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Prologue

In the note,we give a quick introduction to variation of Hodge structures and
its applications to algebraic geometry.We has talked most of the note in work-
ing seminars at Harvard University and CMS. The revised version has been
finished after lectures of Algebraic Geometry Workshop of 2004 Hangzhou-
Beijing International Summer School.
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1. Introduction to Variation of Hodge Structure

1.1. Family of varieties and higher direct image of constant sheaf.
Let f : X → M be smooth family with the projective manifolds as fiber. In
general cases , X and M are quasi-projective manifolds,such a family always
comes from :

X
⊂−−−→ X

π

y π

y
M

⊂−−−→ M

where X and M are smooth projective manifolds contain X and M as Zariski
open sets , π is a surjective proper morphism such that X is the inverse image
of M under π and the restricted map π is a smooth map over M .Moreover,by
the well known Hironaka’s desingularity theorem,one can assume that S =
M \M is a normal crossing divisor. In the case M is a noncompact algebraic
curve,with the method of semi-stable reduction, one can obtain the smooth
compactification such that over every point s ∈ S,π−1(s) is at most a normal
crossing divisor.

We know each close fiber π−1(s) for s ∈ M(C) in some given moduli
space,i.e. [π−1(s)] ∈ M. By Matasusaki Big theorem, we can assume in this
notes that all smooth families are projective.i.e., for the family f : X → M
,there exists a projective space PN such that the diagram is commutative:

X
i−−→ PN ×M

J
Ĵ

f ­
­À

π

M

where i is an embedding and π is the natural projection.This actually means
means that one have a family of manifolds embedding into PN .The restriction
to Xt of the canonical sheaf OPN (1) defines a positive line bundle Lt.

Let ωt = c1(Ls),all ωt is nonzero and torsion free in H2(Xt,Z). Actu-
ally,fitting all ωt together one obtain a global flat section ω of the direct image
sheaf R2π∗(Z).

Therefore, one obtains the induced C∞ flat vector bundle from the family
f as following:

Fixing a base point t0 ∈ M ,for each k with 0 ≤ k ≤ 2n,the local system
Rkf∗(C) is just a representation of fundamental group

ρ : π1(M, t0) → GL(Hk(Xt0 ,C)),
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it means

Rnf∗(C) = M̃ ×ρ Hk(Xt0 ,C)

where M̃ is the universal covering of M .
Denote Hk = Rkf∗(C) ⊗ A where A is the sheaf of C∞ complex function

over M , one actually obtains a C∞ flat complex vector bundle (Hk,∇) over
M whose sheaf of germs of flat sections is just the direct image sheaf Rkf∗(C)
and the fibre (Hk)t over t ∈ M can be identified with Hk(Xt,C).

The flat bundle Hk contains a real flat bundle Hk
R whose sheaf of germs of

flat sections is Rkf∗(R) and a flat lattice Hk
Z which corresponds to Rkf∗(Z),thus

the representation really has Z structure,i.e.

ρZ : π1(M, t0) → GL(Hk(Xt0 ,Z)).

Important properties:

1. Relative Hodge filtration.
For each t ∈ M ,there is Hodge decomposition

Hk(Xt,C) =
⊕

p+q=k

Hp,q(Xt)

with respect to ωt the induced Kähler structure.From the Grauert’s co-
herent theorem,the integers hp,q

t = dimCHp,q(Xt,C) depend upper semi-
continuously on t.On the other hand,dimCHk(Xt,C) remains constant,thus
the integers hp,q

t are constants.Therefore,one has a C∞ decomposition of the
bundle

Hk =
⊕

p+q=k

Hp,q

with Hp,q = Hq,p. Setting Fp =
⊕

i≥p H i,k−i for 0 ≤ p ≤ k,then all Fp are

C∞ subbundles of Hk.
2. Hodge-Riemann bilinear relation.

There is a natural nondegenerate bilinear form Qt on Hk(Xt,C) for every
t ∈ M

Qt(ξ, η) =

∫

Xt

ξ ∧ η ∧ ωn−k
t ,

which is defined over Z and satisfies the Hodge-Riemann bilinear relation
(HR):

(1)Qt(H
p,q
t , Hr,s

t ) = 0,unless r = n− p and s = n− q,
(2)(

√−1)p−qQt(ξ, ξ) > 0, for ∀ ξ ∈ P p,q
t .

Fitting all {Qt},Q = {Qt | t ∈ M} is flat section of (−1)k-Sym2(VZ)∗.
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3. Griffiths transversality.
From the Hodge-Riemann bilinear relation and the flatness of Q, there is
Griffiths infinitesimal relation :

(1.0.1) ∇ : Hp,q →R0,1(Hp+1,q−1)⊕R1,0(Hp,q)⊕R0,1(Hp,q)⊕R1,0(Hp−1,q+1).

