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SUMMARY

This paper is concerned with statistics that scan a multidmensional spatial region to detect
a signal against a noisy background. The background is modeled as independent observa-
tions from an exponential family of distributions with a known “null” value of the natural
parameter, while the signal is given by independent observations from the same exponential
family, but with a different value of the parameter on a particular subregion of the spatial
domain. The main result is an extension to multidimensional time of the method of Pollak
and Yakir (1998), which relies on a change of measure motivated by change-point analysis,
to evaluate approximately the null distribution of the likelihood ratio statistic. Both large
deviation and Poisson approximations are obtained.
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1 Introduction.

Maxima of random fields arise in various scientific contexts. Our interest is motivated
especially by statistical problems of searching a region for a deterministic signal against a
noisy background. Examples are found in Levin and Kline (1985), who are concerned with
transient increases in the rate of spontaneous abortions in epidemiological data, in Giller
(1994), who discusses a search of the celestial sphere for an anomalously large astronomical
point source of muons, in Karlin, Dembo and Kawabata (1990), who are concerned with
searching the sequence of amino acids in a protein to find segments of anomalously large
electrical charge or degree of hydrophobicity, in Rabinowitz (1994), who is interested in
“hot spots” of disease incidence in a geographically defined region.

Although many methods have been developed to deal with one dimensional indexing
sets, e.g., Pickands (1969), Siegmund (1985), Woodroofe (1976, 1982), the number of meth-
ods that has proved useful in higher dimensions is comparatively small. The first of these
chronologically is Qualls and Watanabe’s (1973) and Bickel and Rosenblatt’s (1973) mul-
tidimensional extension of Pickands’ (1969) method. These authors studied continuous
parameter Gaussian processes, and their approximation involves a difficult to evaluate con-
stant. Hogan and Siegmund (1986) adapted the method to discrete parameter processes and
showed that one can find easily computable expressions for the constant for a large number
of fields that behave locally as sums of independent one dimensional random walks. Sieg-
mund (1988, 1992) extended to higher dimensions the method of Woodroofe (1976, 1982)
and enlarged the number of examples for which explicit results have been obtained. Aldous
(1989) obtained similar results (in their continuous index set versions) from his Poisson
clumping heuristic.

The purpose of this paper is to extend the method recently introduced by Pollak and
Yakir (1998) from one dimensional to multidimensional indexing sets. This method starts
from a likelihood ratio identity motivated by ideas related to change-point problems. Since
it is based on an exact representation of the required probability, one can more easily “see”
the answer than with the methods mentioned above, which produce the answer only as
the result of a substantial amount of computation. The representation is valid for either
discrete or continuous indexing sets.

To motivate our results, we consider the following class of statistical problems. A finite
subset Z of the standard d-dimensional lattice (usually d = 1,2, or 3) indexes independent
random variables Xy, u € Z. Over most of the region Z the Xy have a “null” distribution,
say standard normal or Bernoulli with known p = pg, perhaps 1/2. Over a relatively
small subset A of Z, which may be empty, the distribution of the X, belongs to the same
parametric family but has a different value of the parameter, say normal with mean y > 0
and variance 1, or Bernoulli with p > pg. Our goal is to test whether indeed A is empty, in
which case X, has the null distribution for all u € Z.

Assume for a moment that A, if it is non-empty, is known. The likelihood ratio test
statistic for a general multidimensional exponential family of distributions can be conve-
niently expressed as follows. We denote the log likelihood for a single observation from the
exponential family by exp[(6,z) — ¥(6)]dF(z). Without loss of generality we assume that
the null value of § is @ = 0, and that 1(0) = 0, 9(0) = 0. Let n4 denote the cardinality of
A, Sq = BucaXy, and X4 = Sa/na. Let o(x) = supy[(#, ) — 1(0)]. The likelihood ratio
statistic is nap(X4).

Usually we will not know the location, size, or shape of A; and we propose to use as our
test statistic the maximum of n A(p(X' A) over a suitable collection of candidate sets. To this



end let J be a collection of subsets j of Z. For each j € J let §j = Xye; Xy, and denote
by n; the cardinality of j. Also let X; = Sj/n;. Consider the “scan” statistic

maxnj(X;). (1)

The probability under the null distribution that (1) exceeds a threshold a is the p-value
of this statistic.

The following special case is typical and will be considered in detail below. Suppose Z is
the m xm square in the positive quadrant of the plane with one vertex at the origin. Suppose
also that A, if it is non-empty, is a rectangle with its sides parallel to the coordinate axes.
Then (1) is the likelihood ratio statistic when J denotes all sub-rectangles of Z, indexed
in some convenient way, say by their lower left hand corner, length and width. A simpler
statistic arises if one regards the dimensions of the rectangle A as known, so J consists
simply of translations of a rectangle of fixed length and width. For the particular case of

normal Xy, ¢(z) = ||z||?/2 and (1) becomes max;c 7 ||S;||?/2n;. The approximate p-value
of this statistic when Z is one dimensional has been given by Siegmund and Venkatraman
(1995).

This paper is organized as follows. In Section 2 we introduce a fundamental likelihood
ratio identity and indicate heuristically how it allows us to obtain a tail approximation to
the desired probability under large deviation scaling. The approximation involves a constant
that in general is quite complicated, but simplifies in special cases. In Section 3 we discuss
some examples and an alternative formulation involving a Poisson approximation, which
requires a substantially more intricate proof. Technical lemmas are given in Section 4,
and a heuristic discussion of the case of multidimensional € is given in Section 5. For
completeness we give a slight generalization of an argument of Hogan and Siegmund (1986)
in one appendix and a useful algebraic identity in another.

