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The problem

Let (Xj , θj) be random vectors such that

Xj |θj ∼ F (x|θj), j = 1, . . . , n,

for a known family F (x|θ) of distributions. Let u(·, ·) be a certain

“utility” function. How do we estimate the sum

Sn ≡
n∑

j=1

u(Xj , θj)

based on observations X1, . . . , Xn?

• Zipf (1932, text analysis), Good (53, species; A.M. Turing), ...

• Robbins (77, 88), Robbins-Zhang (88, 89, 91, 00)



The problem

• Example: Given a pool of n motorists, how do we estimate the

(risk) intensity of those in the pool who have a prespecified

number, say a, of accidents this year? Let Xj be the number of

accidents this year for the j-th motorist and θj the intensity. We

may assume Xj |θj ∼ Poisson(θj) and set

Sn ≡
n∑

j=1

θju(Xj), u(x) = I{x = a}.

The Bayes estimator of Sn is

E
[
Sn

∣∣data
]

=
n∑

j=1

(a+ 1)
P (Xj = a+ 1)

P (Xj = a)
u(Xj),

but we don’t always know the marginal distributions of Xj .



The problem

� A parametric method: Assume θj are iid exponential with an

unknown mean. Then, the MLE/Bayes methods lead to

Ŝn =

n∑

j=1

(α/n+X)u(Xj)

(α+ β)/n+ 1 +X
,

since P (Xj = a+ 1)/P (Xj = a) = EX/(1 + EX).

� A nonparametric method: Assume that Xj are identically

distributed. Then, P (Xj = a+ 1)/P (Xj = a) ≈ na+1/na, where

nk ≡
∑n

j=1 I{Xj = k}. This leads to

Ŝn = (a+ 1)na+1 .

� Are these estimators asymptotically optimal?



A species problem

Suppose a random sample of size N is drawn (with replacement)

from a population of d species. Let nk be the number of species

represented k times in the sample. Our problem is to estimate the

total number of species d based on {nk, k ≥ 1}.
• Fisher et al (43), Good (53), Bunge-Fitzpatrick (93), ...

• Let Xj be the frequencies of the j-th species in the sample, so

(X1, . . . , Xd)
∣∣N ∼ multinomial (N, p1, . . . , pd)

for certain pj > 0. We observe {nk, k ≥ 1} (but not n0), where

nk ≡
∑d

j=1I{Xj = k}.

• The parameter d is under estimated by the observed

d̃ ≡
∑∞

k=1nk =
∑d

j=1I{Xj > 0}.



A species problem

• Probability models for pj : for certain i.i.d. θj ∼ G

pj = θj/
∑d

i=1θi, N
∣∣{θj} ∼ Poisson

(
c
∑d

i=1 θi

)
.

Thus, P{Xj = k} =
∫
{e−cy(cy)k/k!}G(dy) is a Poisson mixture.

• Parametric models G ∈ {Gτ : τ ∈ T }, e.g. gamma. Assume

c = 1. The (conditional) MLE is given by

d̂ ≡
d̃

∫
y>0

G
τ̂
(dy)

∫ (
1 − e−y

)
G

τ̂
(dy)

, τ̂ ≡ arg max
τ∈T

∞∏

k=1

{ ∫
e−yykGτ (dy)

1 −
∫
e−yGτ (dy)

}nk

,

cf. Samford (55), Rao (71) and Engen (74) for Poisson/gamma.

• Nonparametric MLE: maximizing over all G, i.e. with {Gτ}
being the collection of all distributions. The EM algorithm.

• Bias correction: Darroch-Ratcliff (80), Chao-Lee (92),

Chao-Bunge (02)



A species problem

• Connection to the estimation of sums of random variables

� Let d be treated as the number of species represented in the

population out of a total of n species. Specifically, letting pj = 0 if

the j-th species is not represented in the population, estimating

d =
∑n

j=1I{pj > 0} =
∑n

j=1I{Xj = 0, pj > 0} +
∑N

k=1nk

is equivalent to estimating Sn ≡
∑n

j=1 u(Xj , pj) with

u(x, p) = I{p > 0} or u(x, p) = I{x = 0, p > 0}, based on

observations {Xj , j ≤ n}.
� For pj ∝ θj , (d̃, d− d̃, n− d) is trinomial, and the likelihood is

(1 − p∗)
dpn−d

∗

( ∫
e−yG(dy)

)d−d̃ N∏

k=1

( ∫
(e−yyk/k!)G(dy)

)nk

with p∗ = P{pj = 0} and θj |{θj > 0} ∼ G. In this case,

P{CMLE = MLE} → 1.



Data confidentiality

• Protection of the privacy of individuals in releasing microdata

sets in the form of a high-dimensional contingency table.

If an individual belongs to a cell with small frequency, an intruder

with certain knowledge about the individual may identify him and

learn sensitive information about him in the data.

• Duncan and Pearson (1991), the proceedings of the joint

ECE/EUROSTAT work sessions on statistical data confidentiality,

e.g. Polettini and Seri (2003), Rinott (2003) and more.



Data confidentiality

• Global disclosure risk:

SJ ≡
J∑

j=1

u(Xj , Yj),

where Xj and Yj are the sample and population frequencies in the

j-th cell, J is the total number of cells, and u(x, y) is a loss

function of the form u(x, y) = u(x)/y, e.g. u(x, y) = y−1I{x = 1}.
• Problem: estimation of SJ based on {Xj , j ≤ J}.
• Model: Let N =

∑J
j=1 Yj be the population size. Suppose

N ∼Poisson(λ),

{Yj}|N ∼ multinomial (N, {πj}), Xj |({Yj}, N) ∼ binomial (Yj , pj),

for certain πj > 0 with
∑J

j=1 πj = 1, 0 ≤ pj ≤ 1 and λ > 0.



