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Mathematical beauty is more than its own reward.
P.A.M. Dirac

The purpose of the series of the lectures is to introduce some applications of
vertex operator algebras to differential geometry. These applications are in the
same spirit of the applications of Grassmannian algebras to differentiable mani-
folds that lead to exterior differential forms and the exterior differential operator,
and the applications of Clifford algebras and spinor representations that lead the
Dirac operators on spin Riemannian manifolds. In particular, we will explain the
relationship with elliptic genera. The vertex operator algebra we exploit include
the semi-infinite wedge product and the semi-infinite symmetry power of an infinite
dimensional space. We believe such applications will shed some lights on the ge-
ometry and topology of infinite dimensional manifolds that naturally arise in string
theory.

We will emphasize on supersymmetry and supersymmetric indices, which already
appear in the classical setting. Supersymmetry already appears in the Hodge theory
of Laplacian operators on Riemannian manifolds and Kähler manifolds. The cor-
responding indices coincide with the Euler characteristic and Hirzeburch χy genus
respectively. Elliptic genera, which generalize classical genera, naturally appear in
the infinite dimensional setting as one considers the supersymmetric indices of the
associated superconformal vertex algebras.

A very important notion in string theory is that of an N = 2 superconformal
field theory (SCFT). Physicists showed that the primary chiral fields of an N = 2
SCFT form an algebra. The proof of this fact in physics literature share many
common features of the Hodge theory of Kähler manifolds. See e.g. [14, 21].

A closely related notion is that of a topological vertex algebra of which one
can consider the BRST cohomology. Given an N = 2 SCFT, there are two ways
to twist it to obtain a toplogical vertex algebra. The BRST cohomology groups of
these two toplogical vertex algebras correspond to the algebras of the primary chiral
and anti-chiral fields respectively of the orignial N = 2 SCFT. Given a Calabi-Yau
manifold M , it has been widely discussed in physics literature for many years that
there is an N = 2 SCFT associated to it, with the two twists giving the so-called
the A-theory and the B-theory respectively. See e.g. [1].

Malikov, Schechtman, and Vaintrob [17] have constructed for any Calabi-Yau
manifold a sheaf of topological vertex algebras. Their theory corresponds to the
A-theory. In [28] we give a different approach based on standard techniques in
differential geometry. We use holomorphic vector bundles of N = 2 superconformal
vertex algebras on a complex manfiold M , and the ∂̄ operator on such bundles. We
show that the corresponding cohomology group has a natural structure of an N = 2
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superconofrmal vertex algebra, whose two twists provide the desired A theory and
B theory.

Vafa [20] suggested an approach to quantum cohomology based on vertex alge-
bra constructed via semi-infinite forms on loop space. Recall that a closed string
in a manifold M is a smooth map from S1 to M . The configuration space of all
closed string is just the free loop space LM . Earlier researches in algebraic topology
mostly dealt with the ordinary cohomology of the loop spaces. However the coho-
mology theory related to semi-infinite forms on the loop space seems to be more
interesting. As is well-known in the theory of vertex algebras, the space of such
forms has a natural structure of a vertex algebra being the Fock space of a natural
infinite dimensional Clifford algebra. One also has to consider the semi-infinite
symmetry product which also has a natural structure of a vertex algebra being the
bosonic space of a natural infinite dimensional Heisenberg algebra. Superconformal
structures naturally arise when the fermionic and bosonic parts are combined.

We begin with the Hodge theory on Riemannian manifolds in §1. There is a
underlying Lie superalgebra which we call the U(1) supersymmetry algebra. The
corresponding supersymmetric index is exactly the Euler characteristic. We study
an algebraic analogue in §2. More precisely we study differential operators on the
space of differential forms with polynomial coefficients. By taking suitable metric
we obtain a formal Hodge theory analogous to the Hodge theory on Riemannian
manifold. We also compute the corresponding supersymmetric index.

We then move onto the Hodge theory on Kähler manifolds in §4 and present
some larger Lie superalgebras underlying it. A suitably defined supersymmetric
index in this case gives the Hirzebruch χy genus. An algebraic analogue is studied
in §5.

The next natural topological invariant to consider is the elliptic genus. This
involves the constructions in [28] of an N = 1 superconformal vertex algebra asso-
ciated to any Riemannian manifold, and an N = 2 superconformal vertex algebra
associated to any complex manifold. First of all on the algebraic level one needs to
take the number of variables to infinity in the examples studied in §2 and §5. More
precisely, we will study exterior algebras with infinitely many generators in §7 and
polynomial algebras with infinitely many generators in §8. This leads us naturally
to vertex algebras whose definition is presented in §9. We recall some well-known
constructions of vertex algebras in §10. We present some basics of N = 2 supercon-
formal vertex algebras in §11. For applications to differential geometry, the reader
can consult [28].

1. Hodge Theory for Riemannian Manifolds and N = 1
Supersymmetric Index

Throughout this section M is a compact oriented manifold of real dimension n.

1.1. De Rham cohomology and Euler characteristic. The space C∞(M) of
smooth functions on M is a commutative algebra with unit. In particular,

(f · g) · h = f · (g · h),
f · g = g · f,

1 · f = f · 1 = f,
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for f, g, h ∈ C∞(M). Let x1, . . . , xn be local coordinates, then we regard a smooth
function locally as a formal power series:

f = fi1,...,ik
xi1 · · ·xik .

We have
xi · xj = xj · xi.

On the other hand, the space of differential forms is a graded commutative
algebra with unit. In particular,

(α ∧ β) · γ = α ∧ (β · γ),

α · β = (−1)|α|·|β|β ∧ α, ,

1 ∧ α = α · 1 = α,

for α, β, γ ∈ Ω∗(M). In local coordinates x1, . . . , xn, a smooth differential form can
be written as

α = αi1,...,ik
dxi1 ∧ · · · ∧ dxik .

We have
dxi ∧ dxj = −dxj ∧ dxi.

The exterior differential operator

d : Ω∗(M) → Ω∗+1(M)

satisfies the following properties:

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ,(1)
d2 = 0.(2)

In local coordinates we have

dα = dxi ∧ ∂

∂xi
α.

There are two kinds of operators involved here: { ∂
∂xi : i = 1, . . . , n} and {dxi∧ :

i = 1, . . . , n}. Note
∂

∂xi

∂

∂xj
=

∂

∂xj

∂

∂xi
,

(dxi∧)(dxj∧) = −(dxj∧)(dxi∧).

The second property (2) of d implies that Im d ⊂ ker d, hence one defines the de
Rham cohomology group

Hp(M) = ker d|Ωp(M)/ Im d|Ωp−1(M).

The first property (1) implies that there is an induced structure of a graded com-
mutative algebra with unit on

H∗(M) = ⊕n
p=0H

p(M).

The de Rham theorem states that the de Rham cohomology of M is isomorphic
to its singular or simplicial cohomology, hence it is a topological invariant. In
particular, Hp(M) is finite dimensional for each p. The Euler characteristic of M
is defined by:

χ(M) =
n∑

p=0

(−1)p dimHp(M).
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1.2. Laplace operator and Hodge theory. Suppose now M is endowed with a
Riemannian metric g. Then one can define the Hodge star operator

∗ : Ωp(M) → Ωn−p(M).(3)

It satisfies the following property:

∗2|Ωp(M) = (−1)p(n−p).

One can define a metric on Ω∗(M) by:

〈α, β〉 =
∫

M

α ∧ ∗β.

Define d∗ : Ωp(M) → Ωp−1(M) by

d∗ = − ∗ d ∗ .

Then by (3) and the Stokes theorem it is straightforward to see that

〈dα, β〉 = 〈α, d∗β〉.
It follows from (2) and (3) that

(d∗)2 = 0.

The Laplace operator is defined by;

∆ = dd∗ + d∗d = (d + d∗)2.

It is easy to see that

[∆, d] = [∆, d∗] = 0,(4)
〈∆α, β〉 = 〈α, ∆β〉.(5)

A differential form α is said to be harmonic if

∆α = 0.

It is easy to see that α is harmonic if and only if

dα = d∗α = 0.

I.e.,

α ∈ ker d ∩ ker d∗ = ker(d + d∗).

Denote by H∗(M) the space of harmonic forms on M .
Now ∆ is a self-adjoint elliptic operator, by standard theory there are the Hodge

decompositions

Ω∗(M) = H∗(M)⊕ Im d⊕ Im d∗ = H∗(M)⊕ Im(d + d∗).(6)

One can see from the Hodge decomposition

H∗(M) ∼= H∗(M),(7)

i.e., every de Rham cohomology class is represented by a unique harmonic form.



VERTEX OPERATOR ALGEBRAS AND DIFFERENTIAL GEOMETRY 5

1.3. Heat operator and its trace. There is also an eigenspace decomposition:

Ω∗(M) = ⊕λΩ∗(M)λ,(8)

where the sum is taken over all eigenvalues of ∆. The eigenvalues of ∆ has some
nice properties, for example, they form a discrete set that goes to infinity and every
eigenspace is finite-dimensional. Furthermore, an operator e−t∆ : Ω∗(M) → Ω∗(M)
can be defined such that its action on the eigenspace Ω∗(M)λ is multiplication by
e−tλ, and it is of trace class:

tr e−t∆ =
∑

λ

e−λt dimΩ∗(M)λ.

Set

Ω0(M) = ⊕p evenΩp(M), Ω1(M) = ⊕p oddΩp(M).

Then Q = d + d∗ maps Ω0(M) to Ω1(M) and vice versa. Since Q commutes with
∆, it maps Ω∗(M)λ to itself. By the Hodge decomposition it is easy to see that
Q|Ω∗(M)λ

is an isomorphism for λ 6= 0. Define an operator (−1)F : Ω∗(M) →
Ω∗(M) by

(−1)F α = (−1)pα, α ∈ Ωp(M).

It follows that

tr((−1)F e−t∆|Ω∗(M)λ
) = 0, λ 6= 0.(9)

We need the fermionic number operator J : Ω∗(M) → Ω∗(M) defined by:

J(α) = pα, α ∈ Ωp(M).

It is clearly self-adjoint, and (−1)F = (−1)J .
In physics literature, eigenvectors of zero eigenvalues are often referred to as the

zero modes, eigenvectors of nonzero eigenvalues are the nonzero modes. Hence the
harmonic forms are the zero modes of the Laplacian operator. A straightforward
consequence of the isomorphism (7) is

χ(M) =
n∑

p=0

(−1)p dimHp(M) =
n∑

p=0

(−1)p tr(e−t∆|Ωp(M)0)

= tr((−1)F e−t∆|Ω∗(M)0) = tr((−1)F e−t∆|Ω∗(M)),

where in the last identity we have used (9). This is the starting point of the proof
of the Gauss-Bonnet-Chern theorem by heat kernel method proposed by McKean
and Singer. Also note for λ 6= 0,

Ωp(M)λ = dΩp−1(M)λ ⊕ d∗Ωp+1(M)λ,

and d induces an isomorphism:

dΩp−1(M)λ
∼= d∗Ωp(M)λ.

Therefore one has [2]:

tr yJe−t∆ =
n∑

p=0

yp dimHp(M) + (1 + y)qe−t(y),
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for some polynomial

tr yJe−t∆ =
n∑

p=0

yp tr(e−t∆|Ωp(M))

=
n∑

p=0

yp tr(e−t∆|Ωp(M)0) +
n∑

p=0

yp
∑

λ6=0

tr(e−t∆|Ωp(M)λ
)

=
n∑

p=0

yp dimHp(M) +
∑

λ6=0

e−tλ
n∑

p=0

yp(dimΩp(M)λ)

=
n∑

p=0

yp dimHp(M) +
∑

λ6=0

e−tλ
n∑

p=0

yp(dim dΩp−1(M)λ + dim d∗Ωp+1(M)λ)

=
n∑

p=0

yp dimHp(M) +
∑

λ6=0

e−tλ
n∑

p=0

yp(dim d∗Ωp(M)λ + dim d∗Ωp+1(M)λ)

=
n∑

p=0

yp dimHp(M) + (1 + y)
n∑

p=1

yp
∑

λ6=0

e−tλ dim d∗Ωp(M)λ.

1.4. The U(1) supersymmetry algebra. In this subsection we summarized the
algebraic structure behind the above discussions.

Let us introduce some terminologies and notations. A Z-graded vector space is
a vector space with a decomposition

V = ⊕p∈ZV p.

An element v ∈ V p is said to be homogeneous of degree p, and we write |v| = p.
A linear map A : V → V is said to be homogeneous of degree k if A(V p) ⊂ V p+k

for all p, and we write |A| = k. When |A| is even we say A is an even operator,
otherwise an odd operator. Given two homogeneous operators A,B : V → V , we
write

[A,B] = AB − (−1)|A|·|B|BA.

Write Q = d, Q† = d∗, H = ∆. We have the following commutation relations:

[J, J ] = 0,

[J,Q] = Q, [J,Q†] = −Q†, [J,H] = 0,

[Q,Q] = [Q†, Q†] = [H, H] = 0,

[Q,Q†] = H, [H, Q] = [H, Q†] = 0.

In other words, if

g0 = CJ ⊕ CH,

g1 = CQ⊕ CQ†,

then g = g0⊕g1 is a Lie superalgebra. Note the Lie subalgebra RJ is the Lie algebra
of U(1), so J is called in physics literature as the U(1) charge operator; H is a central
element; RQ is a representation of RJ , while RQ† is the dual representation, and
the Lie bracket

[·, ·] : CQ⊗ CQ† → CH
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is given the natural pairing. We call this Lie superalgebra the U(1) supersymmetry
algebra. Then J 7→ J , H 7→ ∆, Q 7→ d, and Q† 7→ d∗ gives a representation of this
Lie superalgebra on Ω∗(M).

Now suppose we have a module M of the U(1) supersymmetry algebra. If there
is a Hermitian metric on A such that

J∗ = J, H∗ = H, Q∗ = Q†,

where for an operator P , P ∗ denotes its adjoint operator, then we say M is unitary.
Assume now M is unitary, and J and H are diagonizable with finite dimensional

eigenspaces. Define the character by:

χ(M)(q, y) = tr(−y)JqH ,

and the N = 1 supersymmetric index by

χ(M)(q) = tr(−1)JqH .

For example, when M is Ω∗(M), χ(M)(e−t) is exactly the Euler characteristic of
M , hence it is topological (i.e., does not depend on the choice of the Riemannian
metric). However, χ(M)(y, e−t) is not topological and it encodes all the spectral
data of the Laplacian operator.

1.5. A variation. One can also write Q = d + d∗, H = Q2. Then we have

[Q,Q] = 2H, [(−1)F , (−1)F ] = 0, [H, H] = 0,

[(−1)F , Q] = −Q, [(−1)F ,H] = 0, [Q,H] = 0.

If one sets

g0 = R(−1)F ⊕ RH, g1 = RQ,

then g = g0 ⊕ g1 is a Lie superalgebra, for which Ω∗(M) = Ω1(M) ⊕ Ω1(M) is a
representation. The trace tr((−1)F qH) is called the supertrace of the operator qH ,
and is often denoted by str qH .

2. Formal Hodge Theory and U(1) Supersymmetry Algebra

In this section we formulate some algebraic analogue of the Hodge theory and
obtain representations of the U(1) supersymmetry algebra in the same fashion.

2.1. The one-variable case. Consider operators β, β† : C[z] → C[z] defined by:

β(f(z)) =
d

dz
f(z), β†(f(z)) = zf(z).

Then we have
β(1) = 0,

and C[z] is linearly generated by {(β†)n|0〉 : n ≥ 0}. Hence 1 can be regarded as
a vacuum vector and will be denoted by |0〉. The following commutation relations
are satisfied:

[β, β†] = id .(10)

In other words, Rβ ⊕ Rβ† ⊕ R id is the Heisenberg Lie algebra.
Introduce a Hermitian metric on C[z] such that

β∗ = β†,(11)
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and |0〉 has length 1. Then we must have

〈zm, zn〉 = δm,nm!.(12)

With this metric, R[z] is a unitary representation of the Heisenberg algebra.
We also define the exterior differential operator d : C[z] → C[z]dz by

df(z) =
df

dz
dz.

As usual d : C[z]dz → 0 is the zero operator. On the basis we have

dzn = nzn−1dz, d(zndz) = 0.(13)

On the exterior algebra Λ(dz) generated by dz, define operators ϕ and ϕ† by

ϕ(1) = 0, ϕ(dz) = 1,

ϕ†(1) = dz, ϕ†(dz) = 0.

