

smooth K-finite, Z(g)-finite vectors in the dis-

crete spectrum L2
disc(Γ\G).

Thus the decomposition of L2
disc is the same

as the problem of decomposing A2(G,Γ).

This problem is one of the central problems in

the theory of automorphic forms. It is far from

being resolved.
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Automorphic Representations of Adele Groups

We have defined the space A(G,Γ) of auto-

morphic forms with respect to an arithmetic

group Γ of G (a reductive linear algebraic group

defined over Q). We saw that A(G,Γ) has a

commuting action of (g, K) and the Hecke al-

gebra H(G,Γ).

From this point of view, we saw that the classi-

cal modular forms correspond to different ways

of embedding certain irreducible (g, K)-modules

into A(G,Γ):

Mk(N) ∼= Homg,K(πk,A(PGL2,Γ′
0(N)))

where πk is discrete series of PGL2(R) with

lowest weight k. Thus we are interested in

how A(G,Γ) decomposes as a (g, K)×H(G,Γ)

module.
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GOAL: to formulate the theory of automor-

phic forms using adelic language.

The reasons, among others, are:

• we want a theory that deals with A(G,Γ)

for all choices of Γ simultaneously.

• we want a framework in which the roles

of the (g, K)-action and the H(G,Γ)-action

are parallel, i.e. so that they are actions of

the same kind.

• To describe the process of attaching an

L-function to a classical modular form in

terms of representation theory, it is clean-

est to use the adelic framework, as demon-

strated in Tate’s thesis.
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Adeles

Let F be a number field. Then one can as-

sociate a locally compact topological ring AF ,

called the adele ring of F . For concreteness,

in these lectures, we shall just work with Q.

Let’s recall the definition of A = AQ:

A ⊂ R ×
∏

p
Qp

consisting of those x = (xv) such that for al-

most all primes p,

xp ∈ Zp.

It is clearly a subring of
∏

v Qv.

This construction is called the restricted di-

rect product.

The ring A has a natural topology: a basis of

open neighbourhoods at a point x consists of:
∏

v∈S

Uv ×
∏

v/∈S

Zv
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where S is a finite set of places of Q, includ-

ing the archimedean prime, and Uv is an open

neighbourhood of x. In particular, A is a lo-

cally compact ring.

Alternatively, one can think of A as the induc-

tive (or direct) limit of

∏

v∈S

Qv ×
∏

v/∈S

Zv.

Observe that Q →֒ A diagonally, so that A is a

Q-algebra. An important property is:

Theorem: Q is discrete in A with Q\A com-

pact.

Thus, the situation of Q ⊂ A is analogous to

the situation of Z ⊂ R.



There are some variants of the above construc-

tion. If S is a finite set of places of Q, we let:






QS =
∏

v∈S Qv

AS = {(xv) ∈
∏

v/∈S Qv : xv ∈ Zv for almost all v}

We call AS the S-adeles. If S consists only of

the place ∞, then we call AS the finite adeles

and denote it by Af .

The following is called the strong approxima-

tion theorem for adeles:

Theorem: Let S be a non-empty finite set of

places of Q. Then Q is dense in AS.

When S consists only of the archimedean place,

this is the so-called Chinese remainder theo-

rem.



Adele Groups

Let G be a linear algebraic group defined over

Q; the examples to keep in mind are the reduc-

tive groups GLn and SLn, as well as unipotent

groups.

Note that G is an affine algebraic variety over

Q. One can thus consider the group G(A) of

adelic points of G. We simply call this the

adele group of G. It is a locally compact

group and we can give it a more concrete de-

scription as follows.

We consider the set of sequences (Kp) (in-

dexed by primes) of open compact subgroups

Kp of G(Qp), and consider two such sequences

(Kp) and (K ′
p) to be equivalent if Kp = K ′

p for

almost all p.

Now given a linear algebraic group G, one can

associate an equivalent class of such sequences.
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Namely, choose any embedding i : G →֒ GL(V )

where V is a Q-vector space, and pick a lat-

tice Λ in V . Then let Kp be the stabilizer of

Λ⊗ZZp in G(Qp). The resulting sequence (Kp)

will depend on (i,Λ) but different choices give

equivalent sequences.

Let us pick one such sequence (Kp) from the

equivalence class determined by G. Then it

can be shown that:

G(A) =

{(gv) ∈
∏

v
G(Qv) : gv ∈ Kv for almost all v}.

This is independent of the choice of the se-

quence.

From this, one sees that if S is a finite set of

primes, then

G(A) = G(QS) × G(AS).

Moreover, a basis of neighbourhoods at 1 in

G(Af) consists of open compact subgroups

U =
∏

v Uv with Uv = Kv for almost all v.



For almost all p, the open compact subgroup

Kp is a so-called hyperspecial maximal com-

pact subgroup. For example, when G = GLn,

Kp = GLn(Zp).

We can modify Kv at the remaining places (in-

cluding ∞) and assume that they are special

maximal compact subgroups. Then

K =
∏

v
Kv

is a maximal compact subgroup of G(A). We

fix this K henceforth.

For example, when G = GL1, then

GL1(A) =

{x = (xv) ∈
∏

v
Q×

v , xp ∈ Z×
p for almost all p}.

This is the so-called idele group of Q.
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The quotient G(Q)\G(A)

Because Q ⊂ A, we have:

G(Q) ⊂ G(A).

The situation of G(Q) ⊂ G(A) is entirely anal-

ogous to the situation of SL2(Z) ⊂ SL2(R).

Indeed, we have:

• G(Q) is a discrete subgroup of G(A).

• G(Q)\G(A) has a fundamental domain which

can be covered by a sufficiently large Siegel

set (associated to any parabolic Q-subgroup).

• G(Q)\G(A) has finite volujme if G is semisim-

ple; it is compact if G is anisotropic.
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Strong Approximation for G

The strong approximation theorem allows one

to relate the adelic picture to the case of Γ\G(R).

Theorem: Assume that G is simply-connected

and S is a finite set of places of Q such that

G(QS) is not compact, then G(Q) is dense in

G(AS).

Here is a reformulation. Given any open com-

pact subgroup US ⊂ G(AS), we have:

G(A) = G(Q) · G(QS) · US.

A consequence of this is:

Corollary: Under the asumptions of the theo-

rem, if we let Γ = G(Q) ∩ US, then

G(Q)\G(A)/US ∼= Γ\G(QS).
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An example

As an example, consider the case when G =

SL2 and S = {∞}. Then

SL2(Q)\SL2(A)/Uf
∼= Γ\SL2(R)

where Uf is any open compact subgroup of

G(Af) and Γ = G(Q) ∩ Uf .

Let’s take Uf to be the group

K0(N) =
∏

p|N

Ip ·
∏

(p,N)=1

SL2(Zp)

where Ip is an Iwahori subgroup of SL2(Qp):

Ip = {g =

(

a b
c d

)

∈ SL2(Zp) : c ≡ 0 mod p}.

Then it is clear that

Γ0(N) = K0(N) ∩ SL2(Q).

So we have:

SL2(Q)\SL2(A)/K0(N) ∼= Γ0(N)\SL2(R).
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Passage from real to adele groups

The above consideration allows us to regard an

automorphic form f on Γ\G(R) as a function

on G(Q)\G(A), at least for certain Γ.

We say that Γ is a congruence subgroup of

G if Γ = G(Q) ∩ UΓ for some open compact

subgroup UΓ of G(Af).