Decompose the operator∇ = θ+∂+∂+θ according to above decomposition
(HR), then ∇1,0 and ∂ both obey the ∂-Leibnitz rule and are integrable.So
one obtains the holomorphic vector bundle V under the holomorphic struc-
ture ∇0,1 with integrable Gauss Manin connection ∇GM = ∇1,0,

∇GM : Oan(Hk) → Oan(Hk)⊗ Ω1
Man .

The Griffiths infinitesimal relation 1.0.1 is equivalent to

Theorem 1.1 (Griffiths transversality). The subbundles Fp ⊂ Hk are all
holomorphic subbundles under the holomorphic structure ∇0,1,thus one has
a corresponding holomorphic filtration

0 ⊂ Fk ⊂ · · · ⊂ F0 = V := Rkf∗(C)⊗Oan
M .

Furthermore, for each 0 ≤ p ≤ k,

∇GM : Fp → Fp−1 ⊗ Ω1
Man .

Shown by Deligne[1],Katz[4] and Schmid[7], this holomorphic bundle has
regular singularities around every component of the infinite normal crossing
divisor D∞ = M \M ,so they are all algebraic bundles. It should be pointed
out,the induced algebraic structure are isomorphic to the intrinsic algebraic
structure shown by Grothendieck.

4. Grothendieck’s cohomology of direct image.
It had been shown by Grothendieck that the above filtration of V can be

defined in a purely algebraic manner as follows:
Let Ωp

X/M := Ωp
X/(f ∗Ω1

M ∧ Ωp−1
X ),then

Ω•
X/M =

dim Xt⊕
i=0

Ωq
X/M

is an algebraic coherent sheaf in the Zaraski topology on X. It is known
that Ω•

X/M is a graded differential sheaf with OM -linear morphism

dq : Ωq
X/M → Ωq+1

X/M

induced from the exterior differentiation on Ω•
X.

One will have De Rham complex of relative differential forms of the
smooth family f : X → M

(1.1.1) Ω•
X/M : 0 −−→ OX

d0−−→ Ω1
X/M

d1−−→ Ω2
X/M −−→ · · ·
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then for all k ≥ 0 one can define the Leray hypercohomology sheaves
Rkf∗(Ω•

X/M) which are algebraic coherent sheaves on M .It is not difficult

to show that the analytic coherent sheaves in M associated to R∗f∗(Ω•
X/M)

is just
R∗f∗(C)⊗OMan .

It is well known that the Leray spectral sequence {Ep,q
r } with Ep,q

1 =
Rqf∗(Ω

p
X/M) converges to the limit ⊕p+q=kE

p,q
∞ which is graded sheaf as-

sociated to a filtration of V = Rkf∗Ω•
X/M . The algebraic definition of the

filtration
0 ⊂ Fk ⊂ · · · ⊂ F0 = V

is obtained by the Hodge filtration(often called stupid filtration) on the

complex 1.1.1,i.e. F pRkf∗Ω•
X/M ' Rkf∗(F pΩ•

X/M) where F pΩ•
X/M := Ω•≥p

X/M .

Furthermore,the spectral sequence degenerate at the first term

Ep,k−q
1 ⇒ Rkf∗(Ω•

X/M) = Rkf∗(C)⊗OM ,

thus
Fp =

⊕

p≤r≤k

Rk−rf∗(Ωr
X/M),

so they are compatible with the definition in item 3 and are algebraic sub-
bundles of V . Especially,

Fk = R0f∗(Ωk
X/M)

is an algebraic subbundle.
5. Higgs Field and Yukawa coupling.

Taking grading of Griffiths transversality ,because OM(F p/F p+1) is just

the Leray sheaf Rpf∗(Ω
k−p
X/M) ,the Gauss Manin connection ∇GM induces an

OM -linear mapping

θk−p,p = Gr(∇) : Ek−p,p = Rpf∗(Ω
k−p
X/M) → Ek−p−1,p+1 = Rp+1f∗(Ω

k−p−1
X/M )⊗Ω1

M .

Lemma 1.2. Let θ := ⊕θp,q, θ is a OM -linear map, we sometimes call it
Higgs field. θ is algebraic and it has such important properties:

∂(θ) = 0, θ ∧ θ = 0.

Lemma 1.3 (Griffiths). θ is just the cup product with the Kodaira-Spencer
infinitesimal deformation class

κ ∈ H0(M,R1f∗(TX/M)⊗ Ω1
M).

Let complex dimension of fiber be n. Yukawa coupling of Rnf∗(C) is
just the n-iterated Higgs Field

θn : E → E ⊗ SnΩ1
M ,



6 Yi Zhang

where E = Rnf∗(C)⊗OM .
As (E, θ) can be splitting into ( in C∞ category)

(E, θ) = (
⊕

p+q=n

Ep,q,
⊕

θp,q)

With
θp,q : Ep,q → Ep−1,q+1 ⊗ Ω1

M

and θ ∧ θ = 0. We always write the Yukama coupling as

θn : SnTM → Hom(En,0, E0,n) = ((R0f∗Ωn
X/M)∗)⊗2.