Data confidentiality

• For known {pj , πj , λ}, the Bayes estimator of SJ is

S∗
J ≡ E

(
SJ

∣∣∣{Xj}
)

=
J∑

j=1

ūj(Xj), ūj(x) ≡ Eu(x, Yj −Xj + x),

with Yj −Xj ∼Poisson((1 − pj)πjλ) (independent of Xj).

� For u(x, y) = y−1I{x = 1},

ūj(x) =
{
(1 − pj)πjλ

}−1
[
1 − exp

{
− (1 − pj)πjλ

}]
I{x = 1}.

• Connection to the species problem: for large λ

∑

j

ūj(Xj) ≈
∑

j

[
1 − exp

{
− λj

}]
I{Xj = 1, λj > 0}

≈
∑

j

I{Xj = 0, λj > 0}, λj ≡ (1 − pj)πjλ



Data confidentiality

• Negative binomial models: N ∼NB(α, 1/(1 + β)). As in Rinott

(2003), ūj(x) = E[u(Xj , Yj)|Xj = x] is

ūj(x) =
1 + pjβj

(1 − pj)βj

∫ 1

(1+pjβj)/(1+βj)

tα−1dtI{x = 1}

for u(x, y) = y−1I{x = 1}, βj ≡ βπj , cf. Bethlehem et al (1990)

with πj = 1/J and pj = En/EN ≈ n/N .

� For (α, βj) → (0,∞), (Yj −Xj)|{Xj = x} →NB(x, pj) in

distribution, resulting in the µ-ARGUS estimator (Benedetti and

Franconi, 1998) with ūj(x) = pj(1 − pj)
−1(− log pj)I{x = 1}.

Compared with the Poisson model in which λ ≈ N , estimates of

both EN and Var(N) are required. The µ-ARGUS model

essentially assumes Var(N)/(EN)2 ≥ 1/α→ ∞.



Data confidentiality

• Parametric (regression) models

Let {pj , πj , λ} be known tractable functions of an unknown vector

τ and certain covariates zj characterizing cells j, incorporating all

available knowledge about the parameters, e.g. λ ≈ N and∑J
j=1 piπj ≈ n/N , where n =

∑J
j=1Xj is the sample size.

Consequently, ūj(x) = ū(x, zj ; τ). This suggests

ŜJ ≡
J∑

j=1

ū
(
Xj , zj ; τ̂J

)

as an estimator of SJ , e.g. with MLE τ̂J .

� Example: In a two-way table with cells j ∼ (i, k) and known πi,k

and λ, pi,k = ψ0(τ1 + τ ′2zi,k), e.g. logit or probit ψ0. For unknown

πi,k, we may assume πi,k = πi.π.k.

• How good are these estimators asymptotically?



Asymptotic efficiency

Let (Xj , θj), j ≤ n, be iid from F . We want to estimate

Sn ≡ Sn(F ) ≡
n∑

j=1

u(Xj , Yj ;F )

with certain utility function u(x, y;F ).

Theorem. Under certain regularity conditions, the efficient

influence function for the estimation of Sn in contiguous

neighborhoods of PF0
is

φ∗(x) = ψ∗(x) + ū(x;F0) − µ(F0) − u∗(x)

where ψ∗(x) is the efficient influence function for the estimation of

µ(F ) = EFu(X, θ), ū(x;F ) ≡ EF [u(X, θ)|X = x], and u∗(x) is the

projection of ū(x;F0) to the tangent space of all score functions

based on observations.



Asymptotic efficiency

• The estimation of Sn(F ) or µ(F ) are closely related, but an

efficient estimator of µ(F ) is not necessarily efficient for the

estimation of Sn(F )/n.

• Cramer-Rao type argument in the parametric case.

Suppose F ≡ Fτ with density fτ and t(x) is an unbiased estimator

of u(X, θ; τ). Differentiate Eτ t(X) = µτ ≡ Eτu(X, θ; τ) yields

Eτ t(X)ρτ (X) = Eτψ∗,τ (X)ρτ (X)

where ψ∗,τ is the efficient influence function for the estimation of

µτ . Under this constraint,

ψ∗,τ + ūτ − u∗,τ = arg min
t(x)

Eτ

(
u(X, θ; τ) − t(X)

)2
,

where ūτ (x) ≡ Eτ

[
u(X, θ; τ)|X = x] and u∗,τ is the projection of

ūτ to [ρτ ].



Asymptotic efficiency

• Implication in (regular) parametric models

Let

ū(x; τ) ≡ Eτ

[
u(X, θ; τ)|X = x].

Then, the “plug-in” estimator

Ŝn ≡
n∑

j=1

ū(Xj ; τ̂),

is asymptotically efficient for Sn ≡
∑n

j=1 u(Xj , θ; τ), if τ̂ is an

efficient estimate of τ , e.g. MLE.



Asymptotic efficiency

• Implication in nonparametric mixture models: under certain

regularity conditions, the efficient influence functions φ∗,F at F

must satisfy

EFφ∗,F0
(X) = EFu(X, θ;F )

for almost all F and F0, i.e. efficient estimators are within o(
√
n) of

“u,v” estimators of Robbins (88) of the extended form

Ŝn ≡
n∑

j=1

v(Xi)

for certain v satisfying EF v(X) = EFu(X, θ;F ) for all F .



Conclusions

• Estimation of sums of random variables has broad applications

• An asymptotic theorem is provided in this nonstandard

estimation problem

• In parametric models, the “plug-in” estimator is asymptotically

efficient

• In nonparametric mixture models, the (conditionally unbiased)

“u,v” estimators are asymptotically efficient (if any)