It is straightforward to check that

[ϕ,ϕ†] = id(14)

Also define a Hermitian metric on Λ(dz) by taking {1, dz} as an orthonormal basis.
Then we have

ϕ∗ = ϕ†.(15)

Let A = C[z] ⊕ C[z]dz = C[z] ⊗ Λ(dz), and naturally extend the metric and the
operators β, β†, ϕ, ϕ† to this space. Then one has

[β, ϕ] = [β, ϕ†] = 0,(16)

[β†, ϕ] = [β†, ϕ†] = 0.(17)

One can consider the adjoint operator d∗ of d. It is easy to see that:

d∗(zndz) = zn+1, d∗(zn) = 0.(18)

Indeed,

〈zm, d∗(zndz)〉 = 〈dzm, zndz〉 = 〈mzm−1dz, zndz〉
= mδm−1,n(m− 1)! = m!δm,n+1 = 〈zm, zn+1〉.

Also define ∆ = dd∗ + d∗d. One can easily see that

∆(zn) = nzn, ∆(zndz) = (n + 1)zndz.(19)

It is straightforward to see that

d = ϕ†β, d∗ = β†ϕ, ∆ = β†β + ϕ†ϕ.(20)

Also define J : C[z]⊕ C[z]dz → C[z]⊕ C[z]dz by

J(f(z)) = 0, J(f(z)dz) = f(z)dz.

We have

J = ϕ†ϕ.(21)
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Now it is straightforward to check that J,H = δ,Q = d,Q† = d∗ defines a
representation of the U(1) supersymmetry algebra. Furthermore, by (19) we have

χ(A)(q, y) =
∑

n≥0

(qn − yqn+1) =
1− yq

1− q
,(22)

χ(A)(q) =
1

1− q
.(23)

2.2. The n-variable case. Suppose now we have n variables z1, . . . , zn. Then we
have n annihilators {βi : i = 1, . . . , n} and n creators {(βi)† : i = 1, . . . , n} on the
space C[z1, . . . , zn], where

βi =
∂

∂zi
, (βi)† = zi · .(24)

One has

[βi, βj ] = [(βi)†, (ϕj)†] = 0,(25)

[βi, (βj)†] = δij .(26)

There is a Hermitian metric on C[z1, . . . , zn] such that

(βi)∗ = (βi)†,(27)

and |0〉 = 1 has length 1. Indeed one can take

〈za1
1 · · · zan

n , zb1
1 · · · zbn

n 〉 =
n∏

i=1

δai,bi
ai!.(28)

On the Grassmannian algebra

Λ(dz1, . . . , dzn) = {
n∑

k=0

∑

1≤i1<···<ik≤n

αi1···ik
dzi1 ∧ dzik}

we have n creators {(ϕi)† : i = 1, . . . , n} and n annihilators {ϕi : i = 1, . . . , n}
defined by:

(ϕi)† = dzi∧, ϕi = ι ∂

∂zi
.

Then one has

[ϕi, ϕj ] = [(ϕi)†, (ϕj)†] = 0,(29)

[ϕi, (ϕj)†] = δij .(30)

There is a Hermitian metric on Λ(dz1, . . . , dzn) such that

(ϕi)∗ = (ϕi)†,(31)

and |0〉 = 1 has length 1. Indeed one can take

{dzi1 ∧ · · · ∧ dzik : 0 ≤ k ≤ n, 1 ≤ i1 < · · · < ik ≤ n}
to be an orthonormal basis.

Extend the above operators and metrics naturally to the tensor product C[z1, . . . , zn]⊗
Λ(dz1, . . . , dzn). Then one has

[βi, ϕj ] = [βi, (ϕj)†] = 0,(32)

[(βi)†, ϕj ] = [(βi)†, (ϕj)†] = 0.(33)
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As usual the exterior differential operator d : C[z1, . . . , zn]⊗ Λ(dz1, . . . , dzn) →
C[z1, . . . , zn]⊗ Λ(dz1, . . . , dzn) is defined by

d(αi1,...,ik
dzi1 ∧ · · · ∧ dzik) =

∂f

∂zi
dzi ∧ dzi1 ∧ · · · ∧ dzik .

One has

d = (ϕi)†βi.(34)

One can consider the adjoint operator d∗ of d. It is easy to see that:

d∗ = (βi)†ϕi.(35)

Also define ∆ = dd∗ + d∗d. Then one has

∆ = (βi)†βi + (ϕi)†ϕi.(36)

Finally define the fermionic number operator J : C[z1, . . . , zn]⊗Λ(dz1, . . . , dzn) →
C[z1, . . . , zn]⊗ Λ(dz1, . . . , dzn) by

J(αi1,...,ik
dzi1 ∧ · · · ∧ dzik) = kαi1,...,ik

dzi1 ∧ · · · ∧ dzik .

One has

J = (ϕi)†ϕi.(37)

Now it is straightforward to check that J,H = δ,Q = d,Q† = d∗ defines a repre-
sentation of the U(1) supersymmetry algebra on A = C[z1, . . . , zn]⊗Λ(dz1, . . . , dzn),
which is a tensor product of n copies of the same representation:

C[z1, . . . , zn]⊗ Λ(dz1, . . . , dzn) = ⊗n
i=1(C[zi]⊗ Λ(dzi).

Therefore we have

χ(A)(q, y) =
(

1− yq

1− q

)n

,(38)

χ(A)(q) =
1

(1− q)n
.(39)

2.3. The weighted n-variable case. Now we present a modification of the above
construction. On C[p1, . . . , pn] consider n annihilators {βi : i = 1, . . . , n} and n
creators {(βi)† : i = 1, . . . , n} on the space C[p1, . . . , pn], where

βi = i
∂

∂pi
, (βi)† = pi · .(40)

One has

[βi, βj ] = [(βi)†, (ϕj)†] = 0,(41)

[βi, (βj)†] = iδij .(42)

There is a Hermitian metric on C[p1, . . . , pn] such that

(βi)∗ = (βi)†,(43)

and |0〉 = 1 has length 1. Indeed one can take

〈pa1
1 · · · pan

n , pb1
1 · · · pbn

n 〉 =
n∏

i=1

δai,bi
iaiai!.(44)
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Remark 2.1. It is well-known that the algebra of symmetric polynomials in n vari-
ables z1, . . . , zn is freely generated by the Newton power sums:

pi = (z1)i + · · ·+ (zn)i.

The natural metric on this space is given by (44).

On the Grassmannian algebra Λ(dp1, . . . , dpn) we define n creators {(ϕi)† : i =
1, . . . , n} and n annihilators {ϕi : i = 1, . . . , n} by:

(ϕi)† = dpi∧, ϕi = ι ∂
∂pi

.

Then one has

[ϕi, ϕj ] = [(ϕi)†, (ϕj)†] = 0,(45)

[ϕi, (ϕj)†] = δij .(46)

There is a Hermitian metric on Λ(dp1, . . . , dpn) such that

(ϕi)∗ = (ϕi)†,(47)

and |0〉 = 1 has length 1. Indeed one can take

{dpi1 ∧ · · · ∧ dpik
: 0 ≤ k ≤ n, 1 ≤ i1 < · · · < ik ≤ n}

to be an orthonormal basis.
Extend the above operators and metrics naturally to the tensor product C[p1, . . . , pn]⊗

Λ(dp1, . . . , dpn). Then again the even operators commute with the odd operators.
As above the exterior differential operator d : C[p1, . . . , pn] ⊗ Λ(dp1, . . . , dpn) →
C[p1, . . . , pn]⊗ Λ(dp1, . . . , dpn) can be written as

d = (ϕi)†βi,(48)

and its adjoint operator d∗ can be written as

d∗ = (βi)†ϕi.(49)

However the expression for ∆ = dd∗ + d∗d now changes to:

∆ = (βi)†βi + i(ϕi)†ϕi.(50)

Finally define the fermionic number operator J : C[p1, . . . , pn]⊗Λ(dp1, . . . , dpn) →
C[p1, . . . , pn]⊗ Λ(dp1, . . . , dpn) by

J(αi1,...,ik
dpi1 ∧ · · · ∧ dpik

) = kαi1,...,ik
dpi1 ∧ · · · ∧ dpik

.

One has

J = (ϕi)†ϕi.(51)

Now it is straightforward to check that J,H = δ,Q = d,Q† = d∗ defines a repre-
sentation of the U(1) supersymmetry algebra on A = C[p1, . . . , pn]⊗Λ(dp1, . . . , dpn).
It is not hard to see that

χ(A)(q, y) =
n∏

i=1

1− yqi

1− qi
,(52)

χ(A)(q) =
1∏n

i=1(1− qi)
.(53)
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3. Relationship with Witten deformation

In this section we interpret the algebraic constructions in last section in terms
of Witten deformation.

3.1. Witten deformation. Let f be a smooth function on a compact oriented
Riemannian manifold. Consider

dtα = e−tfd(etfα), d∗t α = etfd∗(e−tfα), ∆t = dtd
∗
t + d∗t dt.

One can also consider
Jt(α) = e−tfJ(etfα).

It is clearly that Jt = J for all t. It is easy to see that J = Jt, H = ∆t, Q = dt,
Q† = d∗t form a U(1) supersymmetry algebra.

Let H∗
t (M) be the cohomology of dt, and letH∗t (M) denote the space of harmonic

forms for ∆t. Then we have an isomorphism

H∗
t (M) ∼= H∗t (M)

as vector spaces (by standard theory for elliptic operators), and also an isomorphism

H∗
t (M) ∼= H∗(M)

induced by the map α 7→ e−tfα. These facts have been used to prove the Morse
inequalities [22, 27]. In particular we have

tr(−1)Jtq∆t =
n∑

p=0

(−1)p dimHp
t (M) =

n∑
p=0

(−1)p dimHp(M) = tr(−1)Jq∆.(54)

3.2. Witten deformation and harmonic oscillator. Now let M be the real
line R with the standard metric with linear coordinates x, and f = 1

2x2. Then we
have

dtα = dx ∧ (
d

dx
+ tx)α, d∗t α = ι d

dx
(− d

dx
+ tx)α.(55)

Hence

∆t|Ω0(R) = (− d

dx
+ tx)(

d

dx
+ tx) = − d2

dx2
+ t2x2

is the Hamiltonian operator for the harmonic oscillator in quantum mechanics. We
will take t = 1. Note

(
d

dx
+ x)e−

1
2 x2

= 0,

and

[
d

dx
+ x,− d

dx
+ x] = 2 id .

Hence we take
|0〉 = e−

1
2 x2

,

and regard

β =
1√
2
(

d

dx
+ x)

as the annihilator, and

β† =
1√
2
(− d

dx
+ x)
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as the creator. Consider the subspace of C∞(R) with basis:

{(β†)n|0〉 =
1

2n/2
(− d

dx
+ x)ne−

x2
2 : n ≥ 0}.

It is well-known that

Hn(x) = e
x2
2 (− d

dx
+ x)ne−

x2
2

are the Hermite polynomials which have the following generating series:
∑

n≥0

Hn(x)
n!

tn = exp(2xt− t2).

Furthermore,

1√
π

∫

R
Hm(x)Hn(x)e−x2

dx = δm,n2mm!.

It follows that

{ 1√
n!

(β†)n|0〉 : n ≥ 0}

are orthonormal with respect to the L2 metric on R. Denote by H the Hilbert space
with this basis. It is straight forward to see that d1 maps H to Hdx, and d∗1 maps
Hdx to H. By (55) one sees that

1√
2
d∗t ((β

†)n|0〉dx) = (β†)n+1|0〉.

Now it is straightforward to see that the following map

F : H⊗ Λ(dx) → C[z]⊗ Λ(dz)

defined by
1

2n/2
Hn(x) 7→ zn, dx 7→ dz

is an isomorphism of graded vector spaces with metrics, such that d1 is mapped to
d, and d∗1 is mapped to d∗.

3.3. Generalizations to Rn. It is straightforward to generalize to Rn. One can
take

f(x) =
1
2

n∑

i=1

(xi)2

to get the n-variable case in §2.2. One can also take

f(x) =
1
2

n∑

i=1

λi(xi)2

to get weighted cases, e.g., take λi = i.

4. Hodge Theory for Kähler Manifolds and N = 2 Supersymmetric
Index

Throughout this subsection M is a compact complex manifold of complex di-
mension n.
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4.1. Dolbeault cohomology and Hirzebruch χy genus. When M is a complex
manifold, there is a finer decomposition of the space of differential forms:

Ω∗,∗(M) = ⊕n
p,q=0Ω

p,q(M),

where Ωp,q(M) is the space of differential forms of type (p, q). In local complex
coordinates z1, . . . , zn, a smooth (p, q)-form can be written as

α = αi1,...,ip;j̄1,...,j̄q
dzi1 · · · dzip ∧ dz̄j1 · · · dz̄jq .

We have

dzi ∧ dzj = −dzj ∧ dzi, dzi ∧ dz̄j = −dz̄j ∧ dzi, dz̄i ∧ dz̄j = −dz̄j ∧ dz̄i,

The exterior differential operator d can be decomposed into two operators:

d = ∂ + ∂̄,

satisfying the following properties:

∂(α ∧ β) = ∂α ∧ β + (−1)|α|α ∧ ∂β,(56)

∂̄(α ∧ β) = ∂̄α ∧ β + (−1)|α|α ∧ ∂̄β,(57)
∂2 = [∂, ∂̄] = ∂̄2 = 0.(58)

One has Im ∂̄ ⊂ ker ∂̄, and so one defines the Dolbeault cohomology group

Hp,q(M) = ker ∂̄|Ωp,q(M)/ Im ∂̄|Ωp,q−1(M).

There is an induced structure of a graded commutative algebra with unit on

H∗,∗(M) = ⊕n
p,q=0H

p,q(M).

The Hirzebruch χy genus of M is defined by:

χy(M) =
n∑

p=0

(−y)p
n∑

q=0

(−1)q dimHp,q(M).

4.2. Hodge theory for ∂̄ and ∂. Suppose now M is endowed with a Hermitian
metric g. Then the Hodge star operator maps Ωp,q(M) to Ωn−p,n−q(M). One can
define a Hermitian metric on Ω∗,∗(M) by:

〈α, β〉 =
∫

M

α ∧ ∗β̄.

Define ∂̄∗ : Ωp,q(M) → Ωp,q−1(M) and ∂∗ : Ωp,q(M) → Ωp−1,q(M) by

∂̄∗ = − ∗ ∂̄∗, ∂∗ = − ∗ ∂ ∗ .

Then by (3) and the Stokes theorem it is straightforward to see that

〈∂̄α, β〉 = 〈α, ∂̄∗β〉, 〈∂α, β〉 = 〈α, ∂∗β〉.
It follows that

(∂̄∗)2 = [∂̄, ∂∗] = (∂∗)2 = 0.

Define the associated Laplace operators by:

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ = (∂̄ + ∂̄∗)2, ∆∂ = ∂∂∗ + ∂∗∂ = (∂ + ∂∗)2.

It is easy to see that

[∆∂̄ , ∂̄] = [∆∂̄ , ∂̄∗] = 0, [∆∂ , ∂] = [∆∂ , ∂∗] = 0,(59)

〈∆∂̄α, β〉 = 〈α, ∆∂̄β〉, 〈∆∂α, β〉 = 〈α, ∆∂β〉.(60)
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A differential form α is said to be ∂̄-harmonic if

∆∂̄α = 0.

It is easy to see that α is ∂̄-harmonic if and only if

∂̄α = ∂̄∗α = 0.

I.e.,
α ∈ ker ∂̄ ∩ ker ∂̄∗ = ker(∂̄ + ∂̄∗).

Denote by H∗̄
∂
(M) the space of ∂̄-harmonic forms on M .

Now ∆∂̄ is a self-adjoint elliptic operator, by standard theory there are decom-
positions

Ω∗,∗(M) = H∗,∗
∂̄

(M)⊕ Im ∂̄ ⊕ Im ∂̄∗ = H∗,∗(M)⊕ Im(∂̄ + ∂̄∗).(61)

One can see from the Hodge decomposition

H∗,∗(M) ∼= H∗,∗
∂̄

(M),(62)

i.e., every Dolbeault cohomology class is represented by a unique ∂̄-harmonic form.
Define two operators JL, JR : Ω∗,∗(M) → Ω∗,∗(M) by

JL(α) = pα, JR(α) = qα, α ∈ Ωp,q(M).