6. Polarization and Hodge metric.
For some technical reasons, one hopes there is a positive Hermitian metric

on the vector bundle Hk.Fortunately,it will be given by the natural polar-
ization on the primitive part of the cohomology group of the fibers Xt with
the Lefschetz decomposition and the Hodge-Riemann bilinear relation.

Fixed a base point t0, let L = Lt0 , then ωt0 = c1(L) ∈ H2(Xt0 ,Z) is
invariant under action of the globally monodromy π1(M). Therefore one
can define the primitive cohomology P k(Xt0 ,C) for k ≤ n = dimCXt to be
the kernel of

Ln−k+1 : Hk(Xt0 ,C) → H2n−k+2(Xt0 ,C).

For convenience, we will abuse the notations so that we do not tell apart
L and c1(L) clearly.

Then,the Lefschetz decompostion:

Hk(Xt0 ,C) =

[k/2]⊕
i=0

LiP k−2i(Xt0 ,C)

is a π1(M)-invariant Q-decomposition of Hk(Xt0 ,C) because L is defined
over Q.Therefore,globally there is a sheaf map between the local constant
sheaves

ωn−k+1 : Rkf∗(C) → R2n−k+2f∗(C)

The the kernel sheaf P kf∗(C) := Rk
primf∗(C) is also local constant which

is called Leray primitive cohomology sheaf and P kf∗(C)t = P k(Xt,C).One
has the global Lefschetz decompostion defined over Q:

Rkf∗(C) =

[k/2]⊕
i=0

ωi ∧ P k−2if∗(C).

Certanly, the fundamental group representation can be reduced to

ρ : π(M, t0) → GL(P k(Xt0 ,C))
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which corresponds to P kf∗(C). So one will get a C∞ flat vector bundle
(Hk,∇) as same as the case of cohomology group.

Because of Hodge-Riemann relation (HR), (Rk
primf∗(C)⊗OM ,∇GM) has

a positive Hermitian metric H (Hodge metric)defined by

H(·, ·) := Q(C·, ·)
where the operator C is the Weil operator defined naturally by the filtration
{Fp}k

p=0. Furthermore,by Lefschetz decomposition, we can define a positive

Hermitian metric on Rkf∗(C)⊗OM . Therefor

At all, we have

Theorem 1.4. (Rk
primf∗(Q),∇GM), (Rkf∗(Q),∇GM) are both polarized varia-

tion of rational Hodge structures.

Example 1.5 (Family of Calabi-Yau threefolds). If X is a compact Kähler
manifold with dimension 3,one have the Lefschetz decomposition:

H3(X,C) = P 3(X,C)⊕ LP 1(X,C).

If X a projective Calabi-Yau threefold with holonomy group SU(3),then

H1(X,C) = 0 and H3(X,C) = P 3(X,C).

Therefore,for a family of Calabi-Yau threefolds f : X → M

R3f∗(C) = P 3f∗(C).

Thus R3f∗Q is q polarized Q-variation of Hodge Structure.

Example 1.6 (Family of Abelian varieties). Let f : X −−→ M be smooth
family of Abelian variety, then it is easy to check that the VHS R1f∗(C) is a
polarized VHS because of R1f∗(C) = P 1f∗(C).

1.2. Variation of Hodge structures and period map. Now one can for-
mulate the definition of VHS from the examples coming form geometry.

Definition 1.7. Let R be a subring of R that is stable under complex con-
jugate. A (polarized) variation of R-Hodge Structure of weight k on the base
manifold M consists of the datum

{M,VR ⊂ VR ⊂ VC ⊂ H, {Fp}k
p=0,∇ = ∇1,0 +∇0,1,Q}

where

(1) VR is local system of R-module of finite rank and (H = VR⊗RA,∇) is
a flat complex vector bundle where A is sheaf of C∞ complex functions
over M .

(2) {Fp}k
p=0 is a filtration of H and the fiber {Fp

t}k
p=0 form a Hodge filtra-

tion of Ht of weight k with respect to the real structure (VR)t for all
t ∈ M .
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(3) According to holomorphic structure ∇0,1,all Fp become holomorphic
subbundles (denote Fp) of V = VR ⊗ OMan and there is a decreasing
filtration

0 ⊂ Fk ⊂ · · · ⊂ F0 = V ;

Furthermore, Let ∇GM = ∇1,0 be the integrable Gauss-Manin connec-
tion, one have Griffiths tranversality

∇GM : Fp → Fp−1 ⊗ Ω1
Man .

(4) (Polarization) Q is flat non-degenerate section of (−1)k-Sym2(VR)∗

and for all t ∈ M ,Qt polarizes the Hodge filtration {Ft}k
p=0. Q is

called the polarization of the VHS.