Thus if Γ is congruence, and G satisfies strong

approximation, we have:

Γ\G(R) ∼= G(Q)\G(A)/UΓ

and we can regard an automorphic form on

Γ\G(R) as a function on G(Q)\G(A) which is

right-invariant under UΓ.
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Remarks: (i) In general, for any reductive G

and any open compact U ⊂ G(Af), we have

#G(Q)\G(A)/G(R)U < ∞.

In this case, if {gi ∈ G(Af)} is a set of double

coset representatives, then

G(Q)\G(A)/U =
⋃

i

Γi\G(R)

with Γi = G(Q) ∩ giUg−1
i .

Thus, the passage between real and adele groups

is not seriously affected by the lack of strong

approximation.
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(ii) When G = GLn, we still have the decom-

position:

GLn(A) = GLn(Q) · GLn(R) · U

for any open compact U ⊂ GLn(Af) on which

the image of determinant is equal to
∏

p Z×
p .

This is a consequence of strong approximation

for SLn and the fact that Q has class number

1. So it would not be true for a general number

field.

In particular, when U = K ′
0(N) (the analog of

K0(N) for GL2), we have

Γ0(N)\SL2(R) ∼= Γ′
0(N)Z(R)\GL2(R)

∼= Z(A)GL2(Q)\GL2(A)/K ′
0(N).
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Properties of functions

When we regard an automorphic form on Γ\G(R)

as a function f on G(Q)\G(A), the function f

will inherit the properties of an automorphic

form. Let us spell out some of these.

Definition:

• A function f on G(A) is said to be smooth

if it is C∞ in its archimedean variable, and

locally constant in the finite-adeles vari-

able.

• f is K-finite if the right K-translates of

K span a finite dimension vector space.

Equivalently, f is K∞-finite and is right-

invariant under an open compact subgroup

of G(Af).
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• If we fix a Q-embedding i : G →֒ GLn, we

may define a norm function by

||g|| =
∏

v
maxj,k{|i(g)jk|v, |i(g−1)jk|v}.

• f is said to be of moderate growth if there

exists n ≥ 0 and C > 0 such that

|f(g)| ≤ C||g||n

for all g.

• f is rapidly decreasing on a Siegel set S

if, for any k > 0, there exists Ck > 0 such

that

|f(g)| ≤ Ck · ||g||−k

for any g ∈ S.



Automorphic forms on adele groups

Let G be a reductive linear algebraic group over

Q.

Definition: A function f on G(Q)\G(A) is

called an automorphic form if

• f is smooth

• f is right K-finite

• f is of moderate growth

• f is Z(g)-finite.

We let A(G) denote the space of automorphic

forms on G. This space contains A(G(R),Γ)

(for any congruence Γ) as the space of func-

tions right-invariant under an open compact

subgroup of G(Af).
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Cusp forms

Definition: An automrophic form f on G is

called a cusp form if, for any parabolic Q-

subgroup P = MN of G, the constant term

fN(g) =
∫

N(Q)\N(A)
f(ng) dn

is zero as a function on G(A).

It suffices to check this vanishing on a set of

representatives of G-conjugacy classes of max-

imal parabolic subgroups.

We let A0(G) denote the space of cusp forms

on G.
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Analytic properties

The analytic properties of an automorphic form

f follow immediately from those on real groups,

using the passage from real to adele groups.

For example, we have:

• f is real analytic when restricted to G(R)

• f is of uniform moderate growth

• if f is cuspidal, f is rapidly decreasing on

a Siegel set defined using any parabolic Q-

subgroup. In particular, f ∈ L2(G(Q)\G(A))

if G is semisimple.
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Automorphic representations

The space A(G) possesses the structure of a

(g, K)-module as before. In addition, for each

prime p, the group G(Qp) acts on A(G) by right

translation. Thus, A(G) has the structure of

a representation of

(g, K) × G(Af).

Moreover, as a representation of G(Af), it is a

smooth representation.

We shall abuse terminology, and say that A(G)

is a smooth representation of G(A), even though

G(R) does not preserve A(G).

Definition: An irreducible smooth representa-

tion π of G(A) is called an automorphic rep-

resentation if π is a subquotient of A(G).
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Admissibility

Theorem: An automorphic representation π

is admissible, i.e. given any irreducible repre-

sentation ρ of K, the multiplicity with which ρ

occurs in π is finite.

An equivalent definition of “admissibility” is:

for any open compact subgroup U =
∏

p Up ⊂

G(Af) and any irreducible representation ρ∞

of K∞, the subspace of vectors in π which are

fixed by U and which is contained in the ρ∞-

isotypic subspace of πU is finite-dimensional.

Proof: Suppose that V1 ⊂ V2 ⊂ A(G) are sub-

modules with V2/V1
∼= π. We may assume

that V2 is generated over G(A) by f ∈ V2 \ V1.

Otherwise, we simply replace V2 by the G(A)-

submodule V ′
2 generated by f and V1 by V1∩V ′

2.
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If f is killed by an ideal J of finite codimension

in Z(g), then V2 is killed by J. Thus

V U
2 ⊂ A(G, J)U

and

A(G, J)U ∼= ⊕r
i=1A(G(R), Γi, J).

The RHS is an admissible (g, K)-module by a

fundamental theorem of Harish-Chandra. This

proves the theorem.



Restricted tensor product

We usually expect an irreducible representa-

tion of a direct product of groups Gi to be the

tensor product of irreducible representations Vi

of Gi. In the case of interest here, the adele

group G(A) is almost a direct product; it is

a restricted direct product with respect to a

family (Kp). It turns out that an irreducible

admissible representation of G(A) is almost a

tensor product.

Definition: Suppose we have a family (Wv)

of vector spaces, and for almost all v, we are

given a non-zero vector u0
v ∈ Wv. The re-

stricted tensor product ⊗′
vWv of the Wv’s

with respect to (u0
v) is the inductive limit of

{WS = ⊗v∈SWv}, where for S ⊂ S′, one has

WS −→ WS′ defined by

⊗v∈Suv 7→ (⊗v∈Suv) ⊗ (⊗v∈S′\Su0
v).
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We think of ⊗′
vWv as the vector space gener-

ated by the elements

u = ⊗vuv with uv = u0
v for almost all v,

subject to the usual linearity conditions in the

definition of the usual tensor product.

Now if each Wv is a representation of G(Qv),

and for almost all v, the distinguished vector

u0
v is fixed by the maximal compact Kv, then

the restricted tensor product inherits an action

of G(A): if g = (gv), then

g(⊗vuv) = ⊗vgvuv.

Because gv ∈ Kv and uv = u0
v for almost all v,

the resulting vector still has the property that

almost all its local components are equal to

the distinguished vector u0
v .
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Representations of adele groups

The following is a theorem of Flath:

Theorem: An irreducible admissible represen-

tation of G(A) is a restricted tensor product

of irreducible admissible representations πv of

G(Qv) with respect to a family of vectors (u0
v)

such that u0
v ∈ πKv

v for almost all v.

For the proof of this, see [Bump, §3.4].

Corollary: An automorphic representation π

has a restricted tensor product decomposition:

π ∼= ⊗′
vπv, where for almost all v, πKv

v 6= 0.

20



Unramified representations

Remarks: Note that if πp is an irreducible

admissible representation of G(Qp), and Kp is

a hyperspecial maximal compact subgroup of

G(Qp), then

dim π
Kp
p ≤ 1.

So the choice of u0
p is unique up to scaling.

