RATIONAL CURVES ON K3 SURFACES

XI CHEN

1. BASICS

1.1. A K3 surface X is a compact Kähler surface which is simply connected and has trivial canonical bundle. A quick computation gives the Hodge numbers:

			1	
	0		0	
1		20		1
	0		0	
		1		

Here $H^{0}(X, \mathbb{Z})=\mathbb{Z}, H^{1}(X, \mathbb{Z})=0$ and $H^{2,0}(X)=H^{0}\left(K_{X}\right)=\mathbb{C}$ follow directly from the definition, while $h^{1,1}(X)=20$ follows from Noether's formula:

$$
\begin{equation*}
\chi_{t o p}(X)=12\left(K_{X}^{2}+\chi\left(\mathcal{O}_{X}\right)\right)=24 \tag{1.2}
\end{equation*}
$$

So $H^{2}(X)=\mathbb{C}^{22}$. A subtle point here is that $H^{2}(X, \mathbb{Z})=\mathbb{Z}^{22}$ is torsion free. This follows from Lefschetz $(1,1)$ theorem and Riemann-Roch.

Proposition 1.1. $H^{2}(X, \mathbb{Z})$ is torsion free for a $K 3$ surface X.
Proof. By Lefschetz $(1,1)$ theorem, every torsion element of $H^{2}(X, \mathbb{Z})$ lies in the image of $\operatorname{Pic}(X) \rightarrow H^{2}(X, \mathbb{Z})$. If $H^{2}(X, \mathbb{Z})$ is not torsion free, there exists a line bundle L such that $L \neq \mathcal{O}_{X}$ and $L^{\otimes m}=\mathcal{O}_{X}$ for some $m>1$. By Riemann-Roch,

$$
\begin{equation*}
h^{0}(L)-h^{1}(L)+h^{0}\left(L^{-1}\right)=2 \tag{1.3}
\end{equation*}
$$

Therefore $h^{0}(L)+h^{0}\left(L^{-1}\right) \geq 2$. So at least one of L and L^{-1} is effective. WLOG, assume that $h^{0}(L)>0$. Let $s \in H^{0}(L)$. Then $s^{m} \in H^{0}\left(\mathcal{O}_{X}\right)$. Consequent, s nowhere vanishes and hence $L=\mathcal{O}_{X}$. Contradiction.

There are (at least) two conclusions we can draw from $h^{1,1}(X)=20$. First, since $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, we see that

Proposition 1.2. $\operatorname{Pic}(X)$ is a lattice of rank at most 20 contained $H^{2}(X, \mathbb{Z})=$ \mathbb{Z}^{22}.

Second, by Serre duality

$$
\begin{equation*}
H^{1,1}(X)=H^{1}\left(\Omega_{X}\right)=H^{1}\left(T_{X}\right)^{\vee}=\mathbb{C}^{20} \tag{1.4}
\end{equation*}
$$

This, along with $H^{2}\left(T_{X}\right)=H^{0}\left(\Omega_{X}\right)^{\vee}=0$, implies that the versal deformation space of X is smooth of dimension 20 . That is, the moduli space of K3
surfaces, if exists, has dimension 20 . In case that X is projective, a general deformation of X is, however, no longer algebraic.
1.2. Examples. The simplest examples of K3 surfaces are complete intersections in \mathbb{P}^{n}. Let $X \subset \mathbb{P}^{n}$ be a complete interesction cut out by hypersurfaces of degrees $d_{1}, d_{2}, \ldots, d_{n-2}$. By weak Lefschetz, $H^{1}(X, \mathbb{Z})=0$. By adjunction,

$$
\begin{equation*}
K_{X}=\mathcal{O}_{X} \Leftrightarrow d_{1}+d_{2}+\ldots+d_{n-2}=n+1 \tag{1.5}
\end{equation*}
$$

We also require that X be nondegerate, i.e., $d_{i} \geq 2$. Therefore, here are all the possibilities:
(1) $X \subset \mathbb{P}^{3}$ a quartic surface;
(2) $X \subset \mathbb{P}^{4}$ a complete intersection of a quadric and a cubic;
(3) $X \subset \mathbb{P}^{5}$ a complete intersection of three quadrics.

Theorem 1.3 (Noether-Lefschetz). For a very general surface $X \subset \mathbb{P}^{3}$ of degree $d \geq 4, \operatorname{Pic}(X) \cong \mathbb{Z}$ is generated by the hyperplane section $\mathcal{O}_{X}(1)$.

A consequence of this theorem is
Corollary 1.4. Let X_{1} and X_{2} be two very general quartic surfaces and let $f: X_{1} \rightarrow X_{2}$ be an isomorphism. Then f is induced by an action of $\mathbb{P} G L(4)$.

