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Once complex number is introduced as a field, it is

natural to consider functions depending only on its

“pure” holomorphic variable z. As it is independent

of z̄,
∂f

∂z̄
= 0.

There are surprising rich properties of these holo-

morphic functions.
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The possibility of holomorphic continuation of

holomorphic functions forces us to consider multi-

valued holomorphic functions.

The concept of Riemann Surfaces was introduced

to understand such phenomena.

The ideas of branch cuts and branch points imme-

diately relate topology of these surfaces to complex

variables.
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The possibility of two Riemann surfaces can be

homeomorphic to each other without being equal was

realized in nineteenth century where remarkable uni-

formization theorems were proved by Riemann for

simply connected surfaces. Although it took Hilbert

many years later to make Riemann’s work on varia-

tional principle to be rigorous, the Dirichlet principle

of constructing harmonic functions and hence holo-

morphic functions has tremendous influence up to

modern days.
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Koebe finally proved that every abstractly defined

simply connected Riemann surface is either the disk,

the complex line or the Riemann sphere.

There are proofs based on complex function the-

ory, variational principle and geometric deformation

equations.

The uniformization theorem allows one to iden-

tify space of complex structures to space of discrete

groups of SL(2,R) which acts on the disk by linear

fractional transformations.
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The problem of how to parametrize all possible Rie-

mann surfaces with a fixed topology has been one of

the most interesting problems in mathematics.

A very important distinction between two dimen-

sional geometry and higher dimensional geometry is

that every two dimensional orientable Riemannian

manifold admits a complex structure so that the met-

ric has the form h(dx2+dy2). For genus greater than

one, it was found by Poincare that each of these met-

ric can be conformally deformed to a unique metric

with curvature equal to −1.
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Hence the space of conformal structures on a sur-

face of genus g is the same as the space of metrics with

constant negative curvature = −1 on the surface. It

is of course important to realize that the group of dif-

feomorphism acts on this space. The quotient space

is the moduli space of conformal structure. It is de-

noted by Mg. If we restrict the diffeomorphisms to

those that are isotopic to identity, then the quotient

space is called the Teichmuller space and is denoted

by Tg.
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Naturally, Tg covers Mg and the covering trans-

formation is the mapping class group which is the

quotient of the above two diffeomorphism groups.

It is not hard to prove that Tg is contractible. The

topology and the geometry of Mg is far more compli-

cated.
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Teichmuller has studied Tg extensively by intro-

ducing the concept of extremal conformal map be-

tween Riemann surfaces. Bers demonstrated that it

is possible to embed Tg into C3g−3 as a domain of

holomorphy. It would be interesting to find a mean-

ingful extension of extremal conformal map to higher

dimensional complex manifolds.

However, there is no precise description of how bad

the boundary of the Bers’ embedding is. It is also

not clear what is the “optimal” embedding of Tg into

C3g−3.
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The geometry of Mg is more algebraic in nature. It

is quasiprojective in the sense that there is algebraic

variety M g so that M g rMg are given by subvari-

eties. The most basic construction of M g was due

to Deligne–Mumford who introduced the concept of

stable curves (concept of stable manifolds that are

derived from geometric invariant theory).

It is known that for large genus, Mg is difficult

to describe in the sense that it is of “general type”

and there is no nontrivial holomorphic maps from

complex projective space onto M g.

9



Study of M g has been a fundamental subject in

complex geometry and mathematics in general.

There are many natural complex bundles over Mg.

In fact there is a universal curve over Mg, i.e., a

complex manifold fibered Mg so that each fiber is

the given Riemann surface. On the universal curve,

we can take tangent bundles along the fiber and we

can form the Hodge bundle by taking holomorphic

one forms along the fiber. The Chern classes of these

natural bundles give important cohomology classes of

M g. The Mumford conjecture says that low dimen-

sional (related to g) cohomology of M g is generated

by Chern classes. Madsen has settled this problem

recently. But it is still an interesting problem to un-
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derstand such cohomology in the unstable range.
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The Chern numbers of these bundles can be orga-

nized nicely and has been a very active area of study.

