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ABSTRACT

Two novel problems of boundary crossing probabilities that arise in genetic linkage

analysis based on sib pairs are addressed by modifications of techniques developed to

solve problems of sequential analysis.
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1. Introduction.

Genome scans in linkage analysis lead to problems involving boundary crossing prob-

abilities (cf. Feingold, Brown and Siegmund, 1993), which can be addressed using

methods developed in sequential analysis during the 1970’s. In this paper we discuss

two problems where genetically natural conditions lead to novel variations.

The goal of linkage analysis is to identify regions of the genome harboring genes

affecting particular traits. In humans these are often genes that increase susceptibility

to particular diseases, and it is convenient to speak of “disease” genes, although other

traits affected by an individual’s genetic makeup can be studied similarly.

A convenient unit for the linkage analysis of human diseases is an affected sib pair.

Given N ≥ 1 unrelated sib pairs, we let X
(N)
i,t denote the number of pairs that share i

alleles identical by descent (i = 2, 1, 0) at locus t, and let X
(N)
t = (X

(N)
0,t , X

(N)
1,t , X

(N)
0,t ).

(An allele is shared identical by descent by two relatives if it is inherited from a

common ancestor.) With probability 1/2 a sibling pair can inherit zero or one allele

identical by descent from their mother and similarly from their father. These events

are independent, so the probability that two siblings share i alleles identical by descent

at locus t is given by EX
(1)
2,t = 1/4, EX

(1)
1,t = 1/2, EX

(1)
0,t = 1/4.

For an affected sib pair, on a chromosome containing a disease locus at τ the

(conditional on being affected) distribution of alleles shared identical by descent at τ

is of the form

EX
(1)
2,τ = (1 + α + 2δ)/4, EX

(1)
1,τ = (1− δ)/2, EX

(1)
0,τ = (1− α)/4, (1)

where α and δ can be expressed in terms of a genetic model for the transmission of

the disease and under reasonably general conditions satisfy the constraint

0 ≤ δ < α < 1 (2)

(cf. Risch, 1990a,b or the Appendix). The extreme δ ≈ α corresponds to a rare

recessive disease, while the case δ ≈ 0 occurs for a dominantly inherited trait.

A null hypothesis of interest is that τ is in fact unlinked to the disease, i.e., that

α = δ = 0. Holmans (1993) calls the likelihood ratio test of this hypothesis based
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on X(N)
τ = (X

(N)
0,τ , X

(N)
1,τ , X

(N)
2,τ ) the “possible triangle test” because the constraints (2)

force the vector consisting of the first two elements of (1), say, to lie in a triangular

subregion of the unconstrained set of values. See also Faraway (1993).

In experimental genetics, which may involve agriculturally important species or

animal models for human traits, one is usually concerned with quantitative phe-

notypes, hence linkage analysis of so-called quantitative trait loci (QTLs). In an

intercross two inbred strains having differing genotypes AA and aa at each locus are

crossed to produce individuals who are uniformly Aa. These are bred to one another

to produce individuals with genotypes AA,Aa and aa in the expected ratio 1:2:1. A

simple regression model expressing the phenotype as a linear combination of the num-

ber of A alleles at a QTL and a random error leads via a large sample approximation

to a similar problem to that described above, but without the constraints indicated

in (2) (e.g., Lander and Botstein, 1989, Dupuis and Siegmund, 1998). Teng (1996) in

her analysis of the Haseman-Elston (1972) method for detecting linkage of QTL’s in

human genetics obtains a parameterization of that problem that again contains the

constraints (2).

For the unconstrained problem twice the log likelihood ratio statistic is asymptot-

ically distributed as χ2 with two degrees of freedom under the null hypothesis of no

linkage. For the problem constrained by (2) this asymptotic distribution, by a clas-

sical result of Chernoff (1954) (see also Self and Liang, 1987), is a mixture of χ2
1 and

χ2
2 distributions. Specifically, in a form that will prove useful below, the probability

that the square root of twice the log likelihood ratio statistic exceeds a threshold b is

approximately

1− Φ(b) + (2π)−1(π/2− tan−1 21/2) exp(−b2/2). (3)

In the preceding paragraph we have assumed that data are available on a single

marker, which is either a disease locus τ itself or is unlinked to the disease. Since τ has

an unknown position on the genome, one uses an array of markers spread through-

out the genome, hence makes many simultaneous tests, which lead to a problem of

multiple comparisons. In Section 2 of this paper we give approximations to the sig-

nificance level and power of the likelihood ratio test constrained by (2) by adapting
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methods developed to study sequential hypothesis tests (cf. Woodroofe, 1976, Lai and

Siegmund, 1977, Siegmund, 1985 and for classical background material in sequential

analysis Ferguson, 1967).