Proof. f induces an isomorphism $\operatorname{Pic}\left(X_{2}\right) \rightarrow \operatorname{Pic}\left(X_{1}\right)$. Obviously, $f^{*} \mathcal{O}_{X_{2}}(1)=$ $\mathcal{O}_{X_{1}}(1)$ and it also induces a linear map $\left|\mathcal{O}_{X_{2}}(1)\right| \rightarrow\left|\mathcal{O}_{X_{1}}(1)\right|$. Both $\left|\mathcal{O}_{X_{i}}(1)\right| \cong$ $\left|\mathcal{O}_{\mathbb{P}^{3}}(1)\right|=\mathbb{P}^{3}$. Therefore, f induces an automorphism of \mathbb{P}^{3}, say $\sigma \in$ $\mathbb{P} G L(4)$. In return, it is easy to see that σ induces f.

Now we can compute the dimension of the moduli space of quartic surfaces, if it exists

$$
\begin{equation*}
\operatorname{dim} \mathcal{M}=\operatorname{dim}\left(\left|\mathcal{O}_{\mathbb{P}^{3}}(4)\right| / \sim\right)=\binom{7}{3}-1-\operatorname{dim} \mathbb{P} G L(4)=19 \tag{1.6}
\end{equation*}
$$

Similarly, we can compute the dimension of the space of the complete intersections $X=Q \cap C \subset \mathbb{P}^{4}$ of type $(2,3)$:

$$
\operatorname{dim}\left|\mathcal{O}_{P^{4}}(2)\right|+\operatorname{dim}\left|\mathcal{O}_{P^{4}}(3)\right|-\operatorname{dim}\left|I_{X}(2)\right|-\operatorname{dim}\left|I_{X}(3)\right|
$$

$$
\begin{equation*}
=\binom{6}{4}+\binom{7}{4}-1-(5+1)=43 \tag{1.7}
\end{equation*}
$$

where I_{X} is the ideal sheaf of X and $h^{0}\left(I_{X}(d)\right)$ can be computed via Kozul complex:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{4}}(-5) \rightarrow \mathcal{O}_{\mathbb{P}^{4}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{4}}(-3) \rightarrow I_{X} \rightarrow 0 \tag{1.8}
\end{equation*}
$$

Again we can show that the isomorphism between two very general complete intersections of such type is induced by $\mathbb{P} G L(5)$. Hence the moduli space of $X=Q \cap C$ has dimension $43-24=19$.

Exercise 1.5. Compute the dimension of the moduli space of the complete intersection $X \subset \mathbb{P}^{5}$ of type $(2,2,2)$.

Here is another example. Let $\pi: X \rightarrow \mathbb{P}^{2}$ be the double cover of \mathbb{P}^{2} ramified over a smooth sextic curve $D \subset \mathbb{P}^{2}$. To see that X is a K3 surface, we first prove
Proposition 1.6. Let X_{0} be a smooth hypersurface of $\mathbb{P}^{1} \times \mathbb{P}^{2}$ of type $(2,3)$. Then the projection $X_{0} \rightarrow \mathbb{P}^{2}$ is a double cover ramified along a sextic curve.

By weak Lefschetz and adjunction, X_{0} is a K3 surface. Obviously, every double cover X of \mathbb{P}^{2} ramified along a smooth sextic curve can be deformed to an $X_{0} \subset \mathbb{P}^{1} \times \mathbb{P}^{2}$ of type $(2,3)$. Hence X is a K3 surface.

The dimension of the moduli space of such X is the same as the dimension of the moduli space of sextic curves:

$$
\begin{equation*}
\operatorname{dim}\left|\mathcal{O}_{\mathbb{P}^{2}}(6)\right|-\operatorname{dim} \mathbb{P} G L(3)=27-8=19 \tag{1.9}
\end{equation*}
$$

Let $A=\mathbb{C}^{2} / \Lambda$ be a 2-dimensional complex torus. We have \mathbb{Z}_{2} action on A by sending $(x, y) \rightarrow(-x,-y)$. Let $X=A / \mathbb{Z}_{2}$ and \widetilde{X} be the minimal resolution of X. Then \widetilde{X} is a special K3 surface called Kummer surface.

Proposition 1.7. Let $G=\mathbb{Z}_{2}$ act on $\mathbb{A}_{x y}^{2}$ by sending $(x, y) \rightarrow(-x,-y)$. Then \mathbb{A}^{2} / G is a hypersurface in $\mathbb{A}_{u v w}^{3}$ given by $u v=w^{2}$.
Proof. $\mathbb{A}^{2} / G=\operatorname{Spec} k[x, y]^{G}=\operatorname{Spec} k\left[x^{2}, y^{2}, x y\right]=\operatorname{Spec} k[u, v, w] /(u v-$ $\left.w^{2}\right)$.