In the past fifteen years, string theory contributed

a great deal of understanding into these numbers.

There are Witten conjecture (proved by Kontsevich),

Mariño–Vafa formula (proved by Liu–Liu–Zhou) and

many other exciting works.
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The concept of holomorphic functions of one vari-

able can be readily generalized to functions of several

variables. The naive generalization of uniformization

fails completely as the equations ∂f
∂z̄i = 0 for all i form

an overdetermined system.

We call a manifold M to be complex if there are co-

ordinates charts (z1, . . . , zn) so that their coordinate

transformations are holomorphic.
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A complex manifold M has the property that the

complexified tangent bundle admits a linear opera-

tor J so that J2 = − identity such that {v | Jv =
√−1 v} form holomorphic tangent space { ∂

∂zi} and

{v | Jv = −√−1 v} form antiholomorphic tangent

space.

A manifold admits such an operator J is called an

almost complex manifold.

It is said to satisfy the complex Frobenius con-

dition if for any complex vector field vj so that

Jvj =
√−1 vj, we know that

J [vj, vk] =
√−1 [vj, vk].
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The celebrated Newlender–Nirenberg theorem says

that an almost complex manifold which satisfies the

complex Frobenius condition is a complex manifold.

While there is an effective method to determine

which smooth manifold admits an almost complex

structure, it is a great mystery and fundamental

question to find a topological condition to determine

which even dimensional orientable manifold admits

complex structure.

Most tools in studying complex manifolds come

from Kähler geometry.

Kähler observed the importance of exis-

tence of Hermitian metric
∑

gij dzi dz̄j so that

d
(√−1

∑
gij dzi ∧ dz̄j

)
= 0. Kähler metric has

the important property that there is a holomorphic
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coordinate system so that it can be approximated

by the flat metric up to first order.

Since the introduction of the concept of complex

manifolds, the first important contribution was the

introduction of Chern classes. Coupling with the

classical theory of Riemann-Roch theorem and sheaf

theory, Chern classes was used in a prominent way

by Hirzebruch to prove the Riemann-Roch formula

for higher dimensional algebraic manifold. The for-

mula of Hirzebruch was interpreted and generalized

by Grothendieck in functorial setting and K-theory

was developed as a fundamental tool.

Based on this formula and the idea of Bochner’s

vanishing formula, Kodaira proved the embedding

theorem for Kakler manifolds of special type. Note
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that once a Kähler manifold is holomorphically em-

bedded into complex projective space, a fundamental

theorem of Chow says that it must be defined by an

ideal of homogeneous algebraic polynomials. Hence

they are algebraic manifolds.

Chow also introduced fundamental tools to study

algebraic cycles. The Chow coordinates were intro-

duced. The concept of Chow variety is one of most

important concept in modern algebraic and arith-

metic geometry.

The work of Hodge on the Hodge structures of

Kähler manifolds was also used extensively by Ko-

daira. At the same time it puts the old theory of

Picard and Lefschetz on a new setting. The conjec-

ture of Hodge on algebraic cycles is perhaps the most
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elegant and important question in algebraic geome-

try. Due to its relation to arithmetic question, a lot

of number theorists made contribution to it.

The development of Hodge structure was due to

many people: Hodge, Atiyah, Grothendieck, Deligne,

Shafarevich, Borel, Dwork, Katz, Schmid, Griffiths,

Clemens, and others. A very important question is

its relation to monodromy and the Torelli theorem.

The establishment of suitable form of Torelli theorem

has been an important direction. It has been a fun-

damental tool in the study of Calabi-Yau manifolds.

Kodaira proved that every Kähler surface can be

deformed to an algebraic surface.

According to Kodaira’s classification (with later

work by Siu on K3 surfaces), the only unknown non-
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Kähler complex surfaces would be so called class VII0

surfaces.

