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RATIONAL CURVES ON K3 SURFACES

XI CHEN

1. Basics

1.1. A K3 surface X is a compact Kähler surface which is simply connected
and has trivial canonical bundle. A quick computation gives the Hodge
numbers:

(1.1)

1
0 0

1 20 1
0 0

1

Here H0(X, Z) = Z, H1(X, Z) = 0 and H2,0(X) = H0(KX) = C follow
directly from the definition, while h1,1(X) = 20 follows from Noether’s for-
mula:

(1.2) χtop(X) = 12(K2
X + χ(OX)) = 24

So H2(X) = C22. A subtle point here is that H2(X, Z) = Z22 is torsion free.
This follows from Lefschetz (1, 1) theorem and Riemann-Roch.

Proposition 1.1. H2(X, Z) is torsion free for a K3 surface X.

Proof. By Lefschetz (1, 1) theorem, every torsion element of H2(X, Z) lies
in the image of Pic(X) → H2(X, Z). If H2(X, Z) is not torsion free, there
exists a line bundle L such that L 6= OX and L⊗m = OX for some m > 1.
By Riemann-Roch,

(1.3) h0(L)− h1(L) + h0(L−1) = 2

Therefore h0(L) + h0(L−1) ≥ 2. So at least one of L and L−1 is effective.
WLOG, assume that h0(L) > 0. Let s ∈ H0(L). Then sm ∈ H0(OX).
Consequent, s nowhere vanishes and hence L = OX . Contradiction. �

There are (at least) two conclusions we can draw from h1,1(X) = 20.
First, since H1(X,OX) = 0, we see that

Proposition 1.2. Pic(X) is a lattice of rank at most 20 contained H2(X, Z) =
Z22.

Second, by Serre duality

(1.4) H1,1(X) = H1(ΩX) = H1(TX)∨ = C20

This, along with H2(TX) = H0(ΩX)∨ = 0, implies that the versal deforma-
tion space of X is smooth of dimension 20. That is, the moduli space of K3
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surfaces, if exists, has dimension 20. In case that X is projective, a general
deformation of X is, however, no longer algebraic.

1.2. Examples. The simplest examples of K3 surfaces are complete inter-
sections in Pn. Let X ⊂ Pn be a complete interesction cut out by hyper-
surfaces of degrees d1, d2, ..., dn−2. By weak Lefschetz, H1(X, Z) = 0. By
adjunction,

(1.5) KX = OX ⇔ d1 + d2 + ... + dn−2 = n + 1

We also require that X be nondegerate, i.e., di ≥ 2. Therefore, here are all
the possibilities:

(1) X ⊂ P3 a quartic surface;
(2) X ⊂ P4 a complete intersection of a quadric and a cubic;
(3) X ⊂ P5 a complete intersection of three quadrics.

Theorem 1.3 (Noether-Lefschetz). For a very general surface X ⊂ P3 of
degree d ≥ 4, Pic(X) ∼= Z is generated by the hyperplane section OX(1).

A consequence of this theorem is

Corollary 1.4. Let X1 and X2 be two very general quartic surfaces and
let f : X1 → X2 be an isomorphism. Then f is induced by an action of
PGL(4).

Proof. f induces an isomorphism Pic(X2) → Pic(X1). Obviously, f∗OX2(1) =
OX1(1) and it also induces a linear map |OX2(1)| → |OX1(1)|. Both |OXi(1)| ∼=
|OP3(1)| = P3. Therefore, f induces an automorphism of P3, say σ ∈
PGL(4). In return, it is easy to see that σ induces f . �

Now we can compute the dimension of the moduli space of quartic sur-
faces, if it exists

(1.6) dimM = dim(|OP3(4)|/ ∼) =
(

7
3

)
− 1− dim PGL(4) = 19

Similarly, we can compute the dimension of the space of the complete
intersections X = Q ∩ C ⊂ P4 of type (2, 3):

dim |OP 4(2)|+ dim |OP 4(3)| − dim |IX(2)| − dim |IX(3)|

=
(

6
4

)
+

(
7
4

)
− 1− (5 + 1) = 43

(1.7)

where IX is the ideal sheaf of X and h0(IX(d)) can be computed via Kozul
complex:

(1.8) 0 → OP4(−5) → OP4(−2)⊕OP4(−3) → IX → 0

Again we can show that the isomorphism between two very general com-
plete intersections of such type is induced by PGL(5). Hence the moduli
space of X = Q ∩ C has dimension 43− 24 = 19.
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Exercise 1.5. Compute the dimension of the moduli space of the complete
intersection X ⊂ P5 of type (2, 2, 2).