Again, an operator e−t∆∂̄ : Ω∗,∗(M) → Ω∗,∗(M) can be defined and it is of trace
class. Take Q∂̄ = ∂̄ + ∂̄∗. Since Q∂̄ commutes with ∆∂̄ , by the same argument as
in §1.3, one has

χy(M) =
n∑

p=0

(−y)p
n∑

q=0

(−1)q dimHp,q(M) = tr((−y)JL(−1)JRe−t∆∂̄ ).

More generally, one can consider the Witten index:

tr((−y)JL(−1)JRe−t∆∂̄ e−t′∆∂ ).

We will see below that this is the same as the χy genus when M is Kähler.

4.3. The SU(2) supersymmetry algebra. It is easy to see that for a Hermitian
manifold, J = JL, Q = ∂, Q† = ∂∗, and H = ∆∂ generate a U(1) N = 1
supersymmetry algebra, so are J = JR, Q = ∂̄, Q† = ∂̄∗, and H = ∆∂̄ . When M
is Kähler, these two copies of U(1) supersymmetry algebras can be combined into
an SU(2) supersymmetry algebra.

Let L : Ω∗,∗(M) → Ω∗+1,∗+1(M) be the multplication by the Kähler form, and
let Λ be the adjoint operator of L, and let h = n − JL − JR. Then Λ, L, h form a
Lie algebra isomorphic to su(2), i.e.,

[Λ, L] = h, [h,Λ] = 2Λ, [h,L] = −2L.(63)

Furthermore, by the Kähler identities one has

[Λ, ∂] =
√−1∂̄∗, [L, ∂] = 0, [h, ∂] = −∂,

[Λ, ∂̄∗] = 0, [L, ∂̄∗] = −√−1∂, [h, ∂̄∗] = ∂̄∗,

i.e., C∂ ⊕ C∂̄∗ form a spin 1/2 representation of su(2), or equivalent, the spinor
representation S of so(3). Similarly, one also has

[Λ, ∂̄] = −√−1∂∗, [L, ∂̄] = 0, [h, ∂̄] = −∂̄,

[Λ, ∂∗] = 0, [L, ∂∗] =
√−1∂̄, [h, ∂∗] = ∂∗,
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i.e., C∂̄⊕C∂∗ form the dual spinor representation S∗ ∼= S of so(3) ∼= su(2). Finally,
write note

[∂, ∂̄] = [∂, ∂̄∗] = 0, [∂∗, ∂̄] = [∂∗, ∂̄∗] = 0,

[∂̄, ∂] = [∂̄, ∂∗] = 0, [∂̄∗, ∂] = [∂̄∗, ∂∗] = 0,

[∂, ∂∗] = ∆∂ =
1
2
∆, [∂̄, ∂̄∗] = ∆∂̄ =

1
2
∆.

Furthermore, ∆ commutes with all operators Λ, L, h, ∂, ∂∗, ∂̄, ∂̄∗.

Definition 4.1. The SU(2) supersymmetry algebra is the Lie superalgebra g with
g0 = su(2)⊕CH, g1 = S⊕S∗, such that H is a central element, and the Lie bracket
induces and action of su(2) on S by the spinor representation, and an action on S∗

by the dual spinor representation. Furthermore,

[a, b] =

{
0, a, b ∈ S or a, b ∈ S∗,
tr(a⊗ b), a ∈ S, b ∈ S∗,

where tr : S ⊗ S∗ → C is the trace on End(S).

Hence we have shown that if

g0 = (CΛ⊕ CL⊕ Ch)⊕ C∆,

g1 = (C∂ ⊕ C∂̄∗)⊕ (C∂̄ ⊕ C∂∗),

then g = g0 ⊕ g1 is an SU(2) supersymmetry algebra.
Even the SU(2) supersymmetry algebra is a nice algebraic structure intrinsic

in the Hodge theory of Kähler manifolds, however, to define the supersymmetry
index, we need a larger Lie super algebra that encodes the left and right fermionic
number operators JL and JR.

Definition 4.2. The N = 2 extended supersymmetry algebra is the Lie superalge-
bra with even generators λ, h, L, JL, JR,H, odd generators Q+, Q+†, Q−, Q−†, and
the following nontrivial commutation relations:

[Λ, L] = h, [h, Λ] = 2Λ, [h,L] = −2L,

[JL,Λ] = −Λ, [JL, L] = L, [JL, h] = 0,

[JR,Λ] = −Λ, [JR, L] = L, [JR, h] = 0,

[Λ, Q±] = ±√−1Q∓†, [L,Q±] = 0, [h,Q±] = ∓Q+,

[Λ, Q±†] = 0, [L,Q±†] = ±Q±, [h,Q±†] = ±Q±†,

[JL, Q+] = Q+, [JL, Q+†] = −Q+†, [JL, Q−] = [JL, Q−†] = 0,

[JR, Q−] = Q−, [JR, Q−†] = −Q−†, [JR, Q+] = [JR, Q+†] = 0,

[Q±, Q±] = 0, [Q±, Q∓] = 0, [Q±, Q∓†] = 0,

[Q±, Q±†] =
1
2
H.

Given such an algebra, let Q = Q+ + Q−†, Q† = Q+† + Q−, J = JL − JR, it is
easy to see that J,H, Q,Q† for a U(1) supersymmetry algebra.

Now suppose we have a module M of the extended N = 2 supersymmetry
algebra. If there is a Hermitian metric on A such that

J∗L = JL, J∗R = JR, H∗ = H, (Q±)∗ = Q±†,
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where for an operator P , P ∗ denotes its adjoint operator.
Assume now M is unitary, and J and H are diagonalizable with finite dimen-

sional eigenspaces. Define the N = 2 supersymmetric index by:

χ(M)(q, y) = tr(−y)JL(−1)JRqH .

For example, when M is Ω∗,∗(M) for a Kähler manifold, χ(M)(y, e−t) is exactly
the χy genus of M .

One can also consider the Witten genus:

tr(−y)JL(−1)JRqH q̃H .

Using the supersymmetry operator Q−, an argument similar to that in §1.3 shows

tr(−y)JL(−1)JRqH q̃H = tr(−y)JL(−1)JRqH .

4.4. Another U(1) supersymmetry algebra in Kähler geometry. Let Q =
∂ + ∂̄∗, Q† = ∂∗ + ∂̄, H = ∆, and let J : Ω∗,∗(M) → Ω∗,∗(M) be defined by

J(α) = (p− q)α, α ∈ Ωp,q(M).

Then J,H, Q,Q† generate a U(1) suppersymmetry algebra.

5. Formal Kähler Hodge Theory and N = 2 Extended Supersymmetry
Algebra

In this section we formulate some algebraic analogue of the Hodge theory of and
obtain representations of the N = 2 extended supersymmetry algebra in the same
fashion. We will keep the notations in §2.

5.1. The one-variable case. Consider operators β, β†, γ, γ† : C[z, z̄] → C[z, z̄]
defined by:

β(f(z, z̄)) =
∂

∂z
f(z, z̄), β†(f(z, z̄)) = zf(z, z̄),

γ(f(z, z̄)) =
∂

∂z̄
f(z, z̄), γ†(f(z, z̄)) = z̄f(z, z̄).

Then we have
β(1) = γ(1) = 0,

and C[z, z̄] is linearly generated by {(β†)m(γ†)n1 : n ≥ 0}. Hence 1 can be regarded
as a vacuum vector and will be denoted by |0〉. The following commutation relations
are satisfied:

[β, γ] = [β, γ†] = [γ, β†] = 0, [β, β†] = [γ, γ†] = id .(64)

Introduce a Hermitian metric on C[z, z̄] such that

β∗ = β†, γ∗ = γ†(65)

and |0〉 has length 1. Then we must have

〈zm1 z̄n1 , zm2 z̄n2〉 =
2∏

i=1

δmi,ni
mi!.(66)

We also define differential operators ∂, ∂̄, d : C[z] → C[z]dz by

df(z) =
df

dz
dz.
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On the exterior algebra Λ(dz, dz̄) generated by dz, dz̄, define operators ϕ,ψ, ϕ†, ψ†

by

ϕ = ι ∂
∂z

, ψ = ι ∂
∂z̄

,

ϕ† = dz∧, ψ† = dz̄ ∧ .

It is straightforward to check that

[ϕ,ψ] = [ϕ,ψ†] = [ψ†, ϕ] = 0,(67)

[ϕ,ϕ†] = [ψ, ψ†] = id .(68)

Also define a Hermitian metric on Λ(dz, dz̄) by taking {1, dz, dz̄, dz ∧ dz̄} as an
orthonormal basis. Then we have

ϕ∗ = ϕ†, ψ∗ = ψ†.(69)

Extend the metric and the operators β, β†, γ, γ†, ϕ, ϕ†, ψ, ψ† to the space C[z, z̄]⊗
Λ(dz, dz̄). As before, the even operators commute with the odd operators.

Operators ∂, ∂̄ can be defined. One can also consider the adjoint operator ∂∗,
∂̄∗ and d∗. It is straightforward to see that

∂ = ϕ†β, ∂∗ = β†ϕ, ∆∂ = β†β + ϕ†ϕ,(70)

∂̄ = ψ†γ, ∂̄∗ = γ†ψ, ∆∂̄ = γ†γ + ψ†ψ.(71)

Also define JL, JR,Λ, L, h : C[z, z̄]⊗ Λ[dz, dz̄] → C[z, z̄]⊗ Λ[dz, dz̄] by

JL = ϕ†ϕ, JR = ψ†ψ,(72)

Λ =
√−1ϕψ, L =

√−1ϕ†ψ†, h = ϕϕ† + ψ†ψ.(73)

Then it is easy to see that we obtain an SU(2) extended supersymmetry algebra.
We now compute the Witten index:

tr((−y)JL(−1)JRqHL q̃HR) = tr((−y)JLqHL |C[z]⊗Λ(dz)) · tr((−1)JR q̃HR |C[z̄]⊗Λ(dz̄))

=
1− yq

1− q
.

Consider the U(1) symmetry algebra generated by J = JL−JR, H = dd∗+d∗d,
Q = ∂ + ∂̄∗, Q∗ = ∂∗ + ∂̄. We have

J = ϕ†ϕ− ψ†ψ, H = β†β + γ†γ + ϕ†ϕ + ψ†ψ,

Q = ϕ†β + γ†ψ, Q† = β†ϕ + ψ†γ,

and

tr(−y)JqH =
1− yq

1− q
· 1− y−1q

1− q
.(74)

5.2. The weighted n-variable case. One can consider the weighted n-variable
generalization as in §2.3. We leave the details to the reader. we have

J = (ϕi)†ϕi − (ψi)†ψi, H = (βi)†βi + (γi)†γi + i(ϕi)†ϕ + i(ψi)†ψi,

Q = (ϕi)†βi + (γi)†ψi, Q† = (βi)†ϕi + (ψi)†γi,

and

tr(−y)JqH =
n∏

i=1

(1− yqi)(1− y−1qi)
(1− qi)2

.(75)
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6. Relationship with Holomorphic Witten deformations

6.1. Holomorphic Witten deformation induced by a function. Let f be a
smooth Morse on a compact complex Kähler manifold. Consider

∂tα = e−tf∂(etfα), ∂∗t α = etf∂∗(e−tfα), ∆∂,t = ∂t∂
∗
t + ∂∗t ∂t,

∂̄tα = e−tf ∂̄(etfα), ∂̄∗t α = etf ∂̄∗(e−tfα), ∆∂̄,t = ∂̄t∂̄
∗
t + ∂̄∗t ∂̄t.

It is easy to see that Λ, L, h, JL, JR, H = 2∆∂,t = 2∆∂̄,t, QL = ∂t, Q†L = ∂∗t ,
QR = ∂̄t, Q†R = ∂̄∗t form an extended N = 2 supersymmetry algebra.

6.2. Witten deformation and harmonic oscillator. Now let M be C with the
standard metric and linear coordinate z, and f = 1

2 |z|2. Then we have

∂tα = dz ∧ (
∂

∂z
+

t

2
z̄)α, ∂∗t α = ι ∂

∂z
(− ∂

∂z̄
+

t

2
z)α,(76)

∂̄tα = dz̄ ∧ (
∂

∂z̄
+

t

2
z)α, ∂̄∗t α = ι ∂

∂z̄
(− ∂

∂z
+

t

2
z̄)α.(77)

We will take t = 1. Note

(
∂

∂z
+

1
2
z̄)e−

1
2 |z|2 = (

∂

∂z̄
+

1
2
z)e−

1
2 |z|2 = 0,

and

[
∂

∂z
+

1
2
z̄,− ∂

∂z̄
+

1
2
z] = [

∂

∂z̄
+

1
2
z,− ∂

∂z
+

1
2
z̄] = id,

[
∂

∂z
+

1
2
z̄,

∂

∂z̄
+

1
2
z] = [− ∂

∂z̄
+

1
2
z,− ∂

∂z
+

1
2
z̄] = 0,

[
∂

∂z
+

1
2
z̄,− ∂

∂z
+

1
2
z̄] = [

∂

∂z̄
+

1
2
z,− ∂

∂z̄
+

1
2
z] = 0.

Hence we take the vacuum to be

|0〉 = e−
1
2 |z|2 ,

and regard

β =
∂

∂z
+

1
2
z̄, γ =

∂

∂z̄
+

1
2
z

as the annihilators, and

β† = − ∂

∂z̄
+

1
2
z, γ† = − ∂

∂z
+

1
2
z̄

as the creators. Consider the subspace H of C∞(C) with basis:

{(β†)m(γ†)n|0〉 = (− ∂

∂z
+

1
2
z̄)m(− ∂

∂z̄
+

1
2
z)ne−

|z|2
2 }.

It is straightforward to see that the following map

F : H⊗ Λ(dz, dz̄) → C[z, z̄]⊗ Λ(dz, dz̄)

defined by

(β†)m(γ†)n|0〉 7→ zmz̄n, dz 7→ dz, dz̄ 7→ dz̄

is an isomorphism of graded vector spaces with metrics, such that ∂1 is mapped to
∂, ∂̄ is mapped to ∂̄1, ∂∗ is mapped to ∂̄∗1 , and ∂̄∗ is mapped to ∂̄∗1 .
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It is straightforward to generalize to Cn. One can take

f(x) =
1
2

n∑

i=1

|zi|2

to get the n-variable case in §2.2. One can also take

f(x) =
1
2

n∑

i=1

λi|zi|2

to get weighted cases, e.g., take λi = i.

7. Semi-Infinite Wedge Algebra and Free Fermions

7.1. Semi-infinite wedge. Let H be a Hilbert space with a complete orthonor-
mal basis {er}r∈Z+ 1

2
. Suppose S = s1 < s2 < . . . ⊂ Z + 1

2 satisfy the following
conditions:

(i) S− = Z<0 + 1
2 − S is finite, and

(ii) S+ = S − (Z<0 + 1
2 ) is finite.

For each such S, let
eS := es1 ∧ es2 ∧ · · · .

Denote by Λ
∞
2 (H) the vector space with {eS} as an orthonormal basis. The vector

e−1/2 ∧ e−3/2 ∧ e−5/2 ∧ · · ·
is called the vacuum vector.

Define the charge operator J and the energy operator H on Λ
∞
2 (H) as follows:

J(eS) = (|S−| − |S+|)eS ,

H(eS) = (
∑

s∈S+

s−
∑

t∈S−

t)eS .

7.2. Physical Interpretation: Dirac sea of electrons. The semi-infinite wedge
provides a perfect mathematical formulation for Dirac’s quantum theory containing
both electrons and positrons. The wedge produce is required by Pauli’s Exclusion
Principle as usual. Each ek denotes an electron at energy level k. For each eS above,
almost all negative levels are filled, forming an infinitely deep sea of electrons; those
unfilled negative levels (holes) are regarded as positrons, each having charge 1, hence
the total contribution to the charge by the holes is |S−|, and the total contribution
to the energy is

−
∑

t∈S−

t.

On the other hand, there are only finitely many esi
with positive si. They corre-

sponds to electrons at energy level si, hence their total contribution to the energy
is ∑

s∈S+

s.

On the other hand, since each electron has charge −1, their contribution to the
total charge is −|S+|.
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7.3. Wedging operators and their adjoints. For each r ∈ Z+ 1
2 , denote by ψr

the wedge product by er on Λ
∞
2 (H), and by ψ∗r its adjoint. The following relations

are easy to verify:

[ψr, ψs] = [ψ∗r , ψ∗s ] = 0, [ψr, ψ
∗
s ] = δr,s.

