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RATIONAL CURVES ON K3 SURFACES

XI CHEN

1. Basics

1.1. A K3 surface X is a compact Kéhler surface which is simply connected
and has trivial canonical bundle. A quick computation gives the Hodge
numbers:

1
0 0
(1.1) 1 20 1
0 0
1

Here HY(X,Z) = Z, HY(X,Z) = 0 and H*°(X) = H%(Kx) = C follow
directly from the definition, while h1:}(X) = 20 follows from Noether’s for-
mula:

(1.2) Xtop(X) = 12(KX +x(Ox)) = 24

So H?(X) = C?2. A subtle point here is that H?(X,Z) = Z?? is torsion free.
This follows from Lefschetz (1, 1) theorem and Riemann-Roch.

Proposition 1.1. H%(X,Z) is torsion free for a K3 surface X.

Proof. By Lefschetz (1,1) theorem, every torsion element of H?(X,Z) lies
in the image of Pic(X) — H?(X,Z). If H?(X,Z) is not torsion free, there
exists a line bundle L such that L # Oy and L®™ = Oy for some m > 1.
By Riemann-Roch,

(1.3) hO(L) = K (L) + hO(L71) =2

Therefore h°(L) + h°(L™1) > 2. So at least one of L and L™! is effective.
WLOG, assume that h°(L) > 0. Let s € HY(L). Then s™ € H°(Ox).
Consequent, s nowhere vanishes and hence L = Ox. Contradiction. O

There are (at least) two conclusions we can draw from Ab1(X) = 20.
First, since H'(X,Ox) = 0, we see that

Proposition 1.2. Pic(X) is a lattice of rank at most 20 contained H*(X,7) =
Z*2.

Second, by Serre duality
(1.4) HYYW(X)=H'(Qx) = H(Tx)" =C®

This, along with H?(Tx) = H(Q2x)" = 0, implies that the versal deforma-
tion space of X is smooth of dimension 20. That is, the moduli space of K3
1
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surfaces, if exists, has dimension 20. In case that X is projective, a general
deformation of X is, however, no longer algebraic.

1.2. Examples. The simplest examples of K3 surfaces are complete inter-
sections in P". Let X C P" be a complete interesction cut out by hyper-
surfaces of degrees di,ds, ...,d, 2. By weak Lefschetz, H'(X,Z) = 0. By
adjunction,

(1.5) Ky=0Ox&di+do+..+dp_o=n+1
We also require that X be nondegerate, i.e., d; > 2. Therefore, here are all
the possibilities:

(1) X C P? a quartic surface;
(2) X C P* a complete intersection of a quadric and a cubic;
(3) X C P? a complete intersection of three quadrics.

Theorem 1.3 (Noether-Lefschetz). For a very general surface X C P3 of
degree d > 4, Pic(X) = 7Z is generated by the hyperplane section Ox(1).

A consequence of this theorem is

Corollary 1.4. Let X, and Xy be two very general quartic surfaces and
let f: X1 — Xo be an isomorphism. Then f is induced by an action of
PGL(4).

Proof. f induces an isomorphism Pic(Xs) — Pic(X7). Obviously, f*Ox, (1)
Ox, (1) and it also induces a linear map |Ox, (1)| — |Ox, (1)|. Both |Ox,(1)]
|Ops(1)] = P3. Therefore, f induces an automorphism of P3, say o €
PGL(4). In return, it is easy to see that o induces f. O

R 1l

Now we can compute the dimension of the moduli space of quartic sur-
faces, if it exists

7
3

Similarly, we can compute the dimension of the space of the complete
intersections X = Q N C C P* of type (2,3):

dim |Ops (2)] + dim [Ops(3)] — dim | Ix (2)] — dim [ Ix (3)]

o (Z)+@_1—(5+1)=43

where Iy is the ideal sheaf of X and h°(Ix(d)) can be computed via Kozul
complex:

(1.8) 0 — Opa(—5) = Ops(—2) ® Ops(—3) = Ix — 0

Again we can show that the isomorphism between two very general com-
plete intersections of such type is induced by PGL(5). Hence the moduli
space of X = @ N C has dimension 43 — 24 = 19.