2 Likelihood ratio identity and a basic approximation.

We continue with the notation and assumptions of the preceding section. In particular we
assume to simplify the exposition that Z is the m x m square described there, although
that plays no essential role in what follows. We also assume until further notice that the
exponential family is one dimensional and that the alternatives to the null value of § = 0
are positive. Let a > 0. Assume that J consists of rectangles indexed by u € Z and
having sides of length r; ¢ = 1, 2. There are necessarily some technical assumptions relating
the values of m,a, and the r;, about which we will have more to say later. Convenient
assumptions for this section are that the r; are uniformly bounded below and above by
multiples of @ and m < a® for some ¢ > 1. These assumptions will be weakened in Section
4. Since the function taking @ into 7(8) = 64(6) — () is non-negative and convex, for each
7 the equation

n(0;) = a/n; (2)

has at most one positive solution, which we assume exists, at least for all sufficiently large
n;. Putting 0% = (0), we see that 0; ~ (2a/03n)'/? = O(a='/?) uniformly in j as a — co.

Define the probability P; to be such that X,,u € j have parameter value ¢; while
otherwise X, has the null parameter value 0. Then the log likelihood of P; relative to the
null probability P is

tj = 0;S; —ny(0;),



which under P; has expectation equal to n;n(6;) = a. It is readily shown that

p(XH) >ap = >ayp.
Lot ) 2 o) = (gt = ®

Let Q = X;c7P;. The likelihood ratio of Q relative to P is ¥;c rexp(¢;) and hence

P {r]nea;(n](p(X;') > a} = ¥,E; [1/Ekexp(€k);rjnez?(€j > a] . (4)
It follows by elementary algebra that the term on the right hand side of (4) indexed by
7 can be rewritten as

exp(max £y
Srexp(£x)

where the summation and the max’s extend over k € 7.

The analysis of (5) proceeds via several approximations, valid asymptotically as a — oo.
For the technical steps to justify these approximations see Section 4. The first approximation
is the replacement of the summation and max’s over k € J by a smaller set of indices J (3, t)
that are close to j in the sense that the distance of each edge of k£ from the corresponding
edge of j is no more than ¢t = cloga or some other function that grows slowly with a (cf.
Lemma 2 in Section 4). Then within this range of k, we can replace £, by £, = 0;Sk—ni(0;)
(Lemma 4). (Obviously £, also depends on j, although this is suppressed in the notation.)
Then /¢; is replaced by 0y, where h is the intersection of all k& € J(j,t) (cf. Lemmas 6, 7
and display (21)). The fraction in the expectation in (5) can be rewritten as

exp(~a)E; | expl- (6 - a+ max(t — )]s — -+ max(t ) > 0| (5)

exp(max £y — £;)
Zkexp(ﬁk — Ej)

: (6)

which is easily seen to be independent of 0y, Finally, the approximation for maxy by — £5),
namely maxy (¢, — £5,), is also independent of £, and hence can be shown to be negligible.
It follows that the expectation in (5) is approximately the product

exp(max £y, — £;) ~ ~
E; - X E; lexp{—(4, —a)};lp, —a>0]. 7
]hm@m—m i [exp{=h — @)} Bn —a > 0) ™)
Recalling that a = n;n(6;) = E;(¢;) = n;jn; 'E; (£n), 50 Ej(£y) = a+ O(t), we see from a
local central limit theorem if, for example, the X, have a density function, that the second
expectation in (7) )
~ 1/6;[2mn;4(6;)]'/?

(cf. Lemma 9), so from (5) we find that (4)

~ [4ma] " %exp(—a)%,E; [M] .

Yrexp (L) ®)

We now turn to evaluation of the final expectation in (8), or equivalently evaluation of

o | exp(max £y —¢;)
S | St} ) L



i From the preceding argument we see that the summation and max can be restricted to the
relatively small set J(4,t) described above, while £; can be replaced by ly. Let mg = 2t,
so there are asymptotically m§ rectangles in J(j,t). The term in (9) subscripted by j is
approximately equal to

) [exp(maxk ék — EZ):|
Zkexp(ek — éz)
for all 4 € J(j,t), except for a relatively small number of indices i near the boundaries of
J(j,t). Hence the preceding display

exp(maxy £y — Ej)] : (10)

Yrexp (L — ¢;)

where the indices i and k run over J(j,t). Let Q = X;P;, so dQ/dP; = Zyexp(ly — ;).
Then (10)
= ma4Ejexp{ml?,x(€k —¢)},

which up to a factor of 1 £ €, where € can be arbitrarily small, is bounded above and below
by
ma4Ehexp{ml?,x(l7k — )}

= mo_4EheXP{m,?X[9j(5k — Sh) — (ng — np)Y(0;)]}- (11)

The random field in the last expression consists of a sum of four independent one di-
mensional random fields that arise from the enlargement of h in each direction. A slight
generalization of an argument of Hogan and Siegmund (1986) shows that (11)

~ T fran(0)v(r3 o0, (12)
where 71 and 7y are the lengths of the sides of the rectangle j, 02 = w(O) = Var(X,),
and the function v(-) is defined by Siegmund (1985, p. 82), where there is also a simple
approximation for small z.

We now substitute (12) into (9); and using the fact that n(6;) = a/n;, we approximate
the multiple sum by a multiple integral. This shows that (9)

© 2
~ m?a® / (z — 2a/mz)V*(z)dz | .
(2a/m)!/2

Substitution of this result into (8) yields our final approximation:

P p(XF)>ap ~
{macnjo(%) > o}

m2a®?exp(—a)[dn) /2 (/oo
(2

a/m)1/?

(x — 2a/mm)u2(x)d:1;) . (13)

See Siegmund and Venkatraman (1995) for a version of this result for a one dimensional
search involving normally distributed observations.