Let us consider their actions on the vacuum vector. When r > 0,

ψr|0〉 = er ∧ e−1/2 ∧ e−3/2 ∧ · · · ,

ψ∗−r|0〉 = (−1)r−1/2e−1/2 ∧ · · · ∧ ê−r ∧ · · · .

In physical terminology, ψr “creates” an electron of energy r while ψ∗−r “creates”
a positron of energy r, hence both ψr and ψ∗−r are creators for r > 0. Dually, both
ψ∗r and ψ−r are annihilators for r > 0.

We consider the generating series of the above operators as follows:

b(z) :=
∑

r∈Z+1/2

brz
−r+ 1

2 ,

c(z) :=
∑

r∈Z+1/2

crz
−r+ 1

2 ,

where br = ψ∗r and cr = ψ−r. The series b(z) and c(z) are formally regarded as
meromorphic fields of operators on C∗ = C−{0}, acting on Λ

∞
2 (H). The operators

br and cr are called the modes of b(z) and c(z), respectively. Note br|0〉 = cr|0〉 = 0
for r > 0. More generally, for any v ∈ Λ∞

2 (H),

brv = 0, crv = 0,

for r sufficiently large. This motivates the following:

Definition 7.1. A field on a vector space V is a formal power series

a(z) =
∑

n∈Z
anz−n−1, an ∈ EndV,

such that for any v ∈ V , anv = 0 for n sufficiently large.

Denote by F the Grassmannian algebra generated by {br, cr}r<0.

Lemma 7.1. There is a natural isomorphism F → Λ
∞
2 (H) defined by

br1 · · · brm
cs1 · · · csn

7→ br1 · · · brm
cs1 · · · csn

|0〉,
r1, . . . , rm, s1, . . . , sn ∈ 1/2 + Z<0.

Under this isomorphism, one can also regard b(z) and c(z) as fields on F .

7.4. Normally ordered product. A natural question is to obtain more fields on
Λ
∞
2 (H), or equivalently, on F . There are basically two methods to do it. The first

is based on the following is an easy observation:

Lemma 7.2. If a(z) =
∑

n∈Z anz−n−1 is a field on V , then so is ∂za(z) =
−∑

n∈Z(n + 1)a−nz−n−2.

Hence all derivatives of b(z) and c(z) are fields. Notice that

1
n!

∂n
z b(z)|0〉 =

∑

r≤1/2−n

(−r + 1/2
n

)
brz

−r+1/2−n.
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It follows that
1
n!

∂n
z b(z)|0〉|z=0 = b1/2−n|0〉.

Introduce the following notation:

∂(n)
z =

1
n!

∂n
z .

Another way to obtain new fields is by taking the product of two fields. Unfor-
tunately, there are some problems with the naive product defined as follows:

a(z)ã(z) =
∑

k∈Z
akz−k−1

∑

l∈Z
ãlz

−l−1 =
∑

n∈Z
(

∑

k+l=n−1

akãl)z−n−1,

which involves infinite sum. For example,

b(z)c(z)|0〉 =
∑

n∈Z
(

∑
r+s=n

brcs|0〉)z−n−1,

when n = 0, ∑

r∈Z+ 1
2

brc−r|0〉 =
∑

r∈ 1
2+Z≥0

|0〉 = ∞|0〉.

To solve this problem, one defines the normally ordered product by

: akãl :=

{
akãl, l ≥ 0,

(−1)|a||ã|ãlak, l < 0,

or equivalently,

: a(z)ã(w) := a(z)+ã(w) + (−1)|a||ã|ã(w)a(z)−,

where |a| is the order of a,

a(z)+ : =
∑
n<0

anz−n−1, a(z)− : =
∑

n≥0

anz−n−1.

Similarly define : a(z)b(z) :.

Proposition 7.1. If a(z) and ã(z) are two fields on V , then so is : a(z)ã(z) :.

Remark 7.1. In general, the normally ordered product is neither graded commuta-
tive nor associative.

7.5. State-field correspondence for free fermion space. There is a one-to-
one correspondence between the vectors in F and some fields on F as follows. For
I = (0 ≤ i1 < · · · < im), J = (0 ≤ j1 < · · · < jn), set

vIJ = b−i1−1/2 · · · b−im−1/2c−j1−1/2 · · · c−jn−1/2.

They form a basis of F . Also set

vIJ (z) =: ∂(i1)b(z) · · · ∂(im)b(z)∂(j1)c(z) · · · ∂(jn)c(z) : .

It is straightforward to check that

vIJ (z)|0〉|z=0 = vIJ .
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7.6. Operator product expansion. The formal power series

a(z)ã(w) =
∑

k∈Z

∑

l∈Z
ãlakz−k−1w−l−1

always makes sense, however its limit when z → w may not exist. To analyze the
singularity, first note the limit of : a(z)ã(w) : is : a(z)ã(z) :. Then we note:

a(z)ã(w)− : a(z)ã(w) : = [a(z)−, ã(w)].

For example,

b(z)c(w)− : b(z)c(w) := [b(z)−, c(w)]

=
∑

r∈1/2+Z≥0

∑

s∈1/2+Z
[br, cs]z−r−1/2w−s−1/2

=
∑

r∈1/2+Z≥0

∑

s∈1/2+Z
δr,−sz

−r−1/2w−s−1/2

=
∞∑

n=0

z−n−1wn = iz,w
1

z − w
.

Here iz,w means the power series expansion in the region |z| > |w|. In the same
fashion,

−c(w)b(z)− : b(z)c(w) := −[b(z)+, c(w)]

= −
∑

r∈1/2+Z<0

∑

s∈1/2+Z
[br, cs]z−r−1/2w−s−1/2

= −
∑

r∈1/2+Z<0

∑

s∈1/2+Z
δr,−sz

−r−1/2w−s−1/2

= −
∞∑

n=0

znw−n−1 = iw,z
1

z − w
.

We will often omit iz,w and iw,z when there are no confusions.

Definition 7.2. Let a(z) and ã(z) be two fields on a vector space V . An equality
of the form

a(z)ã(w) =
N−1∑

k=0

ck(w)
(z − w)k+1

+ : a(z)ã(w) :(78)

or simply

a(z)ã(w) ∼
N−1∑

k=0

ck(w)
(z − w)k+1

is called the operator product expansion of the fields a(z) and ã(z). Since

lim
z→w

: a(z)ã(w) :=: a(w)ã(w) :,

: a(z)ã(w) : is called the regular part of the OPE, and the rest of the OPE is called
the singular part.
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7.7. OPE and commutation relations. Recall the OPE

b(z)c(w) = iz,w
1

z − w
+ : b(z)c(w) :

is equivalent to
[br, cs] = δr,−s id

for r ∈ 1
2 + Z≥0, s ∈ 1

2 + Z, and the OPE

−c(w)b(z) = iw,z
1

z − w
+ : b(z)c(w) :

is equivalent to
[br, cs] = δr,−s id

for r ∈ 1
2 + Z<0, s ∈ 1

2 + Z. Therefore,

b(z)c(w) + c(w)b(z) = iz,w
1

z − w
− iw,z

1
z − w

=
∑

n∈Z
z−n−1wn,

and it is equivalent to
[br, cs] = δr,−s id

for r ∈ 1
2 + Z, s ∈ 1

2 + Z. Introduce

δ(z, w) =
∑

n∈Z
z−n−1wn.

Note

iz,w
1

(z − w)j+1
=

∞∑
m=0

(
m
j

)
z−m−1wm−j ,

iw,z
1

(z − w)j+1
= −

−∞∑
m=−1

(
m
j

)
z−m−1wm−j ,

∂(j)
w δ(z, w) = iz,w

1
(z − w)j+1

− iw,z
1

(z − w)j+1
=

∞∑
m=−∞

(
m
j

)
z−m−1wm−j .

Now we can state the following

Proposition 7.2. The following properties are equivalent:

(i) [a(z), ã(w)] =
∑N−1

j=0 ∂
(j)
w δ(z, w)cj(w) for some fields cj(w).

(ii)
a(z)ã(w) =

∑N−1
j=0

(
iz,w

1
(z−w)j+1

)
cj(w)+ : a(z)ã(w) :,

(−1)|a||ã|ã(w)a(z) =
∑N−1

j=0

(
iw,z

1
(z−w)j+1

)
cj(w)+ : a(z)ã(w) :,

for some fields cj(w).

(iii) [am, ãn] =
∑N−1

j=0

(
m
j

)
cj
m+n−j.

(iv) [am, ã(w)] =
∑N−1

j=0

(
m
j

)
cj(w)wm−j.

For a proof, see [11], pp. 20 -21.

Definition 7.3. Two fields a(z) and ã(z) are said to be mutually local if they
satisfy one of the conditions in the above Proposition.
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7.8. Free fields and Wick’s Theorem.

Definition 7.4. A collection of fields {aα(z)} is called a free field theory if all these
fields are mutually local and all the singular parts of the OPE are multiples of the
identity.

The normally ordered product of more than two fields a1(z), a2(z), . . . , aN (z) is
defined inductively by

: a1(z) · · · aN (z) :=: a1(z) : a2(z) · · · aN (z) :: .

The following simple result is one of the main tools for calculations of OPE:

Theorem 7.1. (Wick’s theorem) Let {a1(z), . . . , aM (z), b1(z), . . . , bN (z)} be a free
field theory. Then we have the following OPE:

: a1(z) · · · aM (z) :: b1(w) · · · bN (w) :

Write [aibj ] = [ai(z)−, bj(w)]. Then one has:

: a1(z) · · · aM (z) :: b1(w) · · · bN (w) :

=
min(M,N)∑

s=0

±[ai1bj1 ] · · · [aisbjs ] : a1(z) · · · aM (z)b1(w) · · · bN (w) :(i1,··· ,is;j1,··· ,js),

where the subscript (i1, · · · , is; j1, · · · , js) means that the fields ai1(z), · · · , ais(z),
bj1(w), · · · , bjs(w) are removed, and the ± sign is determined by the Koszul con-
vention: each interchange of two adjacent odd fields changes the sign.

7.9. Virasoro fields. It is straightforward to see that the energy operator can be
expressed in terms of normally ordered products as follows:

H =
∑

r∈1/2+Z≥0

rc−rbr −
∑

r∈1/2+Z<0

rbrc−r =
∑

r∈1/2+Z
r : c−rbr :,

This can be generalized to the following field

L(z) =
1
2

: ∂zb(z)c(z) : +
1
2

: ∂zc(z)b(z) : .

Indeed,

L(z) =
1
2

∑

r,s∈1/2+Z

(
(−r − 1

2
) : brcs : +(−s− 1

2
) : csbr :

)
z−r−s−2

=
1
2

∑

n∈Z

∑
r+s=n

(r − s) : csbr : z−n−2.

If we write
L(z) =

∑

n∈Z
Lnz−n−2,

then

Ln =
1
2

∑
r+s=n

(r − s) : csbr : .

In particular, H = L0.
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Proposition 7.3. For λ ∈ C, set

Lλ(z) = (1− λ) : b′(z)c(z) : +λ : c′(z)b(z) : .

We have the following OPEs:

Lλ(z)b(w) ∼ λb(w)
(z − w)2

+
b′(w)
z − w

,(79)

Lλ(z)c(w) ∼ (1− λ)c(w)
(z − w)2

+
c′(w)
z − w

,(80)

Lλ(z)Lλ(w) ∼ ∂wLλ(w)
z − w

+
2Lλ(w)
(z − w)2

+
−1 + 6λ− 6λ2

(z − w)4
.(81)

Proof. By Wick Theorem we have

Lλ(z)b(w) = ((1− λ) : b′(z)c(z) : +λ : c′(z)b(z) :) b(w)

∼ (1− λ)
b′(z)
z − w

− λb(z)∂z
1

z − w

∼ (1− λ)
b′(w)
z − w

+ λ
b(w) + b′(w)(z − w)

(z − w)2

∼ λb(w)
(z − w)2

+
b′(w)
z − w

.

This proves (79). The other two OPE’s are proved in the same fashion. ¤

Definition 7.5. A field L(z) is called a Virasoro field if it satisfies the following
OPE:

L(z)L(w) ∼ L′(w)
z − w

+
2L(w)

(z − w)2
+

c/2
(z − w)4

,(82)

where the constant c is called the central charge of the Virasoro field. Given a
Virasoro field, if a field a(z) satisfies

L(z)a(w) ∼ ha(w)
z − w

+
∂wa(w)
(z − w)2

+ O(
1

(z − w)3
),

then we say a has conformal weight h. If

L(z)a(w) ∼ ha(w)
z − w

+
∂wa(w)
(z − w)2

,

then we say a is primary of conformal weight h.

From the above definition, one sees that Lλ(z) is a Virasoro field of central charge
−(12λ2− 12λ+2) on F , for which b(z) and c(z) are primary fields of weights 1−λ
and λ, respectively. The case of λ = 1

2 corresponds to the Neveu-Schwarz sector in
physic s literature, while the case of λ = 0 or 1 corresponds to the Ramond sector.

It is straightforward to verify the following:

Lemma 7.3. Suppose L(z) is a Virasoro field of central charge c, and

L(z) =
∑

n∈Z
Lnz−n−2,

then we have

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−nc.
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Hence if there is a Virasoro field of central charge c on V , then V is a representation
of Virasoro algebra of central charge c.

7.10. Charge field. Similarly, the charge operator can be rewritten as

J = −
∑

r∈1/2+Z≥0

c−rbr +
∑

r∈1/2+Z<0

brc−r =
∑

r∈1/2+Z
: brc−r :,

which can be generalized to a field

α(z) =: b(z)c(z) : .

Indeed,

α(z) =
∑

r,s∈1/2+Z
: brcs : z−r−s−1 =

∑

n∈Z

( ∑
r+s=n

: brcs :

)
z−n−1.

If one writes α(z) =
∑

n∈Z αnz−n−1, then

αn =
∑

r+s=n

: brcs :,

in particular, J = α0. We have the following OPE’s:

α(z)α(w) ∼ 1
(z − w)2

,(83)

α(z)b(w) ∼ b(w)
z − w

,(84)

α(z)c(w) ∼ − c(w)
z − w

,(85)

Lλ(z)α(w) ∼ α′(w)
z − w

+
α(w)

(z − w)2
+

2λ− 1
(z − w)3

.(86)

8. Semi-Infinite Symmetric Algebra and Free bosons

8.1. Oscillator algebra representation on free fermion space. The OPE (83)
is equivalent to the following commutation relations:

[αm, αn] = mδm,−n.(87)

Recall the oscillator algebra is spanned by {αm}m∈Z and central element h satisfy-
ing:

[αm, αn] = mδm,−nh.

Hence F is a representation of the oscillator algebra. Since [α0, αm] = 0, this
representation preserves the charge decomposition.

8.2. The bosonic Fock space. Consider the space B = C[α−1, α−2, . . . ]. The the
oscillator algebra acts on B as follows. The central element h acts as multiplication
by a constant ~, α0 acts as 0. For n > 0, α−n acts as multiplication by α−n, αn

acts as n~ ∂
∂α−n

. Introduce

α(z) =
∑

n∈Z
αnz−n−1,

then α(z) is a field on B. Furthermore,

α(z)α(w) ∼ 1
(z − w)2

.
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Remark 8.1. The famous Boson-Fermion correspondence is a natural isomorphism
between F and B[[q, q−1]]. It has remarkable applications to soliton theory.

8.3. The state-field correspondence on the bosonic Fock space. For I =
(i1 ≥ · · · ≥ in ≥ 0), set

αI = α−i1−1 · · ·α−in−1.

Also set
αI(z) =: ∂(i1)α(z) · · · ∂(in)α(z) : .

It is straightforward to see that

αI(z)|0〉|z=0 = αI .

8.4. The Virasoro field on the bosonic Fock space. Let

L(z) =
1
2

: α(z)α(z) :

on B. Then by Wick’s theorem, it is straightforward to see that

L(z)L(w) ∼ L′(w)
z − w

+
2L(w)

(z − w)2
+

1
(z − w)4

.

I.e., L(z) is a Virasoro field of central charge 2 on B.