We call an irreducible representation of G(Qp)

unramified or spherical with respect to Kp if

dimπ
Kp
p = 1. These has been classified in Yu’s

lectures, using the Satake isomorphism.

We shall come back to this later, when we give

a representation theoretic interpretation of the

Ramanujan-Petersson conjecture.
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Cuspidal automorphic representations

The space A0(G) of cusp forms is clearly a sub-

module under G(A). When G is reductive, with

center Z, we usually specify a central charac-

ter χ for Z(A). Namely, if χ is a character

of Z(Q)\Z(A), then we let A(G)χ be the sub-

space of automorphic forms f which satisfy:

f(zg) = χ(z) · f(g).

We let A0(G)χ be the subspace of cuspidal

functions in A(G)χ. Then as in the case of

A0(G(R),Γ) (with G semisimple), A0(G)χ de-

composes as the direct sum of irreducible rep-

resentations of G(A), each occurring with fi-

nite multiplicities.

Definition: A representation π of G(A) is cus-

pidal if it occurs as a submodule of A0(G)χ.
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The representation πf

If f is a classical cuspidal Hecke eigenform on

Γ0(N), we have seen that f gives rise to an au-

tomorphic form φf on Γ′
0(N)\PGL2(R) which

generates an irreducible (g, K)-module isomor-

phic to the discrete series representation of

lowest weight k.

Now if we then transfer φf to a cusp form Φf

on PGL2(Q)\PGL2(A), we can consider the

subrepresentation πf of A0(PGL2) generated

by Φf . It turns out that this is an irreducible

representation of G(A) if f is a newform.

Thus a Hecke eigen-newform in Sk(N) corre-

sponds to a cuspidal representation of PGL2(A).

Moreover, if πf
∼= ⊗′

vπv, then πp is unramified

for all p not dividing N .
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Basic questions

Having defined the notion of automorphic rep-

resentations, some basic questions one can ask
is:

• Given an irreducible admissible representa-

tion π = ⊗′
vπv of G(A), can we decide if π

is automorphic? When is it cuspidal?

• More generally, classify the automorphic
representations of G(A). One purpose of
the Langlands program is to formulate an

answer to this question.

• Construct some examples of automorphic

representations. It turns out that there is
a general method of constructing submod-

ules of A(G). This is the theory of Eisen-
stein series. However, there is no known

general method for constructing submod-
ules of A0(G).

24



Hecke algebra

On A(G(R), Γ), we have the action of the Hecke

algebra H(G,Γ). Under the isomorphism

A(Γ\G(R)) ∼= A(G)UΓ,

what does the operator Tα = ΓαΓ (with α ∈

G(Q)) get translated to?

Let’s call this new operator on the adelic side

T ′
α.

If f ∈ A(G)UΓ, then the identification of f with

a function on Γ\G(R) is simply given by re-

striction to G(R). So we want to find T ′
α such

that

(T ′
αf)|G(R) = Tα(f |G(R)).
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Let us evaluate T ′
αf at an element g = (g∞, gf) ∈

G(R)× G(Af). Because we are assuming that

G(Af) = G(Q) · UΓ,

we can accordingly write

gf = γ · u.

Writing:

ΓαΓ =
⋃

i

Γai,

we compute

T ′
αf(g) = T ′

αf(g∞, γu) = T ′
αf(γ−1g∞,1)

=
∑

i

f(aiγ
−1g∞,1) =

∑

i

f(g∞, γa−1
i )

=
∑

i

f(g∞, γuu−1a−1
i ) =

∑

i

f(g∞, γua−1
i )

=
∑

i

f(g∞, gfa−1
i ) =

∑

i

f(ga−1
i )
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Note that because

ΓαΓ =
⋃

i

Γai in G(Q)

we have

UΓαUΓ =
⋃

i

UΓai in G(Af)

and so

UΓα−1UΓ =
⋃

i

a−1
i UΓ.

We have now translated the action of H(G,Γ)

to the adelic picture. Is the resulting operator

something we have seen before?
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Recollection from Yu’s lectures

Recall from Yu’s lectures that if V is a smooth

representation of a locally profinite group G

and U ⊂ G is an open compact subgroup, then

the map V 7→ V U defines a functor from the

category of smooth representatioons of G to

the category of modules for the Hecke agebra

H(G//U).

Recall that H(G//U) is the ring of functions in

C∞
c (G) which are bi-U-invariant, and the prod-

uct is given by convolution of functions.

A basis for H(G//U) is given by the character-

istic functions fα = 1UαU . The action of this

on a vector in V U is:

fα · v =

∫

G
fα(g) · gv dg

=

∫

UαU
vdg =

∑

i

aiv

if UαU =
⋃

aiU (and dg gives U volume 1).
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Adelic Hecke algebras

We can apply the material from Yu’s lectures

to the smooth representation A(G) of G(Af).

Then the adelic Hecke algebra H(G(Af)//UΓ)

acts on A(G)UΓ.

More explicitly, if UΓα−1UΓ =
⋃

i a−1
i UΓ, then

the characteristic function of UΓα−1UΓ acts by

(Tαf)(g) =
∑

i

(a−1
i f)(g) =

∑

i

f(ga−1
i )

In conclusion, we see that the action of H(G,Γ)

on A(G,Γ) gets translated to an action of the

adelic Hecke algebra H(G(Af)//KΓ) on A(G)KΓ.

This action of the adelic Hecke algebra arises

from the smooth G(Af)-module structure on

A(G). Note also that

Γ\G(Q)/Γ ↔ UΓ\G(Af)/UΓ.
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Local Hecke algebras

Because G(Af) is a restricted direct product,

we have in fact

H(G(Af)//U) ∼= ⊗′
vH(G(Qp)//Up)

if U =
∏

p Up. So the structure of H(G(Af)//U)

is known once we understand the local Hecke

algebras H(G(Qp)//Up).

For almost all p, however, we know that Up =

Kp is a hyperspecial maximal compact sub-

group. In that case, the structure of the lo-

cal Hecke algebra is known, by the Satake

isomorphism. In particular, H(G(Qp)//Kp) is

commutative and its irreducible modules are

classified.

Because V 7→ V Kp induces a bijection of ir-

reduible unramified representations with irre-

ducible modules of H(G(Qp)//Kp), we get in

this way the classification of irreducible unram-

ified representations of G(Qp). We recall this

classification next.
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Classification of unramified representations

Let us assume for simplicity that G is a split

group (e.g. G = GLn). Let B = T · N be a

Borel subgroup of G, with maximal torus T .

So T ∼= (GL1)
r and T(Qp)

∼= (Q×
p )r. We let

W := NG(T)/T be the Weyl group of G.

Let χ : T(Qp) −→ C× be a (smooth) charac-

ter of T(Qp). We say that χ is an unram-

ifed character if χ is trivial when restricted to

T(Zp)
∼= (Z×

p )r. If χ is unramified, then it is of

the form

χ(ai, ..., ar) = t
ordp(a1)
1 · ... · t

ordp(ar)
r , ai ∈ Q×

p

for some si ∈ C×.

We may regard χ as a character of B(Qp) us-

ing the projection B(Qp) → N(Qp)\B(Qp)
∼=

T(Qp).
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Given an unramified character χ of T(Qp), we

may form the induced representation

IB(χ) := Ind
G(Qp)

B(Qp)
δ
1/2
B · χ.

Here, δB is the modulus character of B, defined

by:

δB(b) = |det(Ad(b)|Lie(N))|p.