3 Examples and discussion.

Although we have given the preceding argument for the case that J consists of rectangles
of variable width, with minor variations the approximation (8) is valid for very general J.
However, an appropriate strategy for evaluating (9) will depend on more specific assump-
tions. If J consists of translations of a fixed set, e.g., a circle or a rectangle, then except for
possible edge effects the terms in (9) are all equal, so it is necessary to calculate only one of
them, which might be accomplished by simulation if other methods fail. If the search sets
consist of rectangles of fixed dimensions, say r1,72, so nj = n = riro and likewise §; = 0 is
constant in j, then the increments £; — ¢; assume the particularly simple form 6(S; — S;).
Instead of the right hand side of (11) we obtain the much simpler expression

mJZEjexp{mI?x 0(Sk — Sj)}

The random field Sy — S; is approximately the sum of two independent two sided random
walks corresponding to shifting j to the right or left and shifting it up or down. The
increment of the random walk corresponding to a unit shift to the right or left is distributed
as the the sum of two independent random variables, the first having the distribution of a
sum of ro independent variables with parameter 0 and the second having the distribution
of the negative of a sum of 7y independent variables with parameter 6. In place of (12) we
get
IM3_, [2r5m(0)v{(2r5)"*a00).

Since this expression does not depend on j, the final approximation becomes
21 2m2a3/2 (ryry) "Lexp(—a)T3_, v{2(a/rs)"/?}. (14)

For circular search regions no such simple evaluation seems possible, although for Gaussian
fields one can use Slepian’s inequality and inscribed and circumscribed squares to obtain
upper and lower approximations.

The specific form of the approximation in Section 2 is a consequence of the asymptotic
normalization introduced above. It has the advantage of being relatively simple to evaluate,
since there are easily computed, good approximations for the function v (Siegmund 1985).
However, there are alternative asymptotic formulations leading to approximations that de-
pend more heavily on the underlying distribution. Indeed, even the formulation of Section
2 leads to more complicated approximations when the indexing set is one-dimensional, since
then the increments Sy — S; need not contain a large number of terms, hence need not be
approximately normally distributed.

To consider one other possibility, suppose that the X, are infinitely divisible and that
in principle one might observe the process S; over a continuous set of rectangles j. A
specific case of interest is a Poisson random field. (Gaussian fields are irrelevant to these
considerations; one obtains the same approximation regardless of the normalization.) Since
in practice we make observations at a discrete set of points, assume that the possible
distributions of X, have cumulant generating function A (@), where A is a small parameter
that reflects the size of the pixel u in the indexing field. For example, the pixels may
be squares of area A. The functional equation defining 6; becomes n;An(6;) = a. If A
is assumed proportional to a~!, then for rectangles having sides proportional to a, 0; is
bounded away from 0; and the increments Sy, — S, for k close to j will not be asymptotically



normal but will involve the parent class of infinitely divisible distributions. A consequence
is that the function corresponding to v above will depend on the underlying distribution
and may be substantially more difficult to evaluate. For rectangles of fixed dimensions,
only a few evaluations are necessary, but for rectangular scanning sets of variable size the
additional numerical computation can be onerous. If A is of smaller order than o', the
approximation will be the same as for a continuous scan. See Loader (1991) and Tu (1997)
for analyses of Poisson random fields using this normalization in conjuncton with the method
of Siegmund (1988).

A still different formulation is appropriate when the baseline value of 8, taken here to
be zero, is unknown. The likelihood ratio statistic would be

max {njp(Sj/n;) + (2] = nj)[(Sz = 55)/(1Z] — ny)] = |Zle(Sz/IZ])},

and to obtain a p-value that is free of unknown nuisance parameters we would evaluate
the exceedance probability conditionally given the value of Sz. The probability P; can be
defined as follows. Let P denote conditional probability given that Sz = |Z|{y. Define
parameters £ as solutions of the equation

max {n;p(§1) + (IZ] = n;)@l(IZ160 —n€1)/(1Z] — ny)] — |Zle(&o)} = a.

For each of the two values of 1, say ;1 > &o, the probability P; is defined as the conditional
probability given Sz = |Z|¢, that is in the exponential family generated by P and gives
S; the mean value n;{;. For the special case of unit variance normally distributed X, so
o(z) = x%/2, simple algebra shows that & = & +b[(1 —n;/|Z|)/n;]'/?, where a = b?/2, and

t; = b[S; — njéo]/[nj (1 = ny/|Z))]'? — b7 /2.

There are technical assumptions in our discussion relating the size of the rectangles
j € J, the threshold a and the size of the search region defined by m. Although these
assumptions may not be restrictive in applications, which typically involve a fixed value of
m and search regions that we choose, there are nevertheless mathematical questions about
the importance of the assumtions. The analysis indicated above applies to the case of large
deviations, i.e., m is small enough that (14) or the right hand side of (13) converges to 0.
In the case that m is proportional to a the requirement that the sides of the rectangles be
bounded by ca poses no restriction; but if m is of larger order of magnitude, it is natural
to ask if we can remove the assumed upper bounds on the size of the rectangles, so the
scanning sets can take up a positive fraction of the search region.

A similar issue arises if m is so large that (14) or the right hand side of (13) converges to a
positive limit, say A. Then one asks if a Poisson approximation holds, i.e., the corresponding
probability converges to 1 — exp(—A). This is easily shown to be true in the case of (14),
where the scanning sets are of fixed dimensions and there obviously are no “long range”
dependencies. The case of (13) is substantially more delicate if one also asks, as seems
natural in this case, whether the condition that the lengths of the sides of the rectangles have
upper bounds of ca can also be dropped. Then long range dependencies might conceivably
be important, and the Poisson parameter is not proportional to the product of the number
of rectangles and the probability that an arbitrary rectangle exceeds the threshold. In the
special case of one search dimension and Gaussian X, a Poisson approximation was given



by Siegmund and Venkatraman (1995). In Section 4 we prove such a Poisson approximation
for the random field of Section 2.

It is also possible to remove the assumed lower bound on the lengths of the sides of the
scanning rectangles, as we show in Section 4.

4 A more precise treatment.

In this section we make more precise the argument leading to (7) and (8) in Section 2. It
will be apparent that the argument is quite general up to the application of a local limit
theorem, where one must deal with the specific distribution of X,,.