Such surfaces are not Kähler and it would be good

to classify them. There are two subclasses of such

surfaces:

(1) Those with no holomorphic curves. This was clas-

sified by Bogomolov and Jun Li–Yau–Zheng.

(2) Those with finite number of curves.

Hopefully the method of Li-Yau-Zheng can be used

to clarify this remaining class of non-Kähler surfaces.
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How to describe topology of algebraic surfaces?

Riemann–Roch formula and Atiyah–Singer Index

formula have played fundamental roles.

When b1 6= 0, the formula provides information on

holomorphic one forms and hence one can integrate

the one form to obtain nontrivial information.

Van de Ven was the first one to observe that

Riemann–Roch implies

8C2(M) ≥ C2
1(M).

Bogomolov used his idea of stable bundles and

symmetric tensors to improve Van de Ven inequal-

ity to

4C2(M) ≥ C2
1(M).
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Immediately afterwards, I used the newly devel-

oped existence of Kähler–Einstein metric to prove

3C2(M) ≥ C2
1(M)

which was optimal as the inequality is achieved by

quotient of the complex ball.

Miyaoka then also sharpened Bogomolov’s method

to achieve similar inequality.

However up to now, analytic method is the only

way to prove that 3C2(M) = C2
1(M) implies that

either M is CP 2 or quotient of the ball.

The generalization of this kind of inequality to orb-

ifolds is rather straightforward and was achieved by

Cheng–Yau, Kobayashi and Tian–Yau.
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My observation that Kähler–Einstein metrics be-

come metrics with constant holomorphic sectional

curvature when 3C2(M) = C2
1(M) makes me realize

the relevance of Mostow rigidity theorem. It imme-

diately implies that the only complex structure over

such a manifold is the standard one.

Therefore I conjectured that compact Kähler man-

ifold with negative curvature has unique complex

structure. I proposed to use harmonic map to set-

tle this problem. The idea was that curvature of the

target should force the rigidity of harmonic map. It is

inspired by the way to prove uniformization theorem

by Dirichlet principle. I proposed to Siu this program

who observed that the special form of the curvature

of Kähler metric helps to solve an important case of
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my conjecture.

23



Application of harmonic map to prove existence

of incompressible minimal surfaces was initiated by

Schoen and myself a few years earlier. In that the-

ory, the collar theorem of Linda Keen was used and

Schoen and I realized that the energy of harmonic

map can be turned around to provide an important

exhaustion function of the Teichmuller space. After

my talk in Utah in 1976, this idea was picked up

by other people. The beautiful work of Michael Wolf

demonstrated how harmonic map can be used to give

Thurston compactification of Teichmuller space.
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Jost and I then found that harmonic map can be

used to demonstrate that a topological map from a

compact Kähler manifold to a curve of higher genus

can be homotopic to a holomorphic map if we change

the complex structure of the curve.

While harmonic map is effective for manifolds with

large fundamental group, its existence for simply con-

nected manifold is not known.

Let f : M −→ N be a map from a compact Kähler

manifold M to another one such that its induced

map on Π2(M) is nontrivial. I conjectured that there

is always one harmonic map from M to N whose

induced map on Π2(M) is nontrivial.
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The reason that this may be true come from

understanding of the celebrated theorem of Sacks–

Uhlenbeck on harmonic maps of two dimensional

spheres.

Siu and I studied the structure of bubbling of

Sacks–Uhlenbeck sphere in the proof of Frenkel con-

jecture. Similar study was also used later by Parker-

Wolfson and Ruan-Tian to understand the compact-

ification of stable maps and Gromov-Witten invari-

ant. The final formulation was due to Kontsevich on

the concept of moduli space of stable maps.

Even when existence theorem for harmonic map

can be proved, it still remains to find properties of

such harmonic maps. Under what conditions that

these maps are unique up to holomorphic endomor-
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phisms of M and N?

