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Nonparametric regression and the white noise models

e Nonparametric Regression:




Nonparametric regression and the white noise models

e The white noise (Ibragimov-Khas'minskii, 81):
Y(t) = [ f(x)dx +eW(t), e=a/VN.
Problem: the estimation of f based on Y under the L5 loss
- @ [ 7 2
ROG.H=EY | {70 - 1) a
0
e Orthonormal transformation (spline, wavelet, Fourier, etc.):
X, =e¢ ' [¢rdY ~ N(0k,1)

for suitable basis functions ¢, where

O =€ 'Br, Be= [l
By Parseval, estimation of f is equivalent to that of 8 = {8 }:

RO(f, f) = ZkEée) (Br — 5k>2 = EQZkEg) (Ox — Qk)Q-



Nonparametric regression and the white noise models

e Hopefully, the smoothness of f is reflected in the rate of 3. — 0.
e Example: Sobolev balls for f with period 1:

5a(C) = {f : /Ol(f(o‘))2 < 02}

with smoothness index o and radii C.

o For the Fourier basis functions ¢g(x) = 1, ¢2m—1(x) = cos(2mmz),
and ¢o,, = sin(2rmz), m=1,2,..., f € S,(C) iff

o0 1
> (B + Ba) = [ (1P

m=1

L—2a—1/2

Consequently, G ~ in certain average sense.



Nonparametric regression and the white noise models

e Risk for the NP regression:
2

Ry(f.f) = NT'So Er{f(t:) — f(t)}
e Discrete orthonormal transformations:
Xp= N2 6nYi, k<N,

to map the NP regression data into a sequence to better capture
the smoothness of f. For suitable ¢; ~ ¢i(t;),

EX) =0, = N~1/? Zﬁbmf(tz') ~ \/N/Cbk(t)f(t) — 0.

¢ Equivalence:
~ _ A 2
Ry (f, f) = N""5 1 By (O — Or)

o Normality: if g; ~ N(0,0?), then X} ~ N (0, 0?).
o FET: ¢op—10 = cos(2nml/N), ¢pam e = sin(2nrml/N).



Wayvelets, smoothness, and sparsity

e Wavelet basis:
ﬂjk — /¢jkf7 k S 2j\/07j Z _17

where ¢ 1 (t) = 29/2¢(29t — k), 7 > 0, are “periodic” or “boundary
adjusted” dilation and translation of a mother wavelet, and ¢_1 ¢ is

the father wavelet.



Wavelets, smoothness, and sparsity

e Smoothness of f is reflected in the rate at which
B = {Bjk, k < 27} converges to 0 under certain norm, as in the

case of Fourier basis for functions in Sobolev balls.

e Sparsity of wavelet coefficients: the spatial inhomogeneity of f is
often reflected in the sparsity of its wavelet coeflicients G}, in
individual resolution levels, not necessarily in the overall

smoothness.

Thus, in wavelet denoising, adaptation to the spatial
inhomogeneity of f is achieved via (minimax) adaptive estimation

for sparse wavelet coefficients.

o Chui (92), Daubechies (92), Donoho-Johnstone (94), Donoho et al
(95), Hardle et al (98), ...



Wavelets, smoothness, and sparsity

e Besov balls: BY (C) ={8: 85, < C}, ie.

. q
Bg"q(C) = {ﬁ : Z (2](04+1/2—1/p)“5[j]‘|p,2j) < qu}7
J
where 8 = {31 }. Here, a is the degree of smoothness, and (p, q)

are shape parameters. A sequence 3 = {8;x} is in B (C) iff

By € Oy (), Yt < cn
J

e Example: Let F;,,(C) be the collection of all piecewise
polynomials f of degree d in [0, 1] with at most m pieces and
[flloo < C. Let [t7¢(t) =0 for j < d. Then,

18 llpai < 2772mMPC My, (18]S, < 00 & a < 1/p,

(a =1/p for ¢ = 0).



Wavelets, smoothness, and sparsity

Examples of (artificial, sparse) signals:

Clockwise from top left: blocks, bumps, heavisine, doppler



Wavelets, smoothness, and sparsity

The logarithm of Besov norms vs o« = (1 :10)/2, p € {1,1/2,1/5}, q = oo, max = 35

Clockwise from top left: blocks, bumps, heavisine, doppler



Block empirical Bayes methods and wavelet denoising

e Block empirical Bayes estimators for the white noise
o Data: Xy ~ N(0k,1), 0 = Br/e — 0
¢ Problem: estimate {0x} under /5 loss.