Given two points x = (z1,22) and y = (y1,¥2), we say that x < y if z; < y; and
o < yo. With each pair of points in the grid, x and y, such that x <y, a rectangle of grid
points can be associated. The points in the rectangle are all points u such that x < u <y.
Given a collection of rectangles J, denote a particular member by j. Thus, j = (x,y], for
some x,y € Z. Let, also, r1 = y1 — 1 and rp = yp — z2 and define n; = |(x,y]| = r1 x o
— the cardinality of the rectangle (x,y]. We investigate the case where the collection J
contains all rectangles with ea < r; < ca and ea < r9 < ca, for some 0 < € < ¢ < .
These bounds on the lengths of the sides of the rectangles will be removed in the arguments
following the statement of Theorem 1. Initially we also assume that m = O(a®) for some
c>1.

Throughout this section we will introduce various constants. The exact values of these
constants do not effect the final result. All that is needed is that they are positive but small
(in which case they will be denoted by €) or that they are large (in which case they will be
denoted by c). Hence, for example, two ¢’s appearing in the same proof may correspond,
as a matter of fact, to two different numbers.

Lemma 1

1
—;max¥; > a
Eiej exp{ez} 1€J !

> — .
P<1iréz}7x& _a) ZE]

JjeET

Proof: This is just a formal restatement of (4), which was proved in Section 2. |

Confine attention now to a given rectangle j. We will prove that

1
1/2 a .
a'“e"E; smax/t; > a
J lziejexp{éi} ied

. 2
E; [maxzej expi 2}al/Qexp {— (max l; — a) } smax¥; > a
1€J eJ

Yieg exp{ti} (15)

can be approximated, when a is large, by a constant. The constant may depend on 7, but
by virtue of the assumption that r; < ca for ¢+ = 1,2 it is bounded away from 0. (This
is apparent from the explicit evaluation given in the preceding section.) In addition the
approximation is uniformly accurate for all rectangles 7 € J.

The proof will proceed in two steps. In the first step it will be shown that the term
in (15) can be replaced with a similar term, for which the maximization and summation
is with respect to a smaller set of rectangles — the rectangles in the vicinity of j. In the
second step this term will be approximated by a constant.




Define, for t = clog a, a neighborhood of j = (x,y] by
j(jat) = {(uav] : |ul - :L'z| <ft, |Ui - yz‘ <ti= 172}

Lemma 2 Let € > 0 be given. Then, uniformly in j € J,

1
al/Qean [— max/4; > a| <

Zzej exp{ﬁ } =4

a/?e"E; l ! : max £ >a| +e (16)

ZZEJ(]t exp{;} €T (j.)

and

1
a1/2ean [— max¥; > a| >

EZEJ exp{e } €T

1 1
al/Qeanl ; max £; > a| — e, (a7

1+e Yica exp{li} i€ TG

provided that a is large enough.

Proof: On the one hand, since the random variable in (15) is bounded by a'/2,

1
1/2 a
a’“e"E; | =———————;max¥; > a
J lzzejexp{f} i€J

1
< aI/QeaE ———; max 4 >a
- | Yics exp{ﬂ} €T (jyt)

+a1/2Pj <maxiej 4; > maX;e 7(;,t) éz)

1
< al/Ze“E ; max 4; > a
o ZzEJ(]t exp{f} €T (4;t)
+G/1/2Pj (maxigj(j,t) g] > O) .
On the other hand
all/? e’E; ; smax¥; > a
YicT exp{l;} €T
1
> al/2e°E; ————; max ¥; > a
- ! Zzej exp{f } 1€T (4,t)
1 1
> /2 e’E; ; max f; > a
-1 +€ [Ezejgt) exp{é} i€T (jit)

—al/QPj (Zz‘ej(j,t) exp{l; — {;} > e) .

The proof now follows from Lemma 3 below and the assumption that m increases at
most algebraically with a so |J| = O(a®) for some ¢ > 0. |



Lemma 3 Let

r = r(j,1) = £((%,¥]; (0, v]) = [((6 ]\ (w0, v]) U ((u, v]\ (x, y])

be the number of points in the symmetric difference between the rectangles j = (x,y] and
i = (u,v]. Then
P;j(t;—t; > —ex/a) < exp{—ex/a},

for some positive € and for all + € J.
Proof: By an exponential Markov inequality
P;j{l; —t; > —er/a} < exp(ex/2a)Eexp[(¢; + ¢;)/2].

We now write the sums involved in £; 4 £; as sums over the disjoint sets i\ j, j \ 7 and i N j
to evaluate this expectation in terms of the function 1. The convexity of ¢ implies that
we get an upper bound if we replace ¥[(6; + 0;)/2] by [¥(6;) + 1(0;)]/2. The asymptotic
relations 1 (6;) ~ 0367 /2 and 6; ~ (2a/0gn;)'/? now allow us to complete the proof. [

Define, for all i € J(j,1),
bi = Li(§) = 0;Si — nip (0)).
In the next lemma we claim that £; can be replaced by /;.

Lemma 4 Let € > 0 be given. Then, uniformly in j € J,

1
1/2 Japp .
a'“e’E max ¢; > al| <
! Zzej(y t) eXP{g} i€ (4:t)
1 1 ~
te 1/2 e“E; ; max f; > a—e€l +e (18)
T—ec Sicsip expili} €76
and
a'2e"E; 1 ; max 4; > a| >
T ey expili} i€a G -
1- 1
€02 E,; l e >ate| —e (19)
1+e Zze](yt exp{é } zEJ
provided that a is large enough.
Proof: It is sufficient to prove that
P](ma,xlej(] t) | — 4] >¢€) < e/a1/2

which is established in the following lemma. |I

Lemma 5 Pj(max;ec ;) [l — 4] > €) < €/a'/?.

