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Compound decision problems

• Decision problems (Wald, 47, 50): observation X; model/density

f(x|θ); parameter θ; loss function L(a, θ); decision rule t(x); risk

R(t, θ) ≡ EθL(t(X), θ); problem = to “minimize” the risk.

• Compound decision problems (Robbins, 51): (similar) decision

problems with (conditionally independent) observations

X(n) ≡ (X1, . . . , Xn), Xk ∼ f(x|θk),

parameters θ(n) ≡ (θ1, . . . , θn), and the compound risk

Rn
(
t(n)(X(n)), θ(n)

)
≡ n−1

n∑

k=1

Eθ(n)
L(tk(X(n)), θk),

where t(n) ≡ (t1, . . . , tn).



Compound decision problems

• Why compound? A separable rule tk(X(n)) = t(Xk) may not

produce desirable results for any given t.

• Example: Xk|θk ∼ N(θk, 1), θk = ±1, L(a, θ) = I{a 6= θ}.
� Separable rules tλ(x) = 2I{x > λ} − 1 have compound risks

Rn(tλ, θ(n)) = pnΦ(λ− 1) + (1 − pn)Φ(−λ− 1),

with pn ≡
∑n
k=1(θk + 1)/(2n).

� The naive (minimax) choice is λ = 0.

� Obviously, the best choice of λ is λ(pn) ≡ 2−1 log(1/pn − 1), while

pn ≈ p̂n ≡
∑n
k=1(Xk + 1)/(2n).



Compound decision problems

� Simulation: solid = minimax, dash = EB, 2000 rep
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Empirical Bayes methods

• Robbins (51, 56)

• For separable rules tk = t(Xk), the compound risk

Rn(t, θ(n)) = R(t, Gn) ≡
∫
EθL(t(X), θ)Gn(dθ)

is the Bayes risk with the (unknown) prior

Gn(A) ≡ n−1∑n
k=1I{θk ∈ A}.

• The ideal/Bayes rule is

t∗n ≡ t∗Gn ≡ arg min
t

R(t, Gn).

• Empirical Bayes (EB) solutions to the compound problem

tk(X(n)) = t̂n(Xk), t̂n ≈ t∗n.

• Asymptotic optimality (ideal adaptation)

Rn(t(n)(X(n)), θ(n)) ≈ R∗(Gn) ≡ R(t∗n, Gn).



Empirical Bayes methods

• Compound EB problem: a compound problem where θk are iid

variables from an unknown G, i.e. n iid Bayes problems with an

unknown prior and a compound risk.

• Sequential EB problem: only (X1, . . . , Xk) can be used in the

k-th decision problem; mathematically equivalent to the compound

version.

• EB solution: use X(n) to estimate the Bayes rule t∗ ≡ t∗G for the

unknown (true) prior.

• EB methods in general: treating (a sequence of) unknown

parameters as (iid) random variables with unknown prior and

estimate the Bayes rule for the unknown prior based on data.

• Related work: Neyman-Scott (48), Kiefer-Wolfowitz (56),

Stein (56).



Equivalence in minimax estimation

• Is the ideal risk R∗(Gn) (for the ideal separate estimators) a good

benchmark, i.e. “lower bound”, for the compound problem?

• What lower bound? Minimaxity in many subsets of the parameter

space of θ(n), e.g. local minimaxity similar to LAM of Le Cam.

• Minimax equivalence between the compound and Bayes problems

Rn(Θn) ≈ R(Gn) ≥ sup
G∈Gn

R∗(G),

in many subsets (balls) Θn, where Gn ≡ {Gn : θ(n) ∈ Θn}, and

Rn(Θ) ≡ inf
t(n)

sup
θ(n)∈Θ

Rn(t(n), θ(n)), R(G) ≡ inf
t

sup
G∈G

R(t, G).

• Ideal adaptation leads to simultaneous asymptotic local

minimaxity. If the minimax equivalence holds in Θn, then

separable decision rules are approximately minimax in them.



Equivalence in minimax estimation

• Pinsker (80), Donoho-Johnstone (94, 98), ...

• Donoho-Johnstone (94): X|θ ∼ N(θ, 1), L(a, θ) = (a− θ)2.

� Minimax equivalence in `p balls

Θp,n(C) ≡
{
θ(n) : n−1∑n

k=1|θk|p ≤ Cp
}

within o(1)Rn(Θp,n(C)) as nCp/(log n)p/2 → ∞, 0 < p ≤ 2.

� Ideal threshold estimators are asymptotically (Bayes) minimax.

� Asymptotic minimaxity cannot be achieved with linear

estimators.

� Comparison via the minimax Bayes risk in

Gp(C) ≡
{
G :

∫
|u|pG(du) ≤ Cp

}
.

Note that Gp,n(C) ≡ {Gn : θ(n) ∈ Θp,n(C)} ⊂ Gp(C) and

G ∈ Gp(C) ⇒ limnGn = G (weak) for certain Gn ∈ Gp,n(C).



Equivalence in minimax estimation

• Estimation of location vector: X = θ+ ε ∈ Rd, L(a, θ) = ‖a− θ‖2.

� For nonnegative Borel ψ, e.g. ψ(x) = |x/C|p, define ψ-balls

Θψ,n ≡
{
θ(n) :

∑n
k=1ψ(θk) ≤ n

}
, Gψ ≡

{
G :

∫
ψ(u)G(du) ≤ 1

}
.

