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Outline

• Probabilistic approach to the heat equation
• Fokker-Planck equation and the boundary value

problem
• Matching exit probability - free boundary

formulation
• Application: modeling credit risk in finance
• Poisson jump-diffusion
• Partial integro-differential equation formulation
• Analysis issues
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Probabilistic Approach to the Heat
Equation

• Random walk: step sizes from normal distribution N(0, T )

• X: new position of the particle starting from 0

P [X ∈ (x, x + dx)] =
1√
2πT

e−
x2

2T dx

• One step of random walk replaced by N steps

Xn+1 = Xn + ǫn, ǫn ∼ N(0, T/N), n = 0, 1, ..., N − 1,

X0 = 0, ǫnindependent

• P [XN ∈ (x, x + dx)] same as above
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Probabilistic Approach to the Heat
Equation (Continued)

• Let N → ∞, Xt follows the process

dXt = dWt, X0 = 0

Wt : standard Brownian motion
•

u(x, t) =
1√
2πt

e−
x2

2t = P [Xt ∈ (x, x + dx)]/dx

satisfies

ut =
1

2
uxx, u(x, 0) = δ(x)

• Heat kernel
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More general cases

• Itô process:

dXt = a(Xt, t)dt + σ(Xt, t)dWt, X0 = 0.

• Distribution of particles satisfies the Fokker-Planck equation

ut =
1

2
(σ2u)xx − (au)x

u(x, 0) = δ(x)
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Killing of Particles
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JĴ x = b0

@
@

@
@���XXXXXXXX����*

• Boundary condition for u at x = b0 : u(b0, t) = 0, t > 0
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Solution to the Model Problem

• Consider the special case a = 0, σ = const:

ut =
1

2
σ2uxx, x > b0

u(x, 0) = δ(x), u(b0, t) = 0.

• Solution

u(x, t) =
1√

2πσ2t

[

e−
x2

2σ2t − e−
(x−2b0)2

2σ2t

]

, x ≥ b0

• Explicit solutions also available for linear b

• Standard existence theory for general barrier b(t)
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Survival Probability and Free
Boundary

• Probability of survival up to t:

Q(t) =

∫ ∞

b(t)
u(x, t)dx, Q′(t) < 0

• Probability that Xt has exited the barrier by t:

P (t) = 1 − Q(t) = 1 −
∫ ∞

b(t)
udx

• Exit probability density:

P ′(t) = −Q′(t) =

∫ ∞

b(t)
utdx =

1

2

∂

∂x
(σ2u)|x=b(t)

• Can we find b(t) to generate a given exit probability density?
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Application in Finance:
Distance-to-default Model

• (Ref. Avellaneda and Zhu, Risk , 2001)

• Distance-to-default: Xt = Vt − b(t) ≥ 0,

Vt, b(t): generalized value of the firm and liability

dXt = −b′(t)dt + σ(Xt, t)dWt

• Barrier interpretation: b(t), t ≥ 0 to be determined

• First exit time: τ = inf {t ≥ 0 : Xt ≤ 0}
• u(x, t): survival probability density at t:

u(x, t)dx = P [Xt ∈ (x, x + dx), t < τ ] , x ≥ 0
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Schematic illustration:
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P ′(t) with Linear Barrier
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Control Problem for u(x, t)

• Determine b so that the solution to

ut =
1

2
(σ2u)xx + b′ux, x > 0, t > 0

with initial and boundary conditions:

u|t=0
= δ(x + b(0))

u|x=0
= 0, t > 0

• satisfies the additional BC

data fitting →1

2

[

∂

∂x

(

σ2u
)

]

|x=0

= P ′(t), t > 0
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Calibration: Free Boundary Problem

• Difficulties:
• Starting from a δ-function initial data

• Need to determine the correct b(t)

• Approaches:
• Initial layer: b(t), 0 ≤ t ≤ t0 for small t0 approximated by

a linear barrier

• Second-order finite difference method to solve for t > t0,

using u(x, t0) from the initial layer as initial condition

• Matching two solutions at t = t0:
• Choose α, β so that P̄ (t0) = P (t0), P̄ ′(t0) = P ′(t0)
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Examples

• Default probabilities for the bank industry with
ratings in AAA and BAA1.

year AAA BAA1

1 0.0073 0.0222

2 0.0136 0.0285

3 0.0166 0.0315

4 0.0190 0.0339

5 0.0210 0.0360

6 0.0229 0.0380

7 0.0246 0.0396

8 0.0264 0.0415

9 0.0284 0.0437

10 0.0307 0.0466
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Default Barriers for AAA and BAA1
Companies
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Questions

• Existence of solutions?

P ′(t) > 0, P (t) ≤ 1, for t < T

• u ≥ 0 for all x ≥ 0?
• Stability of the barrier?

Poisson Jumps in Credit Risk Modeling: a Partial Integro-di fferential Equation Formulation – p.16/35



Blowup of Default Barrier
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Linear Stability Analysis

• Small perturbations to P lead to small changes in b(t)?