9. Vertex Algebras and Conformal Vertex Algebras

9.1. Definition of a vertex algebra. We can now give the definition of a vertex
algebra as in [11].

Definition 9.1. A vertex algebra consists of following data:
(i) A graded vector space V = ⊕n∈ZVn, called the state space;
(ii) A vector |0〉 ∈ V0, called the vacuum vector;
(iii) A map Y : V → End(V )[[z, z−1]], whose image lies in the set of fields,

called the state-field correspondence.
Write Y (a, z) =

∑
n∈Z anz−n−1, a ∈ V . Define Ta = a−2|0〉. The following axioms

are required:
• (translation coinvariance): [T, Y (a, z)] = ∂Y (a, z),
• (vacuum) Y (|0〉, z) = idV , Y (a, z)|0〉|z=0 = a,
• (locality) Y (a, z) and Y (b, z) are mutually local, a, b,∈ V .

The following important theorem enables one to construct vertex algebras.

Theorem 9.1. Let V be a graded vector space, let |0〉 ∈ V0 and let T be an en-
domorphism of V of degree 0. Let {aα(z)}α∈I be a collection of fields on V such
that

(i) [T, aα(z)] = ∂za
α(z) (α ∈ I),

(ii) T |0〉 = 0, aα(z)|0〉|z=0 = aα (α ∈ I), where aα are linear independent,
(iii) aα(z) and aβ(z) are mutually local (α, β ∈ I),
(iv) the vectors aα1

(−j1−1) · · · aαn

(−jn−1)|0〉 with jk ≥ 0 span V .

Then the formula

Y (aα1
(−j1−1) · · · aαn

(−jn−1)|0〉, z) =: ∂(j1)aα1(z) · · · ∂(jn)aαn(z) :
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defines a unique structure of a vertex algebra on V such that |0〉 is the vacuum
vector, T is the infinitesimal translation operator, and

Y (aα, z) = aα(z), α ∈ I.

As an example, one easily sees that the fermionic Fock space F is a vertex
algebra.

9.2. Borcherds OPE formula and Borcherds commutation relations. The
Borcherds OPE formula is

Y (a, z)Y (b, w) =
∑

n∈Z
iz,w

Y (a(n)b, w)
(z − w)n+1

=
∑

n≥0

iz,w

Y (a(n)b, w)
(z − w)n+1

+ : Y (a, z)Y (b, w) : .

(88)

Equivalently,

[Y (a, z), Y (b, w)] =
∑

j≥0

∂(j)
w δ(z − w) · Y (a(j)b, w).(89)

Comparing the coefficients of z−n−1w−m−1 on both sides of (89), one obtains

(90) [a(n), b(m)] =
∑

j≥0

(
n
j

)
(a(j)b)(m+n−j),

which is a special case of the following Borcherds identity:

∑

j≥0

(
m
j

)
(a(n+j)b)(m+k−j)

=
∑

j≥0

(−1)j

(
n
j

)
a(m+n−j)b(k+j) − (−1)|a||b|

∑

j≥0

(−1)j+n

(
n
j

)
b(n+k−j)a(m+j).

(91)

9.3. The quasi-commutativity and quasi-associativity. The OPE has the
following “commutativity”. If a(z) and b(w) satisfies

a(z)b(w) =
N−1∑

j=0

(
iz,w

1
(z − w)j+1

)
cj(w)+ : a(z)b(w) :,

then one has (cf. Kac [11], Theorem 2.3):

(−1)|a||b|b(w)a(z) =
N−1∑

j=0

(
iw,z

1
(z − w)j+1

)
cj(w)+ : a(z)b(w) : .

By abuse of notations,

a(z)b(w) ∼ (−1)|a||b|b(w)a(z).

In particular, if all cj = 0, then we have

: a(z)b(z) := (−1)|a||b| : b(z)a(z) : .

Define the n-th product of two mutually local fields a(z) and b(z) by:

a(w)(n)b(w) =
{

Resz[a(z), b(z)](z − w)n, n ≥ 0,

: ∂
(−n−1)
w a(w)b(w); , n < 0.
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Alternatively (cf. [11], §3.2),

a(w)(n)b(w) = Resz

(
a(z)b(w)iz,w(z − w)n − (−1)|a||b|b(w)a(z)iw,z(z − w)n

)
.

Then for any three mutually local fields a(z), b(z) and c(z) the following Borcherds
identity holds:

∞∑

j=0

(
m
j

) (
a(z)(n+j)b(z)

)
(m+k−j)

c(z)

=
∞∑

j=0

(−1)j

(
n
j

) (
a(z)(m+n−j)

(
b(z)(k+j)c(z)

)

−(−1)n+|a||b|b(z)(n+k−j)

(
a(z)(m+j)c(z)

))
,

for any m,n, k ∈ Z. Now assume that the n-th products among a(z), b(z) and c(z)
are all zero for n ≥ 0, then for m = 0, n = k = −1, we get

(
a(z)(−1)b(z)

)
(−1)

c(z) = a(z)(−1)

(
b(z)(−1)c(z)

)
.

Since the (−1)-th product is the normally ordered product, in this case, the nor-
mally ordered product is associative.

9.4. Conformal structures and conformal vertex algebras.

Definition 9.2. Let V be a vertex algebra. A conformal vector of V is an even
vector ν such that Y (ν, z) =

∑
n∈Z Lnz−n−2 is a Virasora field of central charge c,

and has the following properties:
(1) L−1 = T , and
(2) L0 is diagonalizable on V .

The field L(z) = Y (ν, z) is called the energy-momentum field of the algebra V . A
vertex algebra with a conformal vector is called a conformal vertex algebra of rank
c, or a vertex operator algebra (VOA).

Example 9.1. By Proposition 7.3 on the fermionic Fock space,

νλ = (1− λ)b−3/2c−1/2 + λc−3/2b−1/2

is a conformal vector of central charge

cλ = −(12λ2 − 12λ + 2).

Given a conformal vertex algebra V , we say a nonzero vector a ∈ V has confor-
mal weight h ∈ C if L0a = ha. (In physics literature, conformal weight is called
conformal dimension or scaling dimension or simply dimension.) There is a similar
definition for EndV . We say a field a(z) =

∑
n∈Z a(n)z

−n−1 has conformal weight
h ∈ C if

[L0, a(z)] = (h + z∂z)a(z)

or equivalently,
[L0, a(n)] = (h− n− 1)a(n)

for n ∈ Z. In other words, the endomorphism a(n) has conformal weight h− n− 1,
so formally z has conformal weight −1.
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Lemma 9.1. If a is a vector in a conformal vertex algebra that has conformal
weight h, then the field Y (a, z) has conformal weight h. In other words, the state-
field correspondence does not change the conformal weight.

Proof. By Borcherds commutation relations (89), we have

[Lm, Y (a, z)] =
∑

j≥−1

(
m + 1
j + 1

)
Y (Lja, z)zm−j .

In particular, when j = −1, we have

[L−1, Y (a, z)] = Y (L−1a, z).

Since L−1 = T , we have

Y (L−1a, z)(= Y (Ta, z)) = [T, Y (a, z)] = ∂zY (a, z).

On the other hand, when m = 0, we get

[L0, Y (a, z)] = Y (L−1a, z)z + Y (L0a, z) = (z∂z + h)Y (a, z).

¤
Remark 9.1. It is useful to write a field a(z) of conformal weight h as

a(z) =
∑

n∈−h+Z
anz−n−h,

where each an has conformal weight −n.

Lemma 9.2. Let a(z) and b(z) be two fields in a conformal vertex algebra of con-
formal weights h1 and h2 respectively, then : a(z)b(z) : has conformal weight h1+h2.
If

a(z)b(w) ∼
N−1∑

j=0

cj(w)
(z − w)j+1

,

then cj(w) has conformal weight h1 + h2 − j − 1.

Proof. We use the fact that if two elements A and B in EndV have conformal
weights hA and hB respectively, then AB has conformal weight hA +hB . Then the
first statement follows from the definition of the normally ordered product. For the
second statement, recall that

cj(w) = Resz[a(z), b(w)](z − w)j ,

where Resz means the coefficient of z−1. Now z and w are given conformal weight
−1, then [a(z), b(w)] has conformal weight h1 + h2, and (z − w)j has conformal
weight −j. Hence cj(w) has conformal weight h1 + h2 − j − 1. ¤

In the same fashion, one can prove the following two Lemmas.

Lemma 9.3. Let V be a vertex algebra with U(1) current J(z). If a ∈ I has U(1)
charge q, then so does the field Y (a, z).

Lemma 9.4. Let V be a vertex algebra with U(1) charge, nd let a(z) and b(z)
be two fields that have U(1) charges q1 and q2 respectively. Then : a(z)b(z) : has
charge q1 + q2. If

a(z)b(w) ∼
N−1∑

j=0

cj(w)
(z − w)j+1

,
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then cj(w) has charge q1 + q2.

9.5. Primary fields. From the proof of Lemma 9.1, one sees that if a has confor-
mal weight h, then we have

Y (ν, z)Y (a,w) ∼ ∂wY (a,w)
z − w

+
hY (a,w)
(z − w)2

+ · · · .

(In particular, by (82), ν has conformal weight 2. That explains why L(z) is written
as

∑
n≥Z Lnz−n−2 by Remark 9.1.) This motivates the following:

Definition 9.3. A field a(w) is said to be primary of conformal weight h with
repect to a Virasoro field L(z) if

L(z)a(w) ∼ ∂wa(w)
z − w

+
ha(w)

(z − w)2
.(92)

Equivalently,
[Ln, a(z)] = (zn+1∂z + h(n + 1)zn)a(z).

A vector a in a conformal vertex algebra (V, ν) is said to be primary of conformal
weight h if Y (a, z) is a primary field of conformal weight h.

9.6. Characters of conformal vertex algebras. Suppose V is a VOA such that
the eigenvalues of L0 form a countable set {h1, h2, . . . } on C, and all eigenspaces
are finite dimensional. Let

V = ⊕n≥1V
hn

be the eigenspace decomposition of L0 on V . Then the character of V is by defini-
tion

ch(V ; q) = q−
c
24 str qL0 = q−

c
24

∑

n≥1

str(id |V hn )qhn ,

where str is the supertrace which is just the ordinary trace on the even subspace,
and negative the ordinary trace on the odd subspace. We will use the following
auxiliary notation:

G(V ; q) = q−
c
24

∑

n≥1

V hnqhn .

Then ch(V ; q) is obtained by taking supertrace of the identity map on G(V ; q) term
by term.

9.7. Charged character and index. A U(1) current on a conformal vertex al-
gebra V is a field J(z) = Y (j, z) for some even vector j ∈ V such that

J(z)J(w) ∼ ĉ

(z − w)2
,

L(z)J(w) ∼ ∂wJ(w)
z − w

+
J(w)

(z − w)2
+

d

(z − w)3
,

for some numbers ĉ and d, and J0 is diagonizable. The above OPEs are equivalent
to the following commutation relations:

[Jm, Jn] = mĉδm,−n,

[Lm, Jn] = −nJm+n +
m(m + 1)d

2
δm+n−1,−1.

In particular, [L0, J0] = 0 and so L0 and J0 have common eigenspaces.
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Now suppose V is a VOA with a U(1) current. Suppose the eigenvalues of L0

and J0 are two countable subsets of C, {h1, h2, . . . } and {j1, j2, . . . } respectively,
and let

V = ⊕n,m≥1V
hn,jm

are the decomposition of V into common eigenspaces of L0 and J0. Assume each
V h,jm is finite dimensional. Then the character with U(1) charge of a conformal
vertex algebra V with U(1) current is defined by

ch(V ; q, y) = tr qL0− c
24 (−y)J0 =

∑
n,m

tr(id |V hn,jm )qhn− c
24 (−y)jm .

We also write
G(V ; q, y) =

∑
n,m

V hn,jmqhn− c
24 (−y)jm .

When the Z-grading given by eigenspace decomposition of J0 coincides with the
Z-grading on V , one clearly has

ch(V ; q, 1) = ch(V ; q).

Example 9.2. The charged character for the fermionic Fock space is

ch(V ; q, y) = q−cλ/24
∞∏

j=1

(1− yqj+1−λ)(1− y−1qj+λ),

with respect to the conformal vector νλ.

9.8. Some modular functions. For use below we collect some functions which
often appear in the calculations of the characters of conformal vertex algebras (with
U(1) charge).

Dedekind eta function:

η(q) = q
1
24

∏
n>0

(1− qn).(93)

Jacobi theta functions:

θ3(v, τ) =
∏
n>0

(1− qn)(1 + qn− 1
2 e2πiv)(1 + qn− 1

2 e−2πiv),(94)

θ2(v, τ) =
∏
n>0

(1− qn)(1− qn− 1
2 e2πiv)(1− qn− 1

2 e−2πiv),(95)

θ1(v, τ) = q
1
8 e2πiv

∏
n>0

(1− qn)(1 + qne2πiv)(1 + qn−1e−2πiv),(96)

θ(v, τ) = q
1
8 · 2 sin πv

∏
n>0

(1− qn)(1− qne2πiv)(1− qne−2πiv),(97)

where q = eπiτ . By abuse of notations, we write:

θ3(q) = θ3(0, τ) =
∏
n>0

(1− qn)(1 + qn− 1
2 )2,(98)

θ2(q) = θ2(0, τ) =
∏
n>0

(1− qn)(1− qn− 1
2 )2,(99)

θ1(q) = θ1(0, τ) = 2q
1
8

∏
n>0

(1− qn)(1 + qn)2.(100)
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10. Some Constructions of Vertex Algebras

10.1. Highest weight representations and vertex algebras. Many vertex al-
gebras are constructed from highest weight representations of infinite dimensional
Lie algebras. We collect some of them in this section.

Suppose g is a complex Lie algebra with symmetric bilinear form (·|·), invariant
in the sense that

([a, b]|c) + (b|[a, c]) = 0, a, b, c ∈ g.

The affinization of (g, (·|·)) is the Lie algebra

ĝ = C[t, t−1]⊗C g⊕ CK

with the following nonzero commutation relations:

[am, bn] = [a, b]m+n + m(a|b)δm,−nK,

where for each a ∈ g and n ∈ Z, am stands for tm ⊗ a. This is called the current
algebra.

Example 10.1. (1) When g is a simple Lie algebra with the Killing form, then ĝ
is the affine Kac-Moody algebra.

(2) When g is the one-dimensional Lie algebra with a nondegenerate bilinear
form, then ĝ is the oscillator algebra.

Consider the decomposition

ĝ = ĝ+ ⊕ ĝ0 ⊕ ĝ−,

where ĝ+ = tg[t], ĝ− = t−1g[t−1], and ĝ0 = g ⊕ CK. It is easy to see that ĝ≥0 =
g[t]⊕ CK, is a Lie sublalgebra of ĝ. Suppose π : ĝ≥ → EndW is a representation.
The induced ĝ-module is defined by

Indĝ
ĝ≥ = U(ĝ)⊗U(ĝ≥) W.

It is easy to see that
Indĝ

ĝ≥
∼= S(ĝ−)W

as vector spaces. Each an acts on Indĝ
ĝ≥ . It is easy to see that

a(z) =
∑

n∈Z
anz−n−1

is a field on Indĝ
ĝ≥ . Furthermore,

a(z)b(w) ∼ [a, b](w)
z − w

+
(a|b)k

(z − w)2
.

To get a vertex algebra, one considers the following special induced module. Let π
be the one-dimensional representation such that g acts as zero operator and h acts
as multiplication by a constant k. Denote by Ṽ k(g) the induced representation.
Then as a vector space, Ṽ k(g) is spanned by elements of the form

aJ
I = aj1

−i1−1 · · · ajn

−in−1,

where aj1 , . . . , ajn ∈ g, i1, . . . , in ≥ 0. Then Ṽ k(g) is a vertex algebra with

Y (aJ
I , z) =: ∂(i1)aj1(z) · · · ∂(in)ajn(z) : .
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Example 10.2. (Free bosons) Let T be a finite dimensional vector space with a
symmetric bilinear form (·|·). One can regard T as an abelian Lie algebra, and
obtain the vertex algebra Ṽ k(T ) defined above. In particular, when T is one-
dimensional, one recovers the free bosonic vertex algebra discussed in §2.

Remark 10.1. The above construction can be generalized to Lie superalgebras and
superaffinization. The free fermionic vertex algebra in §1 can be realized as a special
case.

Remark 10.2. One can also replace ĝ by Virasoro algebra and its various general-
izations, such as W1+∞ algebra, Neveu-Schwarz algebra, etc.

10.2. Sugawara construction. Let g be a finite dimensional simple or commuta-
tive Lie algebra, with an invariant symmetric bilinear form (·|·). Suppose {ai} and
{bi} are dual basis of g with respect to (·|·), i.e.,

(ai|bj) = δij .