¢ Block estimators: estimate 6; based on X7;, where
j] = (kj_1, k;] for suitable k; T.

e Implementation in the NP regression model

¢ Estimate the noise level o using the last block, Xi,,) with
k., = N, and treat X5 = Xy /6 as data in the white noise model.

For example,

& = MAD(X ).



Block empirical Bayes methods and wavelet denoising

e Wavelet denoising: natural blocks, 81 = {8k, k < 271,

o Goal: finding exactly adaptive (simultaneously asymptotically)

minimax estimators (¢,

sup R1(B'9, 8) < (1+0(1))RV(B), VBeB
BeB

for a large collection B of sets B of 3, where R(€)(B) is the

minimax risk

R)(B) = inf sup R (B, 3).
g pBeB

o The case of B = { all Besov balls B (C)} is of particular
interest, since adaptive minimaxity for p < 2 implies spatial

adaptation for the estimation of f.



Block empirical Bayes methods and wavelet denoising

e Efromovich-Pinsker (84, 86, modified block JS): exactly adaptive
minimaz in Sobolev balls (all a, p = 2).

e Johnstone-Silverman (04, EB posterior median): rate adaptive

minimax threshold methods in Besov balls (all « and p).

e Donoho-Johnstone (95, SureShrink): exactly adaptive to the ideal
threshold risk for certain (a,p) with p < 2.

e Abramovich et al (04, FDR): exactly adaptive for sparse signals.

e Additional references (adaptive NP methods, minimaxity, ...):
Breiman et al (83), Stone (84), Efromovich (85), Friedman (91),
Golubev (92), Johnstone et al (92), Foster-George (94), Hall-Patil
(95,96), Donoho et al (96), Brown et al (97), Juditsky (97), Lepski
et al (97), Hardle et al (98), Hall et al (98,99), Barron et al (99),
Cai (99), Cavalier-Tsybakov (01), ...



Block empirical Bayes methods and wavelet denoising

e Minimax convergence rates in Besov balls (DJ, 98):
7(©) (B2, (C)) = 20/ (0t1/2) 01/ (e 1/2) — 2(/e)H/ (et1/2)
as C'/e — oo, where R(9)(B) is the minimax risk.
o For certain C; with > ; C}J < (%, necessarily C; < C,
B € BS,(C) = 0} € ©,0: (27720 /).

o Recall that R(9)(3, 8) = ¢2 D ik Eée)(éjk — 1)

o Dense or large signals: 277(@t1/2)C /e < 1 or 27 < (C/e)t/ (@ +1/2)
or smaller j, totally O(1)(C/e)*/(@+1/2) parameters 0,5, to estimate.
o Small signals: (C/e)'/(@+1/2) = 5(27) and p > 2

o Sparse signals: (C/e)1/(@t1/2) = 5(27) and p < 2



Block empirical Bayes methods and wavelet denoising

e Adaptive minimax estimation in Besov balls:

R (B, (C)) < {sgp} €2 ;sz (0,0, (277 T2 05 /)
can be achieved if an estimator is
¢ boundedly minimax for dense or large signals, totally
0(1)(C/e)}/(@F1/2) parameters
¢ exactly adaptive minimax for dense signals, totally
O(1)(C/e)'/(@+1/2) parameters
¢ rate adaptive for sparse signals, for potentially infinitely many

parameters.



Block empirical Bayes methods and wavelet denoising

o Cut-off at 27 =< (¢/C)Y/(@+1/2) yields optimal minimax rates for

p > 2 and known a.

e The (Block) James-Stein estimator are exactly (rate) adaptive

minimax in Besov balls for p = 2 (p > 2).

e The (Block) SureShrink is rate adaptive minimax in Besov balls

for certain o and p < 2.

e The (Block) EB posterior median is rate adaptive minimax in all

Besov balls.

e It is not clear if the (block) FDR threshold method are rate
adaptive minimax, since its properties for dense and large signals

are unclear.

e We discuss properties of (block) GEB estimators in detail.