• Perturbation analysis: for small ǫ

P (t) = P0(t) + ǫP1(t) + O(ǫ2)

u(x, t) = u0(x, t) + ǫu1(x, t) + O(ǫ2)

b(t) = b0(t) + ǫb1(t) + O(ǫ2)

• u0 satisfies the equations with extra condition P0

• Goal: bound ||b1(t)|| in terms of ||P1(t)||
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Perturbation Equation

• Assume σ = 1

• u1, if exists, should satisfy

vt =
1

2
vxx + b′0vx + b′1u0,x

v|x=0 = 0

v|t=0 = 0

vx|x=0 = 2P ′
1(t)

• b′1 chosen based on P ′
1(t)
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Heat Kernel

• Consider problem for w(x, t, s), for arbitrary b1:

wt =
1

2
wxx + b′0wx, t > s

w|x=0 = 0

w|t=s = b′1(s)u0,x(x, s)

• Express the solution

w(x, t, s) = Kb0 ∗
(

b′1(s)u0,x(x, s)
)

Kb0 is the general time-dependent heat kernel
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Duhamel’s Principle

• Represent solution

u1(x, t) =

∫ t

0

w(x, t, s)ds

• Compute u1x(0, t):

2P ′
1(t) =

∫ t

0

wx(0, t, s)ds =

∫ t

0

K̃b0,u0(t, s)b
′
1(s)ds

• b′1 and P ′′
1 (t) related through an integral equation

Poisson Jumps in Credit Risk Modeling: a Partial Integro-di fferential Equation Formulation – p.21/35



Discussions

• Challenges:
Extremely low default probability for short time horizon

• Propositions:
• Introduce time dependent volatility σ(t)

• Allow the barrier to be stochastic (Pan, 2001)

• Start from a probability distribution (Imperfect

information)

• Add Poisson jumps
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Compound-Poisson Process

• Features:
• Shocks (jumps) coming at uncertain times

• Markov process

• Z(t) : total number of occurrences before t,

Pn(t) = P{Z(t) = n} =
(λt)n

n!
e−λt

• Intensity λ:
• for small h, P1(h) = λh + o(h), P0(h) = 1 − λh + o(h)

• Applications in finance: stock option pricing (Merton,
1976), reduced-form models
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Combined Wiener-Poisson Process

• Discontinuous process:

dXt = −b′dt + σdWt + dqt

• qt experiences jumps with intensity λ,

• Once a jump occurs, probability measure of the jump
amplitude

G(x, dy) = P [x → (y, y + dy)]

is given
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Sample Paths
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Infinitesimal Generator of the
Process

• For the Poisson process, with small t > 0

Ex[f(Xt)] ≈ λt

∫

f(y)G(x, dy) + (1 − λt)f(x)

• For the combined process

Af(x) = lim
t→0+

Ex [f(Xt)] − f(x)

t

=
1

2
σ2fxx − b′fx + λ

∫

(f(y) − f(x)) G(x, dy).

• Kolmogorov backward equation:

∂f

∂t
= Af
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Forward Equation with Boundary
Condition

• Adjoint operator (assuming G(x, dy) = g(x, y)dy):

A∗u =
1

2

(

σ2u
)

xx
+ b′(t)ux + λ

[
∫ ∞

0
u(y, t)g(y, x)dy − u

]

• Boundary condition

• Forward equation (Fokker-Planck)

ut = A∗u, x > 0, u(x, t)|x=0
= 0, t ≥ 0.

• Killing of particles:

Q′(t) = −σ2

2
ux(0, t)+λ

∫ ∞

0
u(y, t)

[
∫ ∞

0
g(y, x)dx − 1

]

dy < 0
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Partial Integro-Differential Equation

• Assume g(y, x) = g(x − y),

ut =
1

2
(σ2u)xx + b′(t)ux − λu + λ

∫ ∞

0
u(y)g(x− y)dy, x > 0

• Boundary condition: u(0, t) = 0

• Probability density function g(x) for jump size

g(x) =
1

√

2πβ2
e
−

(x−µ)2

2β2

• Example: λ = λ0e
−t, µ = −e−2t, β = 1

2e−0.2t
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Default Probability Density with
Poisson Jumps
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Matching Condition at the Boundary

• Matching condition is nonlocal

1

2

(

σ2u
)

x|x=0

−λ

∫ ∞

0

∫ ∞

0

u(y)g(x−y)dydx = λ(P (t)−1)+P ′(t), t > 0

• Finite difference-Nyström approximation of the partial

integro-differential equation

• Integral term treated as a source term

• Initial layer: a linear barrier for 0 < t < t0 is sought to match

data (P (t0) and P ′(t0)), numerical solutions used

• Similar shooting technique to determine the free boundary

for t > t0
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Example: Jump-diffusion

• Bank industry with AAA ratings

year May 2004 Dec 2001

1 0.0058 0.0073

2 0.0094 0.0136

3 0.0115 0.0166

4 0.0135 0.0190

5 0.0155 0.0210

6 0.0171 0.0229

7 0.0190 0.0246

8 0.0210 0.0264

9 0.0232 0.0284

10 0.0256 0.0307
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Barriers with Jump-diffusion (1)
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Barriers with Jump-diffusion (2)
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Survival density
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Summary

• Allow jumps in distance-to-default

• Additional parameters to fit the data

• Partial integro-differential equation formulation

• Efficient and stable numerical solutions

• Stability analysis needed

• Study the equation with random killing term

• Build in correlation structures
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