In general, methods from linear and nonlinear par-

tial differential equations can be used to produce

holomorphic objects. However, the analogue con-

struction for algebraic varieties over characteristic p

will be difficult to be carried out. This can be an

interesting direction as Mori was able to construct

rational curves through methods of characteristic p.

This spectacular method is still needed to be under-

stood through analytic means.

Let us now discuss ideas from nonlinear analysis.
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Kähler–Einstein metrics are Kähler metrics so that

Rī = c gī.

For c ≤ 0, it is unique if we fix the Kähler class. If

c > 0, it is also unique up to automorphisms of the

manifold, due to the work of Bando–Mabuchi.

Hence when the metric exists, it provides impor-

tant invariants for the complex structure of the man-

ifold.

It is not hard to show that the Kähler–Einstein

metric in fact determines the complex structure of the

underlying manifold unless it is hyperkähler. This

follows by studying the pull back of the Kähler form

under the isometry.
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The existence of Kähler–Einstein metrics therefore

provides a way to understand complex structure by

metrics.

A very important question is therefore the full spec-

trum of Laplacian acting on the space of (p, q) forms

should determine the structure (polarized complex

structure if c = 0). Some contribution of these spec-

trum would give rise to important invariants of the

manifold, e.g., holomorphic torsion. While we can

embed the moduli space of complex structures into

the space of spectrum, there is no obvious way to give

complex structure to the later space which makes the

embedding to be holomorphic.
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Kähler–Einstein metric with c ≤ 0 has been very

powerful in understanding the complex structure of

the manifold. There were the following major ways:

(1) Using curvature representation of Chern classes,

one can represent c2ω
n−2 by L2 integrals of curvature

which is clearly non-negative and trivial only if the

manifold is flat. If ω = ±c1, there is then an in-

equality between c2c
n−2
1 and cn

1 with equality only

when the manifold is complex projective space or the

quotient of the complex ball.
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(2) By using curvature decreasing property, one

can prove that the tangent bundle is slope stable in

the sense of Mumford. (This kind of work was mo-

tivated by Bogomolov’s work.) From tangent bundle

and cotangle bundle, we can take tensor product and

wedge product and build natural bundles that come

from natural representation of GL(n,C). They all

have natural Kähler–Einstein metric induced from

the tangent bundle.
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If a natural bundle V comes from an irreducible

representation of GL(n,C) and if c1(V ) = 0, then

any nontrivial holomorphic section of V is parallel

and the holonomy group of the original connection

must be reduced to a smaller group.

In this way, one can characterize those Kähler man-

ifolds that are locally symmetric.

The fact that we can give a complete algebraic geo-

metric characterization of Shimura varieties. It gives

a way to prove Galois conjugation of Shimura variety

is still Shimura. This is a theorem due to Kazdhan

using representation theory.

It should be possible to characterize sub manifolds

whose metrics are Kähler–Einstein.

It should also be interesting to characterize by al-
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gebraic geometric means of those submanifolds which

are locally symmetric.
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(3) Deformation of complex structure using parallel

forms.

For K3 surfaces, one can mix up the (2, 0) form,

(0, 2) form and (1, 1) form to find P 1 family of com-

plex structures.

Bogomolov observed that for hyperkähler mani-

folds, complex structures are unobstructed. This was

followed by Tian–Todorov closely with basically the

same argument.
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(4)Since we know the Ricci curvature of such man-

ifolds, one can apply Schwarz lemma to study holo-

morphic maps between Kähler manifolds.

One should be able to compute Weil-Petersson

metric associated to the canonical KE metric. The

moduli space should have rich properties to be stud-

ied. This include the volume of the Weil-Peterson ge-

ometry and its L2-cohomology. For Calabi-Yau man-

ifolds, the cohomology classes are called BPS states

and should have interest in string theory.
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(4) It is clear that the tangent bundle is stable when

the manifold has Kähler–Einstein metric. However

it has not exhausted the stength of Kähler–Einsten

metric yet. At the time when I applied KE metric to

algebraic geometry, I realized that existence of KE

metric should be equivalent to stability of manifolds

in the sense of geometric invariant theory. (Besides

the obvious obstruction that come from the sign of

first Chern class.)