10



Proof: Note that

Pj(maxe 7z 16 — il > €) < Siczj Pillli — bl > €)

and 5 )

b — 4 = ns[(0; — 0;) X; — (¥(6:) — ¥ (6;)]-
;From 7(#) = 04(#) and the assumed lower bound n; > €2a?, it follows that

a 1 1

0;— 0~ —— [ = — =) = 0(t/a®?).

Chebyshev’s inequality and the approximation
ni[(0; = 0;)9(0;) — ($(6:) = (0;))] ~ —nith(6;)(6; — 0;)*/2 = O(t*/a)

can be used to establish the proof. |

One can represent the leading term in Lemma 2 as (cf. (15)

1 -
al/Qean —: max {;>a| = (20)
Yiea b exp{li} €T

B, maX;e 7(j,t) exp{ﬁ } all? exp{—( max i — a)}; max i >a
EZEJ(] t) exp{f } i€ (j)t) i€ (4,t)

Preparing for the second step of showing that this term can be approximated by a
constant, the next two lemmas demonstrate that the event {max;c;(;» ¢ > a} can be

intersected with two events. The first of the two is the event {max;c 7 ¢i < a + loga};
the second is given following Lemma 6.

Lemma 6 For any a > 1,

1
. max /; >a+loga <1/a1/2
2LieTGit) exp{é} €T (4st)

Proof: This inequality is true for the random variables, hence a fortiori for the expecta-
tion. |1

Now let x; = (z1 + t,2z2 + 1), y¢ = (y1 — t,y2 — t) and define h = (x¢,y¢]. Note that h =
Nieg(,p) (W, v]. The second of the two aforementioned events is {max;c () 4 b —10), < eal/?}

al/Ze“Ej

Lemma 7 Let € > 0 be given. Then
a1/2Pj (maXiej(j,t) lz — Zh > 6a1/2) <e.

Proof: For any i € J(j,t), by the martingale property of a sequence of likelihood ratios
and the Markov inequality

P; (& — ;> ea'/?/2) < exp{—ca/?/2},

SO

P, (maxiej(i,t) bi—1t; > ea1/2/2) < (2t)*exp{—ea'/?/2}.

Hence it suffices to show that the P;-probability of the event {£; —£; > ea'/?/2} is bounded,
when a is large, by €/(2a'/?). This is the content of Lemma 8 below.

11



Lemma 8 P; (Zj — 0> ea1/2/2) < €/(2a'/?).
Proof: Note that h C j. Hence,
G — Uy =Y [0;X; — (6;)].
i€j\h
Now,

- nj —np)a
> 0% (0] = 0 Y [ — o) + T
i€j\h i€j\h J
since 0j¢(0j) —1(0;) = n(0;) = a/n;. The Markov inequality can be used to establish the
proof. 1

Lemmas 6 and 7 can be summarized by saying that the term

aV/2eE, [ L i a]
Yica(iy expili} €I Gt)

can be approximated, up to a o (1) term, by yet another representation:

B, maX;e 7(j,t) exp{~€z’} x a}2exp {_ (gh + max & — 1l — a) } Ay N AQ] ’ (21)
Yica iy exp{li} i€ (j,t)
where
A = {a < Zh + maXe 7(5t) gz — Eh <a+log G,}
Ay = {0 < maxie 7(j b — lh < 6a1/2} .

The main ingredient in the second step is achieved in the following lemma, where we
compute the conditional expectation of exp {— (Eh + max;e 7(j,1) 4i — Lp — a)} given

max;e 7(;,z) exp{li} _ MaXie g (j1) exp{l; — 0y} _
Yica (i exp{li} Yica(y expili — n}

and o
max {¢; — ¥y} = =.
gyt~
Note that by independence the conditional distribution of Sy, hence Zh, is the same as the
unconditional distribution.

Lemma 9 Define a = a — z, for 0 < z < ea'/?. Let o3 = 9(0) denote the null variance
of Xy, and assume that the 0; distribution of Sy satisfies a local limit theorem. Then, for
large a,

|E; [al/Zexp {— (Zh - &)} ca<lp<a+ loga] — (1/2702)Y?| < ¢,

where £}, = 0;Sn — npyp(0;). This approzimation holds uniformly in z.
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Proof: To consider one specific case, suppose the distribution of X, is lattice with span
1. The argument is virtually the same if the distribution has an integrable characteristic
function, so its density obeys a local central limit theorem. A Taylor expansion of 7(#)
around € = 0 can be used to show that

0/(2a/n)1? — o3| < e,

provided that a is large. The probability P;(S, = s) is approximated by a normal density.
In particular, up to a factor of 1 + € the approximation is 1/ (27rnha(2))1/ 2 for all s in a

neighborhood of the mean of S} of radius en,ll/ ? 50

<e.

a'/?P;(Sy, = s) B ( 1 )1/2
(a/np)'/? 2mod

It follows that
E; [al/Qexp{— (Zh — &)} ;a0 < lh<a +loga]

< (1/2r00) 1+ o) 3 exp{~(1 — 0 20/naod) s},

s=1
and
Ej [al/ZeXp {— (Zh — ZI,)} ja < Zh <a+ loga]
> (1/2m05)'* (1 = )(a/na)'* Y exp{~(1 + ) (2a/nnop) s}
s=2
|

Lemmas 1 to 9 can be summarized in the following theorem.

Theorem 1 For the scanning statistic computed over J (all rectangles (x,y] which satisfy
ea < y; —x; < ca, i=1,2) the two:

al/?eP (maxﬁj > a) (22)
JjeT
and /2
1 ) max;c 7 exp{¥4;}
— E; 23

are asymptotically equivalent.