(1.6)  dimM = dim(|Ops(4)|/ ~) = < ) —1—dimPGL(4) = 19
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Ezercise 1.5. Compute the dimension of the moduli space of the complete
intersection X C P° of type (2,2,2).

Here is another example. Let m : X — P? be the double cover of P2
ramified over a smooth sextic curve D C P?. To see that X is a K3 surface,
we first prove

Proposition 1.6. Let X be a smooth hypersurface of P* x P? of type (2,3).
Then the projection Xo — P? is a double cover ramified along a sextic curve.

By weak Lefschetz and adjunction, X is a K3 surface. Obviously, every
double cover X of P? ramified along a smooth sextic curve can be deformed
to an X C P! x P? of type (2,3). Hence X is a K3 surface.

The dimension of the moduli space of such X is the same as the dimension
of the moduli space of sextic curves:

(1.9) dim |Op2(6)| — dimPGL(3) = 27 — 8 = 19.

Let A = C?/A be a 2-dimensional complex torus. We have Zy action on
A by sending (z,y) — (—z,—y). Let X = A/Zs and X be the minimal
resolution of X. Then X is a special K3 surface called Kummer surface.

Proposition 1.7. Let G = Zy act on Aiy by sending (x,y) — (—z, —y).

Then A%/G is a hypersurface in A3, given by uv = w?.

uvw

Proof. A?/G = Speck[z,y]® = Speck[z?, 42, 2y] = Specklu,v,w]/(uv —
w?). O

The action Zo on A has sixteen fixed points. Therefore, X has sixteen
singularities where X is locally given by Spec Clu,v,w]/(uv — w?), i.e, X
has sixteen rational double points.

Proposition 1.8. Let X = (zy = 2%) C Y = A3 _ and let 7 : Y — Y be
the blowup of Y at the origin p. Let X be the proper transform of X under
m and Ex be the exceptional divisor of m: X — X. Then X is smooth, Ex

18 a smooth rational curve with Eg( =2 o0on X and Kg =m"Kx.

Proof. Y C A3 x P2 is given by 2/X = y/Y = z/Z and X is by
x Y z 9
1.1 —=Z=— Xy =27
(1.10) X" v 7 and
It is straightforward to check that X is smooth. The exceptional divisor is
a smooth conic curve XY = Z2 in P?. Let Ey be the exceptional divisor of

Y -Y. By
(111) X =X + 2By = *X - B} = X - E} + 2B} = X - B} = —2F}
we see that Eg( =X E32, = —2. Since

(1.12) K{, :W*Ky-i-QEy,

(1.13) K¢ = (" Ky + 2By + X)|g = 7"(Ky + X)|3 = m"Kx
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O

So we see that X contains sixteen (—2)-curves. And since *Kx = Ky4
and 7Ky = K5, Ky is trivial. By classification of complex surfaces, X
can be either a K3 surface or abelian surface. Since an abelian surface does
not contain any rational curves, X must be a K3 surface.

1.3. Deformation of K3 surfaces. As we pointed out in the examples
of K3 surfaces as complete intersections in P™ or double covers of P2, the
corresponding moduli space of K3 surfaces has dimension 19, while the versal
deformation of a K3 surface has dimension 20. So where does the extra
dimension go? The answer is that a general deformation of a K3 surface is
not algebraic; 19 is the dimension of the deformation of a polarized K3. Let
us illustrate this using the example of quartic surfaces.
Let X C P3 be a smooth quartic surface. We have the exact sequence

(1.14) 0—Tx —Tps|x — Nx — 0
where Nx is the normal bundle of X. The induced long exact sequence is
(1.15) HO(Ny) — HY(Tx) 2 H(Tpax)
By Euler sequence
(1.16) 0— Ox — Ox(1)® = Tps|x — 0
we see that H(Tps|x) = H*(Ox) = C. Consider the dual map Y of 3:
(1.17) HY(Tx) N H'(Tps|x)
X X

BY
Hl(Qx) < HI(QP3|X)

l l

C C
Since H'(Qps|x) = H'(Qps) = C is generated by c1(L),
(1.18) ImB3Y = {\e1(L) : A € C}

where L is the hyperplane bundle. Consequently,
119) Im(H°(Nx) — H'(Tx)) = ker
' = {e e H'(Tx) : (e,c1(L)) = 0} = 1 (L)*