Only until recently, Donaldson has made definite

progress on this problem.
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While there are some activities on extremal metrics

or metrics with constant scaler curvature recently,

the fundamental focus of the research should not be

shifted away from KE metrics with nonpositive scalar

curvature. The case of KE metrics with positive

scalar curvature is more relevant to the above men-

tioned question of stability and also to understand

existence of Ricci flat manifolds.

In 1978 Helsinki Congress, I outline the existence of

complete noncompact Ricci-flat manifold. The detail

was written up with Tian later. KE metrics with

positive scalar curvature played a role in the later

construction.

So far, no significant contribution of such metrics

to algebraic geometry has been found. When my
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question of stability can be settled, the situation may

be different.
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In order to understand geometric stability of

Kähler–Einstein manifolds, one would like to relate

the metric with respect to induced metrics from pro-

jective embeddings, I initiated this program more

than twenty years ago to find projective embeddings

by high powers of ample line bundles to approximate

KE metrics.

Several of my students follow this programm. As

was guided by me in his thesis, Tian applied my idea

with Siu on characterization of non-compact Kähler

manifolds which are Cn. He proved that such em-

bedding is possible. The perturbation analysis was

followed by Lu, Zelditch, Phong–Sturm. Tian made

some partial contribution to my question of stability,

based on works of Donaldson.
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In both thesis of Luo and X. Wang continued such

studies on the balanced condition.
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Basically, Donaldson settled the important neces-

sary part of my conjecture. There are some works

related to existence of KE metric with positive scalar

curvature for toric manifolds. (Recently Zhu and

Wang made contributions by proving existence of the

real Monge–Ampere equation that comes from the

reduction of Donaldson.)
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What Donaldson has done should be applied to-

wards understanding of manifolds with nonpositive

first Chern class. This is especially true for man-

ifolds that come from arithmetic geometry, moduli

problem and questions related to algebraic cycles and

algebraic bundles.

Moduli space of polarized algebraic manifolds

should support Kähler–Einstein metrics with nega-

tive scalar curvature. It may admit orbifold type

singularities. When the deformation space is ob-

structed, it can be very challenging to describe the

metric structure of the singularity.

42



When the moduli space is compactified, the KE

metric should behave in a suitable form asymptoti-

cally. It will be important to understand such be-

haviour in terms of periods of integrals.

The simplest problem of this sort appears already

in one dimension. Only recently, Liu–Sun–Yau was

able to identify the behaviour of KE metric on the

Teichmuller space.

While the boundary of Teichmuller space may be

complicated complex analytically, it is interesting to

know that, based on the work of Shi, we proved that

the curvature and all its covariant derivatives are

bounded. This is in contrast to my previous work

with S.-Y. Cheng on KE metrics on strictly pseudo-

convex domains.
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Besides KE metric, the Bergman metric is a natu-

ral metric to be studied on the moduli space. Its re-

lation with KE metric and the covering space should

be interesting.
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There are many interesting subvarieties of moduli

space, even in the case of a curve. Kefeng Liu, Sun

and others exploit the Schwarz lemma, Kang Zuo

studies variation of Hodge structures.

It is a fascinating problem to characterize those

moduli problems where the moduli space is a

Shimura variety or Calabi–Yau space.
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Moduli space of algebraic cycles coupled with sta-

ble bundles should be an interesting topic to study.