The action \mathbb{Z}_{2} on A has sixteen fixed points. Therefore, X has sixteen singularities where X is locally given by $\operatorname{Spec} \mathbb{C}[u, v, w] /\left(u v-w^{2}\right)$, i.e, X has sixteen rational double points.
Proposition 1.8. Let $X=\left(x y=z^{2}\right) \subset Y=\mathbb{A}_{x y z}^{3}$ and let $\pi: \tilde{Y} \rightarrow Y$ be the blowup of Y at the origin p. Let \widetilde{X} be the proper transform of X under π and E_{X} be the exceptional divisor of $\pi: \widetilde{X} \rightarrow X$. Then \widetilde{X} is smooth, E_{X} is a smooth rational curve with $E_{X}^{2}=-2$ on \widetilde{X} and $K_{\tilde{X}}=\pi^{*} K_{X}$.
Proof. $\tilde{Y} \subset \mathbb{A}^{3} \times \mathbb{P}^{2}$ is given by $x / X=y / Y=z / Z$ and \tilde{X} is by

$$
\begin{equation*}
\frac{x}{X}=\frac{y}{Y}=\frac{z}{Z} \text { and } X Y=Z^{2} \tag{1.10}
\end{equation*}
$$

It is straightforward to check that \widetilde{X} is smooth. The exceptional divisor is a smooth conic curve $X Y=Z^{2}$ in \mathbb{P}^{2}. Let E_{Y} be the exceptional divisor of $\tilde{Y} \rightarrow Y$. By
(1.11) $\pi^{*} X=\widetilde{X}+2 E_{Y} \Rightarrow \pi^{*} X \cdot E_{Y}^{2}=\widetilde{X} \cdot E_{Y}^{2}+2 E_{Y}^{3} \Rightarrow \widetilde{X} \cdot E_{Y}^{2}=-2 E_{Y}^{3}$
we see that $E_{X}^{2}=\widetilde{X} \cdot E_{Y}^{2}=-2$. Since

$$
\begin{gather*}
K_{\tilde{Y}}=\pi^{*} K_{Y}+2 E_{Y} \tag{1.12}\\
K_{\tilde{X}}=\left.\left(\pi^{*} K_{Y}+2 E_{Y}+\widetilde{X}\right)\right|_{\tilde{X}}=\left.\pi^{*}\left(K_{Y}+X\right)\right|_{\tilde{X}}=\pi^{*} K_{X} \tag{1.13}
\end{gather*}
$$

So we see that \tilde{X} contains sixteen (-2)-curves. And since $\nu^{*} K_{X}=K_{\tilde{A}}$ and $\pi^{*} K_{X}=K_{\tilde{X}}, K_{\tilde{X}}$ is trivial. By classification of complex surfaces, \widetilde{X} can be either a K3 surface or abelian surface. Since an abelian surface does not contain any rational curves, \widetilde{X} must be a K3 surface.
1.3. Deformation of K3 surfaces. As we pointed out in the examples of K3 surfaces as complete intersections in \mathbb{P}^{n} or double covers of \mathbb{P}^{2}, the corresponding moduli space of K3 surfaces has dimension 19, while the versal deformation of a K3 surface has dimension 20. So where does the extra dimension go? The answer is that a general deformation of a K3 surface is not algebraic; 19 is the dimension of the deformation of a polarized K3. Let us illustrate this using the example of quartic surfaces.

Let $X \subset \mathbb{P}^{3}$ be a smooth quartic surface. We have the exact sequence

$$
\begin{equation*}
\left.0 \rightarrow T_{X} \rightarrow T_{\mathbb{P}^{3}}\right|_{X} \rightarrow N_{X} \rightarrow 0 \tag{1.14}
\end{equation*}
$$

where N_{X} is the normal bundle of X. The induced long exact sequence is

$$
\begin{equation*}
H^{0}\left(N_{X}\right) \rightarrow H^{1}\left(T_{X}\right) \xrightarrow{\beta} H^{1}\left(\left.T_{\mathbb{P}^{3}}\right|_{X}\right) \tag{1.15}
\end{equation*}
$$

By Euler sequence

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(1)^{\oplus 4} \rightarrow T_{\mathbb{P}^{3}}\right|_{X} \rightarrow 0 \tag{1.16}
\end{equation*}
$$

we see that $H^{1}\left(\left.T_{\mathbb{P}^{3}}\right|_{X}\right) \cong H^{2}\left(\mathcal{O}_{X}\right)=\mathbb{C}$. Consider the dual map β^{\vee} of β :