If R = Z one always call the VHS has rational structure (because V is of finite
dimension, it is equivalent to have Q-structure),as R = R real VHS.

If one tick off the condition (4)(i.e.no polarization ),one also call it a variation
of Hodge Structure.

Remarks 1.8. (a) From the polarization, one can define the Hodge metric on
H as follows:

H(·, ·) := Q(C·, ·)
Where the operator C is the Weil operator defined naturally by the filtration
{Fp}k

p=0.
(b) In general, Let g : X → B be proper smooth morphism between connected
complex manifolds,Assume both X and B have Kähler structure,then one will
get a variation of Hodge Structure Rkg∗(Z).As we have shown we can obtain
polarized rational VHSs Rk

primg∗(Q), Rkg∗(Q) with the Hodge metric.

The most important fact is that if (V,∇, H) is a polarized VHS,then (V,∇, H)
has the property of polynomial growth directly near D∞ from the result of
nilpotent orbit theorem of Schmid(cf.[7]),so it has the canonical extension and
becomes an algebraic vector bundle.Exactly,

Theorem 1.9 ( Deligne,Katz,Griffiths,Schmid). Let V be a polarizable
variation of Hodge structures on a smooth quasi-projective variety M/C.Then
the holomorphic vector bundle V = V⊗Oan

M carries a unique algebraic structure
such that the connection ∇an becomes algebraic and such that ∇ has regular
singularities at infinity relative to any Hironaka completion M . with respect
to this structure, the holomorphic subbundles Fp ⊂ V becomes algebraic.

Let D be the classified space of weight k all real polarized (given by Q)
Hodge structures with Hodge number given {hp.k−p}k

p=0.

Example 1.10. Let M be a simply-connected, {M,V ⊂ H, {Fp}k
p=0,∇, (Q)}

be a polarization VHS on M , In this case V = M × V ,∇ = d, Q constant
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biliner form. So the holomorphic filtration {Fp}k
p=0 induce a holomorphic map

Φ : M → D

Moreover, as same as above,

M
Φ−−−→ D

ι−−−→ ∏k
p=0 Gr(hp, V )

Z
ZZ~

φp ½
½½=

λp

Gr(hp, V )

For any t ∈ M one also obtain

ι∗Φ∗(Tt) ⊂
k⊕

p=0

Hom(Fp
t /Fp+1

t ,Fp−1
t /Fp

t )

More precisely, Φ has the horizontal property i.e.

Φ∗(Tt) = (φ0
∗(Tt), · · · , φp

∗(Tt), · · · , φk
∗(Tt)) ⊂ T h

∗,Φ(t)

where T h
∗,Φ(t) is the horizonal tangent space,i.e.,

T h
∗,Φ(t) := ι−1

∗,Φ(t)(
k⊕

p=0

Hom(Fp
t /Fp+1

t ,Fp−1
t /Fp

t )),

and φp
∗(Tt) ⊂ ι−1

∗,Φ(t)Hom(Fp
t /Fp+1

t ,Fp−1
t /Fp

t ).

In general, M is always not simply-connected.Let

{M,VZ ⊂ H, {Fp}k
p=0,∇ = ∇GM +∇0,1, (Q)}

be a polarization VHS.Fixing a point t0 ∈ M ,because Q is flat ,the a global
monodromy representation is :

ρ : π1(M, t0) → Aut(VC,t0 , Qt0)

The flatness of Q and the existence of the lattice guarantee that

Γ := ρ(π1(M, t0)) ⊂ GZ(t0) = Aut(VZ,t0 ,Qt0)

We call Γ the monodromy group of the VHS.

Let M̃ be the universal coving of M ,so as a local system VC = M̃ ×ρ VC,t0

and the pullback VHS on M̃ is canonical trivial as a vector bundle. Fixing

t̃0 ∈ M̃ which is the lifting of t0 ∈ M , one identify the fibers over t0 and t̃0
are V . The pullback polarization is a constant section over M̃ ,one identify
Qt with it which be denoted Q . Following the above example, one get the
holomorphic map

Φ̃ : M̃ −→ D
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Moreover Φ̃ is ρ-equivalent.i.e.

Φ̃(σt̃) = ρ(σ)(Φ̃(t̃)) for ∀σ ∈ π1(M, t0)

Thus one have the induced mapping

Φ : M −→ D/Γ

from M to the analytic space D/Γ, We call it Griffiths’s period mapping
corresponding to that VHS.

Remark: D/Γ will be a manifold if Γ is torsion free.In general, D/Γ is not
necessarily a manifold,but it has a structure of stack.

Theorem 1.11 (Griffiths). The definition of polarized Q-VHS is equivalent
to the following results which are functional version of VHS.

(I) Φ is holomorphic;
(II) Φ is locally liftable,that is for each t0 ∈ M there exists a neighborhood

U ⊂ M and a holomorphic map Φ̃U , such the diagram

U
Φ̃U−−−−→ D

J
Ĵ

Φ ­
­À

π

D/Γ

commutes,here π is the canonical projective map.