It is also of interest to estimate the location τ of a trait locus by a confidence

region. This problem is described in more detail in Section 3.

2. Approximations for significance level and power.

To obtain the joint distribution of X
(1)
t for different values of t, we assume crossovers

occur along each chromosome according to a Poisson process, which by a change in

the “time” scale (actually distance along the chromosome) can be assumed to be

homogeneous. This is the “no interference” model suggested by Haldane in 1919,

which is known not to be correct, but is still commonly used as a simple, reasonably

robust model. It implies that X
(1)
t is a three state Markov chain which changes its

state at a constant rate, say β/2. The parameter β depends on the units chosen for t to

describe genetic distance along the chromosome. If we use centimorgans (cM), which

are defined by the property that in one unit of genetic distance there is an expectation

of 0.01 crossovers per meiosis, then β = 0.04, and the human chromosomes average

about 140 cM in length. From the state (0,1,0) the chain moves to each of the other

states with probability 1/2. From (1,0,0) or (0,0,1) it moves with certainty to (0,1,0).

See Feingold (1993) for a more detailed description of this basic model.

From the model of the preceding paragraph together with (1), one can show by

conditioning on X(1)
τ and reasonably straightforward but tedious calculations that at

an arbitrary marker t the probability of sharing 2, 1, or 0 alleles identical by descent

is [1 + (α + δ) exp(−β|t − τ |) + δ exp(−2β|t − τ |)]/4, [1 − δ exp(−2β|t − τ |)]/2, and

[1− (α + δ) exp(−β|t− τ |) + δ exp(−2β|t− τ |)]/4. If t is on a different chromosome

from τ , we set t =∞, to obtain the null hypothesis probabilities.

To obtain a Gaussian process approximation to the likelihood ratio process, we

introduce the notation

Z1,t = −2(X
(N)
1,t −N/2)/N1/2, Z2,t = 21/2(X

(N)
2,t −X

(N)
0,t )/N1/2.
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Calculations based on the results stated above show that on unlinked chromosomes

(i.e., for α = δ = 0) these two processes have expectation 0, variance 1, and are

uncorrelated. Also

Cov[Z1,s,Z1,t] = exp[−β1|t− s|], Cov[Z2,s,Z2,t] = exp[−β2|t− s|],

where β1 = 2β = 0.08, β2 = β = 0.04 (cf. Feingold, Brown and Siegmund, 1993, for

details). Thus Z = (Z1, Z2) is approximately for large N a two-dimensional Ornstein-

Uhlenbeck process. On a linked chromosome having a single trait locus at τ ,

EZ1,t = µ1 exp[−β1|t− τ |], EZ2,t = µ2 exp[−β2|t− τ |], (4)

where µ1 = N1/2δ, µ2 = (N/2)1/2(α + δ). The genetic constraint (2) is equivalent

to 0 ≤ 21/2µ1 ≤ µ2. Thus the triangular constraint noted by Holmans becomes the

constraint that µ = (µ1, µ2) lie in a wedge in the first quadrant of the xy plane,

which is defined by the lines y = 21/2x and x = 0. The log likelihood function for the

limiting Gaussian process under contiguous alternatives is

µ1Z1,τ + µ2Z2,τ − ||µ||2/2. (5)

Note that although we observe the entire process indexed by t, the likelihood function

depends only on the process at τ , which is itself an unknown parameter (Feingold,

Brown and Siegmund, 1993).