Here is another example. Let π : X → P2 be the double cover of P2

ramified over a smooth sextic curve D ⊂ P2. To see that X is a K3 surface,
we first prove

Proposition 1.6. Let X0 be a smooth hypersurface of P1×P2 of type (2, 3).
Then the projection X0 → P2 is a double cover ramified along a sextic curve.

By weak Lefschetz and adjunction, X0 is a K3 surface. Obviously, every
double cover X of P2 ramified along a smooth sextic curve can be deformed
to an X0 ⊂ P1 × P2 of type (2, 3). Hence X is a K3 surface.

The dimension of the moduli space of such X is the same as the dimension
of the moduli space of sextic curves:

(1.9) dim |OP2(6)| − dim PGL(3) = 27− 8 = 19.

Let A = C2/Λ be a 2-dimensional complex torus. We have Z2 action on
A by sending (x, y) → (−x,−y). Let X = A/Z2 and X̃ be the minimal
resolution of X. Then X̃ is a special K3 surface called Kummer surface.

Proposition 1.7. Let G = Z2 act on A2
xy by sending (x, y) → (−x,−y).

Then A2/G is a hypersurface in A3
uvw given by uv = w2.

Proof. A2/G = Spec k[x, y]G = Spec k[x2, y2, xy] = Spec k[u, v, w]/(uv −
w2). �

The action Z2 on A has sixteen fixed points. Therefore, X has sixteen
singularities where X is locally given by Spec C[u, v, w]/(uv − w2), i.e, X
has sixteen rational double points.

Proposition 1.8. Let X = (xy = z2) ⊂ Y = A3
xyz and let π : Ỹ → Y be

the blowup of Y at the origin p. Let X̃ be the proper transform of X under
π and EX be the exceptional divisor of π : X̃ → X. Then X̃ is smooth, EX

is a smooth rational curve with E2
X = −2 on X̃ and K

X̃
= π∗KX .

Proof. Ỹ ⊂ A3 × P2 is given by x/X = y/Y = z/Z and X̃ is by

(1.10)
x

X
=

y

Y
=

z

Z
and XY = Z2

It is straightforward to check that X̃ is smooth. The exceptional divisor is
a smooth conic curve XY = Z2 in P2. Let EY be the exceptional divisor of
Ỹ → Y . By

(1.11) π∗X = X̃ + 2EY ⇒ π∗X · E2
Y = X̃ · E2

Y + 2E3
Y ⇒ X̃ · E2

Y = −2E3
Y

we see that E2
X = X̃ · E2

Y = −2. Since

(1.12) K
Ỹ

= π∗KY + 2EY ,

(1.13) K
X̃

= (π∗KY + 2EY + X̃)|
X̃

= π∗(KY + X)|
X̃

= π∗KX
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�

So we see that X̃ contains sixteen (−2)-curves. And since ν∗KX = KA

and π∗KX = K
X̃

, K
X̃

is trivial. By classification of complex surfaces, X̃
can be either a K3 surface or abelian surface. Since an abelian surface does
not contain any rational curves, X̃ must be a K3 surface.

1.3. Deformation of K3 surfaces. As we pointed out in the examples
of K3 surfaces as complete intersections in Pn or double covers of P2, the
corresponding moduli space of K3 surfaces has dimension 19, while the versal
deformation of a K3 surface has dimension 20. So where does the extra
dimension go? The answer is that a general deformation of a K3 surface is
not algebraic; 19 is the dimension of the deformation of a polarized K3. Let
us illustrate this using the example of quartic surfaces.

Let X ⊂ P3 be a smooth quartic surface. We have the exact sequence

(1.14) 0 → TX → TP3 |X → NX → 0

where NX is the normal bundle of X. The induced long exact sequence is

(1.15) H0(NX) −→ H1(TX)
β−→ H1(TP3 |X)

By Euler sequence

(1.16) 0 → OX → OX(1)⊕4 → TP3 |X → 0

we see that H1(TP3 |X) ∼= H2(OX) = C. Consider the dual map β∨ of β:

(1.17) H1(TX)

×

β // H1(TP3 |X)

×

H1(ΩX)

��

H1(ΩP3 |X)
β∨oo

��
C C

Since H1(ΩP3 |X) = H1(ΩP3) = C is generated by c1(L),

(1.18) Im β∨ = {λc1(L) : λ ∈ C}
where L is the hyperplane bundle. Consequently,

Im(H0(NX) → H1(TX)) = kerβ

= {ε ∈ H1(TX) : 〈ε, c1(L)〉 = 0} = c1(L)⊥
(1.19)