We recall that the space of IB(χ) is the sub-

space of C∞(G(Qp)) satisfying:

• f(bg) = δ(b)1/2·χ(b)·f(g) for any b ∈ B(Qp)

and g ∈ G(Qp).

• f is right-invariant under some open com-

pact subgroup Uf of G(Qp).

Then IB(χ) is an admissible representation of

G(Qp), possibly reducible. The representations

IB(χ) are called the principal series represen-

tations.
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Because of the Iwasawa decomposition G(Qp) =

B(Qp) ·Kp, an element f of IB(χ) is completely

determined by its restriction to Kp. Thus we

see that

dim IB(χ)Kp = 1

and a vector in this 1-dimensional space is

given by

f0(bk) = δB(b)1/2 · χ(b);

equivalently, f0|Kp is the constant function 1.

Thus IB(χ) has a unique irreducible subquo-

tient πχ with the property that π
Kp
χ 6= 0.

Theorem: Any irreducible unramified repre-

sentation of G(Qp) is of the form πχ for some

unramfied character χ of T(Qp).
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The Weyl group W acts naturally on T(Qp)

and thus on the set of characters of T(Qp):

Namely, for w ∈ W ,

(wχ)(t) = χ(w−1tw).

Proposition: πχ
∼= πχ′ iff χ = wχ′ for some

w ∈ W .

Thus, the irreducible unramified representa-

tions are classified by W -orbits of unramified

characters of T(Qp).

Unitarizability: One may ask whether πχ is

unitarizable. When χ is a unitary character,

then it is clear that IB(χ) is unitarizable, and

thus so is πχ. Indeed, a G(Qp)-invariant inner

product on IB(χ) is:

〈f1, f2〉 =

∫

Kp

f1(k) · f2(k) dk
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Though this inner product is not G(Qp)-invariant

if χ is not unitary, it may be possible to define

an invariant inner product in some other ways.

At this point, it appears that the problem of

determining the unitarizable unramified repre-

sentations is not completely solved for all groups.

Of course, it has been solved for GLn some

time ago.



The example of GL2

Let us look at the example of GL2. Then B is
the group of upper triangular matrices, and

δB

(

a b
0 d

)

= |a/d|p.

The Weyl group W is isomorphic to the group
S2; the non-trivial element of W is represented
by the matrix

w =

(

0 1
1 0

)

.

An unramified character is of the form

χt1,t2

(

a 0
0 d

)

= t
ordp(a)
1 · t

ordp(d)
2 .

Moreover, under the action of w, we see that

wχt1,t2 = χt2,t1.

So the irreducible unramified representations
of GL2(Qp) are parametrized by diagonal ma-
trices

tχ =

(

t1 0
0 t2

)
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modulo the action of w. In other words, they

are parametrized by semisimple conjugacy clases

in GL2(C).

Observe that πχt1,t2
is a representation of the

group PGL2(Qp) iff t1t2 = 1.

Analogously, the irreducible unramified repre-

sentations of GLn(Qp) are naturally parametrized

by semisimple conjugacy classes in GLn(C).

The semisimple class associated to an unram-

ified representation π is called the Satake pa-

rameter of π.



Tempered representations

Let us recall the notion of a tempered repre-

sentation of G(Qp). Let π be a unitarizable

representation of G(Qp). Suppose that 〈−,−〉

is a G(Qp)-invariant inner product on π. Then

by a matrix coefficient of π is a function on

G(Qp) of the form

fv1,v2(g) = 〈gv1, v2〉

with v1 and v2 in π.

Assume that π has a unitary central character,

so that |fv1,v2(g)| is a functon on Z(Qp)\G(Qp).

Definition: Say that π is a tempered repre-

sentation if the matrix coefficients of π lie in

L2+ǫ(Z(Qp)\G(Qp)) for any ǫ > 0.
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Proposition: The unramified representation

πχ is tempered iff χ is a unitary character.

We mentioned earlier that there may be other

πχ’s which are unitarizable, but for which χ is

not unitary. We call these other πχ’s the (un-

ramified) complementary series representa-

tions. For example, the trivial representation

of G(Qp) is certainly not tempered.

Remarks: The notion of being tempered is a

natural one. Indeed, if one considers the reg-

ular representation L2(G(Qp)) (G semisimple,

say), which decomposes into the sum of a dis-

crete spectrum and a continuous one, then an

irreducible unitarizable representation is tem-

pered if and only if it occurs in the decompo-

sition of L2(G(Qp)).
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Example: Let us describe the (unramified)

complementary series of PGL2(Qp).

Proposition: πχt1,t2
is unitarizable and non-

tempered iff p−1/2 ≤ t1 ≤ p1/2.

When t1 = p1/2 or p−1/2, the corresponding

unramified representation is the trivial repre-

sentation.

Note that t1 and t−1
1 parametrize the same rep-

resentation.
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Reformulating Ramanujan’s conjecture

We are now in a position to reformulate the

Ramanujan-Petersson conjecture in terms of

representation theory. This reformulation is

due to Satake.

We start with a cuspidal Hecke eigenform f of

weight k for SL2(Z) with Fourier coefficients

{an(f)}. The Ramanujan-Petersson conjec-

ture says:

|ap(f)| ≤ 2 · p(k−1)/2.

Obviously, since Sk(1) is finite dimensional, it

suffices to prove this bound for a basis of Sk(1).

Recall that the action of the Hecke operators

{Tn} can be simultaneously diagonalized. So

we have a natural basis of Sk(1) consisting

of Hecke eigenforms. We can further assume

that these Hecke eigenforms are normalized,

i.e. a1(f) = 1.
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Now assume that f is a normalized Hecke eigen-

form and suppose that

Tnf = λn(f)f.

Then we have seen that

an(f) = λn(f).

Thus, the Ramanujan-Petersson conjecture is

equivalent to saying that the Hecke eigenvalues

λp of Tp occurring in Sk(1) satisfy

|λp| ≤ 2p(k−1)/2
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Now we want to reformulate this on A(PGL2(R),Γ),

wit Γ = PGL2(Z).

We saw that f gives rise to a function

φf(g) := (f |kg)(i)

on SL2(Z)\SL2(R) ∼= PGL2(Z)\PGL2(R). On

A(PGL2,Γ), we have the Hecke algebra H(PGL2,Γ)

acting and we showed that:

φTpf = pk/2−1 · Tαpφf

where

αp =

(

p 0
0 1

)

.

Thus the Ramanujan-Petersson conjecture says

the eigenvalue νp of φf with respect to Tαp sat-

isfies:

νp = 2p1/2,

since λp = pk/2−1νp.
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Now we pass to A(PGL2)
Kf where Kf =

∏

p PGL2(Zp).

If we regard φf as an element Φf of A(PGL2)
Kf ,

then we saw that

Tαpφf = T
α−1

p
Φf .

Here T
α−1

p
is the element in the adelic Hecke

algebra corresponding to the double coset

Kf

(

p−1 0
0 1

)

Kf = Kf

(

p 0
0 1

)

Kf ,

and is equal to Tαp.

Further, under the decomposition

H(PGL2(Af)//Kf) = ⊗′
pH(PGL2(Qp)//Kp),

we see that Tαp is supported only at the prime

p.
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Now suppose πf ⊂ A0(PGL2) is the irreducible

representation generated by Φf , and πf
∼= ⊗′

vπv.