Theorem. Suppose ‖ε‖q ≡ (E‖ε‖q)1/q <∞. Then,

sup
θ(n)∈Θψ,n

R∗(Gn) ≤ sup
G∈Gψ

R∗(G)

≤ Rn(Θψ,n) + ηn‖ε‖2
2 + 2ηn

(
‖ε‖2 + (η−1

n − 1)1/q‖ε‖q
)2
,

where ηn ≈ ((logn)/(2n))1/2 with ηn = exp(−2nη2
n). Furthermore,

if ψ is lower semi-continuous, then R(Gψ) = supG∈Gψ
R∗(G).

� If ε ∼ N(0, 1), then for the best q

ηn‖ε‖2
2 + 2ηn

(
‖ε‖2 + (η−1

n − 1)1/q‖ε‖q
)2 ≤ (1 + o(1))(logn)3/2(2/n)1/2.



Equivalence in minimax estimation

• Outline of proof.

� Continuity of the Bayes risk: For G = w1G1 + w2G2,

w1R
∗(G1) ≤ R∗(G) ≤ R∗(G1) + w2

{
‖ε‖2 + (w1/w2)

1/(2q)‖ε‖2q

}2
.

Problem: Degree of continuity for general/other decision problems,

i.e. sensitivity to the specification of G.

� Large deviation: For
∫
ψdG ≤ 1, let ψ(θ)I{ψ(θ) ≤M} ∼ G1 with

θ ∼ G and θk be iid G1 under PG1,n. If PG{ψ(θ) = M} = 0, then

PG1,n

{ n∑

k=1

ψ(θk) > n
}
≤ exp

(
− 2nP 2

G{ψ(θ) > M}
)
.

� Minimax theorem for lower semi-continuous ψ:

R(Gψ) = supG∈Gψ
R∗(G) = supG∈Gψ

inftR(t, G).



Estimation of mixing distributions

• Individual solutions to the EB problem: estimation of t∗G or t∗Gn .

• General solution: estimation of G or Gn and use t∗
Ĝ

. In the EB

model, Xk are iid from the mixture fG(x) ≡
∫
f(x|u)G(du).

• Generalized (NP) MLE of the mixing distribution G

(Kiefer-Wolfowitz, 56); EM algorithm (Dempster-Laird-Rubin, 77).

• Problem: the NPMLE of mixing distributions are consistent

under very mild conditions (Phanzagl, 88), but their convergence

rates are unknown in general. Examples?

• In some cases, the optimal convergence rates for the

nonparametric estimation of mixing distribution are very slow, e.g.

logarithmic rates.



Estimation of mixing distributions

• Asymptotic theory for (the lower bounds of) optimal minimax

convergence rates in general estimation problems (Donoho-Liu, 91).

� Suppose we want to estimate τ(G) based on X(n) from PG,n.

� Let νn be measures in Gn ≡ {G : rn ≤ d(τ(G), τ(G0)) ≤Mrn}
and Pn ≡

∫
PG,ndνn. If lim inf ‖Pn − PG0,n‖1 < 2, then the

minimax risk in Gn cannot be o(rn).

� This is a consequence of Neyman-Pearson: (2 − ‖Pn − PG0,n‖1)/2

is the smallest total error probabilities for testing Pn vs. PG0,n.



Estimation of mixing distributions

• Example (Zhang, 90): X|θ ∼ N(θ, 1)

� Let G0 ∼ N(0, 1), an ≡
√

2 logn,

Gn(du) ≡
[
1 + (2an)

−1{cos(anu) − cn}
]
G0(du).

� Since θ|x ∼ N(x/2, 1/2),
∣∣fGn(x)/fG0

(x) − 1
∣∣ ≤ 1/

√
n. Thus,

H2(PGn,n, PG,n) = 2
[
1 −

{
1 −

∫
(
√
fGn −

√
fG0

)2/2
}n]

≤ · · · → 2(1 − e1/2) < 1,

which implies lim inf ‖Pn − PG0,n‖1 < 2.

� Since ‖Gn −G0‖∞ � a−2
n , rn = (log n)−1 is a lower bound for the

estimation of G.

� Gn are regular, since (d/du)2Gn(u) are uniformly bounded.

• Estimators (not MLE) were constructed to achieve optimal rates

in various models (Carroll-Hall, 88; Zhang 90, 95; Fan 91).



Parametric and restricted empirical Bayes

• Parametric EB: assume θk iid from G ∈ G with a parametric

family G, and approximate t∗G for a member G ∈ G, Efron-Morris

(72a, b, 73a, b), Morris (83).

• Restricted EB: approximate

t∗n = arg min
t∈D

R(t, Gn)

for a restricted class D, Robbins (80, 83).

� Parametric EB if D = {t∗G, G ∈ G}.
� General EB if D = { all Borel }.



Conclusions

• Empirical Bayes methods may (often) achieve great risk

reduction in compound decision problems

• The ideal Bayes risk is a good benchmark for compound

estimation, in the sense that the local maxima of the ideal Bayes

risk provide asymptotical lower bounds for the local minimax risks

• The estimation of mixing distribution/density may have slow

optimal rates of convergence, and thus may not provide a sound

general solution to compound decision problems