The following two extreme cases are of interest. If we assume δ = 0, which defines

an additive model (or approximately a dominant model) of inheritance (Risch 1990b),

then µ1 = 0, so the likelihood ratio test to detect linkage is asymptotically equivalent

to the maximum over all marker loci t of

Z2,t. (6)

For a rare recessive trait, where δ ≈ α, the appropriate test is based on the maximum

over t of

[Z1,t + 21/2Z2,t]/3
1/2 = 4[X

(N)
2,t −N/4]/(3N)1/2. (7)

The statistic (7) is the projection of the vector (Z1,t, Z2,t) along the line y = 21/2x,

making an angle tan−1 21/2 with the positive x axis in the xy plane. The statistic (6)
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is obviously the projection of (Z1,t, Z2,t) along the y axis, which makes an angle of

π/2 with the positive x axis.

If there were no constraints on µ1, µ2, the likelihood ratio statistic at a putative

disease locus t would be obtained by maximizing (5) with respect to µ1, µ2. This

yields

||Zt|| = [Z2
1,t + Z2

2,t]
1/2, (8)

which would in turn be maximized over all marker loci t to search the genome for

the disease gene. To incorporate the constraints we use (8) if the point (Z1,t, Z2,t)

lies in the wedge defined by the lines y = 21/2x and x = 0. If the point does not

lie in this wedge, we use the larger of (6) and (7). Let ||Z̃t|| denote the statistic so

obtained. In effect the likelihood ratio test incorporating the constraints is based on

(8) unless the data tell us that the mode of inheritance appears to be purely additive

or purely recessive; in these extreme cases we use the statistic appropriate for the

apparent mode of inheritance. (These geometric observations lead to a simple direct

demonstration of (3), which is the marginal distribution of the statistic described in

this paragraph at each fixed t.)

The false positive rate of the likelihood ratio test is the probability, computed

under the assumption α = δ = 0, that the statistic described above exceeds the de-

tection threshold b at some locus t in the genome. This probability can be evaluated

approximately by adapting arguments developed to study sequential hypothesis tests

(e.g., Woodroofe, 1976, Lai and Siegmund, 1977). Slightly more generally, we sup-

pose that (fully informative) markers are placed at constant intermarker distances

∆. Recall the special function ν defined by Siegmund (1985, p. 82). For numerical

purposes, for 0 < x < 2, ν(x) ≈ exp(−0.583x); for larger x the first four terms of the

defining infinite series provide a satisfactory numerical evaluation. Suppose b → ∞
and ∆ → 0 in such a way that b∆1/2 is bounded away from 0 and ∞. Then for a

single chromosome of length `,

P{max
i
||Z̃i∆|| > b} = ` exp(−b2/2){C1b

2/(2π) + C2b/(2π)1/2 + o(b)}, (9)

6



where

C1 =
∫ π/2

tan−1 21/2
(β2 sin2 ω + β1 cos2 ω)ν{b[2∆(β1 cos2 ω + β2 sin2 ω)1/2]}dω, (10)

and

C2 = 6−1(β1 + 2β2)ν{b[2∆(β1/3 + 2β2/3]1/2}+ 2−1β2ν[b(2∆β2)1/2].

In (9) the term involving b2 accounts for the probability that ||Z̃i∆|| exceeds b at a

point where Zi∆ lies inside the wedge, while the terms involving b account for the

probability that Z2,i∆ or [Z1,i∆ + 21/2Z2,i∆]/31/2 exceeds b for some value of i∆ where

the two dimensional process is outside the wedge. For a search involving the entire

genome, we can use the independent assortment of chromosomes to obtain from (9)

the Poisson approximation

P{max
i
||Z̃i∆|| > b} ≈ 1− exp[−L exp(−b2/2){C1b

2/(2π) + C2b/(2π)1/2], (11)

where L is the total length of the genome (approximately 3400 cM).

A slightly better approximation is presumably obtained by adding (3) to (9) as

an edge correction to account for the initial marker on the chromosome.

In the special case ∆ = 0, the integral (10) equals (β1 +β2)(π/2− tan−1 21/2)/2−
(β1 − β2)/(3 × 21/2) = 0.0275 for β1 = 0.08, β2 = 0.04. As ∆ → ∞, the asymptotic

relation ν(x) ∼ 2/x2 shows that the exponent in (11) is asymptotic to L/∆ times

(3), so the Zi∆ for different i are treated as independent, as they should be when ∆

is large.