The action of Tαp on π
Kf
f = C · Φf is simply

the action of the characteristic functon tp of

PGL2(Zp)αpPGL2(Zp) on π
Kp
p . So the eigen-

value of tp on πp is νp.

Now the local Hecke algebra H(PGL2(Qp)//Kp)

is generated as an algebra by tp. So the un-

ramified representation πp is completely deter-

mined by the eigenvalue of tp on π
Kp
p . So the

Satake parameter sp of πp is completely deter-

mined by the eigenvalue νp associated to Φf .

So we ask:

What is the relation between the Hecke eigen-

value νp and the Satake parameter sp of πp?
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Proposition: p1/2 · Trace(sp) = νp.

Proof: If sp = diag(t1, t2), then as we have

seen,

πp = IB(χt1,t2)

If f0 is the Kp-fixed vector in IB(χ) with f0(1) =

1, then

νp = (tpf0)(1)

=
p−1
∑

r=0

f0

(

1 r
0 p

)

+ f0

(

p 0
0 1

)

= p1/2(t2 + t1)

= p1/2 · Trace(sp).
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Corollary: The Ramanujan-Petersson conjec-

ture for f ∈ Sk(1) is equivalent to saying that

πf,p is tempered for all p.

Proof: Since πp is necessarily unitarizable, πp

is either tempered or in the complementary se-

ries. If the Satake parameter is sp = diag(t, t−1),

then πp is complementary series iff

p−1/2 ≤ t ≤ p1/2, but t 6= 1,

which is equivalent to

|Trace(sp)| > 2.
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Remarks: Recall that the Selberg conjecture

for the eigenvalues of the hyperbolic Lapla-

cian on a Maass form is equivalent to saying

that πf,∞ is tempered. Thus we have shown

that the Selberg conjecture and the Ramanu-

jan conjecture can be unified in a single state-

ment in terms of the representation πf .

Ramanujan Conjecture for GLn

Let π = ⊗′
vπv be a cuspidal automorphic rep-

resentation of GLn with unitary central char-

acter. Then for each v, πv is tempered.

In the conference next week, you will probably

hear some progress towards this conjecture.
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Eisenstein Series

GOAL: We will discuss a standard construc-

tion of automorphic representations: the the-

ory of Eisenstein series.

Let P = M · N be a parabolic subgroup of G

and let π be an automorphic representation of

M(A). Consider the induced representation

IP (π) = Ind
G(A)
P (A)

δ
1/2
P · π

Then the theory of Eisenstein series gives rise

to a G(A)-intertwining map

E : IP (π) −→ A(G),

thus giving us concrete examples of automor-

phic representations.

1



Unfortunately, this construction does not pro-

vide cuspidal representations; indeed the image

of E is orthogonal to A0(G).

However, the automorphic forms in the image

of E turn out to be very useful. For example,

the theory of Eisenstein series is one of the

most important tool we have for understand-

ing the properties of automorphic L-functions.

Moreover, they are necessary for the spectral

decomposition of L2(G(Q)\G(A)), as we saw

in Labesse’s lectures.
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Parabolic induction

Let us recall the notion of parabolic induction.

Let P be a parabolic Q-subgroup of G, with

Levi decomposition P = M · N . We shall as-

sume that P is a maximal parabolic.

The reason for this assumption is that the

Eisenstein series will then be a function on C

(taking values in A(G)). If P is not maximal,

then the Eisenstein series will be a function on

Cn (n ≥ 2), in which case results are harder to

state.

(The standard example to keep in mind is the

case of B ⊂ PGL2).
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The group P(A) is not unimodular. So P has a

modulus character δP . This character is trivial

on N(A) and its value on M(A) is given by

δP (m) = |det(Ad(m)|Lie(N)(A))|.

Given an abstract representation σ of M(A),

we can inflate (or pullback) σ to a represen-

tation of P(A). Then one has the induced

representation:

IP (σ) := Ind
G(A)
P (A)

δ
1/2
P · σ

More generally, we set

IP (σ, s) := Ind
G(A)
P (A)

δ
1/2+s
P · σ
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Recall that the vector space for IP (σ, s) is the

set of smooth functions

f : G(A) −→ Vσ

such that

• f(pg) = δP (p)1/2+s · σ(p)(f(g))

• f is right K-finite.

The action of G(A) on IP (σ, s) is by right

translation.

(In the standard example, σ is a character χ of

T(A) ∼= A×).
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Flat sections

Because of Iwasawa decomposition G(A) =

P(A) · K, an element in IP (σ, s) is determined

by its restriction to K. Indeed, restriction to

K gives an isomorphism of vector spaces from

IP (σ, s) to the space of smooth K-finite func-

tions

f : K → Vσ

satisfying

f(mk) = σ(m)(f(k)), for all m ∈ M(A) ∩ K.

Given a function f in the latter space, we can

extend it to an element fs ∈ IP (σ, s). The

family {fs : s ∈ C} is called a flat section: the

restriction of fs to K is independent of s (it is

equal to the f we started with). Sometimes,

people also call it a standard section.
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The case of automorphic σ

We shall assume that σ is a irreducible sub-

module of A(M) and so Vσ ⊂ A(M).

(In the standard example, σ is a character of

the idele class group T(Q)\T(A) = Q×\A×).

In this case, we can realize IP (σ, s) as C-valued

functions, rather than functions valued in Vσ.

Indeed, if fs ∈ IP (σ, s), then set

f̃s(g) = [fs(g)](1).

The function f̃ satisfies:

f̃s(nmg) = fs(g)(m).

In particular,

f̃s : N(A)M(Q)\G(A) −→ C.

(In the standard example, there is no need for

this, because fs is already C-valued).
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This f̃s has the property that for any k ∈ K,

the function

m 7→ f̃s(mk)

is an element of Vσ ⊂ A(M). Moreover, if fs is

a flat section, then the element f̃s(−k) ∈ A(M)

is independent of s.
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Formation of Eisenstein series

We want to make an automorphic form on

G(A) out of f̃ . Since f̃ is only left-invariant

under P(Q) but not G(Q), the easiest way to

do this is to average over P(Q)\G(Q).

More precisely, let fs ∈ IP (σ, s) be a flat sec-

tion, whose restriction to K is a function f .

We define the following function on G(A):

E(f, s, g) =
∑

γ∈P (Q)\G(Q)

f̃s(γg)

Formally, this function on G(A) is left-invariant

under G(Q). But we need to address conver-

gence.
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Convergence and properties

Here is the result on convergence:

Proposition:

(i) There exists c > 0 such that the above

sum converges absolutely for any f and g when

Re(s) > c. The convergence is locally uniform

in g.

(ii) The function E(f, s, g) is an automorphic

form on G.

(iii) For fixed s, the map

f 7→ E(f, s,−)

is a G(A)-equivariant map

IP (σ, s) −→ A(G).

(iv) In the half plane Re(s) > c, the function

s 7→ E(f, s, g) (with f and g fixed) is holomor-

phic.
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Constant term of Eisenstein series

The main result in the theory of Eisenstein se-

ries is the meromorphic continuation of E(f, s, g)

to s ∈ C. A important ingredient in the proof

of meromorphic continuation is the computa-

tion of the constant term of E(f, s, g) along

N .

Simplifying assumption:

Assume that σ is cuspidal and P is conjugate

to its opposite parabolic. (This is automatic

in the standard example).