By deformation theory, H0(NX) classifies embedded deformations of X ⊂ P3

and H1(TX) classifies the deformations of X as a complex manifold. So
the image Im(H0(NX) → H1(TX)) classifies the deformations of the pair
(X, L), i.e., a polarized K3 surface. The above argument actually applies to
any polarized K3 surface, not only quartic surfaces. Therefore, the versal
deformation space of a polarized K3 surface (X, L) is a hyperplane in H1(TX)
that is perpendicular to c1(L).
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The above technique can be generalized to prove the following:

Proposition 1.9. Let X/∆ be a family of smooth projective surfaces over
disk ∆ with central fiber S = X0 and let D ⊂ S be an effective divisor on
S. Suppose that D can be extended to X, i.e., there exists a flat family Y/∆
with the commutative diagram

(1.20) Y
π //

��

X

��
∆ // ∆

such that Y0 embeds into X0 with image D. For each w ∈ H0(KS), let µw

be the map

(1.21) µw : H1(ΩS) ⊗w−−→ H1(ΩS(KS))

where KS is the canonical class of S. Then the Kodaira-Spencer class
ks(∂/∂t) ∈ H1(TS) of X lies in the subspace

(1.22) {v ∈ H1(TS) : 〈v, µw(c1(D))〉 = 0 for all w ∈ H0(KS)}
where 〈·, ·〉 is the pairing H1(TS)×H1(ΩS(KS)) → C given by Serre duality.

Using the above proposition, we can give a proof of Noether-Lefschetz for
quartic surfaces.

Let M = |OP3(4)| and S = {(p, X) : p ∈ X} ⊂ P3 ×M . Let L = π∗1L be
the pullback of the hyperplane bundle of P3. If for a very general X, there
is a line bundle D ∈ Pic(X) such that D is not a multiple of L, then after a
possible base change of M , there exists a line bundle D on S such that DX

is not a multiple of LX when restricted to a very general point [X] ∈ M .
Then by the above proposition, the image of

(1.23) TM,[X]
ks−→ H0(NX) −→ H1(TX)

is contained in c1(D)⊥. Also Im(H0(NX) → H1(TX)) is c1(L)⊥ and ks is
obviously surjective. Therefore, we necessarily have

(1.24) c1(L)⊥ = c1(D)⊥

That is, c1(L) and c1(D) are linearly dependent over Q. Therefore, Pic(X) =
Z. Let J be a generator of Pic(X). Then L = mJ for some m ∈ Z. WLOG,
assume that m > 0. Since L2 = 4, m = 1 or m = 2. We are done if m = 1.
If m = 2, J2 = 1 and (K + J)J = 1. This is impossible by Riemann-Roch.

Exercise 1.10. Let M be the moduli space of the tuple (X, L1, L2, ..., Lm),
where X is a K3 surface, {Lk} are m linearly independent line bundles on
X and L1 is ample. Then dim M ≤ 20−m.

So far we reach the conclusion that the moduli space of polarized K3
surfaces (X, L) has dimension at most 19. Then how many components
does this moduli space have?
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We call a polarized K3 surface (X, L) a primitive K3 surface if there does
not exist D ∈ Pic(X) and m > 1 such that L = mD and in this case, we say
L is a primitive line bundle over X. Let C ∈ |L|. Then 2pa(C) − 2 = L2.
This number g = pa(C) is called the genus of X. By a K3 surface of genus
g, we mean a polarized K3 surface (X, L) with a primitive line bundle L and
L2 = 2g − 2.

Theorem 1.11. For each g ≥ 2, there exists a moduli space Mg parame-
terizing genus g K3 surfaces; Mg is quasi-projective, smooth and irreducible
of dimension 19.

Genus 2 K3 surfaces are double covers of P2 ramified along a smooth sextic
curves. Genus 3 K3 surfaces are quartic surfaces in P3. Genus 4 K3 surfaces
are complete intersections in P4 of type (2, 3). Genus 5 K3 surfaces are
complete intersections in P5 of type (2, 2, 2). Here I will give an elementary
proof of existence of K3 of any genus g.

Proposition 1.12. For every g ≥ 2, there exists a K3 surface X of genus
g and Pic(X) = Z.