For a human genome of 23 chromosomes averaging 140 cM in length, the edge

corrected (11) yields 0.05 level thresholds of 4.30, 4.11, 3.91 and 3.78 for ∆ = 0, 1,

5, and 10 cM, respectively. The threshold for ∆ = 0 has been cited by Lander and

Schork (1995). An often recommended one degree of freedom statistic is (6), which is

the score statistic when δ is assumed equal to 0. Corresponding thresholds are 4.08,

3.92, 3.73 and 3.6 (Feingold, Brown and Siegmund, 1993).

The power of the likelihood ratio test is the probability under the alternative

that ||Z̃i∆|| exceeds the threshold b at some marker near to the true disease locus.

To approximate the power we let ξ = (µ2
1 + µ2

2)1/2 denote the distance of the point

µ = (µ1, µ2) from the origin. We assume for simplicity that the disease locus is exactly
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at one of the markers, which is not near the end of its chromosome. The point µ lies

in the wedge defined by the angles tan−1 21/2 and π/2 measured from the positive

x axis. A slightly different approximation to the power is appropriate depending on

whether the point is strictly inside the wedge or on one of the edges. In the former

case the power is approximately

1− Φ(b− ξ) + φ(b− ξ){1/(2ξ) + (b/ξ)1/2[2ν/ξ − ν2/(b+ ξ)]}, (12)

while in the latter it is

1− Φ(b− ξ) + φ(b− ξ){1/4ξ + [(b/ξ)1/2 + 1][ν/ξ − ν2/(2(b+ ξ))]}, (13)

where ν = ν{b[2∆(β1µ
2
1+β2µ

2
2)/(µ2

1+µ2
2)]1/2}. These approximations are based on de-

composing the event in question according as ||Zτ || > b, or the contrary and ||Zi∆|| > b

at some nearby marker. The details can be obtained by arguments similar to those

used by Siegmund (1985) and Feingold et al. (1993). In the case where the disease

locus is between marker loci one must condition on the value of (Z1, Z2) at the two

flanking markers (cf. Dupuis, 1994).

Remarks. (i) It is a straightforward consequence of methods in the cited literature

to prove the leading term in (9). A rigorous proof of the result stated would be

substantially more difficult. If there were no constraints on µ1 and µ2, the error in

the leading term would be expected to be of order exp(−b2/2) (cf. Woodroofe and

Takahashi, 1982, Siegmund, 1985), so it is reasonable to conjecture that the term of

order b exp(−b2/2) arising from the constraints is the correct second order term for

this problem. (ii) Several of our hypotheses can easily be weakened. For example,

some simple modifications are mathematically appropriate if the markers are not

equally spaced, but the approximations are not especially sensitive to this change,

so for practical purposes it usually suffices to treat markers as equally spaced and

use an average intermarker distance. (iii) For these approximations to hold it is not

necessary that the process Zt be exactly an Ornstein-Uhlenbeck process, but only that

its covariance function behave like that of an Ornstein-Uhlenbeck process near 0. A

consequence is that one can use other models for the recombination process instead
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of the no interference model we have assumed, since all lead to the same small time

behavior for the covariance function. (iv) To achieve the best numerical accuracy

from (9), one should apply it to the square root of twice the log likelihood ratio

statistic. To apply it directly to the score statistic one should correct for skewness,

e.g., along the lines of Tu and Siegmund (1998).

3. Confidence regions.

From (4) we see that the expectation of Zi,t is increasing for t < τ and decreasing

for t > τ . Hence τ behaves like a change-point, and estimation of τ by a confidence

region is closely related to the problem of a confidence region for a change-point (cf.

Siegmund, 1989). For simplicity we consider the case of mapping QTLs based on

an intercross. As noted above, in this case the nuisance parameters µ1 and µ2 are

unconstrained, hence are arbitrary real numbers. The covariance parameters can be

shown to be β1 = 0.04 and β2 = 0.02. We also assume that the trait locus τ is a

marker locus. Since one often types additional markers near a suspected locus, this

hypothesis is often approximately true.