By deformation theory, H°(Nx) classifies embedded deformations of X C P3
and H'(Tx) classifies the deformations of X as a complex manifold. So
the image Im(H°(Nx) — H'(Tx)) classifies the deformations of the pair
(X, L), i.e., a polarized K3 surface. The above argument actually applies to
any polarized K3 surface, not only quartic surfaces. Therefore, the versal
deformation space of a polarized K3 surface (X, L) is a hyperplane in H'(Tx)
that is perpendicular to ¢1(L).
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The above technique can be generalized to prove the following:

Proposition 1.9. Let X/A be a family of smooth projective surfaces over
disk A with central fiber S = X and let D C S be an effective divisor on
S. Suppose that D can be extended to X, i.e., there exists a flat family Y/A
with the commutative diagram

(1.20) Yy /=X

A A

such that Yo embeds into Xo with image D. For each w € H(Kg), let ji,
be the map

(1.21) o + HY(Q5) =5 H'(Qs(Ks))

where Kg is the canonical class of S. Then the Kodaira-Spencer class
ks(0/0t) € H(Ts) of X lies in the subspace

(1.22) {v e HY(Ts) : (v, p(c1(D))) = 0 for all w € H*(Kg)}
where {-,-) is the pairing H'(Ts) x H'(Qs(Kg)) — C given by Serre duality.

—_—

Using the above proposition, we can give a proof of Noether-Lefschetz for
quartic surfaces.

Let M = |Ops(4)| and S = {(p,X) :p€ X} CP3 x M. Let £ = 7jL be
the pullback of the hyperplane bundle of P3. If for a very general X, there
is a line bundle D € Pic(X) such that D is not a multiple of L, then after a
possible base change of M, there exists a line bundle D on S such that Dy
is not a multiple of Lx when restricted to a very general point [X] € M.
Then by the above proposition, the image of

(1.23) Tarpx) = HY(Nx) — HY(Tx)

is contained in ¢;(D)*. Also Im(H%(Nx) — H'(Tx)) is e1(L)* and ks is
obviously surjective. Therefore, we necessarily have

(1.24) ci(L)t = (D)t
That is, ¢; (L) and ¢1 (D) are linearly dependent over Q. Therefore, Pic(X) =
Z. Let J be a generator of Pic(X). Then L = mJ for some m € Z. WLOG,

assume that m > 0. Since L? =4, m = 1 or m = 2. We are done if m = 1.
If m=2,J%2=1and (K +.J)J = 1. This is impossible by Riemann-Roch.

Ezercise 1.10. Let M be the moduli space of the tuple (X, L1, Lo, ..., Ly,),
where X is a K3 surface, {L;} are m linearly independent line bundles on
X and L is ample. Then dim M < 20 — m.

So far we reach the conclusion that the moduli space of polarized K3
surfaces (X, L) has dimension at most 19. Then how many components
does this moduli space have?
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We call a polarized K3 surface (X, L) a primitive K3 surface if there does
not exist D € Pic(X) and m > 1 such that L = mD and in this case, we say
L is a primitive line bundle over X. Let C' € |L|. Then 2p,(C) — 2 = L2
This number g = p,(C) is called the genus of X. By a K3 surface of genus
g, we mean a polarized K3 surface (X, L) with a primitive line bundle L and
L? =29 —2.

Theorem 1.11. For each g > 2, there exists a moduli space My parame-
terizing genus g K3 surfaces; My is quasi-projective, smooth and irreducible
of dimension 19.

Genus 2 K3 surfaces are double covers of P? ramified along a smooth sextic
curves. Genus 3 K3 surfaces are quartic surfaces in P2. Genus 4 K3 surfaces
are complete intersections in P* of type (2,3). Genus 5 K3 surfaces are
complete intersections in P5 of type (2,2,2). Here I will give an elementary
proof of existence of K3 of any genus g.

Proposition 1.12. For every g > 2, there exists a K3 surface X of genus
g and Pic(X) = Z.