Proof. Let X be a smooth surface in P1 × P2 of type (2, 3). We embed
X ↪→ P3k+2 by the very ample linear series |π∗1OP1(k)⊗π∗2OP2(1)| with
k > 0. In the exact sequence

(1.25) H1(TX) → H1(TPg |X) → H1(NX) → H2(TX)

we have already seen that H1(TX) → H1(TPg |X) is surjective, where g =
3k+2. And since H2(TX) = 0, H2(NX) = 0 and the embedded deformations
of X ⊂ Pg are unobstructed. Therefore, there exists a flat family Y ⊂
Pg × ∆m such that Y0 = X ⊂ Pg and the Kodaira-Spencer map T∆m,0 →
H0(NX) is an isomorphism. We have proved that Im(H0(NX) → H1(TX)) is
c1(L)⊥, where L = π∗1OP1(k)⊗π∗2OP2(1). For a general fiber Yt of Y → ∆m,
Pic(Yt) = Z is generated by L.

So this proves the proposition when g = 3k + 2. For g = 3k, 3k + 1, see
the following exercise. �

Exercise 1.13. Let E = O⊕O⊕O(1) be a rank three vector bundle over P1

and Y = PE. Let X ∈ | −KY | be a smooth anti-canonical surface in PE.
Show that the complete linear series |OPE(1)⊗π∗OP1(k)| (k ≥ 1) embeds
X into P3k.

Change E to E = O ⊕O(1)⊕O(1) and do the same thing.

2. Rational curves on K3

2.1. Existence. First of all, we have

Proposition 2.1. There are at most countably many rational curves on a
K3 surface X.
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Proof. Otherwise, X is covered by rational curves, i.e., X is uniruled. There
exists a dominant rational map P1×Γ → X, where Γ is a smooth projective
curve. This rational map can resolved by a sequence of blowups. Let f :
Y → P1 × Γ → X be such a resolution. So Y is a fiberation over Γ whose
general fibers are P1. Since f is surjective, we have the injection

(2.1) f∗ : H0(KX) ↪→ H0(KY ).

So KY is effective since KX is. Let Yp = C be a general fiber of Y → Γ.
Then

(2.2) KY |C = KC = −2

Yet KY |C = KY · C ≥ 0 since KY is effective. Contradiction. �

Exercise 2.2. Let X be a smooth projective variety satisfying that mKX is
effective for some m > 0. Show that X is not uniruled.

Yet the existence of rational curves are more subtle. The existence of
rational curves on K3 surfaces was established by S. Mori and S. Mukai. I
made it more precise:

Theorem 2.3 (Chen). For any integers n ≥ 3 and d > 0, the linear sys-
tem |OS(d)| on a general K3 surface S in Pn contains an irreducible nodal
rational curve.

The idea for the proof is to degenerate a K3 surface to a union of rational
surfaces. It is best illustrated by quartic surfaces.

Let us consider X0 = Q1 ∪ Q2 ⊂ P3 be a union of two quadrics. This is
a “special” quartic surface and any smooth quartics can be degenerated to
it. It is a common knowledge that Qi

∼= P1 × P1 is embedded into P3 by
|H1 + H2|, where Hi are two rulings of Qi. Let E = Q1 ∩Q2. Then E is an
elliptic curve in the linear series |2H1 + 2H2|. In addition we have

(2.3) OQ1(H1 + H2)|E = OQ2(H1 + H2)|E
Let X ⊂ P3 ×∆ be a pencil of quartics whose central fiber is X0. So the

defining equation of X looks like

(2.4) FQ1FQ2 + tF = 0

where FQi are the defining equations of Qi. We choose X to be general
enough. The idea is to find a curve Y0 ∈ |OX0(d)| and show that Y0 can be
deformed to a nodal rational curve Yt ∈ |OXt(d)|.

For example, let us work out the case d = 1. Obviously, there exists r ∈ E
such that

(2.5) OE(H1 + H2) = OE(4r)

Actually there are exactly 16 such points. There exists a unique curve
Ci ∈ |OQi(H1 + H2)| such that Ci · E = 4r. This is due to the fact

(2.6) H0(OQi(H1 + H2)) = H0(OE(H1 + H2))

Also for E general, Ci is irreducible and smooth.
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Let Ud,δ(S) be the subset of |OS(d)| consisting of irreducible nodal curves
with δ nodes on a quartic surface S. Let

(2.7) Wd,δ =
⋃
t6=0

Ud,δ(Xt) ⊂ |OX(d)|

and let W d,δ be the closure of Wd,δ in |OX(d)|
A theorem of Caporaso-Harris-Ran shows that

Proposition 2.4. The following are true:
(1) [C1 ∪ C2] ∈ W 1,3;
(2) W 1,3 has an ordinary singularity of multiplicity 4 at [C1 ∪ C2];
(3) for any open neighborhood Or of r ∈ P3, there exists an open neigh-

borhood V[C1∪C2] of [C1∪C2] ∈ W 1,3 such that for any [C] ∈ V[C1∪C2],
the nodes of C lies in Or.