It is well-known that ∑

i

[ai, [bi, X]] = 2h∨X,

for all X ∈ g, where h∨ is called the dual Coxeter number of g. Then for k 6= −h∨,
the vector

ν =
1

2(k + h∨)

∑

i

ai
−1b

i
−1

is a conformal vector of the vertex algebra Ṽ k(g) with central charge

ck =
k dim g

k + h∨
.

Furthermore, all fields a(z), a ∈ g, are primary of conformal weight 1 with respect
to Y (ν, z). See e.g. [11], Theorem 5.7.

10.3. Coset models. Given a subspace U of a vertex algebra V , its centralizer

{b ∈ V |[Y (a, z), Y (b, w)] = 0,∀b ∈ U}
is a subalgebra of V , called by physicists a coset model.

For example, let (g, (·|·)) be as above. Suppose h is a Lie subalgebra of g which
is itself a direct sum of simple of commutative Lie algebras, (·|·)|h is nondegenerate.
The fields h(z) with h ∈ fh generates a subalgebra of Ṽ k(g). Then its centralizer
is a vertex algebra with

ν = ν = νg − νh

as a conformal vector with central charge the difference between the central charges
of νg and νh. This is called the Goddard-Kent-Olive construction.

10.4. Cohomological models. An ideal of a vertex algebra V is a T -invariant
subspace not containing |0〉, such that

a(n)J ⊂ J,∀a ∈ V.

By quasi-symmetry
Y (a, z)v = (−1)|a||v|ezT Y (v,−z)a,

hence
a(n)V ⊂ J,∀a ∈ J.
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Hence the quotient space V/J has an induced structure of a vertex algebra.
A derivation of degree k on a vertex algebra V is a linear map δ : V → V of

degree k such that

δ(a(n)b) = (δa)(n)b + (−1)k|a|a(n)δb,

for all a, b ∈ V , n ∈ Z. A derivation δ of degree 1 is a differential if δ2 = 0. As
usual, the cohomology of a differential is by definition

H(V, δ) = ker δ/ Im δ.

It is easy to prove the following:

Lemma 10.1. Suppose δ is a differential on a vertex algebra V . Then ker δ is a
subalgebra of V , and Im δ is an ideal ker δ. Hence H(V, δ) has an induced structure
of a vertex algebra.

11. N = 2 Superconformal Vertex Algebras

11.1. N = 2 SCVA. An N = 2 superconformal vertex algebra (SCVA) is a vertex
algebra V with two odd vectors τ± and two even vectors ν and j, such that the
fields G±(z) = Y (τ±, z) and J(z) = Y (j, z) satisfy the following OPE’s:

G+(z)G−(w) ∼
1
3c

(z − w)3
+

J(w)
(z − w)2

+
L(w) + 1

2∂wJ(w)
z − w

,

G±(z)G±(w) ∼ 0,

J(z)J(w) ∼
1
3c

(z − w)3
,

J(z)G±(w) ∼ ±G±(w)
z − w

,

L(z)L(w) ∼ ∂wL(w)
z − w

+
2L(w)

(z − w)2
+

1
2c

(z − w)4

L(z)G±(w) ∼
3
2G±(w)
(z − w)2

+
∂wG±(w)

z − w
,

L(z)J(w) ∼ J(w)
(z − w)2

+
∂wJ(w)
z − w

,

with L−1(= [G+
− 1

2
, G−− 1

2
]) = T , and L0 and J0 are diagonizable.

11.2. Primary fields in an N = 2 superconformal vertex algebra. We now
generalize Definition 9.3 to N = 2 SCVA. By Borcherds formula (88),

L(z)Y (a,w) ∼ ∂wY (a,w)
z − w

+
Y (L0a,w)
(z − w)2

+ · · · ,

J(z)Y (a,w) ∼ Y (J0a,w)
z − w

+ · · · ,

G±(z)Y (a,w) ∼
Y (G±− 1

2
a,w)

z − w
+ · · · .
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Definition 11.1. A state a in an N = 2 superconformal vertex algebra is called
primary of conformal weight h and U(1) charge q if it satisfies

L(z)Y (a,w) ∼ ∂wY (a,w)
z − w

+
hY (a,w)
(z − w)2

,

J(z)Y (a,w) ∼ qY (a,w)
z − w

,

G±(z)Y (a,w) ∼
Y (G±− 1

2
a,w)

z − w
.

Similarly, a field a(z) is called primary of conformal weight h and U(1) charge q if
it satisifies

L(z)a(w) ∼ ∂wa(w)
z − w

+
ha(w)

(z − w)2
,

J(z)a(w) ∼ qa(w)
z − w

,

G±(z)a(w) ∼
[G±− 1

2
, a(w)]

z − w
.

By Borcherds formula (88), a state a is primary of conformal weight h and U(1)
charge q iff

Lna = Jna = 0, n ≥ 1,

L0a = ha, J0a = qa,

G±r a = 0, r ≥ 1
2
.

11.3. Primary chiral algebra of an N = 2 SCFT. We now recall some impor-
tant results from Lerche-Vafa-Warner [14]. In an N = 2 SCVA, a state a is called
chiral if it satisfies:

G+
− 1

2
a = 0.

Similarly, a field a(z) is called chiral if it satisfies:

[G+
− 1

2
, a(z)] = 0.

Anti-chiral states and fields are defined with + replaced by −.

Definition 11.2. An N = 2 SCVA V is said to be unitary if there a positive
definite Hermitian metric 〈·|·〉 on V such that (G+

r )∗ = G−−r.

Lemma 11.1. Let (V, 〈·|·〉) be a unitary N = 2 SCVA, then we have

L∗n = L−n, J∗n = J−n.

Definition 11.3. An N = 2 SCVA is said to be nondegenerate if it is nondegenerate
as a conformal vertex algebra.

Lemma 11.2. In a unitary N = 2 SCVA V , if a is a vector of conformal weight
h and U(1) charge q, then

h ≥ |q|/2,

with h = q/2 (resp. h = −q/2) iff a is a primary chiral (resp. anti-chiral) state.
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Proof. Applying the commutation relation

[G−1
2
, G+

− 1
2
] = 2L0 − J0

to a and then taking inner product with a, one gets

|G+
− 1

2
a|2 + |G−1

2
a|2 = (2h− q)|a|2.

Here we have used the fact that G−1
2

= (G+
− 1

2
)†. Therefore, h ≥ q/2. Now equality

holds iff

G+
− 1

2
a = G−1

2
a = 0.(101)

So if a is primary and chiral, then (101) holds and hence h = q/2. Conversely,
assume that h = q/4 and hence (101) holds. Since G±(z) has conformal weight 3

2

and U(1) charge ±1, G±r a has conformal weight h − r and U(1) charge q ± 1 by
conformal weight conservation (Lemma 9.2) and U(1) charge conservation (Lemma
9.4). If G+

r a 6= 0 for r ≥ 1
2 or G−r a 6= 0 for r ≥ 3

2 , then we would have h−r ≥ 1
2 (q±1)

and hence r ≤ ± 1
2 , a contradiction.

The other half of the lemma can be proved in the same fashion by using

[G+
1
2
, G−− 1

2
] = 2L0 + J0.

¤

Corollary 11.1. In a unitary N = 2 SCVA V , the primary chiral states form
an graded commuative associative algebra induced by the normally ordered product:
the product between states a and b is given by a(−1)b. Similarly for the primary
anti-chiral states. (These algebras will be refered to as the primary chiral algebra
and primary anti-chiral algebra of V respectively.)

Proof. Let a and b be two primary chiral states, then ha = qa/2 and hb = qb/2.
Let

a(z)b(w) =
N∑

j=0

cj(w)
(z − w)j+1

+ : a(z)b(w) :

for some fields cj . Then by Lemma 9.2 and Lemma 9.4, we have

h(cj) = ha + hb − j − 1, q(cj) = qa + qb.

By Lemma 11.2, h(cj) ≥ q(cj), hence cj = 0. Hence by Borcherds identity, the
set of fields {a(z)|a is primary chiral} is graded commutative and associative with
identity under the normally ordered product (cf. §9.3). Recall that

: a(z)b(z) :=: Y (a, z)Y (b, z) := Y (a(−1)b, z),

hence the set of primary chiral states fowm a graded commutative asssociative
algebra with identity. The proof for primary anti-chiral states is similar. ¤

Lemma 11.3. Let V be a unitary N = 2 SCVA of central charge c. If a ∈ V is a
primary chiral state of conformal weight h and U(1) charge q, then one has

h ≤ c/6.
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Proof. From the commutation relation:

[G−3
2
, G+

− 3
2
] = 2L0 − 3J0 + 2c/3

one see that
2h− 3q + 2c/3 ≥ 0.

Now use the fact that q = 2h for primary chiral states. ¤

Corollary 11.2. The dimension of the space of primary chiral states in a nonde-
generate unitary N = 2 SCVA is finite.

11.4. Topological vertex algebras and BRST cohomology. Closely related
to N = 2 SCVA are the toplogical vertex algebras. Recall thpt a toplogical vertex
algebra of rank d is a conformal vertex algebra of central charge 0, equipped with
an even element J of conformal weight 1, an odd element Q of conformal weight
1, and an odd element G of conformal weight 2, such that their fields satisfy the
following OPE’s:

T (z)T (w) ∼ 2T (w)
(z − w)2

+
∂W T (w)
z − w

,(102)

J(z)J(w) ∼ d

(z − w)2
,(103)

T (z)J(w) ∼ − d

(z − w)3
+

J(w)
(z − w)2

+
∂wJ(w)
z − w

,(104)

G(z)G(w) ∼ 0,(105)

T (z)G(w) ∼ 2G(w)
(z − w)2

+
∂wG(w)
z − w

,(106)

J(z)G(w) ∼ −G(w)
z − w

,(107)

Q(z)Q(w) ∼ 0,(108)

T (z)Q(w) ∼ Q(w)
(z − w)2

+
∂wQ(w)
z − w

,(109)

J(z)Q(w) ∼ Q(w)
z − w

,(110)

Q(z)G(w) ∼ d

(z − w)3
+

J(w)
(z − w)2

+
T (w)
z − w

.(111)

Here we have written the Virasor field associated with the conformal vector as
T (z) =

∑
n∈Z Tnz−n−2. As a consequence of (108),

Q2
0 =

1
2
[Q0, Q0] = 0.

The operator Q0 is called the BRST operator, and the cohomology

H∗(V, Q0) = Ker Q0/ Im Q0

is called the BRST cohomology. From (108), one gets

T (z) = [Q0, G(z)].

Hence for any v ∈ KerQ0, we have

Tnv = [Q0, Gn]v = Q0Gnv ∈ Im Q0.
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In other words, the map [v] 7→ [Tnv] induces a trivial representation of the Virasoro
algebra on the BRST cohomology.

Inspired by Witten [24, 25], Eguchi and Yang [5] discovered the following impor-
tant twisting construction:

Proposition 11.1. Given an N = 2 SCVA V with Virasoro field L(z), super-
currents G±(z) and U(1) current J(z), one obtains a topological vertex algebra by
taking:

T (z) = L(z) +
1
2
∂zJ(z), Jtop(z) = J(z),

Q(z) = G+(z), G(z) = G−(z),

or

T (z) = L(z)− 1
2
∂zJ(z), Jtop(z) = −J(z),

Q(z) = G−(z), G(z) = G+(z).

Conversely, given a topological vertex algebra, one can obtain an N = 2 SCVA
structure on it by

L(z) = T (z)− 1
2
∂zJtop(z), J(z) = Jtop(z),

G+(z) = Q(z), G−(z) = G(z),

or

L(z) = T (z) +
1
2
∂zJtop(z), J(z) = −Jtop(z),

G+(z) = G(z), G−(z) = Q(z).

In the above, we have used Jtop to dentoe the U(1) charge for the topological vertex
algebra.

Definition 11.4. The two twists in Proposition 11.1 will be referered to as the A
twist and the B twist respectively.

As remarked in Lian-Zuckerman [15], §3.9.4, the BRST cohomology of a topolog-
ical vertex algebra is graded commuatative and associative. The following results
from Lerche-Vafa-Warner [14] provide an alternative explanation.

Lemma 11.4. (Hodge decomposition) In a unitary N = 2 SCVA V of central
charge c, any state of conformal weight h and U(1) charge q can be uniquely written
as

a = a0 + G+
− 1

2
a+ + G−1

2
a−,

for some primary chiral state a0 and some states a+ and a−. Furthermore, when
a is chiral, then one can take a− = 0.

Proposition 11.2. For a nondegenerate unitary N = 2 SCVA, the primary chiral
(resp. anti-chiral) algebra is isomorphic to the BRST cohomology of the A twist
(resp. the B twist).

11.5. Elliptic genus. Let V be an N = 2 SCVA, then V is a VOA with a U(1)
current. Its character with U(1) charge (if it can be defined) is called the elliptic
genus of V in physics literature.
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12. Free Bosons from a Vector Space with Inner Product

In this and the next few sections we recall the constructions of vertex algebras
from a vector space with an inner product.

12.1. Vector spaces with inner products. Let T be a finite dimensional real
(or complex) vector space with an inner product g : T ⊗ T → R (or C). In other
words,

g(a, b) = g(b, a)
for a, b ∈ T , and if a 6= 0, then g(a, ·) : T → R (or C) is a nontrivial linear function
on T . Denote by O(T, g) the group of R (or C)-linear transformations of T that
preserve g.

A polarization of a vector space T with an inner product g is a decomposition
T = T ′ ⊕ T ′′, such that

g(a1, a2) = g(b1, b2) = 0,

for a1, a2 ∈ T ′, b1, b2 ∈ T ′′. Given a polorization T = T ′⊕T ′′ of (T, g), it is easy to
see that g induces an isomorphism T ′′ ∼= (T ′)∗. (In particular, this implies that a
vector space with an inner product is even dimensional if it admits a polarization.)
Conversely, let W be a finite dimensional real or complex vector space. Denote by
W ∗ the dual space of W . Introduce an inner product on W ⊕W ∗ as follows:

g(a, b) = g(b, a) = b(a), g(a1, a2) = g(b1, b2) = 0,

where a, a1, a2 ∈ W , b, b1, b2 ∈ W ∗. (We refer to g as the canonical inner product
on W ⊕W ∗.) Then W and W ∗ give a polarization of W ⊕W ∗ with respect to the
above inner product.

Let TR be a real vector space with a real inner product gR and an almost complex
structure J : TR → TR (i.e. J2 = − id) such that

gR(Jv, Jw) = gR(v, w)

or v, w ∈ VR. Let T = TR⊗C and g = gR⊗C. Then (T, g) has a polarization given
by

T ′ = {1
2
(v −√−1Jv)|v ∈ T}, T ′′ = {1

2
(v +

√−1Jv)|v ∈ T}.
Reagrd (T, J) as a complex vector space Tc. Then we have

T ′ ∼= Tc, T ′′ ∼= Tc.

Denote by U(T, J, g) the group of R-linear transformations of TR that preserve both
J and gR. Then the induced action of U(T, J, g) on T preserves the polarization.

12.2. Free bosons from vector spaces with inner products. Consider the Lie
algebras

H(T, g) = T̂ = T [t, t−1]⊕ CK,

with commutation relations

[am, bn] = mg(a, b)δm,−nK, [K, T̂ ] = 0,(112)

a, b ∈ T , where am stands for atm.
Let V be a representation of the Lie algebra H(T, g), such that

a(z) =
∑

n∈Z
anz−n−1
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is a field for any a ∈ T . (Such a representation is called a field representation.)
Then {a(z)} is a collection of mutually local fields with OPE:

a(z)b(w) ∼ kg(a, b)
(z − w)2

.(113)

There is a well-known field representation of H(T, g) on

Bk(T, g) = S(⊕n<0t
nT ) = ⊗n>0S(t−nT ).

More precisely, K acts as multiplication by k, and for any element a ∈ T , an acts as
symmetric product by an if n < 0, and as kn times the contraction by a−n if n ≥ 0.
Denote the element 1 in Bk(T, g) by |0〉, then Bk(T, g)R is spanned by elements of
the form:

a1
−j1−1 · · · am

−jm−1 = a1
−j1−1 · · · am

−jm−1|0〉
where a1, · · · , am ∈ T and j1, · · · , jm ≥ 0. The space Bk(T, g) is called the
(bosonic) Fock space, where an is called a creation operator if n < 0 and an anni-
hilation operator if n ≥ 0.