Since $H^{1}\left(\left.\Omega_{\mathbb{P}^{3}}\right|_{X}\right)=H^{1}\left(\Omega_{\mathbb{P}^{3}}\right)=\mathbb{C}$ is generated by $c_{1}(L)$,

$$
\begin{equation*}
\operatorname{Im} \beta^{\vee}=\left\{\lambda c_{1}(L): \lambda \in \mathbb{C}\right\} \tag{1.18}
\end{equation*}
$$

where L is the hyperplane bundle. Consequently,

$$
\begin{align*}
\operatorname{Im}\left(H^{0}\left(N_{X}\right) \rightarrow H^{1}\left(T_{X}\right)\right) & =\operatorname{ker} \beta \\
& =\left\{\varepsilon \in H^{1}\left(T_{X}\right):\left\langle\varepsilon, c_{1}(L)\right\rangle=0\right\}=c_{1}(L)^{\perp} \tag{1.19}
\end{align*}
$$

By deformation theory, $H^{0}\left(N_{X}\right)$ classifies embedded deformations of $X \subset \mathbb{P}^{3}$ and $H^{1}\left(T_{X}\right)$ classifies the deformations of X as a complex manifold. So the image $\operatorname{Im}\left(H^{0}\left(N_{X}\right) \rightarrow H^{1}\left(T_{X}\right)\right)$ classifies the deformations of the pair (X, L), i.e., a polarized K3 surface. The above argument actually applies to any polarized K3 surface, not only quartic surfaces. Therefore, the versal deformation space of a polarized K 3 surface (X, L) is a hyperplane in $H^{1}\left(T_{X}\right)$ that is perpendicular to $c_{1}(L)$.

The above technique can be generalized to prove the following:
Proposition 1.9. Let X / Δ be a family of smooth projective surfaces over disk Δ with central fiber $S=X_{0}$ and let $D \subset S$ be an effective divisor on S. Suppose that D can be extended to X, i.e., there exists a flat family Y / Δ with the commutative diagram

such that Y_{0} embeds into X_{0} with image D. For each $w \in H^{0}\left(K_{S}\right)$, let μ_{w} be the map

$$
\begin{equation*}
\mu_{w}: H^{1}\left(\Omega_{S}\right) \xrightarrow{\otimes w} H^{1}\left(\Omega_{S}\left(K_{S}\right)\right) \tag{1.21}
\end{equation*}
$$

where K_{S} is the canonical class of S. Then the Kodaira-Spencer class $\mathrm{ks}(\partial / \partial t) \in H^{1}\left(T_{S}\right)$ of X lies in the subspace

$$
\begin{equation*}
\left\{v \in H^{1}\left(T_{S}\right):\left\langle v, \mu_{w}\left(c_{1}(D)\right)\right\rangle=0 \text { for all } w \in H^{0}\left(K_{S}\right)\right\} \tag{1.22}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the pairing $H^{1}\left(T_{S}\right) \times H^{1}\left(\Omega_{S}\left(K_{S}\right)\right) \rightarrow \mathbb{C}$ given by Serre duality.
Using the above proposition, we can give a proof of Noether-Lefschetz for quartic surfaces.

Let $M=\left|\mathcal{O}_{\mathbb{P}^{3}}(4)\right|$ and $S=\{(p, X): p \in X\} \subset \mathbb{P}^{3} \times M$. Let $\mathcal{L}=\pi_{1}^{*} L$ be the pullback of the hyperplane bundle of \mathbb{P}^{3}. If for a very general X, there is a line bundle $D \in \operatorname{Pic}(X)$ such that D is not a multiple of L, then after a possible base change of M, there exists a line bundle \mathcal{D} on S such that \mathcal{D}_{X} is not a multiple of \mathcal{L}_{X} when restricted to a very general point $[X] \in M$. Then by the above proposition, the image of

$$
\begin{equation*}
T_{M,[X]} \xrightarrow{\mathrm{ks}} H^{0}\left(N_{X}\right) \rightarrow H^{1}\left(T_{X}\right) \tag{1.23}
\end{equation*}
$$

is contained in $c_{1}(D)^{\perp}$. Also $\operatorname{Im}\left(H^{0}\left(N_{X}\right) \rightarrow H^{1}\left(T_{X}\right)\right)$ is $c_{1}(L)^{\perp}$ and ks is obviously surjective. Therefore, we necessarily have

$$
\begin{equation*}
c_{1}(L)^{\perp}=c_{1}(D)^{\perp} \tag{1.24}
\end{equation*}
$$

That is, $c_{1}(L)$ and $c_{1}(D)$ are linearly dependent over \mathbb{Q}. Therefore, $\operatorname{Pic}(X)=$ \mathbb{Z}. Let J be a generator of $\operatorname{Pic}(X)$. Then $L=m J$ for some $m \in \mathbb{Z}$. WLOG, assume that $m>0$. Since $L^{2}=4, m=1$ or $m=2$. We are done if $m=1$. If $m=2, J^{2}=1$ and $(K+J) J=1$. This is impossible by Riemann-Roch.