Based on idea from string theory, it should be in-

teresting to understand this moduli space under the

following duality
T k × (T k)∗

↓
T k M ×

N
M̂ (T k)∗

↓ ↙ ↘ ↓
M M̂

↘ ↙
N

The maps from M to N , from M̂ to N are holo-

morphic fibration that may have singularity. There

should be a rank one holomorphic sheaf over M×
N

M̂

that serves as fiberwise Poincare line bundle. By ap-

plying Fourier–Mukai transform via such a sheaf, one

should map the above moduli space from M to M̂ .
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In the above picture, we can allow the torus to be

realspccial Lagrangian. In that case ,we shall obtain

the mirror map from M to M̂ . This is called the

SYZ construction.

String theory has provided a very rich background

to study geometry of Ricci flat metrics. Duality con-

cepts have provided very powerful tools. The con-

struction of SYZ needs to be explored much further,

both in terms of construction of special Lagrangian

cycles and the perturbation of semi-flat Ricci flat

metrics to Ricci flat metrics in terms of holomorphic

disks.
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Fundamental question in complex geometry is

(1) To find a topological condition so that an al-

most complex manifold admits an integrable complex

structure.

(2) To find a way to determine which integrable

complex structure admits Kähler metrics, or weaker

form of Kähler metrics, e.g., balanced metrics. There

are Hermitian metrics ω so that

d(ωn−1) = 0.

(3) To find a way to deform a Kähler manifold to

a projective manifold.

(4) To characterize those projective manifolds in

terms of algebraic geometric data that can be defined

over Q̄.
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(5) Study algebraic cycles and algebraic vector bun-

dles(or more generally, derived category of algebraic

manifolds).

(6) To understand moduli space of algebraic struc-

tures and the above algebraic objects.
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For dimC ≥ 3, all these problems would be quite

different from dimC = 2.

(1) Is it possible that every almost complex man-

ifold admits an integrable complex structure for

dimC ≥ 3 ? Prof. Chern has made significant

progress on this problem.

(2) For balanced manifolds, one should study the

system of equations introduced by A. Strominger

where the coupled holomorphic bundle is coupled

with the Hermitian metric.
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A. Strominger.

There is a holomorphic bundle V over complex

three dimensional manifold with Hermitian metric

whose curvature Fh satisfies

∂∂̄ω =
√−1 tr Fh ∧ Fh −

√−1 tr Fg ∧ Fg

F 2,0
h = F 0,2

h = 0

tr Fh = 0

and ω is conformally balanced.

We expect “mirror symmetry” on such class of

manifolds also.

Jun Li and I were able to solve the Strominger

system in a small neighborhood of Calabi–Yau man-

ifolds. It should be possible to solve it in a global

setting.
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There are several important operations in complex

geometry

(1) Blowing up

(2) Blowing down

(3) Deformation (local or global)

Neither projective nor Kähler geometries are pre-

served under all these operations. It will be certainly

desirable to find some kind of geometry that admits

such operations.

This is particularly significant if we start from

a projective manifold and perform these operations

successfully. Can we reach the class of all Kähler

manifolds? (Note that Voison did construct Kähler

manifolds that cannot be deformed to projective

manifolds.) What is the largest category that can

be reached in this way?
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Based on twistor’s construction, many non-Kähler

complex manifolds were constructed from the work

of Taubes on the existence of anti-self-dual structure

on all four dimensional manifolds after taking con-

nected sum with enough copies of S2×S2. The con-

struction of Clemens’ by blowing down curves with

negative normal bundle and smoothing the blowed

down manifolds allows us to construct many inter-

esting non-Kähler complex manifolds. One cannot

ignore the theory of non-Kähler complex manifolds

anymore.
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In studying Kähler structures, Hodge theory did

play the most fundamental role. The important point

is that the Laplacian acting on the k-forms split co-

variantly on (p, q) forms with k = p + q. It allows

us to link the topology of the Kähler manifold to

complex structure of the manifold. It would be im-

portant to seek similar statement for more general

class of complex manifolds which may include those

that support the Strominger’s structure.

It is conjectured by M. Reid that the moduli space

of Calabi-Yau manifolds is connected if we allow to

deform through non-Kähler structure. Is it possible

that such structure supports strominger’s structure?