Let WM = NG(M)/M . Because P is maximal

parabolic, WM
∼= S2, and we let w be the non-

trivial element in WM . We have:

Proposition: Assume Re(s) >> 0. Then

EN(f, s, g) = f̃s(g) + Mw(σ, s)f̃s(g)
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where Mw(σ, s)f̃s(g) is defined for Re(s) >> 0

by the absolutely convergent integral

Mw(σ, s)f̃(g) =

∫

N(A)
f̃s(wng) dn.

The map f̃s 7→ Mw(σ, s)f̃s is a G(A)-equivariant

map

IP (σ, s) −→ IP (w · σ,−s).

Remarks: The operator Mw(σ, s) is called a

standard intertwining operator. It appears

naturally in the constant term of the Eisen-

stein series, and is intricately connected with

the properties of the Eisenstein series. In the

course of proving that E(f, s, g) has meromor-

phic continuation, one proves simultaneously

that Mw(σ, s) has meromorphic continuation.

Observe that if f =
∏

v fv, then Mw(σ, s) fac-

tors into the product of local intertwining op-

erators Mw,v(σv, s). Thus this operator can

often be analyzed locally.



The standard example

Let us compute the constant term in our stan-

dard example.

We have the Bruhat decomposition

G(Q) = B(Q)
⋃

B(Q)wN(Q).

So

B(Q)\G(Q) ↔ {1, wN(Q)}

and we have:

∑

γ∈B(Q)\G(Q)

fs(γg) = fs(g) +
∑

γ∈N(Q)

fs(wγg).

This is what the previous proposition asserts.
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Now we compute:

EN(f, s, g)

=

∫

N(Q)\N(A)
E(f, s, ng) dn

=

∫

N(Q)\N(A)

∑

γ∈B(Q)\G(Q)

fs(γng) dn

=

∫

N(Q)\N(A)
fs(ng) dn+

∫

N(Q)\N(A)

∑

γ∈N(Q)

fs(wγng) dn

=fs(g) +

∫

N(A)
fs(wng) dn
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Meromorphic continuation

The following is the first main result of the

theory.

Theorem:

(i) The function s 7→ E(f, s, g) can be contin-

ued to a meromorphic function on C.

(ii) At a point s0 where E(f, s, g) is holomor-

phic for all g, the function E(f, s0, g) of g is an

automorphic form.

(iii) At a point s0 where E(f, s, g) is holomor-

phic for all f and g, the map f 7→ E(f, s0,−) is

a G(A)-equivariant map of IP (σ, s0) to A(G).

(iv) For any s0, there is a constant N such that

inf
f,g

{ords=s0E(f, s, g)} = −N.
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Laurent expansion

The last part of the theorem says that one has

a Laurent expansion about the point s0:

E(f, s, g) =

a−N(f, s0, g)

(s − s0)N
+

a−(N−1)(f, s0, g)

(s − s0)N−1
+ ....

with a−N(f, s0, g) 6= 0 for some f and g.

Parts (ii) and (iii) can be extended to all s0 ∈

C, provided we use the leading term of the

Laurent expansion at the point s0.
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More precisely, we have:

Theorem:

(i) For any i, the function ai(f, s0, g) is an au-

tomorphic form on G.

(ii) The map f 7→ a−N(f, s0,−) is a G(A)-

equivariant map IP (σ, s0) → A(G).

Remarks: In part (ii), if we had used ai, with

i 6= −N , the map will not be G(A)-equivariant.

One can only say that the composite map

ai : IP (σ, s0) → A(G) → A(G)/〈Im(ak) : k < i〉

is equivariant.
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Global intertwining operators

In the course of proving the meromorphic con-

tinuation of Eisenstein series, one also proves:

Theorem:

(i) The intertwining operator Mw(σ, s)f̃s has a

meromorphic continuation to all of C.

(ii) At each s0 ∈ C, the order of poles is bounded

(as f varies).

(iii) the leading term of the Laurent expansion

o Mw(σ, s) at s0 is an intertwining operator

IP (σ, s) → IP (w · σ,−s).

(iv) Mw(w · σ,−s) ◦ Mw(σ, s) = id.

As a consequence, the identity

EN(f, s, g) = f̃s(g) + Mw(σ, s)f̃s(g)

holds for all s ∈ C.
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Functional equation

A consequence of the formula for the constant

term EN is that we have a functional equation

for the Eisenstein series:

Theorem:

E(f, s, g) = E(Mw(s)f,−s, g).

Proof: Both sides have the same constant

terms along (using the formula for the con-

stant term EN as well as (iv) of the last the-

orem). Moreover, under our simplifying as-

sumption, the constant term along other parabolic

subgroups are zero.

So the difference of the two sides is a cusp

form. But as we shall see next, each Eisenstein

series is orthogonal to the cusp forms. This

shows that the difference is zero.
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Orthogonality to cusp forms

The Eisenstein series E(f, s, g) is orthogonal to

the space A0(G) of cusp forms. Suppose that

φ ∈ A0(G). Then for Re(s) large,
∫

G(Q)\G(A)
E(f, s, g) · φ(g) dg

=

∫

G(Q)\G(A)







∑

γ∈P (Q)\G(Q)

f̃s(γg)





 · φ(g) dg

=
∫

P (Q)\G(A)
f̃s(g) · φ(g) dg

=
∫

N(A)M(Q)\G(A)
f̃s(g) ·

(

∫

N(Q)\N(A)
φ(ng) dn

)

dg

=0

The result for general s follows by meromor-

phic continuation.
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Analytic behaviour of constant term

Clearly, if E(f, s,−) has a pole of order k at s0,

then the order of pole at s0 of the constant

term EN(f, s,−) is ≤ k. In fact, we have

Theorem: The order of pole of E(f, s,−) at

any s0 is the same as that of the constant term

EN(f, s,−).

Proof: If not, the leading term a−k(f, s,−) of

the Laurent expansion of E(f, s,−) at s0 will

be a non-zero cusp form, contradicting the fact

that a−k(f, s,−) is orthogonal to all cusp forms.

Remarks: This result is of great importance in

practice. It says that to decide the behaviour

of E at s, it suffices to examine the behaviour

of EN at s. But we have a formula for EN in

terms of the intertwining operator, which is an

Euler product of local intertwining operators.
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It turns out that one can calculate these local

intertwining operators explicitly for almost all

p. This is the so-called Gindikin-Karpelevich

formula. The answer can be expressed (as

shown by Langlands) in terms of certain local

L-functions of πp.

Thus, we see that the analytic properties of

E are controlled by those of appropriate L-

functions.

This relation can be exploited both ways. Some-

times, one uses properties of the L-functions to

deduce, for example, that E has a pole some-

where. On the other hand, one may also use

the analytic properties of E to deduce analytic

properties of the L-functions. This is the tech-

nique used in two of the standard approaches

of studying L-functions: the Rankin-Selberg

method and the Langlands-Shahidi method.



Spectral decomposition

For the application to the spectral decomposi-

tion of L2(G(Q)\G(A)), it is necesary to know

the following result:

Theorem: The Eisenstein series E(f, s, g) is

holomorphic on Re(s) = 0 (i.e. the so-called

unitary axis). Moreover, it has only finitely

many poles in Re(s) > 0.

The first statement is needed because in the

spectral decomposition, one needs to consider

integral of the type:
∫

Re(s)=0
φ(s) · E(f, s, g) ds.