Theoretical properties of GEB methods

e Ideal adaptation

e Adaptive minimaxity

e Spacial adaptation

e Dominance over certain other methods

e Universal super-efficiency



Theoretical properties of GEB methods

e In what follows, let 3(® be the (block) HGEB estimator.
e Ideal adaptation: adaptation to ideal /Bayes risks
¢ Ideal risk: with D* being the set of all separable Bjk =t;(Xjk),

R(e’*)(ﬁ) = min R (B,ﬂ)

peDs

o R(¢*)(3) is the risk of an ideal Bayes estimator.

¢ Oracle inequalities in individual blocks yield

sup {R<€> (89, 8) - R“’*)(ﬂ)} < o(e")R(By,(C))
peBg (C)

for certain v > 0. In this sense, the HGEB achieves ideal

adaptation.



Theoretical properties of GEB methods

e Adaptive minimaxity: the HGEB is exactly adaptive minimax in
all Besov balls

sup  R9 (B9, 8) < (1+o(e7)R(B2,(C)).
BeB ,(C)

¢ The minimax equivalence between the compound and Bayes

estimation problems yields the minimax theorem:

sup R (B) < (1+ o(e"))R (B2, (C)).
peBg (C)

¢ Ideal adaptation + minimax th. = exactly adapt. minimaxity.
o Extension of Efromovich-Pinsker (84, 86).

e Spacial adaptation: exactly adaptive minimaxity in all Besov

balls (i.e. for small p) = adaptation to spatial inhomogeneity of f.



Theoretical properties of GEB methods

e Dominance over certain other methods: if

R (B9, 8) > (1+0(1)) inf R (8,0)

BEDo

for a smaller class (e.g. separable threshold estimators) Dy C D?,
then

sup R\ (819, 8) > (1 + o(1)) sup R\ (5'), §)
BeB BeB

for all B, such that B C BS (C) and R(9(B) > ¢oe?®/(+1/2),
e Universal super-efficiency: for ¢ < oo and all compact sets B

«
p,q

sup R (5), 8) = o(1)R(Bg,(C)).
BseB

under || -



Simulation with block wavelet methods

signal = “bumps”, N = 4096, SNR =7
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Clockwise from top left: ebayesthresh, sureshrink, fdr, rgeb




Simulation with block wavelet methods

Table 2.1. Average of 100 simulated SSE
“heavisine”, N = 1024, SNR =17

7 6 7 8 9 10 11 | total
n; 16 16 32 64 128 256 512 | 1024
SSsig |49 0 0 0 0 0 0 49
JS 16 14 24 25 11 9 10 109
Sure | 16 12 12 12 10 11 12 86
EBPM | 16 11 9 8 8 9 10 71
FDR |16 12 10 10 8 9 10 7
RGEB |16 15 16 19 23 31 39 160
HGEB | 16 15 15 12 8 9 10 84
PGEB |16 15 14 14 13 17 21 111




Simulation with block wavelet methods

Table 2.2. “bumps”, N =1024, SNR=7

7 6 7 8 9 10 11 | total
n; 16 16 32 64 128 256 512 | 1024
SSsig (20 9 4 9 4 2 1 49

JS 16 15 33 63 125 233 264 | 750
Sure | 16 24 30 49 78 101 92 391
EBPM | 16 17 30 47 65 77 79| 331
FDR |16 18 36 45 70 &8 89| 362
RGEB |16 17 35 46 68 88 94| 364
HGEB | 16 17 35 46 68 87 90 | 360
PGEB |16 17 35 46 68 87 90| 360




Table 2.3. Four “bumps”, N = 4096, SNR =7

7 6 7 8 9 10 11 | total

n; 64 64 128 256 512 1024 2048 | 4096
SSsig | 209 4 9 4 2 1 49
JS 64 64 128 251 497 909 1040 | 2954
Sure | 64 68 116 189 305 385 343 | 1470
EBPM | 64 75 116 180 258 301 299 | 1294
FDR |64 71 132 181 290 354 341 | 1433
RGEB | 64 62 118 158 242 305 313 | 1262
HGEB | 64 62 118 158 246 311 325 | 1284
PGEB | 64 62 118 158 248 321 338 | 1310




Further research

An example of real data:

q1400) 10

1:3300




Conclusions

e Adaptation to spatial inhomogeneity of signals can be achieved

through adaptive minimax estimation for sparse signals

e Hybrid GEB estimators possess a number of optimality
properties, including exactly adaptive minimaxity in all Besov balls

e Our simulation study of the GEB and threshold estimators
provides further evidence for the validity of the asymptotic theory