Exercise 1.10. Let M be the moduli space of the tuple $\left(X, L_{1}, L_{2}, \ldots, L_{m}\right)$, where X is a K3 surface, $\left\{L_{k}\right\}$ are m linearly independent line bundles on X and L_{1} is ample. Then $\operatorname{dim} M \leq 20-m$.

So far we reach the conclusion that the moduli space of polarized K3 surfaces (X, L) has dimension at most 19. Then how many components does this moduli space have?

We call a polarized K 3 surface (X, L) a primitive K 3 surface if there does not exist $D \in \operatorname{Pic}(X)$ and $m>1$ such that $L=m D$ and in this case, we say L is a primitive line bundle over X. Let $C \in|L|$. Then $2 p_{a}(C)-2=L^{2}$. This number $g=p_{a}(C)$ is called the genus of X. By a K3 surface of genus g, we mean a polarized K 3 surface (X, L) with a primitive line bundle L and $L^{2}=2 g-2$.

Theorem 1.11. For each $g \geq 2$, there exists a moduli space \mathcal{M}_{g} parameterizing genus g K3 surfaces; \mathcal{M}_{g} is quasi-projective, smooth and irreducible of dimension 19.

Genus 2 K 3 surfaces are double covers of \mathbb{P}^{2} ramified along a smooth sextic curves. Genus 3 K 3 surfaces are quartic surfaces in \mathbb{P}^{3}. Genus 4 K 3 surfaces are complete intersections in \mathbb{P}^{4} of type $(2,3)$. Genus 5 K 3 surfaces are complete intersections in \mathbb{P}^{5} of type $(2,2,2)$. Here I will give an elementary proof of existence of $K 3$ of any genus g.

Proposition 1.12. For every $g \geq 2$, there exists a $K 3$ surface X of genus g and $\operatorname{Pic}(X)=\mathbb{Z}$.

Proof. Let X be a smooth surface in $\mathbb{P}^{1} \times \mathbb{P}^{2}$ of type $(2,3)$. We embed $X \hookrightarrow \mathbb{P}^{3 k+2}$ by the very ample linear series $\left|\pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k) \otimes \pi_{2}^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right|$ with $k>0$. In the exact sequence

$$
\begin{equation*}
H^{1}\left(T_{X}\right) \rightarrow H^{1}\left(\left.T_{\mathbb{P}^{g}}\right|_{X}\right) \rightarrow H^{1}\left(N_{X}\right) \rightarrow H^{2}\left(T_{X}\right) \tag{1.25}
\end{equation*}
$$

we have already seen that $H^{1}\left(T_{X}\right) \rightarrow H^{1}\left(\left.T_{\mathbb{P}^{g}}\right|_{X}\right)$ is surjective, where $g=$ $3 k+2$. And since $H^{2}\left(T_{X}\right)=0, H^{2}\left(N_{X}\right)=0$ and the embedded deformations of $X \subset \mathbb{P}^{g}$ are unobstructed. Therefore, there exists a flat family $Y \subset$ $\mathbb{P}^{g} \times \Delta^{m}$ such that $Y_{0}=X \subset \mathbb{P}^{g}$ and the Kodaira-Spencer map $T_{\Delta^{m}, 0} \rightarrow$ $H^{0}\left(N_{X}\right)$ is an isomorphism. We have proved that $\operatorname{Im}\left(H^{0}\left(N_{X}\right) \rightarrow H^{1}\left(T_{X}\right)\right)$ is $c_{1}(L)^{\perp}$, where $L=\pi_{1}^{*} \mathcal{O}_{\mathbb{P}^{1}}(k) \otimes \pi_{2}^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)$. For a general fiber Y_{t} of $Y \rightarrow \Delta^{m}$, $\operatorname{Pic}\left(Y_{t}\right)=\mathbb{Z}$ is generated by L.

So this proves the proposition when $g=3 k+2$. For $g=3 k, 3 k+1$, see the following exercise.