It follows from the form of the likelihood function given in (5) that the likelihood

ratio statistic for testing that a true QTL is τ against the alternative that it lies

somewhere else on the chromosome has as its acceptance region the event

Aτ = {max
i
||Zi∆||2 − ||Zτ ||2 ≤ x}. (14)

Moreover, for each τ , we see from (5) that Zτ is sufficient for µ. Hence if x = x(Zτ ) is

chosen to satisfy P (Aτ |Zτ ) = γ, then the set of all τ such that the event Aτ occurs is

a γ level confidence region. To evaluate the required probability we have the following

approximation, which plays an important role in the comparative analysis of different

confidence regions given by Dupuis and Siegmund (1998).

Proposition. Let Zt = (Z1,t, Z2,t) where Z1,t and Z2,t are independent Gaussian

processes with covariance functions satisfying

Ri(t) = 1− βi|t|+ o(|t|) as t→ 0.
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Assume b→∞,∆→ 0 and b∆1/2 is bounded away from 0 and ∞. Let 0 < ||z||2 < b2

and define t∗, w∗ to be the solution of z1

z2

 =

 b R1(t∗) cosw∗

b R2(t∗) sinw∗

 .
Assume t∗ is contained in (0, l) and is bounded away from the upper endpoint (l > 0).

Then

P
{

max
0≤i∆≤l

||Zi∆|| ≥ b
∣∣∣Z0 = z

}

∼
β exp[−1

2
(b2 − ||z||2)]∣∣∣ Ṙ1(t∗)R2(t∗) cos2 w∗ +R1(t∗)Ṙ2(t∗) sin2 w∗

∣∣∣ ν[b (2β∆)1/2],

where Ṙi(t) = dRi(t)/dt and β = β1 cos2(w∗) + β2 sin2(w∗).

For our particular application, Ri(t) = exp(−βi|t|) with β1 = 2β2, so the equations

defining t∗, w∗ are quadratic and can be solved analytically. In this case one can obtain

a completely explicit approximation, albeit involving some complicated expressions.

For a maximum over markers on both sides of τ , as indicated in (14), one should

double the approximation given in the Proposition.

Derivation of the Proposition: We first condition on the position where the

process last exceeded the value b, how far above b it reached at that position and the

angle between Z1,t and Z2,t.

Define Di = {j : j ≥ 1, (i + j)∆ ≤ l}, where l and ∆ are fixed. Let ωi∆ be the

angle between Z1,i∆ and Z2,i∆. Then, we can write

P
{
max0≤i∆≤l ||Zi∆|| > b

∣∣∣Z0 = z
}

=
l/∆∑
i=0

π∫
−π

∞∫
0

P
{
||Zi∆||∈b+dy, ωi∆∈dw

∣∣∣Z0 = z
}

∗P
{
||Z(i+j)∆||<b ∀j∈Di

∣∣∣ ||Zi∆||=b +y, ωi∆=w,Z0 = z
}

(15)

The fact that Z1,t and Z2,t are independent and normally distributed for fixed t

yields

P
{
||Zi∆||∈b+dy, ωi∆∈dw

∣∣∣Z0 = z
}
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=φ
(

(b+y) cosw − x1R1(i∆)

[1−R2
1(i∆)]1/2

)
φ
(

(b+y) sinw − x2R2(i∆)

[1−R2
2(i∆)]1/2

)
(b+ y) dy dw

[1−R2
1(i∆)]1/2[1−R2

2(i∆)]1/2

If we expand the above around t∗ and w∗ where t∗ and w∗ are defined in the statement

of the Proposition, we get

P
{
||Zi∆||∈b+dy, ωi∆∈dw

∣∣∣Z0 = z
}

≈ be−
1
2

[b2−||x||2]e−
1
2
b2[(i∆−t∗)2a1+(w−w∗)2a2+2(w−w∗)(i∆−t∗)2a3]e−bydydw

2π[1−R2
1(i∆)]1/2[1−R2

2(i∆)]1/2
, (16)

where

a1 =
Ṙ2

1(t∗) cos2 w∗

1−R2
1(t∗)

+
Ṙ2

2(t∗) sin2 w∗

1−R2
2(t∗)

,

a2 =
sin2 w∗

1−R2
1(t∗)

+
cos2 w∗

1−R2
2(t∗)

− 1,

a3 = cosw∗ sinw∗
[
Ṙ2

2(t∗)R2
2(t∗)

1−R2
2(t∗)

+
Ṙ2

1(t∗)R2
1(t∗)

1−R2
1(t∗)

]
.