Moreover, this integral is obtained by a contour

shift from the same integral over Re(s) = c for

some large c. From the second statement, we

see that we may pick up finitely many residues

of E(f, s, g) during the contour shift, and these

contribute to the so-called residual spectrum.
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The standard example

We illustrate the above in the case when G =

PGL2 and σ is the trivial character.

In this case, the Gindikin-Karpelevich formula

gives:

Mw(s)f0
v =

ζv(2s)

ζv(2s + 1)
· f0

v .

So we see that the constant term is:

EN(f, s, g) = fs(g)+

∏

v∈S

Mw,v(s)fv(gv) ·
ζS(2s)

ζS(2s + 1)
f0,S(gS).

The local intertwining operators are defined by

absolutely convergent integral when Re(s) > 0,

and so has no poles there. Thus, one sees that

in Re(s) > 0, there is precisely only one pole of

order 1, namely at s = 1/2.

The residue there turns out to be a constant

function.
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A theorem of Langlands

The above discussion shows that the process of

parabolic induction sends cuspidal automorphic

representations on M to automorphic represen-

tations of G. In other words, if σ is cuspidal,

then every irreducible constituent of IP (σ) is

automorphic. Langlands showed the converse

to this:

Proposition:

If π is an automorphic representation of G,

then there exists a parabolic subgroup P =

MN and a cuspidal representation σ of M such

that π is a constituent of IP (σ).

This theorem shows that cuspidal representa-

tions are the fundamental objects in the theory

of automorphic forms, in the sense that every
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other automorphic representation is built out

of them by parabolic induction.

[Compare this with the representation theory

of p-adic groups.There, the basic objects are

the supercuspidal representations and every ir-

reducible smooth representation is a constituent

of some IP (σ) with σ supercuspidal. Moreover,

the pair (M, σ) is unique up to conjugacy.]

The theorem of Langlands above does not claim

that the pair (M, σ) is unique up to conjugacy.

For GLn, this is in fact true: it is a non-trivial

theorem of Jacquet-Shalika. In general, how-

ever, it is false!

For example, for the group PGSp4, it was shown

by Waldspurger that there are cuspidal repre-

sentations π which are abstractly isomorphic

to a constituent of some IP (σ) with σ cuspidal

on M = GL2. These are the so-called CAP

representations.



Multiplicity One Theorem for GLn

Last time, we saw a general construction of

automorphic representations using Eisenstein

series. This does not produce cuspidal repre-

sentations. In fact, there are no known general

methods which produce embeddings of a rep-

resentation into A0(G).

However, one can prove some results about the

structure of A0(G) in the case when G = GLn.

The goal of this lecture is to prove one such

result:

Multiplicity One theorem

The multiplicity m0(π) of an irreducible repre-

sentation π of GLn(A) in A0(G) is ≤ 1.

Note that this theorem does not tell us which

π has m0(π) = 1.

1



Whittaker-Fourier coefficients

The proof of the multiplicity one theorem has

two ingredients, one of which is global and the

other local. We begin by explaining these 2

ingredients.

Let f be an automorphic form on G = GLn. If

N ⊂ G is a unipotent subgroup, say the unipo-

tent radical of a parabolic subgroup, one can

consider the Fourier coefficients of f along N .

Namely, if χ is a unitary character of N(A)

which is trivial on N(Q), we have

fN,χ(g) =

∫

N(Q)\N(A)
χ(n) · f(ng) dn

Note that if N is abelian, then we have:

f(g) =
∑

χ

fN,χ(g).

In general, when N is not abelian, the expan-

sion on the RHS is only equal to f[N,N ].
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We apply the above to the unipotent radical

N of the Borel subgroup B of upper triangular

matrices

Definition: A character χ of N(A) is generic

if the stabilizer of χ in T(A) is the center Z(A)

of GLn(A). An equivalent definition is that χ

is non-trivial when restricted to every simple

root subgroup in N .

Examples:

(i) When G = GL2, a generic character of

N(Q)\N(A) just means a non-trivial charac-

ter of Q\A. If we fix a character ψ of F\A,

then all others are of the form

χλ(x) = ψ(λx)

for some λ ∈ Q.
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(ii) When G = GL3, a character of N(A) trivial

on N(Q) has the form

χλ1,λ2







1 a1 ∗
0 1 a2
0 0 1






= ψ(λ1a1 + λ2a2)

for some λ1 and λ2 ∈ Q.

Saying that χλ1,λ2
is generic means that λ1 and

λ2 are non-zero.

Definition: A Whittaker-Fourier coefficient

of f is a Fourier coefficient fN,χ with χ generic.

(N is unipotent radical of Borel).

4



We note:

Lemma: The group Z(Q)\T(Q) acts simply

transitively on the generic characters of N(A)

trivial on N(Q).

We let χ0 be the generic character whose re-

striction to each simple root space is equal to

ψ.

Observe that if t · χ = χ′ with t ∈ T(Q), then

fN,χ′(g) = fN,χ(t
−1g).

Thus, we see that fN,χ0
6= 0 iff fN,χ 6= 0 for all

generic χ.

Definition: A representation π ⊂ A(G) is said

to be globally generic if there exists f ∈ π

whose Fourier-Whittaker coefficient fN,χ 6= 0

for some (and hence all) generic characters χ.
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An equivalent reformulation is as follows. Con-

sider the linear map

lχ : A(G) −→ C

defined by

lχ(f) = fN,χ(1)

with χ generic. Then π is globally generic iff

lχ 6= 0 when restricted to π.
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The example of GL2

Suppose G = GL2 and π ⊂ A0(G) is an irre-

ducible cuspidal representation.

Claim: π is globally generic.

Proof: Take any non-zero f ∈ π. Then we

have the expansion

f(g) =
∑

χ
fN,χ(g)

Since f cuspidal, fN = 0. So some fN,χ 6= 0.

In this case, the following are equivalent:

(i) π is globally generic;

(ii) π = ⊗vπv is infinite-dimensional;

(iii) πv is infinite-dimensional for all v.
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Whittaker functionals

One can define the notion of a “generic repre-

sentation” locally.

Let πv be a representation of G(Qv) and let

χv : N(Qv) −→ C

be a generic unitary character.

Definition: Let p be a finite prime. Then

πp is an abstractly generic representation if,

given any generic χp, there is a non-zero linear

functional lp : πp → C such that

lp(n · v) = χp(n) · lp(v)

for all n ∈ N(Qp) and v ∈ πp. Such a functional

is called a local Whittaker functional.
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Archimedean case

One can make the same definition at the in-
finite prime, except for one subtlety: π∞ is a
(g,K)-module and N(R) does not act on π∞.

Recall that given an admissible (g,K)-module
VK, there exists a continuous representation
of G(R) on a Hilbert space H whose underly-
ing (g,K)-module is VK. However, this Hilbert
representation is not unique.

Regardless, for each such H, we can consider
the space of smooth vectors H∞, and equip
this space with the smooth topology, making
it into a Frechet space with continuous G(R)-
action.

The following is an amazing result of Casselman-
Wallach:

Theorem: The G(R)-representation H∞ is in-
dependent of the choice of H.

We call this the canonical globalization of VK.
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Let π be an admissible (g,K)-module and let

π∞ be its canonical Frechet globalization.

Definition: Say that π is abstractly generic if

π∞ has a non-zero continuous Whittaker func-

tional.

Note that such a functional is non-zero when

restricted from π∞ to π (by density of K-finite

vectors).

Now let π = ⊗vπv be an irreducible admissible

representation of G(A), one says that π is an

abstractly generic representation if each of

its local components πv is abstractly generic.
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The two ingredients

We can now state the two ingredients needed

for the proof of the Multiplicity One Theorem.