Exercise 1.13. Let $E=\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(1)$ be a rank three vector bundle over \mathbb{P}^{1} and $Y=\mathbb{P} E$. Let $X \in\left|-K_{Y}\right|$ be a smooth anti-canonical surface in $\mathbb{P} E$. Show that the complete linear series $\left|\mathcal{O}_{\mathbb{P} E}(1) \otimes \pi^{*} \mathcal{O}_{\mathbb{P}^{1}}(k)\right|(k \geq 1)$ embeds X into $\mathbb{P}^{3 k}$.

Change E to $E=\mathcal{O} \oplus \mathcal{O}(1) \oplus \mathcal{O}(1)$ and do the same thing.

2. Rational curves on K3

2.1. Existence. First of all, we have

Proposition 2.1. There are at most countably many rational curves on a K3 surface X.

Proof. Otherwise, X is covered by rational curves, i.e., X is uniruled. There exists a dominant rational map $\mathbb{P}^{1} \times \Gamma \rightarrow X$, where Γ is a smooth projective curve. This rational map can resolved by a sequence of blowups. Let f : $Y \rightarrow \mathbb{P}^{1} \times \Gamma \rightarrow X$ be such a resolution. So Y is a fiberation over Γ whose general fibers are \mathbb{P}^{1}. Since f is surjective, we have the injection

$$
\begin{equation*}
f^{*}: H^{0}\left(K_{X}\right) \hookrightarrow H^{0}\left(K_{Y}\right) \tag{2.1}
\end{equation*}
$$

So K_{Y} is effective since K_{X} is. Let $Y_{p}=C$ be a general fiber of $Y \rightarrow \Gamma$. Then

$$
\begin{equation*}
\left.K_{Y}\right|_{C}=K_{C}=-2 \tag{2.2}
\end{equation*}
$$

Yet $\left.K_{Y}\right|_{C}=K_{Y} \cdot C \geq 0$ since K_{Y} is effective. Contradiction.
Exercise 2.2. Let X be a smooth projective variety satisfying that $m K_{X}$ is effective for some $m>0$. Show that X is not uniruled.

Yet the existence of rational curves are more subtle. The existence of rational curves on K3 surfaces was established by S. Mori and S. Mukai. I made it more precise:

Theorem 2.3 (Chen). For any integers $n \geq 3$ and $d>0$, the linear system $\left|\mathcal{O}_{S}(d)\right|$ on a general K3 surface S in \mathbb{P}^{n} contains an irreducible nodal rational curve.

The idea for the proof is to degenerate a K3 surface to a union of rational surfaces. It is best illustrated by quartic surfaces.

Let us consider $X_{0}=Q_{1} \cup Q_{2} \subset \mathbb{P}^{3}$ be a union of two quadrics. This is a "special" quartic surface and any smooth quartics can be degenerated to it. It is a common knowledge that $Q_{i} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ is embedded into \mathbb{P}^{3} by $\left|H_{1}+H_{2}\right|$, where H_{i} are two rulings of Q_{i}. Let $E=Q_{1} \cap Q_{2}$. Then E is an elliptic curve in the linear series $\left|2 H_{1}+2 H_{2}\right|$. In addition we have

$$
\begin{equation*}
\left.\mathcal{O}_{Q_{1}}\left(H_{1}+H_{2}\right)\right|_{E}=\left.\mathcal{O}_{Q_{2}}\left(H_{1}+H_{2}\right)\right|_{E} \tag{2.3}
\end{equation*}
$$

Let $X \subset \mathbb{P}^{3} \times \Delta$ be a pencil of quartics whose central fiber is X_{0}. So the defining equation of X looks like

$$
\begin{equation*}
F_{Q_{1}} F_{Q_{2}}+t F=0 \tag{2.4}
\end{equation*}
$$

where $F_{Q_{i}}$ are the defining equations of Q_{i}. We choose X to be general enough. The idea is to find a curve $Y_{0} \in\left|\mathcal{O}_{X_{0}}(d)\right|$ and show that Y_{0} can be deformed to a nodal rational curve $Y_{t} \in\left|\mathcal{O}_{X_{t}}(d)\right|$.

For example, let us work out the case $d=1$. Obviously, there exists $r \in E$ such that

$$
\begin{equation*}
\mathcal{O}_{E}\left(H_{1}+H_{2}\right)=\mathcal{O}_{E}(4 r) \tag{2.5}
\end{equation*}
$$

Actually there are exactly 16 such points. There exists a unique curve $C_{i} \in\left|\mathcal{O}_{Q_{i}}\left(H_{1}+H_{2}\right)\right|$ such that $C_{i} \cdot E=4 r$. This is due to the fact

$$
\begin{equation*}
H^{0}\left(\mathcal{O}_{Q_{i}}\left(H_{1}+H_{2}\right)\right)=H^{0}\left(\mathcal{O}_{E}\left(H_{1}+H_{2}\right)\right) \tag{2.6}
\end{equation*}
$$

Also for E general, C_{i} is irreducible and smooth.