(III) By the property of tranversality of the VHS ,the mapping Φ̃U is hori-
zontal.

Here is key lemma which opens the door for applying hyperbolic analysis to
Hodge Theory,

Lemma 1.12 (Giffiths-Schmid ). On Ď,there is a G-invariant Hermitian met-
ric whose curvature relative to the horizonal section is negative and bounded
away from zero.

Corollary 1.13 (Ahlfors). The lifting period map

Φ̃ : M̃ → D

is uniformly continuous if M̃ is given the standard Poincaré metric.

1.3. Limit of the Hodge structure and Nilpotent orbit theorem. What’s
the asymptotic behavior of the period map?This question is related to the de-
generation of the family. Because the base M is a quasi-projective manifold
with Hironaka completion M , M always has this type (∆∗)m × (∆)n−m near
the D∞.

WLOG,let M = (∆∗)n,then π1(M) =
∏n Z is generated by {γ1, · · · γn}

each γi corresponding to counterclockwise path around 0 of i-th component
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of (∆∗)n.Let (VZ) a polarized VHS over M , fix a t0 ∈ M the monodromy
representation is

ρ : π1(M, t0) → Aut(VC,t0), Qt0)

Denote Ti = ρ(γi) the Picard-Lefschetz transformation.

The universal covering M̃ of M is Un the product of Póincare upper planes
by U = {z | Imz > 0}.The covering mapping is

τ : Un (t1,··· ,tn)−−−−−→ (∆∗)n , τ(z1, · · · , zn) = (e2π
√−1z1 , · · · , e2π

√−1zn),

and the lifting period map Φ̃ : Un −−→ D is ρ-equivariant,i.e.

Φ̃(z1, · · · , zi + 1, · · · , zn) = Ti(Φ̃(z1, · · · , zi, · · · , zn)).

Lemma 1.14 (Landman,Katz,Borel [7]). All eigenvalues of Ti are roots of
unitary.Let T be one monodromy,T can written as T = TuTs = TsTu where Ts

is semisimple and Tu nilpotent, there are positive integers β and l ≤ k(k is the
weight of the VHS ) such that

(T β − id)l+1 = (T β
u − id)l+1 = 0,

when (T β − id)l 6= 0.

When β = 1, we call T is unipotent monodromy. When β = 1 and l = k,
T is maximal unipotent monodromy.

There is analytic proof of the lemma depending on Alphors lemma, but we
would like give a geometric description for original case.

Example 1.15 (Landman’s theorem). Let g : X → ∆ be local family having
unique degeneration 0 with m-dimensional fiber. The Clemens mapping is the
composite map form Xt to the singular fiber X0 = g−1(0),

ct : Xt ↪→ X r−−→ X0

where r is the restricted deformation. At a neighborhood (in X ) of p ∈ X0,the
singular fiber can be defined by

wa1
1 wa2

2 · · ·wal
l = 0,

where ai are positive integer. Let β = gcd(a1, a2, · · · , al),there are integers
{bi}l

i=1 such that
∑

aibi = β.In the neighborhood of p, going along a simple
counterclockwise loop around X0, the transformation can be written as

(w1, · · · , wl, · · · , wm) 7→ (exp(
2πb1

√−1

β
)w1, · · · , exp(

2πbl

√−1

β
)wl, wl+1, · · · , wm).

Thus T a acts on R∗ct∗(Q) is trivial. Because shown by Deligne

Ep,q
2 = Hq(X0, R

qct∗(Q)) ⇒ Hp+q(Xt,Q),
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T β acts trivial on E∞ which is the graded module of Hk(Xt,Q).Thus T β acts
unipotently on Hk(Xt,Q),i.e (T β − Id)k+1 = 0. Especially,when the family g
is semi-stable(i.e.a1 = a2 = · · · = al = 1),then β = 1,T is unipotent.

Let N = log Tu = (1/β) log T β = (1/β)
∑k

j=1(1/j)(−1)j+1(T β − Id)j,
which is a nilpotent.It is clear NjNi = NiNj.

Define a mapping form Un to Ď (The dual space of D and is a compact
complex manifold) by

Ψ̃ = exp(−
n∑

i=1

βiziNi)Φ̃(β1z1, · · · , βnzn),

it is easy to check Ψ̃ induce a holomorphic mapping Ψ : (∆∗)n −−→ Ď

Theorem 1.16 (Nilpotent Orbit Theorem[7]). The map Ψ can extend holo-
morphiclly to (∆)n,especially,F0 = Ψ(0, · · · , 0) exists in Ď.Moreover

(1) F0 is fixed by all Ts where T ∈ {T1, · · ·Tn}
(2) The nilpotent orbit exp(

∑k
i=1 ziNi)F0 ∈ Ď is horizonal.