We now remove the technical conditions that ea < y; — x; < ca for 1 = 1,2. We first
consider the comparatively simple lower bound. We decompose Jy = {j : min(ry,72) <
ea, max(ri,m9) < ca} as follows. Let ¢’ diverge slowly to oo with a and set Jp1 = {j :
nj > cda, 1 < ea, ea < 1y < ca}, Joo = {j : nj > cda, ea < r; < ca, T2 < ea},
Joz = {j : nj > da,r1 < ea,m2 < ea} and Jou = {j : n; < da}. With regard to Jos,
observe that the number of rectangles with n; < ¢’a and maximum dimension less than
ca is no more than m2calog(c?a/c') = o[m?a®/?]. Since P{¢; > a} < exp(—a), the simple

13



Bonferroni bound suffices to show that these rectangles make a negligible contribution to
the total. Also
P(max £ > a) < ZJ'EJosP(ej > a).
J€Jos

There are at most e2m?a? terms in this sum, each of which is (uniformly) O[a—"/2exp(—a)]
by a local limit theorem. Finally, writing j = j1 X jo, where j; and jo are the projections
of 7 on the respective coordinate axes, we have

P(max ¢; > a) = P(max ¢; > a) < emaP max L > a) ~ em?a®/?e °K

(j6.701 I = ) (jejoz I = ) B ({j1:6a§r1<ca} 1x(0ra] = ) ’

for some K — the “one-dimensional” constant, which can derived in the same way we derive
the “two-dimensional” constant in the argument give above.

Remark. The preceding argument works in dimensions two and more, but if Z is one
dimensional, a more delicate argument involving the probabilities of very large deviations
is required. We do not discuss that case.

To remove the condition that y; — z; < ca, ¢ = 1,2, we consider first the simpler case
that 7 is one dimensional. Now let Jo = {j € J : n; < ca}, andset J1 = {j € J : n; > ca}.
The arguments given above apply to the maximum taken over J, so it suffices to show that
the probability of the maximum over J; is negligible.

We shall at the same time consider the possibility that m is so large that the right
hand side of (13), or the analogous quantity when Z is one dimensional, namely mal/2e=,
converges to a limit A and show that a Poisson approximation applies, i.e., the probability
(4) converges to 1 — exp(—KM\). Given the previous results in the case that m is of or-
der a® the general blocking argument of Arratia, Goldstein and Gordon (1989) or a direct
decomposition into almost independent blocks of size ca along the lines of Venkatraman
and Siegmund (1995) shows that a Poisson approximation holds as claimed when the max-
imization is restricted to Jy. Hence, as above, it suffices to show that maximizing over [J;
produces a negligible probability.

The following lemma will be useful.

Lemma 10 Let X1, Xo,..., X, be independent and identically distributed with E(X1) =0

from a distribution that can be imbedded in an exponential family. Define S, = Y 1—1 Xy.
e o p(A)  ¥(0)
s 0 rt01) <1525 o (41 )

forall 0 < 6 < A

Proof: Note that

Eexp {lg;aéxm[OSn - mﬁ(e)]} =
Eexp {lglasxm [g(ASn —np(A) + nd (@ — @)] }
< exp {ma (@ — @) } Eexp {(H/A) | max (ASn — mﬁ(A))}

Now, by Doob’s inequality,

F(z) =Py ( ma

X
1<n<m



Integration by parts yields

0 0 8, _
Eexp{xl%asxm()\sn —mﬁ()\))} _ /0 eSTd(—F(z))
0 ® o —
:1+—/ ex’F(z)de < 14+ ——
AJo
which completes the proof.

Let € > 0. We define below a subset jl C J1 such that for every ¢ € J; there exists
j € J1 such that the cardinality of the symmetric difference between the two is no more
than en;/a. We then show that

P 4 >a) < |Jila 2 24
(ggf};f j _a) <|Jila™ e (24)

The set J; can be constructed in the following way. Let ms = ca(l + €/a)’®, so msi1 =
ms(l +€/a), for s =1,2,---§ = min{s : my > m}. The set Jy consists of all translations

of (1,ms] by tems/a, for all 0 <t < (am)/(ems) and all s. It is easy to see that
S
am am

[l < Z eca(l +€/a)’ <2

s=1

(25)

The inequalities (24) and (25) together yield the desired result by choosing ¢ so large that
the right hand side of (24) is less than e.

We now turn to the proof of (24). For any interval j € J;, which by an abuse of notation
we denote (4, + n,], let 7 be max{m; : ms; < n;} and let j = max{tei/a : teia < j}. Tt
follows that (7,7 + 7] belongs to J; and yet the cardinality of the symmetric difference is
no more than 2¢(1 + €)7/a. Note, also, that 72 < nj. As a consequence we see that for each
j € J, there exists a subset J(j) C Ji such that Uje J (7) = J1 and the following hold:
for each i € J(j), n; > n;; the size of the symmetric difference of ¢ and j is no more than
enj/a; and the left endpoint of i is to the right of the left endpoint of j.

Obviously

JET i€J(j)

P(max@Za) < Z P(max €i2a>.
jej1

For a given j € J; let h denote the intersection of all ¢ € J(j) and consider the collection
of likelihood ratios {¢; : i € J(j)}, where ¢; = ¢;(h) = 6,S; — n;1p(0r). Note that on the
event {6;S; — n;(0;) > a}

0nSi — nitp(6h) 0:S; — nih(0;) + nifp(0;) — ¥ (0n)]

>
> a-—96,

since O, > 0; yet n; < (1 + 2¢/a)ny. Hence, {max;c 7;) 4 > a} C {max;e 7() l; > a— 6}
Observe that max;c 7(;) €; < £p + My + M, where where M; and Mj are maxima of partial
sums associated with the increments ¢; — £}, at the left and right endpoints of h, respectively.
In particular M; and M are independent of £;, and of each other. Hence, putting a = a — 9,
we see that

P(max &Za) SP(£h+M1+MQZfi),
ieT ()
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which by a change of measure equals
6_&Eh [exp(M1 + Mg)eXp[—(fh + My + My — gl,)], by + M1+ My > gl,] .