Using an argument similar to Siegmund (1985), p. 202, we see that

P
{
||Z(i+j)∆||<b ∀j ∈ Di

∣∣∣ ||Zi∆||=b+y, ωi∆ =w,Z0 = z
}
→ P−µ,σ

{
max
j>0

Sj < −y
}
,

(17)

where Sj is the sum of j independent normal random variables with mean and variance

−∆b(β1 cos2 w + β2 sin2 w) and 2∆(β1 cos2 w + β2 sin2 w), respectively.

Substituting (16) and (17) into (15) we obtain

P
{

max
t
||Zt|| ≥ b

∣∣∣Z0 = z
}

≈
l/∆∑
i=0

π∫
−π

be−
1
2

[b2−||x||2]e−
1
2
b2[(i∆−t∗)2a1+(w−w∗)2a2+2(w−w∗)(i∆−t∗)2a3]

2π[1−R2
1(i∆)]1/2[1−R2

2(i∆)]1/2

∗
∫ ∞

0
e−byPµ,σ

{
min
j>0

Sj > y
}
dydw

≈
β exp[−1

2
(b2 − ||x||2)]

Ṙ1(t∗)R2(t∗) cos2 w∗ +R1(t∗)Ṙ2(t∗) sin2 w∗
ν
(
b [2β∆]

1
2

)
.
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To obtain the last line we use Corollary 8.45 of Siegmund (1985) to evaluate the inner

integral. The summation on i, is approximately an integral in the variable i∆; and

since b >> 0 the bivariate normal density in i∆ and w behaves like a delta function

concentrating at t∗, w∗.

4. Appendix.

For completeness we give in this appendix a simple derivation of (1) and (2) for a dis-

ease having a single trait predisposing locus. The derivation follows Risch (1990a,b).

Let K denote the probability that a random individual has the disease. Let ϕ

be the indicator of an individual’s phenotype, i.e., ϕ = 1 or 0 according as the

individual is affected or not, so K = Eϕ. We consider only a monogenic disease and

let G = {a, b} denote an individual’s genotype at the disease locus. Assuming that

the population is random mating, so genotype frequencies are in Hardy-Weinberg

equilibrium, we can by an analysis of variance decomposition write

E(ϕ|G) = K + fa + fb + dab,

where fa(fb) is the additive effect of allele a(b) and da,b is the interaction (dominance

deviation). Hence Σfapa = 0 and Σada,bpa = Σbda,bpb = 0, where pa is the frequency

of allele a in the population.

A basic assumption is that the phenotypes of two individuals are conditionally

independent given their genotypes, i.e.,

E(ϕ1ϕ2|G1, G2) = E(ϕ1|G1)E(ϕ2|G2).

Then the probability that two relatives are both affected is

E(ϕ1ϕ2) = K2 + (
1

2
VA)e12 + VDu12,

where VA = 2Σpaf
2
a is the additive variance of the penetrances, VD = Σpapbd

2
ab is the

dominance variance of the penetrances, e12 is the expected number of alleles shared

identical-by-descent by individuals 1, 2 and u12 is the probability that both alleles
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are shared identical-by-descent. For siblings e12 = 1 and u12 = 1/4. For the same

calculation, conditional on the event that the siblings share 2, 1, or 0 alleles identical

by descent, we have e12 = 2, 1, or 0 and u12 = 1, 0 or 0, respectively.

Hence by Bayes’ theorem the conditional probability that siblings inherit two

alleles identical by descent, given that both are affected, is

1

4
[K2 + VA + VD]/[K2 + VA/2 + VD/4].

Also the probability they inherit one or no allele identical by descent is respectively

1

2
[K2 + VA/2]/[K2 + VA/2 + VD/4].

and
1

4
K2/[K2 + VA/2 + VD/4].

By simple algebra, we see that these probabilities can be rewritten in the form of

display (1) with α = [VA/2+VD/4]/[K2 +VA/2+VD/4] and δ = [VD/4]/[K2 +VA/2+

VD/4], which satisfy the constraints (2).
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