(3) There exist constants α, δ,K ≥ 0,such that the point exp(
∑k

i=1 ziNi)F0 ∈
D when Imzi ≥ α for all i and satisfies the following inequality

d(exp(
k∑

i=1

ziNi)F0, Ψ̃(z)) ≤ K
n∑

i=1

(Imzi)
δ exp(−2π(βi)

−1Imzi),

where d denotes a GR-invariant Riemannian distance function on D;more
over the constants α, δ,K ≥ 0 depend only on the choice of d,all βi and
the weight of the Hodge Structure.

Fixing a point t0 ∈ M ,Ft can be seen as a filtration of V = VC,t0 which
corresponds to the point Ft ∈ Ď.Not like the filtration of Φ(t) for any t ∈
M ,the filtration of F0 can not be a Hodge filtration because F0 may not in
D.But all unipotent map Ni will give V a increasing weight filtration W defined
over Q such that

Theorem 1.17 (Schmid[7]). (1) (V, F0,W ) is a mixed Hodge Structure. (2)
N : V → V is a morphism of mixed Hodge Structure of weight −2.

We do not introduce Mixed Hodge Structure here, if one has interest in it.
There is good references of Deligne [1],Schmid [7].
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1.4. Canonical extension and application.

1.4.1. Deligne canonical extension. The Nilpotent orbit theorem guarantee
that the holomorphic bundle arising from the VHS can extend to D∞ such
that one obtains the theorem 1.9.

Let π : X → Y be a proper surjective morphism with connected fibers
between nonsingular algebraic varieties over C.Assume there is open set Y0 of Y
such that Y −Y0 is a divisor with only normal crossings and that π0 : X0 → Y0

is smooth,where X0 = π−1(Y0). The local system Riπ0∗CX0 on Y0 forms a
variation of Hodge structures with weight i ≥ 0. Define the Hodge bundle
Hi

0 = Riπ0∗CX0 ⊗C OY0 and let F i
0 = F p(Hi

0) be the p-th Hodge filtration of
Hi

0 and Qp
0 = Fp

0 /Fp+1
0 be the quotient vector bundles.

Example 1.18. Assume Y 0 be non compact Remiann surface, let (V ,∇) be an
analytic vector bundle with integrable connection.We obtain the corresponding
local system V defined over C by from the equation ∇v = 0. Then we have
a local monodromy transformation (Picard-Lefschetz) around the puncture
s ∈ Y − Y0(counterclockwise):

µs : Vs → Vs

Choose a local coordinate z near s, Let (e1(z), · · · , en(z)) be a multivalued
flat basis of Vs over U a small punctured neighborhood of s. One thus gets
the monodromy matrix Bs related to such basis.Let Bs = DsUs = UsDs be
the Jordan decomposition where Ds = diag(dk) semi-simple (diagonal) and Ns

unipotent upper triangular.

Ns = log Us =
∑

l>ge1

(−1)l+1 1

l
(Us − 1)l

log Ds = diag(log dk)

is well defined and log Bs = log Ds + N , here we pick one value of log of the
set dk. There,there is a matrix

Ms =
−1

2π
√−1

log Bs

So exp(−2π
√−1Ms) = Bs.Let

hi(z) = exp(Ms log z)ei(z)

such that hi(z) are single valued sections of V over U .
Furthermore,(h1(z), · · · , hn(z)) provide a frame for a holomorphic extension

V of bundle. Because ∇(ei) = 0,one has

∇(hi) = Ms
dz

z
hi.
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The matrix for ∇ is Msdz/z in this frame,hence (V ,∇) has regular singular-
ities,that we get the extension algebraic vector bundle (V ,∇) and different
choices of log give the same algebraic structure on (V ,∇).

For the same reason,when Y is higher dimension,and D = Y −Y0 = ∪Dj is a
divisor with normal crossings only.The VHS (Hi

0,∇) has regular singularities
along D and all eigenvalues of B have absolute value one. Moreover,there
are two natural canonical extensive locally free sheaves over Y and by GAGA
principal the extensions will give (Hi

0,∇) same algebraic structure which is
compatible with the intrinsic algebraic structure of the direct image,i.e.,the
theorem 1.9 by Deligne-Griffiths-Katz-Schmid.

As the notions in example 1.18, assume that all eigenvalues of B have ab-
solute value one.The two extensions of vector bundle V to Y depend on the
choices of log B,where the values lie on the interval [0, 2π

√−1) or (−2π
√−1, 0]

respectively. The extension given by [0, 2π
√−1) will be called the upper canon-

ical extension and denote by uV which is always called Deligne’s canonical
extension, the one given by (−2π

√−1, 0] will be called the lower canonical
extension and denote by lV .Certainly lV ⊂u V ,uV(resp.lV) is the smallest(resp.
largest) extension of V such that along any real analytic aec any flat section
v(z) satisfies |v(z)| 6 | log z|k(resp.|v(z)| > | log z|k ) for some k > 0.