Proof. Let X be a smooth surface in P! x P? of type (2,3). We embed
X < P3+2 by the very ample linear series |75Op1 (k) ® 75Op2(1)| with
k > 0. In the exact sequence

(1.25) HY(Tx) — HY(Tpo|x) — H(Nx) — H*(Tx)

we have already seen that H'(Tx) — H'(Tps|x) is surjective, where g =
3k+2. And since H?(Tx) = 0, H*(Nx) = 0 and the embedded deformations
of X C P9 are unobstructed. Therefore, there exists a flat family ¥ C
P9 x A™ such that Yo = X C P9 and the Kodaira-Spencer map Tam o —
HY(Ny) is an isomorphism. We have proved that Im(H®(Nx) — H(Tx)) is
c1(L)*, where L = 75 Op1 (k) @ 75Op2(1). For a general fiber Y; of Y — A™
Pic(Y;) = Z is generated by L.

So this proves the proposition when g = 3k 4+ 2. For g = 3k,3k + 1, see
the following exercise. O

Ezercise 1.13. Let E = O® O @ O(1) be a rank three vector bundle over P!
and Y = PE. Let X € | — Ky| be a smooth anti-canonical surface in PE.
Show that the complete linear series |Opg (1) @ 7*Op1 (k)| (k > 1) embeds
X into P3*.

Change E to E =0 & O(1) ® O(1) and do the same thing.

2. RATIONAL CURVES ON K3

2.1. Existence. First of all, we have

Proposition 2.1. There are at most countably many rational curves on a
K3 surface X.
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Proof. Otherwise, X is covered by rational curves, i.e., X is uniruled. There
exists a dominant rational map P' x I' — X, where T is a smooth projective
curve. This rational map can resolved by a sequence of blowups. Let f :
Y — P! xT' — X be such a resolution. So Y is a fiberation over I" whose
general fibers are P!. Since f is surjective, we have the injection

(2.1) f*:HY(Kyx) — H°(Ky).

So Ky is effective since Kx is. Let Y, = C be a general fiber of ¥ — T
Then

(2.2) Kylc = Ko = —2
Yet Ky|c = Ky - C > 0 since Ky is effective. Contradiction. O

Ezercise 2.2. Let X be a smooth projective variety satisfying that mKx is
effective for some m > 0. Show that X is not uniruled.

Yet the existence of rational curves are more subtle. The existence of
rational curves on K3 surfaces was established by S. Mori and S. Mukai. 1
made it more precise:

Theorem 2.3 (Chen). For any integers n > 3 and d > 0, the linear sys-
tem |Og(d)| on a general K3 surface S in P™ contains an irreducible nodal
rational curve.

The idea for the proof is to degenerate a K3 surface to a union of rational
surfaces. It is best illustrated by quartic surfaces.

Let us consider Xg = Q1 U Q2 C P3 be a union of two quadrics. This is
a “special” quartic surface and any smooth quartics can be degenerated to
it. It is a common knowledge that Q; = P' x P! is embedded into P? by
|H1 + Ha|, where H; are two rulings of @;. Let £ = Q1 N Q2. Then FE is an
elliptic curve in the linear series |2H; + 2H3|. In addition we have

(2.3) Oq,(H1 + H2)|p = Oq,(H1 + Ha)|p

Let X C P3 x A be a pencil of quartics whose central fiber is Xy. So the
defining equation of X looks like
(2.4) Fo, Fg, +tF =0

where F(, are the defining equations of ;. We choose X to be general
enough. The idea is to find a curve Yy € |Ox,(d)| and show that Y, can be
deformed to a nodal rational curve Y; € |Ox,(d)|.

For example, let us work out the case d = 1. Obviously, there exists r €
such that

Actually there are exactly 16 such points. There exists a unique curve
C; € |Oq,(H1 + Ha)| such that C; - E = 4r. This is due to the fact

(2.6) H"(Oq,(Hy + Ha)) = H(Op(Hi + Hz))

Also for E general, C; is irreducible and smooth.
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Let U%%(S) be the subset of |Og(d)| consisting of irreducible nodal curves
with § nodes on a quartic surface S. Let

(2.7) Was = | JUM(Xy) € |Ox(d)]
t£0

and let Wy 5 be the closure of Wy s in |Ox(d)|
A theorem of Caporaso-Harris-Ran shows that

Proposition 2.4. The following are true:

(1) [El U CQ] € W173,'

(2) W13 has an ordinary singularity of multiplicity 4 at [Ch U Cy);

(3) for any open neighborhood O, of r € P3, there exists an open neigh-
borhood Vi, ucy) of [C1UCs] € W3 such that for any [C] € Vie,ucy),
the nodes of C lies in O,.