From the above proposition, we see that U1,3(Xt) is nonempty for t 6= 0.
So there exists an irreducible curve Yt with 3 nodes in |OXt(1)|. This curve
Yt is obviously a rational curve.

For d ≥ 2, a slight different construction is needed but the basic idea is
the same. For example, let us work out the case d = 2.

The threefold X has sixteen rational double points lying on E. Let p be
one of them. We let Y0 = C11 ∪ C12 ∪ C21 ∪ C22 with

(1) Ci1 ∈ |OQi(H1)| and Ci2 ∈ |OQi(H1 + 2H2)|;
(2) Ci1 · E = p + qi and Ci2 · E = q3−i + 5r

where q1, q2, r are determined by p up to 25 different choices.
Again we can show there is a flat family Y ⊂ X of nodal curves after a

base change such that Yt ∈ |OXt(2)| has 9 nodes, with 4 of them approaching
r, 1 of them approaching p, 2 of them approaching C11 ∩C12 and 2 of them
approaching C21 ∩ C22 as t → 0. Obviously, Yt is a rational curve. For
details, please see [C1].

2.2. Counting rational curves. The next natural question following the
existence problem is how many irreducible rational curves there are in |O(d)|
on a general K3 surface in Pn. The number for d = 1 has been successfully
calculated in [Y-Z]. They give the following remarkable formula

(2.8)
∞∑

g=1

n(g)qg =
q

∆(q)

where ∆(q) = q
∏∞

n=1(1−qn)24 is the well-known modular form of weight 12
and n(g) is the nominated number of rational curves in |O(1)| on a general
K3 surface in Pg for g ≥ 3. More precisely, n(g) is the sum of the Euler
characteristics of the compactified Jacobians of all rational curves in |O(1)|.
Since the compactified Jacobian of a rational curve with singularities other
than nodes is not very well understood, we only know this sum equals the
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number of rational curves in |O(1)| on a K3 surface in the case that all these
rational curves are nodal.

Later J. Bryan and N.C. Leung redid and generalized Yau-Zaslow’s count-
ing via a different approach. Basically, they used a degeneration argument
by degenerating a general K3 surface to a K3 surface S of Picard lattice

(2.9)
(
−2 1
1 0

)
.

Let C and F be the generators of Pic(S) with C2 = −2, C · F = 1 and
F 2 = 0. We also assume that F is effective.

The good thing about S is that (S, C + gF ) is a K3 surface of genus g
and every member of the linear series |C + gF |.
Exercise 2.5. Show that h0(C) = 1, h0(F ) = 2 and the map π : S → P1

given by |F | realizes S as an elliptic fiberation. For S general, there are
exactly 24 singular fibers of π.

Exercise 2.6. Show that every curve in D ∈ |C+gF | is a union C∪F1∪...∪Fg

with Fi ∈ |F |.
Using this degeneration, I proved the following theorem:

Theorem 2.7. All rational curves in the primitive class of a general K3
surface of genus g ≥ 2 are nodal.

This justifies the number obtained by Yau-Zaslow is the number of ratio-
nal curves.

Question 2.8. Compute the number of rational curves in |OS(d)|.
2.3. Hodge-D-Conjecture. As another application of rational curves on
K3, J. Lewis and I proved the following theorem, originally a conjecture of
Beilinson:

Theorem 2.9 (Chen, Lewis). Hodge-D conjecture holds for a general K3
surface X (general under the real analytic topology). That is, the regulator
map

(2.10) r2,1 : CH2,1(X) → H1,1(X, R)

is surjective.

Here the rational curves are used to construct nontrivial classes in CH2,1(X).
By definition,

(2.11) CHk(X, 1) =

{∑
j(fj , Zj) :

cdXZj = k − 1, fj ∈ C(Zj)×∑
j div(fj) = 0

}
Image(Tame symbol)

.

Choose two rational curves C1 and C2 ⊂ X. Suppose that there are two
points p, q ∈ C1 ∩ C2. Then there exists two rational functions f1 and f2

on C1 and C2, respectively, such that (f1) = p − q and (f2) = q − p. Then
(f1, C1) + (f2, C2) is a class in CH2,1(X).
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