For Y is of higher dimension,we also has these extensions.Let U be an open
set of Y with coordinate functions z1, ..., zm such that U ∩D = {z1 · · · ze = 0}
for some 0 ≤ e ≤ m.Let Bi(i = 1, ..., e) be monodromies matrix of H0 corre-
sponding to loops around zi-axes(for case of VHS, Bi are all quasi-unipotent).
Let v1, · · · , vr be multi-valued flat sections of H on U which make a basis at
each point. Then the expressions

hj = exp(−
e∑

i=1

log Bi · log zi/2π
√−1)vj, for j = 1, ..., r

give single-value holomorphic section of H0,where the branches of log Bi are
chosen in same interval. The extension H is generated by the basis hj such
that H does not depend on the choice of zi and vj. Actually,

Theorem 1.19 (Geometric Version of Nilpotent Orbit theorem). Assume that
all the local monodromies of the local system Riπ0∗CX0 around Y − Y0 are
unipotent,then we have the Deligne’s canonical extension Hi of Hi

0(in this case
uHi must be lHi).The Nilpotent Orbit Theorem says
Fp := j∗F p(Hi

0) ∩ Hi are all holomorphic subbundle (exactly all bundles
are algebraic) of Hi where j : Y0 → Y is the inclusion and the all quotients
Qp = Fp/Fp+1 are locally free sheaves.
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1.4.2. Local freeness of relative dual sheaf and semi-positivity. Denote relative
dual sheaf on X to be ωX/Y = ωX ⊗ π∗ω−1

Y and let d = dim X − dim Y .

Definition 1.20 (Unipotent Reduction Condition). Let π : X → Y be an al-
gebraic fiber space, we say π satisfies the unipotent reduction condition(URC)
if and only if the following conditions holds:

1. There is a Zariski open dense subset Y0 of Y such that D = Y − Y0 is a
divisor of normal crossing on Y (i.e. D is a reduced effective divisor

and if D =
∑N

i=1 Di is the decomposition to irreducible components,then
Di are non-singular and cross normally).

2. π0 , π|X0 : X0 → Y0 is smooth where X0 = π−1(Y0).
3. The local monodromies of Rdπ0∗CX0 around D are unipotent where d =

dim X − dim Y .

Remark: If π : X → Y is semi-stable family,then the URC holds automati-
cally. When dim Y = 1 the semi-stable reduction always exists,but for higher
dimensional Y ,the semi- stable reduction theorem is not yet proved.However
we have unipotent reduction shown by Kawamata[5].

Theorem 1.21. [Local freeness of dual sheaf] Let π : X → Y be an algebraic
fiber space which satisfies URC, let Rdπ0∗CX0 ⊗ OY0 be the polarized VHS
over Y0 and Fd

0 = π0,∗ωX0/Y0 be the bottom of the filtration. Fd
0 have Deligne

canonical locally free extension Fd over Y and π∗ωX/Y |Y0 = Fd
0 . Then

π∗ωX/Y = Fd,

so that π∗ωX/Y is a locally free sheaf.

Furthermore,due to Fd is the bottom filtration and VHS is flat holomorphic
vector bundle. Reasonably we have

Theorem 1.22 (Fujita-Kawamata semi-positivity [6, 5]). Let π : X → Y be
an algebraic fiber space which satisfies URC. Then π∗ωX/Y is a locally free
sheaf and semi-positive.

Hodge Structure is a very elegant and deep theory,it has powerful appli-
cations for algebraic geometry,complex geometry.We can only give a short
induction here. There are many beautiful theorems but we have not time to
talk: for examples,SL(2)-orbit theorem,mixed Hodge theory,mixed variation
of Hodge Structure.
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2. Moduli space of polarized Calabi-Yau manifolds

2.1. Calabi-Yau manifolds.

Theorem 2.1 (Yau’s Solution to Calabi Conjecture). For any compact Kähler
Manifold X of complex dimension n with KX = ∧nΩ1

X = OX , there will be a
unique Ricci flat metric on M(i.e. ∃ | Kähler metric gij such that R(g)ij = 0).

By this fundamental theorem,one has

Definition 2.2 (Calabi-Yau Manifold). Let X be a compact manifold,the
followings are equivalence:

(a) Originally, X admits a Riemannian metric with global holonomy group

0 6= H∗ ⊆ SU(n).

(b) X is a compact Kähler manifold with trivial canonical bundle. (Thus
ΘX ⊗ Ωn

X
∼= Ωn−1

X .)

In algebraic geometry,we consider the case of manifolds with Holomony
Group

H∗ = SU(n),

which have to be projective Calabi-Yau manifold.
Let X be CY manifolds of dimension n.Thus,for 0 < i < n,

hi(X,OX) = h0,i(X) = h0(X, Ωi
X) = hn,n−i(X) = 0.