From the above proposition, we see that U'3(X;) is nonempty for ¢ # 0.
So there exists an irreducible curve Y; with 3 nodes in |Ox,(1)|. This curve
Y; is obviously a rational curve.

For d > 2, a slight different construction is needed but the basic idea is
the same. For example, let us work out the case d = 2.

The threefold X has sixteen rational double points lying on E. Let p be
one of them. We let Yy = C1 U C12 U Co1 U Cyy with

(1) Ciy € |OQ¢(H1)| and Cjs € |OQZ.(H1 + 2Ho)|;
(2) Cii-E=p+gq;and Cyo- E = q3_; + 57
where q1, g2, are determined by p up to 25 different choices.

Again we can show there is a flat family Y C X of nodal curves after a
base change such that Y; € |Ox,(2)| has 9 nodes, with 4 of them approaching
r, 1 of them approaching p, 2 of them approaching Cy; N Ci2 and 2 of them
approaching Co; N Cy as t — 0. Obviously, Y; is a rational curve. For
details, please see [C1].

2.2. Counting rational curves. The next natural question following the
existence problem is how many irreducible rational curves there are in |O(d)|
on a general K3 surface in P". The number for d = 1 has been successfully
calculated in [Y-Z]. They give the following remarkable formula

o0

g_ 1
(2.8) g;n(g)q NG

where A(q) = q[[°%;(1—¢™)* is the well-known modular form of weight 12
and n(g) is the nominated number of rational curves in |O(1)| on a general
K3 surface in P9 for g > 3. More precisely, n(g) is the sum of the Euler
characteristics of the compactified Jacobians of all rational curves in |O(1)].
Since the compactified Jacobian of a rational curve with singularities other
than nodes is not very well understood, we only know this sum equals the
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number of rational curves in |O(1)| on a K3 surface in the case that all these
rational curves are nodal.

Later J. Bryan and N.C. Leung redid and generalized Yau-Zaslow’s count-
ing via a different approach. Basically, they used a degeneration argument
by degenerating a general K3 surface to a K3 surface S of Picard lattice

(2.9) <_12 é) :

Let C and F be the generators of Pic(S) with C? = —2, C - F = 1 and
F? = 0. We also assume that F is effective.

The good thing about S is that (S,C + gF') is a K3 surface of genus g
and every member of the linear series |C' + gF|.

Ezercise 2.5. Show that h°(C) = 1, h%(F) = 2 and the map 7 : S — P!
given by |F| realizes S as an elliptic fiberation. For S general, there are
exactly 24 singular fibers of .

Exercise 2.6. Show that every curve in D € |C+g¢F| is a union CUF U...UF,
with F} € |F|.
Using this degeneration, I proved the following theorem:

Theorem 2.7. All rational curves in the primitive class of a general K3
surface of genus g > 2 are nodal.

This justifies the number obtained by Yau-Zaslow is the number of ratio-
nal curves.

Question 2.8. Compute the number of rational curves in |Og(d)|.

2.3. Hodge-D-Conjecture. As another application of rational curves on
K3, J. Lewis and I proved the following theorem, originally a conjecture of
Beilinson:

Theorem 2.9 (Chen, Lewis). Hodge-D conjecture holds for a general K3
surface X (general under the real analytic topology). That is, the regulator
map
(2.10) ro1 : CH*(X) — HM(X,R)
1S surjective.
Here the rational curves are used to construct nontrivial classes in CH*!(X).
By definition,
cdxZ;=k—1, fj € C(Z;)*
(fis Z5) - J S J
{z]m i) S, div(f)) = 0

2.11)  CHF(X,1)=
(2.11) (X, 1) Image(Tame symbol)

Choose two rational curves C7 and C', C X. Suppose that there are two
points p,q € C1 N Cs. Then there exists two rational functions f; and fo
on C7 and Co, respectively, such that (f;) = p — ¢ and (f2) = ¢ — p. Then
(f1,C1) + (f2,C2) is a class in CH*!(X).
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