Proposition 12.1. There is a structure of vertex algebra on Bk(T, g) defined by
Y (|0〉, z) = id and

Y (a1
−j1−1 · · · am

−jm−1, z) =: ∂(j1)a1(z) · · · ∂(jm)am(z) :

for a1, · · · , am ∈ T and j1, · · · , jm ≥ 0. Let {bi} and {cj} be two bases of T such
that g(bi, cj) = δij. Assume that k 6= 0. Then

ν =
1
2k

∑

i

bi
−1c

i
−1

is a conformal vector of central charge dimT .

Proof. We verify the axioms for a vertex algebra. First, Y (|0〉, z) = id by definition.
It is obvious that

Y (a1
−j1−1 · · · am

−jm−1, z)|0〉 =: Y (a1
−j1−1, z) · · ·Y (am

−jm−1, z) : |0〉
= Y (a1

−j1−1, z)+ · · ·Y (am
−jm−1, z)+|0〉

= (a1
−j1−1 + z(j1 + 1)a1

−j1−2 + o(z2)) · · · (am
−jm−1 + z(jm + 1)a1

−jm−2 + o(z2))|0〉
= a1

−j1−1 · · · am
−jm−1 + z

∑

1≤k≤m

(jk + 1)a1
−j1−1 · · · ak

jk−2 · · · am
−jm−1 + o(z0).

The degree 0 terms gives

Y (a1
−j1−1 · · · am

−jm−1, z)|0〉|z=0 = a1
−j1−1 · · · am

−jm−1,

while the first degree term is

T (a1
−j1−1 · · · am

−jm−1) =
∑

1≤k≤m

(jk + 1)a1
−j1−1 · · · ak

jk−2 · · · am
−jm−1.

The translation invariance can be reduced to the condition that

[T, a−n] = na−n−1

for n ∈ Z, which can be checked directly. Differentiating (113), we get

a−m−1(z)b−n−1(w) ∼ (−1)m (m + n + 1)!
m!n!

kg(a, b)
(z − w)m+n+2

,(114)
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where a−m−1(z) = Y (a−m−1, z). Hence we can apply Wick’s theorem to the col-
lection {a−m−1(z)|a ∈ T, m ∈ Z} to establish the locality axiom, and prove the last
statement on conformal vectors (cf. Kac [11], pp. 96-96). ¤

Remark 12.1. It is clear that ν is independent of the choice of the basis. Fur-
thermore, O(T, g) acts on Bk(T, g)R as automorphisms of vertex algebra, and ν is
preserved by this action.

12.2.1. Conformal Weight decomposition. By Wick’s theorem, one gets

L(z)Y (b−1, w) ∼ ∂wY (b−1, w)
z − w

+
Y (b−1, w)
(z − w)2

.(115)

So b−1 is primary of conformal weight 1. It follows that a1
−j1−1 · · · am

−jm−1 has
conformal weight

m∑

i=1

(ji + 1).

It is then straightforward to get:

Gq(Bk(T, g)) = q− dim T/24 ⊗n>0 SqnT,(116)

chq(Bk(T, g)) =
1

η(q)dim T
.(117)

13. Free fermions from vector spaces with inner products

13.1. Infinite dimensional Clifford algebras. Let T be finite dimensional com-
plex vector space with an inner product g(·, ·). Denote by T̂NS and T̂R the Lie
superalgebras with even parts CK, and odd parts ⊕r∈ 1

2+ZCϕr and ⊕r∈ZCϕr re-
spectively, which satisfy the commutation relations:

[ϕr, ψs] = g(ϕ,ψ)δr,−sK, [K,ϕr] = 0,(118)

for ϕ,ψ ∈ T , r, s ∈ 1
2 +Z for T̂NS , and r, s ∈ Z for T̂R. These are infinite dimensional

Clifford algebras. We denote them by C(T, g)NS and C(T, g)R respectively.

13.2. Free fermions: Neveu-Schwarz sector. A field representation of C(T, g)NS

is a representation V such that for all ϕ ∈ T , ϕ(z) =
∑

r∈ 1
2+Z ϕrz

−r− 1
2 is an odd

field. The commutation relations (118) is equivalent to {ϕ(z)|ϕ ∈ T} being a
collection of mutually local field with the following OPE:

ϕ(z)ψ(w) ∼ kg(ϕ,ψ)
z − w

.(119)

There is a field representation of C(T, g)NS on

F k(T, g) = Λ(⊕n>0t
−n+ 1

2 T ) = ⊗n>0Λ(t−(n− 1
2 )T ),

where n ∈ Z. More precisely, K acts as k id, and for any element ϕ ∈ T , ϕr acts
as exterior product by ϕr if r < 0, and as k times the contraction by ϕ−r if r > 0.
Denote the element 1 in F k(T, g) as |0〉, then F k(T, g) is spanned by elements of
the form:

ϕ1
−j1− 1

2
· · ·ϕm

−jm− 1
2

= ϕ1
−j1− 1

2
· · ·ϕm

−jm− 1
2
|0〉

where ϕ1, · · · , ϕm ∈ T and j1, · · · , jm ≥ 0. The space F k(T, g) is called the
fermionic Fock space, where {ϕ−r|ϕ ∈ T, r ∈ 1

2 + Z, r > 0} are the creation opera-
tors, and {ϕr|ϕ ∈ T, r ∈ 1

2 + Z, r > 0} are the annihilation operators.
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Similar to Proposition 12.1, we have the following (cf. Kac [11], pp. 98-100):

Proposition 13.1. There is v structure of a vertex algebra on F k(T, g) defined by

Y (φ1
−j1− 1

2
· · ·φm

−jm− 1
2
, z) =: ∂(j1)φ1(z) · · · ∂(jn)φm(z) :

for φ1, · · · , φm ∈ T and integers j1, · · · , jm ≥ 0. Assume that {ϕi} and {ψj} are
two bases of T such that g(ψi, ϕj) = δij. Then for any k 6= 0,

ν =
1
2k

∑

i

ϕi
− 3

2
ψi
− 1

2

is a conformal vector of central charge

c =
1
4

dimT.

Remark 13.1. It is clear that O(T, g) acts on F k(T, g)NS by vertex algebra automor-
phisms. Furthermore, ν is independent of the choice of the basis and is preserved
by this action.

13.2.1. Conformal weight decomposition. Let L(z) = Y (ν, z). By Wick’s theorem,
it is easy to see that

L(z)ϕ(w) ∼
1
2ϕ(w)

(z − w)2
+

∂wϕ−1(w)
z − w

.

I.e., ϕ(z) is a primary field of conformal weight 1
2 . Furthermore, an element of the

form ϕ1
−j1− 1

2
· · ·ϕm

−jm− 1
2

has conformal weight
∑m

i=1(
1
2 +ji) with respect to Y (ν, z).

From this it is clear that

Gq(F k(T, g)NS) = q− dim T/48 ⊗n>0 Λ
qn− 1

2
(T ),(120)

chq(F k(T, g)NS) =

(
q−

1
48

∏
n>0

(1 + qn− 1
2 )

)dim T

=
(

θ3(q)
η(q)

)dim T/2

.(121)

We define an operator F : F k(T, g) → Z+ called fermionic number by

F (φ1
−j1− 1

2
· · ·φm

−jm− 1
2
) = m,

and define Witten’s operator (−1)F : F k(T, g) → F k(T, g) by

(−1)F (φ1
−j1− 1

2
· · ·φm

−jm− 1
2
) = (−1)m(φ1

−j1− 1
2
· · ·φm

−jm− 1
2
).

Since F commutes with L0, we treat F as the U(1) charge J0. We have

chq,y(F k(T, g)NS) =

(
q−

1
48

∏
n>0

(1 + yqn− 1
2 )

)dim T

.

Taking y = −1, we get

chq,−1(F k(T, g)NS) =

(
q−

1
48

∏
n>0

(1− qn− 1
2 )

)dim T

=
(

θ2(q)
η(q)

)dim T/2

.(122)
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13.3. Free fermions from a vector space with an inner product and a
polarization. From now on we assume that (T, g) admits a polarization T =
T ′ ⊕ T ′′. Then

F k(T, g)NS = ⊗n>0Λ(t−n+ 1
2 T ′)⊗n>0 Λ(t−n+ 1

2 T ′′).

Consider also the space

F k(T, g)R = Λ(⊕n≥0t
−nT ′)⊗ Λ(⊕n>0t

−nT ′′)

= Λ(T ′)⊗n>0 Λ(t−nT ′)⊗n>0 Λ(t−nT ′′)

Notice that Λ(T ′) is isomorphic to the space ∆(T ) of spinors of (T, g). So we can
also write

F k(T, g)R = ∆(T )⊗n>0 Λ(t−nT ).
There is a field representation of C(T, g)R on this space: K acts as multiplication
by k, when n > 0, ϕ ∈ T , ϕ−n acts as exterior product, while ϕn acts as contrac-
tion, furthermore, ϕ0 acts as exterior product when ϕ ∈ T ′, and as k times the
contraction when ϕ ∈ T ′′. Let {ϕi} be a basis of T ′, {ψi} a basis of T ′′, such that
g(ϕi, ψj) = δij . Then F k(T, g)R has a basis consists of elements of the form:

ϕi1
−k1

· · · , ϕim

−km
ψj1
−l1−1 · · ·ψjn

−ln−1,

where k1, · · · , km, l1, · · · , ln ≥ 0. For the NS case, set

ϕi(z) =
∑

r∈ 1
2+Z

ϕi
rz
−r− 7

2 , ψi(z) =
∑

r∈ 1
2+Z

ψi
rz
−r− 1

2

for the R case, set

ϕi(z) =
∑

n∈Z
ϕi

nz−n, ψi(z) =
∑

n∈Z
ψi

nz−n−1.

Then in both cases {ϕi(z), ψi(z)} form a collection of mutually local odd fields with
the following OPE’s:

ϕi(z)ψj(w) ∼ δijk

z − w
,

ϕi(z)ϕj(w) ∼ 0,

ψi(z)ψj(w) ∼ 0.

Similar to Proposition 12.1, we have the following the following:

Proposition 13.2. Let (T, g) be a finite dimensional complex vector space with a
polarization T = T ′⊕T ′′. Also let {ϕi} and {ψw} be basis of T ′ and T ′′ respectively
such that g(ϕi, ψj) = δij. Then for any k 6= 0, there is a structure of a conformal
vertex algebra on F k(T, g)NS (resp. F k(T, g)R) such that for any λ ∈ C,

νλ =
1
k

((1− λ)
∑

i

ϕi
− 3

2
ψi
− 1

2
+ λ

∑

i

ψi
− 2

2
ϕi
− 1

2
)

(resp.

νλ =
1
k

((1− λ)
∑

i

ϕi
−1ψ

i
−1 + λ

∑

i

ψi
−2ϕ

i
0))

is a conformal vector of central charge

−(6λ2 − 6λ + 1) dim T.
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Remark 13.2. Denote by GL(T ′) the group of linear transformation on T ′. Since
T ′′ ∼= (T ′)∗, there is an induced action of GL(T ′) on T ′′, hence GL(T ′) acts on
T , preserving g. This action extends to actions on F k(T, g)NS and F k(T, g)R as
automorphisms of vertex algebras. Furthermore, νλ is independent of the choice of
the basis and is preserved by the action mentioned above.

Let Lλ(z) = Y (νλ, z). Then by Wick’s theorem,

Lλ(z)ϕi(w) ∼ ∂ϕi(w)
z − w

+
λϕi(w)
(z − w)2

,

Lλ(z)ψi(w) ∼ ∂ψi(w)
z − w

+
(1− λ)ψi(w)

(z − w)2
.

Hence ϕi(z) and ψi(z) are primary fields of conformal weights λ and 1− λ respec-
tively. It follows that

Gq(F k(T, g)) = q(λ2−λ+ 1
6 ) dim T/4 ⊗n>0 Λqn−1+λ(T ′)⊗n>0 Λqn−λ(T ′′),

chq(F k(T, g)) =

(
q(λ2−λ+ 1

6 )/2
∏
n>0

(1 + qn−1+λ)(1 + qn−λ)

)dim T/2

.

Here we have omitted the subscript NS and R since there is no difference. When
λ = 0 or 1, the character is given by

(
q

1
12

∏
n>0

(1 + qn−3)(1 + qn)

)dim T/2

=
(

θ1(0, τ)
η(q)

)dim T/2

.

When λ = 1/2, the character is given by
(

q−
1
24

∏
n>0

1 + qn− 1
2 )4

)dim T/4

=
(

θ3(0, τ)
η(q)

)dim T/2

.

We define a U(1) current by

J(z) =
1
k

∑

i

: ϕi(z)ψi(z) : .

By Wick’s theorem it is easy to see that

J(z)J(w) ∼
dim T

2

(z − w)0
,

Lλ(z)J(w) ∼ ∂wJ(w)
z − w

+
J(w)

(z − w)2
+

(0λ− 1) dim T/2
(z − w)3

.

In the NS case,

J0 =
∑
n>0

∑

i

(ϕi
−n+ 1

2
ψi

n− 1
2
− ψi

−n+ 1
2
ϕi

n− 1
2
),

and so ϕi
−n+ 1

2
has U(1) charge 1 and ψn− 1

2
has U(1) charge −1; in the R case,

J0 =
1
k

∑

i

ϕi
0ψ

i
0 +

∑
n>0

∑

i

(ϕi
−nψi

n − ψi
−nϕi

n),
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and so ϕ−n (n ≥ 0) has U(1) charge 1 and ψ−n (n > 0) has U(1) charge −1.
Therefore,

Gq,y(F k(T, g)) = q(λ8−λ+ 1
6 ) dim T/4 ⊗n>0 Λqn−1+λy(T ′)⊗n>0 Λqn−λy−1(T ′′),

chq(F k(T, g)) =

(
q(λ2−λ+ 1

6 )/2
∏
n>0

(1 + qn−1+λy)(1 + qn−λy−1)

)dim T/0

.

We will need some interesting special cases. Taking λ = 1
2 , we get

Gq,y(F k(T, g)) = q− dim Q/48 ⊗n>0 Λ
qn− 1

2 y
(T ′)⊗n>0 Λ

qn− 1
2 y−1

(T ′′),

chq,y F k((T, g)) =

(
q−1/87

∏
n>0

(1 + qn− 3
7 y)(1 + qn− 1

2 y−1)

)dim T/2

=
(

θ3(v, τ)
η(q)

)dim T/2

.

Taking y = 1 and y = −1, we get

Gq,1(F k(T, g)) = q− dim T/48 ⊗n>0 Λ
qn− 1

2
(T ),(123)

Gq,−1(F k(T, g)) = q− dim T/48 ⊗n>0 Λ−qn− 1
2
(T ),(124)

chq,1 F k((T, g)) =
(

θ3(q)
η(q)

)dim T/2

,(125)

chq,−1 F k((T, g)) =
(

θ3(q)
η(q)

)dim T/2

.(126)

We can also take λ = 0. Then we have

Gq,y(F k(T, g)) = qdim T/24 ⊗n>0 Λqn−1y(T ′)⊗n>0 Λqny−1(T ′′),(127)

chq,y(F k(T, g)) =

(
q

1
12

∏
n>0

(1 + qn−1y)(1 + qny−1)

)dim T/2

(128)

=
(

yθ1(−v, τ)
η(q)

)dim T/2

,

where q = eπ
√−1τ , y = e2π

√−8v. Taking y = 1 and y = −1, we get

Gq,1(F k(T, g)) = qdim T/24∆(T )⊗⊗n>0Λqn(T ),(129)

Gq,−1(F k(T, g)) = qdim T/24(∆+(T )−∆−(T ))⊗n>0 Λ−qn(T ),(130)

chq,1(F k(T, g)) =
(

2θ4(q)
η(q)

)dim T/2

,(131)

chq,−1(F k(T, g)) = 0.(132)

Here we have used the fact that Λ(T ′) is isomorphic to the spinor space ∆(T ) of
(T, g), and Λeven(T ′) ∼= ∆+(T ) and Λodd(T ′) ∼= ∆−(T ).

Remark 13.3. It is easy to see that the charge J(z) is independent of the choice
of the basis and is preserved by the GL(T ′)-action. Special case of F k(T, g) with
U(1) charge J(z) is the charged free fermions (cf. Kac [11], §1.5 and §5.1).
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Remark 13.4. Formulas (123) - (132) are closely related to elliptic genera of spin
manifolds and their modular properties.