The most outstanding question in algebraic geom-

etry has been the Hodge conjecture. The desire to
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find a characterization of algebraic cycles by (p, q)

type Hodge classes is fundamental.

If we enlarge the scope of geometry, we may have

to enlarge the scope of Hodge conjecture. The most

notably example in this regard is that in the case of

Calabi–Yau manifolds we have covariant constant n-

forms. We can look for those Lagrangian cycles so

that the restriction of these n-forms become a con-

stant multiple of the volume form. These are called

special Lagrangian cycles.

55



On the construction of Strominger–Yau–Zaslow of

mirror manifolds, special Lagrangian cycles play fun-

damental role. A fundamental question is that for

an n-dimensional homology class in an n-dimensional

Calabi–Yau manifold, is some integer multiple of it

representable by special Lagrangian cycles.

It is believed that special Lagrangian cycles are

“mirror” to stable holomorphic bundles over the mir-

ror manifold. Hence construction of such cycles may

be helpful to understand the Hodge conjecture. It

is proposed by Thomas–Yau that starting from the

Lagrangian cycles, stable in a well-defined sense, we

can deform it to special Lagrangian cycle by the mean

curvature flow. Mu-tao Wang had made significant

progress on this problem.
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It is also a fundamental question to construct holo-

morphic structures over a complex vector bundle. Af-

ter stabilizing with trivial bundles, such question may

be easier to handle. Only in the case of complex two

dimensional surfaces, the works of Taubes and Don-

aldson give effective answers. The work of Jun Li

and Gieseker–Li gave many important contributions

for understanding the geometry of moduli space of

algebraic bundles. It would be useful to construct a

flow on almost complex structures on the bundle to

an integrable structure.
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Special Lagrangian torus is supposed to be abun-

dent for Calabi–Yau manifolds where they can give

a fibration. In case of complex three dimension, the

base of this fibration may look like S3 rG where G

is a trivalent graph. The SYZ geometry call for exis-

tence of flat affine structure over S3 r G where cer-

tain real Monge–Ampere equation needs to be solved

and the monodromy belong to SL(3,Z). Recently,

Loftin–Yau–Zaslow was able to solve these equations

in a neighborhood of G with nontrivial monodromy.
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When the manifold is Kähler–Einstein with scalar

curvature not equal to zero, special Lagrangian cycle

should be replaced by those Lagrangian cycle whose

mean curvature form is harmonic. It should be inter-

esting to develop the corresponding SYZ geometry

for such cycles. The moduli space of them would

give new invariants for the Kähler manifold. The

understanding of holomorphic curves whose bound-

aries form homology classes on these Lagrangian cy-

cles would be important to be studied also.
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The Donaldson–Uhlenbeck–Yau theorem on the

existence of Hermitian–Yang–Mills connections on

stable holomorphic bundles have been generalized

when there are special structures. The most impor-

tant one is the Higgs bundle structure by C. Simpson.

It is related to the variation of Hodge structure. The

theory is not completely satisfactory when the base

manifold is noncompact but quasiprojective.

It is a challenging question to construct Kähler–

Einstein metrics with zero or negative scalar cur-

vature or Hermitian–Yang–Mills connections over

quasiprojective manifold where the complementary

divisors is not smooth but normal crossing.
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Hermitian–Yang–Mills connection can be used to

reduce the holonomy group of a holomorphic bun-

dle when suitable algebraic geometric condition is

verified. They should be used extensively in study-

ing moduli space of bundles and non-Kähler complex

manifolds.

Smith, Thomas and Yau studied the possible mir-

ror manifold of a non-Kähler complex manifold.

Some concrete example of symplectic manifolds were

constructed. Perhaps one can explore such duality in

more detail.

Recently Jun Li made fundamental contribution

towards the understanding of moduli space of stable

maps of an algebraic variety. Quantities over such

moduli are very important for future study.
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