Example 2.3 (Complete intersection). Let X ⊂ Pn+k be a varieties defined
by F1 = F2 = · · · = Fk = 0 and deg Fi = di.For generic choice of Fi X is
smooth manifold of dimension n. By adjunction formula,the canonical line
bundle

KX = OX(
k∑
1

di − n− k − 1)

is trivial if
∑

di = n + k + 1.
By Lefschetz’s hyperplane theorem, these manifolds satisfy H0(Ωi

X) = 0 for 0 <
i < n. Thus one obtains Calabi-Yau manifold of complete intersection type.

Example 2.4. Taking a double cover of P3 branched over 8 planes in gen-
eral position,blowing up along the 28 singular lines.Then we will obtain many
Calabi-Yau threedfolds.

2.2. On moduli space.

Theorem 2.5 (Viehweg[9]). The coarse quasi-projective moduli spaces M ex-
ist for polarized manifolds.In particular for polarized K3 surfaces, Calabi-Yau
manifolds and Abelian varieties.
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The existence ‘Coarse Moduli’ will imply every closed point of scheme M
can be represented by a polarized variety.i.e.

Mh(C) ←→ {CY-folds with fixed Hilbert polynomial h}.

According to Matsusaka Big theorem,the moduli functor is bounded,i.e.
each polarized Calabi-Yau manifold with same Hilbert polynomial h can be
embedded into a projective space PN where N is only dependent h.

In usually way, we want to choose a “good” compactification f : X → M
for a given smooth family f : X0 → M , i.e. an extension of f to a morphism
of projective manifolds with S = M − U and ∆ = X − X0 normal crossing
divisors (NCD).

When the smooth family is over curve, it always has ‘good’ compactifiction
sauch that singular fibers are all reduced and normal crossing,i.e. semi-stable
reduction.

Consider deformation theory(in the category of complex analysis).
Let (X,L) be polarized CY manifold,

π : (X, X) → (Mc1(L), 0)

be the polarized Kuranishi family and D be the classifying space of the polar-
ized Q-Hodge structure of Hn

prim(X,C).

Theorem 2.6 (Bogomolov-Todorov-Tian). Let X be a Calabi-Yau manifold,then
the Kuranishi family of (X,L) is universal,and the base manifold is a smooth
open set with dimension

dimCH1(X, ΘX)c1(L).

Here H1(X, Θ)c1(L) := Ker(H1(X, ΘX)
∧c1(L)−−−−→ H2(X,OX)). This theorem

is also proven by Ran,Z. and Kawamata with purely algebraic method.
Torelli theorem : (Roughly specking)Whether the Hodge Structure de-

termines the complex structure.
Given any family of polarized CY manifold

f : (X , X) → (Z, 0).

Locally, near 0 ∈ Z,one has the commutative diagram of period map

Mc1(L)
ι←−− Z

J
Ĵ

Φ ­
­À

ΦZ

D
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Let µ0 = (dΦ)0 and λ0 = (dΦZ)0.Let ρ = (dι)0 which is the Kodaira-Spencer
map.

Theorem 2.7 (Infinitesimal Torelli Theorem by Griffiths).

µ0 : TMc1(L),0
= H1(X, ΘX)c1(L) →

⊕
p

Hom(Hn−p,p
prim , Hn−p−1,p+1

prim )

which is injective map in case of Calabi-Yau manifolds.Furthermore,one has

λ0 = µ0 ◦ ρ.

Therefore,that the period map Φ be not degenerate at 0 is equivalent to that
the Kodaira-Spencer map be injective.T he generic points of the base variety
of a non-isotrivial family of Calabi-Yau are in that case.

Using deep Hodge theory( variation of mixed Hodge structure and mixed
Higgs bundle), we have

Theorem 2.8 (Zuo [11]). Any coarse moduli with infinitesimal Torelli theorem
must be of log- general type, especially for Calabi-Yau.

2.3. Weil-Petersson Metric. According to Yau’s solution to Calabi’s Con-
jecture,there is unique Ricci flat metric g(t) on Xt in the given polarization
[ω(t)].

Then g(t) induces a metric on Λ0,1(TXt).
We can define Weil-Petersson metric GWP on Mc1(L) by

GWP (v, w) :=

∫

Xt

< ρt(v), ρt(w) >g(t)

for any v, w ∈ TMc1(L),t.
GWP is a Kähler metric on Mc1(L) by infinitesimal Torelli theorem .
Tian and Todorov show that the Kähler form is

(WP) ωWP (t) = −
√−1

2
∂∂ log h = c1(H

n,0(Xt), h)

where h is the Hodge metric of the VHS Rn
primπ∗(C) restring to π∗KX/M.

Shown by Chin-Lung Wang,

Theorem 2.9 (Wang[10]). The Weil-Pertsson metric on moduli space of CY
is incomplete. Moreover, WP metric will have finite distance near canonical
degeneration.



VHS and CY 19

References
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