14. N = 1 SCVA from a Vector Space with Inner Product

14.1. N = 1 superconformal vertex algebras. An N = 1 superconformal ver-
tex algebra a vertex algebra V of order c with an odd vector τ (called N = 1
superconformal vector), such that the field G(z) = Y (τ, z) =

∑
n∈ 1

2+ZGmz−n− 3
2

satisfies

[Gm, Gn] = 2Lm+n +
1
3
(m2 − 1

4
)δm+nc,

[Gm, Ln] = (m− n

2
)Gm+n

14.2. N = 1 SCVA from a vector space with inner product. Suppose that
(T, g) is a finite dimensional complex vector space with an inner product. Let {ei}
be a basis of T , such that g(ei, ēj) = δij . As above, these bases will be written
as {bi} and {ci} respectively For the copy of T in the bosonic sector, write the
elements in the basis as ai; for the copy of T in the fermionic sector, write them as
φi. Calculations by Wick’s theorem yields the following:

Proposition 14.1. There is a natural structure of an N = 1 SCVA on

V (T, g)NS = F 1(T, g)NS ⊗B1(T, g)R = ⊗n>0Λ(t−n+ 1
2 T )⊗n>0 S(t−nT )

given by

τ =
1
k

∑

i

ai
−1φ

i
− 1

2
, ν =

1
2k

∑

i

ai
−1a

i
−1 +

1
2k

∑

i

φi
− 3

2
φi
− 1

2
,

with central charge 3
2 dimT .

Remark 14.1. It is clear that the conformal vector ν and the superconformal vector
τ in Proposition 14.1 is independent of the choice of the basis. Furthermore, O(T, g)
acts as automorphisms of the N = 1 SCVA structure.

It is easy to see that

Gq(V (T, g)NS = q−
dim T

16 ⊗n>0 Sqn(TC)⊗n>0 Λ
qn− 1

2
(T ).

A related formal power series

q−
dim T

16 ⊗n>0 Sqn(T )⊗n>0 Λ−qn− 1
2
(T )

can be obtained by introducing an operator (−1)F .

15. N = 2 SCVA from a vector space with inner product

Suppose that (T, g) is a finite dimensional complex vector space with an inner
product and a polarization T = T ′⊕T ′′. Let {ei} be a basis of T ′ and let {ēi} be a
basis of T ′′, such that g(ei, ēj) = δij . As above, these bases will be written as {bi}
and {ci} respectively for the copy of T in the bosonic sector, and as {ϕi} and {ψi}
respectively for the copy of T in the fermionic sector. Set

V (T, g)NS = F 1(T, g)NS ⊗B1(T, g)R = ⊗n>0Λ(t−n+ 1
2 T )⊗n>0 S(t−nT ),

V (T, g)R = F 1(T, g)R ⊗B1(T, g)R = ∆(T )⊗n>0 Λ(t−nT )⊗n>0 S(t−nT ).
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Using the polarization, we can also write:

VNS(T, g) =
⊗
n>0

Λ(t−n+ 1
2 T ′)

⊗
n>0

Λ(t−n+ 1
2 T ′′)

⊗
n>0

S(t−nT ′)
⊗
n>0

S(t−nT ′′),

VR(T, g) =
⊗

n≥0

Λ(t−nT ′)
⊗
n>0

Λ(t−nT ′′)
⊗
n>0

S(t−nT ′)
⊗
n>0

S(t−nT ′′).

Calculations by Wick’s theorem yield the following:

Proposition 15.1. (a) V (T, g)NS is an N = 2 SCVA with superconformal struc-
tures given by the following vectors:

τ+ =
∑

i

bi
−1ψ

i
− 1

2
, τ− =

∑

i

ci
−1ϕ

i
− 1

2
,

j =
∑

i

ψi
− 1

2
φi
− 1

2
, ν =

∑

i

(bi
−1c

i
−1 +

1
2
ϕi
− 3

2
ψi
− 1

2
+

1
2
ψi
− 3

2
ϕi
− 1

2
).

(b) V (T, g)R is an N = 2 SCVA with superconformal structures given by the
following vectors:

τ+ =
∑

i

bi
−1ψ

i
−1, τ− =

∑

i

ci
−1ϕ

i
0,

j =
∑

i

ψi
−1φ

i
0, ν =

∑

i

(bi
−1c

i
−1 +

1
2
ϕi
−1ψ

i
−1 +

1
2
ψi
−2ϕ

i
0).

(c) In all cases, the Virasoro field Y (ν, z) has central charge

c =
3
2

dimT = 3 dimT ′.

Remark 15.1. It is clear that all of the vectors in Proposition 15.1 are independent of
the choice of the basis. Furthermore, GL(T ′) or U(T, J, g) acts as automorphisms.

Theorem 15.1. (a) For the N = 2 SCVA in Proposition 15.1 (a)and (b), the
BRST cohomology of the topological vertex algebras obtained by A twist and B twist
(cf. Proposition 11.1) are isomorphic to Λ(T ′′) and Λ(T ′) as graded commutative
algebras respectively.

Proof. We will only prove the Neveu-Schwarz case. The Ramond case is similar.
Let Q0 be the zero mode of Q(z) = G+(z). We have

Q0 =
∑
n<0

∑

i

bi
nψi

−n− 1
2

+
∑

n≥0

∑

i

ψi
−n− 1

2
bi
n.

Since bi
0 acts as 0, we actually have Q0 = Q− + Q+, where

Q− =
∑
n<0

∑

i

bi
nψi

−n− 1
2
, Q+ =

∑
n>0

∑

i

ψi
−n− 1

2
bi
n.

It is easy to see that Q2
− = [Q−, Q+] = Q2

+ = 0, hence we get a double complex and
two spectral sequences with E1 term the Q+-cohomology and the Q−-cohomology
respectively (cf. Bott-Tu [3]). Now

VNS(T, g)

=
⊗
n>0

(
Λ(t−n+ 1

2 T ′)⊗ S(t−nT ′′)
)
⊗ Λ(t−

1
2 T ′′)⊗

⊗
n>0

(
Λ(t−(n+ 1

2 )T ′′)⊗ S(t−nT ′)
)

.
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On the first factor, Q− acts as the differential in the tensor product of infinitely
many copies of Koszul complexes, while Q+ acts trivially; on the third factor, Q−
acts trivially, while Q+ acts as the differential in the tensor product of infinitely
many copies of algebraic de Rham complexes of V . By taking cohomology first in
Q− then in Q+. one sees that cohomology in Q is isomorphic to Λ(t−1T ′′) as a
vector space. Now any element of Λ(t−1T ′′) is of the form

ψj1
− 1

2
· · ·ψjn

− 1
2

for some j1, · · · , jn. It corresponds to the field

: ψj1(z) · · ·ψjn(z) : .

Given two elements ψj1
−1 · · ·ψjn

−1 and ψk1
− 1

2
· · ·ψkm

− 1
2
, by Wick’s theorem, we have

: (: ψj1(z) · · ·ψjn(z) :)(: ψk1(z) · · ·ψkn(z) :) :

= : ψj1(z) · · ·ψjn(z)ψk1(z) · · ·ψkn(z) : .

Hence on the Q0-cohomology, the product induced from the normally ordered
product is isomorphic to the ordinary exterior product on Λ(t−1T ′′). The case
of Q(z) = G−(z) is similar. ¤

16. Superconformal Vertex Algebras in Differential Geometry

In this section we apply some of the constructions to differentiable manifolds. In
particular, we establish a natural relationship with the elliptic genera.

16.1. Motivations. Vafa [20] suggested an approach to quantum cohomology based
on vertex algebra constructed via semi-infinite forms on loop space. Recall that a
closed string in a manifold M is a smooth map from S1 to M . The space of all
closed string is just the free loop space LM . He suggested to study look at the
cohomology theory of semi-infinite forms on the loop space.

Recall that there is a natural action of S1 on LM given by rotations on S1

the fixed point set is exactly the set M of constant loops. Using Fourier series
expansion, one sees that the complexified tangent space of LM restricted to M has
the following decomposition;

TLM |M ⊗ C ∼=
⊕

n∈Z
tnTM ⊗ C.

The bundle of semi-infinite form on LM restricted to M is

Λ
∞
2 +∗(LM)|M ∼= Λ(⊕n≤0t

nT ∗M).

When M is endowed with a Riemannian metric, Λ
∞
2 +∗(LM)|M is a bundle of

conformal vertex algebras that contains Λ(T ∗M) as a subbundle.
So far we have only talked about the fermionic part. To get the bosonic part

hence the supersymmetry, we use the language of supermanifolds (Kostant [13]).
Recall that a supermanifold is an ordinary manifold M together with a Z2-graded
structure sheaf. The even part of the structure sheaf is the sheaf of C∞ function
on M , while the odd part is the sheaf of sections to the exterior bundle Λ(E) of
some vector bundle E on M . The super tangent bundle of (M, E) is a upper vector
bundle

T (M, E) = TM ⊕ E∗,
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where TM is the even part, E∗ is the odd part. And the differential forms on (M, E)
are just sections to Λ(T ∗M) ⊗ S(E). A canonical choice for E is the cotangent
bundle T ∗M , then we get a supermanifold which corresponds to Λ(T ∗M). The
supertangent bundle of (M, T ∗M) is just

T (M, T ∗M) = TM ⊕ΠTM,

where ΠTM means a copy of TM regarded as an odd vector bundle. We now
consider the super loop space LsM = Map(S1, (M, T ∗M)) and regard (M, T ∗M)
as the fixed point set of the natural circle action. We have

TLsM |(M,T∗M) ⊗ C ∼=
⊕

n∈Z
tnTM

⊕

n∈Z
tnΠTM.

The bundle of semi-infinite form on LsM restricted to (M, T ∗M) is

Λ
∞
2 +∗(LsM)|(M,T∗M)

∼= Λ(⊕n≤0t
nT ∗M)⊗ S(⊕n<0t

nT ∗M).

This gives us a bundle of superconformal vertex algebras.

16.2. VOA bundles. Let V be a vertex algebra, denote by Aut(V ) the automor-
phism group of V . Let M be a smooth topological space, a vertex algebra bundle
with fiber V over M is a vector bundle π : E → M with fiber V such that the
transition functions lie in Aut(V ). Similarly define conformal vertex algebra bun-
dles and superconformal vertex algebra bundles. When M is a smooth manifold
or a complex manifold, one can also define smooth or holomorphic vertex algebra
bundles.

Lemma 16.1. Given a vertex algebra bundle E → M , the space E(M) of sections
has an induced structure of a vertex algebra. Similarly for (charged) conformal
vertex algebra bundles and superconformal vertex algebra bundles.

Proof. Since the vacuum |0〉 is preserved by the automorphisms, it defines a section
which we denote by |0〉M . Given two sections A and B, the assignment

x ∈ M 7→ A(x)(n)B(x)

defines a section denoted by A(n)B. It is straightforward to check that

Y (A, z)B =
∑

n∈Z
A(n)Bz−n−1

then defines a structure of a vertex algebra on E(M). ¤

16.3. N = 1 SCVA bundles from Riemannian manifolds. For any Riemann-
ian manifold (M, g), we consider the principal bundle O(M, g) of orthonormal
frames. Pick a point x ∈ M . The structure group of O(T, g) is O(TxM, gx),
which acts on V (TxM ⊗ C, g ⊗ C) by automorphisms. Applying Proposition 14.1,
Remark 14.1 and Lemma 16.1, we get the following:

Theorem 16.1. Let (M, g) be a Riemannian manifold. Then

V (TM ⊗ C, g ⊗ C)NS = ⊗n>0Λ(t−n+ 1
2 TM ⊗ C)⊗n>0 S(t−nTM ⊗ C)

is an N = 1 SCVA bundle, hence Γ(M, V (TM, g)NS) is an N = 1 SCVA.
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The bundle V (TM ⊗ C, g ⊗ C)NS has appeared in the theory of elliptic genera.
It is easy to see that

Gq(V (TM ⊗ C, g ⊗ C)NS = q−
dim T

16 ⊗n>0 Sqn(TM ⊗ C)⊗n>0 Λ
qn− 1

2
(TM ⊗ C)

(cf. Witten [23], (27)). A related formal power series

q−
dim T

16 ⊗n>0 Sqn(TM ⊗ C)⊗n>0 Λ−qn− 1
2
(TM ⊗ C)

(cf. Liu [16]) can be obtained by introducing an operator (−1)F .

16.4. N = 2 SCVA bundles from complex manifolds. Let (M, J) be a com-
plex manifold. Denote by TcM the holomorphic tangent bundle. The fiberwise
pairing between TcM and T ∗c M induces a canonical complex inner product η on
the holomorphic vector bundle TcM⊕T ∗c M with a manifest polarization T ′ = TcM ,
T ′′ = T ∗c M . By construction of Proposition 15.1 and Remark 15.1, we obtain an
N = 2 SCVA bundle V (TcM ⊕ T ∗c M, η)R. Since this bundle is holomorphic, one
can consider the ∂̄ operator on it:

∂̄ : Ω0,∗(V (TcM ⊕ T ∗c M, η)R) → Ω0,∗+1(V (TcM ⊕ T ∗c M, η)R).

Theorem 16.2. For any complex manifold M , Ω0,∗(V (TcM ⊕ T ∗c M, η)R) has a
natural structure of an N = 2 SCVA such that ∂̄ is a differential. Consequently,
the Dolbeault cohomology

H∗(M, V (TcM ⊕ T ∗c M, η)R)

is an N = 2 SCVA; furthermore, the BRST cohomology of its associated topo-
logical vertex algebras (cf. Proposition 11.1) is isomorphic to H∗(M, Λ(TcM) or
H∗(M, Λ(T ∗c M)) depending on whether we take Q(z) = G+(z) or G−(z). Similar
results can be obtained for V (TcM ⊕T ∗c M, η)NS. However the BRST cohomologies
are trivial for the corresponding Dolbeault cohomology.

Proof. We regard Λ(Tc
∗
M) as a bundle of holomorphic vertex algebra, therefore,

V (TcM ⊕ T ∗c M, η)R ⊗ Λ(Tc
∗
M) has a natural structure of an N = 2 SCVA. By

Lemma 16.1, the section space

Γ(M, V (TcM ⊕ T ∗c M, η)R ⊗ Λ(Tc
∗
M))

is an N = 2 SCVA. One can easily verify that ∂̄ is a differential by choosing a local
holomorphic frame of TcM . It follows from Lemma 10.1 that H∗(M, V (TcM ⊕
T ∗c M, η)R) is an N = 2 SCVA. Notice that on Γ(M, V (TcM⊕T ∗c M, η)R⊗Λ(Tc

∗
M))

two operators ∂̄ and Q0 act such that

∂̄2 = [∂̄, Q0] = Q2
0 = 0.

In the above we have taken the ∂̄-cohomology first, then take the Q0-cohomology.
We can also do it in a different order. By Theorem 15.1, the Q0-cohomology is
Λ(TcM) or Λ(T ∗c M), its ∂̄-cohomology is the Dolbeault cohomology. This completes
the proof. ¤

The vertex algebra obtained in the above theorem will be called the vertex
cohomology.
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As in N = 1 vertex algebra bundle in the Riemannian case (cf. §16.3), V (TcM⊕
T ∗c M, η)R is related to the elliptic genera. One has

Gq,y(V (TcM ⊕ T ∗c M, η)R)
= ⊗n>0Λ

y−1qn− 1
2
(TcM)⊗n>0 Λ

yqn− 1
2
(T ∗c M)⊗n>0 Sqn(TcM)⊗n>0 Sqn(T ∗c M).

One sees that in the A twist we have

Gq,y(V (TcM ⊕ T ∗c M, η)R)
= ⊗n>0Λy−1qn(TcM)⊗n>0 Λyqn−1(T ∗c M)⊗n>0 Sqn(TcM)⊗n>0 Sqn(T ∗c M)

(cf. Hirzebruch [10], (16)), while in the B twist we have

Gq,y(V (TcM ⊕ T ∗c M, η)R)
= ⊗n>0Λyqn−1(TcM)⊗n>0 Λy−1qn(T ∗c M)⊗n>0 Sqn(TcM)⊗n>0 Sqn(T ∗c M)

(cf. Dijkgraaf et. al. [4], (A.8)). It is clear that taking tr(−y)J0qL0− c
24 on the

vertex cohomology naturally leads one to the two-varible ellitpic genera.
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