By conditioning on M; + M, and using arguments parallel to those in Lemmas 6-9, we see
that uniformly on {M; + My < a'/?},

Ej, [exp[—(£n + M1 + My — @)]; 4, + My + My > a|My + My < ca™/?

for some constant ¢ and all large enough a. Now take 6§ = 6y, A\ = 20 in Lemma 10,
and expand 9(X) about 6. Recalling that n(6) = a/ny, we see that Eplexp(M1 + Ma)] is
bounded. These approximations holds uniformly in j € J7, which proves (24).

We now consider the more complicated case of a two dimensional random field. The
relation of m and a appropriate for a Poisson approximation is m2a®?exp(—a) — X for
some 0 < A < oco. We begin with two lemmas.

Lemma 11 Let {X, : u € Z} be independent and identically distributed with mean 0 from
a distribution that can be imbedded in an erponential family. Define S; = >, c: Xu and
nj = |j| for j € J*. Let mi = maz{|j|: 5 € T*} and mo = |T*|. Then

Eexp {;161?35[05} — nﬂﬁ(@)]} < [1 + )’\mjee] exp {m19 (@ — @) }

ucj

for all 0 < 6 < A

Proof: We use the same argument as in the proof of Lemma 10 with the trivial additional
observation that

F(z) =Py (}IelaJDE[ASj —njp(N)] > x) < mge™ .

Lemma 12 Let {X, : u € I} be as in the previous lemma. Define S; =
nj = |j| for j € J*. Let my = max{|j|:j € T*} and my = |T*|. Then

uej Xu and

p (%%[asj _np(0)] > 5) < moexp {m1p(}) — A3/0}
for all0 <0 < A\

Proof: Observe that

p (E%a}[esj — ()] > 5) < J; P(AS; > A3/6).

and apply an exponential Markov inequality.

Let us divide the index set J into five disjoint subsets:

Jo = {ri<ca,r2 <ca}
Ji = {ri <ea,ry > ca}
Jo = {r1>ca,r2 <ea}
Js = {ea <r <ca,ry > ca}
Jy = {r1>ca,ea <1y < ca}
Js = {r1>ca,ry > ca}
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We will show that the statistic calculated by maximizing over J is well approximated by the
statistic obtained by maximizing only over [Jp, for which it suffices to show that the proba-
bilities associated with the maxima over Ji, ..., Js are small compared to m2a3/ 2exp(—a).
Consider approximations of the last four subsets along the lines of the corresponding subsets
in the one dimensional case discussed above. In these definitions s and t are integers that
run from 1 to an appropriate S and 7' defined as above for the one dimensional case. Let

Ji = {z1 <m,r <ea,ry = ca(l + €/a)’,zy = troe/a}
Jo = {r1 =ca(1+¢€/a)’,x1 = trie/a,zo < m,ry < €a}
J3 = {ri=eca(l+¢/a)’,z1 = triefa,ry = ca(l + €/a)’, my = troe/a}
Ji = {ri=ca(l+¢€/a)’,z1 = trie/a,ry = ea(1 + €/a)’, my = troe/a}
Fo = {r1=call+ /)’ oy = trie/a,ry = ca(l + e/a)®, 2y = trye/a}.

Note that | 71| = |J2| < m2a?/(ec), || = |Ja| < m?a?/(c) and |J5| < m2a?/(*c?). Tt
follows that the claim can be proved, provided we can show that a!/?ePy(max;¢ 7 b > a)
is bounded (uniformly in j € JiU---U j5)

Consider, first, the sets jl and JQ We can take the index sets J(j) to be linear in these
cases, so the argument given above can be applied.

Regarding the sets Js, Ju and Js, one can bound the maximum over the two-dimensional
set J(7) by ?), plus the sum of three random variables. The first random variable, My, is
the maximum of partial sums related to observations in the rectangles with one edge equal
to those edges of h that are parallel to the z-axis. The second random variable, My,
is associated with edges of h parallel to the y-axis. The third random variable, M3, is
associated with partial sums of random variables in the rectangles with corners touching h.
Note that the number of observations in each of these rectangles is at most ny/a?.

The random variables M7 and M- are treated by an application of Lemma 10, as above.
For M3 we treat differently the case n = n; < c1a3, were c; is large enough to assure that
1/(€%c1) belongs to the natural parameter space, and the case n > cia®. In the former
case the expectation of Egexp{M; + My + M3} = [[2_; Egexp{M;} is bounded. The bound
follows from the bound on Egexp{M;} and Egexp{M>} derived above and from a bound on
Eoexp{ M3} derived below. In the latter case the probability of the event under investigation
is bounded by the sum of the probability of the event {/; + M; + My > a — 4} and the
probability of the event {M3 > 4}. The first probability is bounded with the aid of the
moment generating function of M7 and M» as before. The probability of the second event
is shown below to be negligible.

In order to show that Egexp{M3} is bounded when n < cja®, we apply Lemma 2 with
my = my ~ n/a® and 8 ~ (2a/n)'/2. Tt follows that m;8 = O[(n/a?)'/?], which is bounded
by assumption. Choosing any A in the interior of the natural parameter space in Lemma, 11
would establish the needed result.

Regarding the probability of the event {M3 > 4} when n > a® we can use Lemma, 12
with A ~ [a/m1]"/? = [a®/n]'/? and § = 4. Tt can be shown that 4)\/0 ~ 2 - 21/2a, whereas
m19Y(A) ~ a/2. The last claim follows since mg = o(e®).

5 Multidimensional exponential families.

Now assume that the X have a distribution belonging to a multidimensional exponential
family, which we write as exp[(f,z) — ¥(0)]dF(z), where as above we assume 1 has been
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standardized so that 1(0) = 0,4(0) = 0. Let 5(8) = (0,4(6)) — 9(6). In this section we
indicate heuristically the modifications appropriate to generalize our earlier approximations.
For simplicity we assume that 8 is two-dimensional.