Theorem A (Global genericity):

Let π ⊂ A(G) be an irreducible cuspidal repre-

sentation. Then π is globally generic.

Theorem B (Local uniqueness of Whit-

taker functionals):

Let πv be an irreducible smooth representa-

tion of G(Qv). Then the space of (continu-

ous) Whittaker fuctional on πv is at most 1-

dimensional.

We remark that while Theorem B is still true

for an arbitrary (quasi-split) group, Theorem

A is only valid for GLn.
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Proof of Multiplicity One

Assume Theorems A and B. We need to show

that for any ireducible admissible representa-
tion π of G(A),

dimHomG(A)(π,A0(G)) ≤ 1.

Let χ be a generic character of N(A) trivial on

N(Q). Recall we have the map

lχ : A(G) −→ Cχ

given by

lχ(φ) =

∫

N(Q)\N(A)
χ(n) · φ(n) dn.

Now we have a map

HomG(A)(π,A0(G)) −→ HomN(A)(π,Cχ)

given by f 7→ lχ ◦ f .

By Theorem A, this map is injective!

So it suffices to show that the RHS has dimen-
sion ≤ 1.
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The generic character χ is of the form
∏

v χv

for generic characters χv of N(Qv).

Now if L ∈ HomN(A)(π,Cχ) is non-zero, then

for each v,

dimHomN(Fv)(πv,Cχv) 6= 0,

i.e. π is abstractly generic. By Theorem B,

the above dimenson is 1, and for almost all v,

a non-zero local functional lv is non-zero on

πKvv .

Let us choose lv 6= 0 so that for almost all v,

lv(u0
v) = 1, where u0

v is the distinguished Kv-

fixed vector in πv. Then one has, for some

constant c,

L(u) = c ·
∏

v
lv(uv) for any u = ⊗vuv.

This shows that

dimHomN(A)(π,Cχ) = 1

as desired.
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Proof of Theorem A

Recall that we have shown Theorem A for GL2,

for we can express f ∈ π as:

f(g) =
∑

χ

fN,χ(g) =
∑

γ∈Q×

fN,χ0

((

γ 0
0 1

)

g

)

.

Note that we have this expansion for any smooth

function on B(Q)\GL2(A).

Foir n > 2, because N is non-abelian, it ap-

pears that the Whittaker-Fourier coefficients

fN,χ only determines f[N,N ]. This is why The-

orem A is not trivial.

However, we shall show:
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Proposition: We have the expansion

f(g) =
∑

γ∈Nn−1(Q)\GLn−1(Q)

fN,χ0

((

γ 0
0 1

)

g

)

.

Here Nn−1 is the unipotent radical of the Borel

subgroup of GLn−1.

Clearly, this proposition implies Theorem A.

The proof of the proposition makes use of

the so-called mirabolic subgroup Pn of GLn

(which is something specific to GLn):

Pn = {

(

gn−1 ∗
0 1

)

: gn−1 ∈ GLn−1}.

It has a decomposition Pn = GLn−1 · Un.
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One proves inductively the following statement.:

(*) Suppose that f is a smooth function on

Pn(Q)\GLn(A) whose constant terms along any

standard unipotent subgroup U ⊂ Pn vanishes.

Then f has the expansion of the proposition.

For the purpose of this proof, we say that such

an f is cuspidal. The proof proceeds as follows:

• Expand f along Un:

f(g) =
∑

λ

= fUn,λ(g).

Then fUn = 0 since f cuspidal. Also GLn−1(Q)

acts transitively on the non-trivial λ’s. One

such λ is λ0 = χ0|Un. Its stabilizer in GLn−1(Q)

is precisely Pn−1(Q).

So we have the preliminary expansion:

f(g) =
∑

γ∈Pn−1(Q)\GLn−1(Q)

fUn,λ0
(γg).
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• Now let

Φg = fUn,λ0
(−g)|GLn−1

.

It is easy to see that Φ is smooth cuspidal

as a function on Pn−1(Q)\GLn−1(A). So

we can apply induction hypothesis to Φ:

Φg(h) =
∑

δ∈Nn−2\GLn−2

(Φg)Nn−1,χ
′
0
(δh)

where χ′0 = χ0|Nn−1
.

• Finally, we substitute this expansion for Φg

into the preliminary expansion for f . The

double sum can be collapsed into a single

sum over Nn−1(Q)\GLn−1(Q). Also, one

observes that the summand is given, for

γ ∈ Pn−1(Q)\GLn−1(Q), by:



(Φg)Nn−1,χ
′
0
(γ)

=

∫

Nn−1(Q)\Nn−1(A)
χ0(n

′) · Φg(n
′γ) dn′

=
∫

Nn−1(Q)\Nn−1(A)
χ0(n

′) · fUn,λ0
(n′γg) dn′

=

∫

Nn−1(Q)\Nn−1(A)

∫

Un(Q)\Un(A)
χ0(u) · χ0(n

′)·

f(un′γg) du dn′

Because Nn = Un ·Nn−1, this last double inte-

gral can be combined into the single integral
∫

Nn(Q)\Nn(A)
χ0(n) · f(nγg) dn = fNn,χ0

(γg).

This is the desired result.
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Strong Multiplicity One

In fact, for GLn, a stronger result is true. Namely,

Theorem: (Rigidity)

Let π1 and π2 be irreducible cuspidal represen-

tations of GLn. Assume that for almost all v,

π1,v and π2,v are isomorphic as abstract repre-

sentations. Then π1 and π2 are isomorphic as

abstract representations.

The proof of this theorem, due to Jacquet-

Shalika, proceeds by using L-functions.

Corollary: (Strong multiplicity one)

If π1, π2 ⊂ A0(G) are such that π1,v and π2,v

are isomorphic for almost all v, then π1 = π2

as subspaces of A0(G).

The corollary follows from the theorem above

and multiplicity one theorem.

18



Other groups

Finally, let us comment on A0(G) for other

groups G. It turns out that in general, the

multiplicity one theorem is false, though we

have:

Theorem (Ramakrishnan, 2000) The mul-

tiplicity one theorem is true for G = SL2

The proof of this theorem is highly non-trivial;

this shows once again that GL2 is much easier

to handle than SL2. For example, strong mul-

tiplicity one is not true for SL2. What about

SLn for n ≥ 3?

Theorem (Blasius, 1994) For G = SLn, n ≥

3, the multiplicity one theorem is false.

Does one have an explanation for this?
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Generalized Ramanujan conjecture

Recall that we have formulated the Ramanujan

conjecture for GLn as: if π is cuspidal, then π

is tempered.

Now one might make the same conjecture for

general G. However, it turns out to be false!

The first examples of such non-tempered cus-

pidal representations were discovered in the

70’s by Saito-Kurokawa and Howe-Piatetski-

Shapiro on the group Sp4. However, these

counterexamples to the naive generalization of

Ramanujan’s conjecture are non-generic. Thus,

one is led to the following conjecture:

Generalized Ramanujan Conjecture: Let π

be cuspidal and generic. Then π is tempered.

In fact, there is a deep conjecture of Arthur

which extends the generalized Ramanujan con-

jecture. It explains the extent of the failure of
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Ramanujan conjecture for general representa-

tions in the discrete spectrum of L2(G(Q)\G(A))

as well as the presence of multiplicities in the

discrete spectrum.