Let $U^{d, \delta}(S)$ be the subset of $\left|\mathcal{O}_{S}(d)\right|$ consisting of irreducible nodal curves with δ nodes on a quartic surface S. Let

$$
\begin{equation*}
W_{d, \delta}=\bigcup_{t \neq 0} U^{d, \delta}\left(X_{t}\right) \subset\left|\mathcal{O}_{X}(d)\right| \tag{2.7}
\end{equation*}
$$

and let $\bar{W}_{d, \delta}$ be the closure of $W_{d, \delta}$ in $\left|\mathcal{O}_{X}(d)\right|$
A theorem of Caporaso-Harris-Ran shows that
Proposition 2.4. The following are true:
(1) $\left[C_{1} \cup C_{2}\right] \in \bar{W}_{1,3}$;
(2) $\bar{W}_{1,3}$ has an ordinary singularity of multiplicity 4 at $\left[C_{1} \cup C_{2}\right]$;
(3) for any open neighborhood O_{r} of $r \in \mathbb{P}^{3}$, there exists an open neighborhood $V_{\left[C_{1} \cup C_{2}\right]}$ of $\left[C_{1} \cup C_{2}\right] \in \bar{W}_{1,3}$ such that for any $[C] \in V_{\left[C_{1} \cup C_{2}\right]}$, the nodes of C lies in O_{r}.

From the above proposition, we see that $U^{1,3}\left(X_{t}\right)$ is nonempty for $t \neq 0$. So there exists an irreducible curve Y_{t} with 3 nodes in $\left|\mathcal{O}_{X_{t}}(1)\right|$. This curve Y_{t} is obviously a rational curve.

For $d \geq 2$, a slight different construction is needed but the basic idea is the same. For example, let us work out the case $d=2$.

The threefold X has sixteen rational double points lying on E. Let p be one of them. We let $Y_{0}=C_{11} \cup C_{12} \cup C_{21} \cup C_{22}$ with
(1) $C_{i 1} \in\left|\mathcal{O}_{Q_{i}}\left(H_{1}\right)\right|$ and $C_{i 2} \in\left|\mathcal{O}_{Q_{i}}\left(H_{1}+2 H_{2}\right)\right|$;
(2) $C_{i 1} \cdot E=p+q_{i}$ and $C_{i 2} \cdot E=q_{3-i}+5 r$
where q_{1}, q_{2}, r are determined by p up to 25 different choices.
Again we can show there is a flat family $Y \subset X$ of nodal curves after a base change such that $Y_{t} \in\left|\mathcal{O}_{X_{t}}(2)\right|$ has 9 nodes, with 4 of them approaching $r, 1$ of them approaching $p, 2$ of them approaching $C_{11} \cap C_{12}$ and 2 of them approaching $C_{21} \cap C_{22}$ as $t \rightarrow 0$. Obviously, Y_{t} is a rational curve. For details, please see [C1].
2.2. Counting rational curves. The next natural question following the existence problem is how many irreducible rational curves there are in $|\mathcal{O}(d)|$ on a general K3 surface in \mathbb{P}^{n}. The number for $d=1$ has been successfully calculated in [Y-Z]. They give the following remarkable formula

$$
\begin{equation*}
\sum_{g=1}^{\infty} n(g) q^{g}=\frac{q}{\Delta(q)} \tag{2.8}
\end{equation*}
$$

where $\Delta(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}$ is the well-known modular form of weight 12 and $n(g)$ is the nominated number of rational curves in $|\mathcal{O}(1)|$ on a general K3 surface in \mathbb{P}^{g} for $g \geq 3$. More precisely, $n(g)$ is the sum of the Euler characteristics of the compactified Jacobians of all rational curves in $|\mathcal{O}(1)|$. Since the compactified Jacobian of a rational curve with singularities other than nodes is not very well understood, we only know this sum equals the
number of rational curves in $|\mathcal{O}(1)|$ on a K3 surface in the case that all these rational curves are nodal.

Later J. Bryan and N.C. Leung redid and generalized Yau-Zaslow's counting via a different approach. Basically, they used a degeneration argument by degenerating a general K3 surface to a K3 surface S of Picard lattice

$$
\left(\begin{array}{cc}
-2 & 1 \tag{2.9}\\
1 & 0
\end{array}\right)
$$

Let C and F be the generators of $\operatorname{Pic}(S)$ with $C^{2}=-2, C \cdot F=1$ and $F^{2}=0$. We also assume that F is effective.