JFrom the convexity of 7 it follows that the equation (2) has as its solution a convex
curve 0; = 6;(w), parameterized by the angular coordinate w of the point 6. A very useful
result in the calculations to follow is obtained by differentiating (2) with respect to w to
obtain

(D6;)"4(8;)6; = 0, (26)

where D denotes differentiation with respect to w and prime denotes transpose.
For any interval j € J and any w let the probability P;, be defined by the likelihood
ratio

tjw = [0, 55) — njp(6;)].
Similarly, let P; be defined by

2T
¢; = log{(2m)~! /O explt; )dw}. 27)

Let 6; = 0;(&) be the maximum likelihood estimator of § restricted to the curve ;. We
have the equivalence (cf. (3))

{mgxnw()_(j) >a} = {mjaaXKéj, Sj) — njih(;)] > a}. (28)
Generalizing (4) and (5) we have the representation

2me’P {Ijnea,}(njgo(Xj) > a} = 27me’%,E; [I/Ekexp(ﬁk);ml?.xnkgo(Xk) > a] =

2w { exp(maxy )

: : e —2) —a]}; ) > .
%, ; BEjw Srexp(lr) exp{ [Ej—i—m;;ix(ﬁk ¢;) a]},m’?xnkgo(Xk)_a}dw

(29)
To analyse (29), we begin with the linear Taylor series approximation
njp(X;) —a = (0, S;) — njih(6;) — a+ Op(1) = (0, Sj — nj$h(6;)) + Op(1). (30)
By a Laplace expansion of (27) we obtain
et ~ expl(6;, ;) — nj1h(6;)]/[2mn; (D6;)'4(6;)(DO;)]/?. (31)
Using a Taylor series approximations of ¢(9J) and /; ; along with (26) we see that
(05, 85) — nj1h(0;) — a = (6, S; — np(6))) = (6;,S; — nh(6;)) + Op(1). (32)

Substitution of (30) and (31) into (29) and arguing as in the preceding sections suggests
that the expectation in (29)

exp[maxy (£ — £;)] W (D9j)'1?(0j)(D91) y1/2
Srexp(ly — £;) 05(6;)0; '

Calculations similar to those in the proof of Lemma 5, but more complicated, show that in
the expectaton in (33) £, —¢; can be replaced asymptotically by (8;, Sy —S;) — (ng—n;)¥(6;),

~ Ejw{ (33)
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which in turn can be replaced by a similar expression with the true values 6; in place of the
estimators éj. Hence this expectation can be evaluated as above to yield the appropriate
multidimensional version of (12) given in Appendix A (cf. (Al)).

We are now in a position to approximate the sum in (29) by an integral. Let ¥y =

$(0), and let v = (cosw,sinw)’, so # = ||@|]v. Substituting the expressions obtained in the
preceding paragraph and using the algebraic relation
det{4)(6;)}116;1|* = (D8;)"(6;)(D6;)84)(6;)0; (34)

proved in Appendix B, we see from (2) that the right hand side of (29) is
2m m/a
~ m2a?[det(S)]/? / { / (1/22 — a/ma)2[(20' Sov/z)/2]de} (v Sov) " 'dw.  (35)
0 0

In the special case that m >> a, this can be simplified to

mealaen S [ )y 0! Son) e

APPENDIX A

For completeness, we give here, in the form needed for this paper, an argument of Hogan
and Siegmund (1986), which is important for the evaluation of (11). Let Y7,...,Y,,... be
independent random variables with probability distribution from the exponential family
exp[(0, ) — ¥ (0)]dF(z). We assume that distribution of ¥; when 6 = 0 has been centered,
so that 1/1(0) = 0; and we write Py to emphasize dependence of the probability on 8. Let
n(0) = (0,%(0)) —4(0) and Sp = Y1 +--- + Y.

Assume that 7 — 00,0 — 0 in such a way that () converges to a positive constant.
Suppose also that n — oo, but slowly compared to . Then following Hogan and Siegmund
(1985), we shall show that

B s [0, — Tk (0)]}

~ r(0)v[(r6'Se0) 7], (A1)

where %y = 1(0) and v(-) is the function defined by Siegmund (1985, p. 82).
To prove (A1), we begin by noting that by integration by parts and a standard likelihood
ratio identity the left hand side of (A1)

~nt [ ” *Po{inaxl(9, Syx) — rky(6)] > z}da

~ 17! [ Eofexpl-((0,5,7) — 17(6) — )i < nd, (42)

where

T =7, = min{k : (0, Syx) — Tk(0) > z}.

Under the probability Py the random variable (0, S;x) — rki(6) has expectation rkn(6)
and variance 7k0'1(6)6, both of which converge (for fixed k) to positive constants. Hence
by a simple law of large numbers argument Py(7 < n) converges to 0 for n < (1 —€)z/rn(0)
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and to 1 for n > (1 + €)z/rn(0). It follows that (A2) is asymptotically bounded above and
below by

(1 + €)rn(0) lim Eg{exp[—((0, Srr) — r74)(0) — z)]}- (42)

The increments (0, S,) — () are easily seen by the central limit theorem to be asymptot-
ically normally distributed with mean r6'3,0/2 and variance 76’36, so the limit in (A2)
is the same as it would be for Gaussian random walk, which is one way of defining the
function v (Siegmund 1985, Chapter 8).

APPENDIX B

Proof of (34). To simplify the notation let ¥ = 1&(9]-), a = 6;,and b = D6;. In this notation
equation (26) becomes a'Yb = 0. It is easy to see by writing 6; = ||6;]|(cos w,sinw)’ and
differentiating that det(a,b) = ||6;||*>. Hence

(a'Sa)(b'Sb) = det[(a,b)'X(a, b)]
= det(%)[det(a, b)) = det(5)/|6;]|*,
which is equivalent to (34).
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