The good thing about S is that $(S, C+g F)$ is a K3 surface of genus g and every member of the linear series $|C+g F|$.
Exercise 2.5. Show that $h^{0}(C)=1, h^{0}(F)=2$ and the map $\pi: S \rightarrow \mathbb{P}^{1}$ given by $|F|$ realizes S as an elliptic fiberation. For S general, there are exactly 24 singular fibers of π.
Exercise 2.6. Show that every curve in $D \in|C+g F|$ is a union $C \cup F_{1} \cup \ldots \cup F_{g}$ with $F_{i} \in|F|$.

Using this degeneration, I proved the following theorem:
Theorem 2.7. All rational curves in the primitive class of a general K3 surface of genus $g \geq 2$ are nodal.

This justifies the number obtained by Yau-Zaslow is the number of rational curves.
Question 2.8. Compute the number of rational curves in $\left|\mathcal{O}_{S}(d)\right|$.
2.3. Hodge-D-Conjecture. As another application of rational curves on K3, J. Lewis and I proved the following theorem, originally a conjecture of Beilinson:

Theorem 2.9 (Chen, Lewis). Hodge-D conjecture holds for a general K3 surface X (general under the real analytic topology). That is, the regulator map

$$
\begin{equation*}
r_{2,1}: \mathrm{CH}^{2,1}(X) \rightarrow H^{1,1}(X, \mathbb{R}) \tag{2.10}
\end{equation*}
$$

is surjective.
Here the rational curves are used to construct nontrivial classes in $\mathrm{CH}^{2,1}(X)$. By definition,

$$
\mathrm{CH}^{k}(X, 1)=\frac{\left\{\sum_{j}\left(f_{j}, Z_{j}\right): \begin{array}{c}
\operatorname{cd}_{X} Z_{j}=k-1, f_{j} \in \mathbb{C}\left(Z_{j}\right)^{\times} \tag{2.11}\\
\sum_{j} \operatorname{div}\left(f_{j}\right)=0
\end{array}\right\}}{\text { Image(Tame symbol) }}
$$

Choose two rational curves C_{1} and $C_{2} \subset X$. Suppose that there are two points $p, q \in C_{1} \cap C_{2}$. Then there exists two rational functions f_{1} and f_{2} on C_{1} and C_{2}, respectively, such that $\left(f_{1}\right)=p-q$ and $\left(f_{2}\right)=q-p$. Then $\left(f_{1}, C_{1}\right)+\left(f_{2}, C_{2}\right)$ is a class in $\mathrm{CH}^{2,1}(X)$.

References

[B-L] J. Bryan and N.C. Leung, The Enumerative Geometry of K3 surfaces and Modular Forms, J. Amer. Math. Soc. 13 (2000), no. 2, 371-410. Also preprint alggeom/9711031.
[C1] X. Chen, Rational Curves on K3 Surfaces, J. Alg. Geom. 8 (1999), 245-278. Also preprint math.AG/9804075.
[C2] X. Chen, Singularities of Rational Curves on K3 Surfaces, preprint math.AG/9812050 (1998).
[C3] X. Chen, A simple proof that rational curves on K3 are nodal, Math. Ann. $\mathbf{3 2 4}$ (2002), no. 1, 71-104. Also preprint math.AG/0011190.
[CL1] X. Chen and J. Lewis, Noether-Lefschetz For K_{1} of a Certain Class of Surfaces, Bol. Soc. Mat. Mexicana (3) Vol. 10, Special issue, 2004. Also preprint math.AG/0212315.
[CL2] X. Chen and J. Lewis, The Hodge-D-Conjecture For K3 and Abelian Surfaces, preprint math.AG/0212314, submitted.
[CLM] C. Ciliberto, A. Lopez and R. Miranda, Projective Degenerations of K3 Surfaces, Guassian Maps, and Fano Threefolds, Invent. Math. 114, 641-667 (1993). Also: alggeom/9311002.
[GH1] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
[GH2] P. Griffith and J. Harris, On the Noether-Lefschetz Theorem and Some Remarks on Codimension-two Cycles, Math. Ann. 271 (1985), 31-51.
[H-M] J. Harris and I. Morrison, Moduli of Curves, Springer-Verlag, 1998.
[Ha] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[M-M] S. Mori and S. Mukai, The Unirulesness of the Moduli Space of Curves of Genus 11, Lecture Notes in Mathematics, vol. 1016 (1982), 334-353.
[Y-Z] S.T. Yau and E. Zaslow, BPS States, String Duality, and Nodal Curves on K3, Nuclear Physics B 471(3), (1996) 503-512. Also preprint hep-th/9512121.

632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA

E-mail address: xichen@math.ualberta.ca

