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1. Basic Notions

1.1. Poincare Metric on ∆. Let ∆ = {|z| < 1} be the unit disk. The
Poincare Metric ρ∆ is a complete Riemannian metric on ∆ defined by

(1.1) ds2 =
dzdz

(1− |z|2)2

The following is so-called distance decreasing property of Poincare metric.

Proposition 1.1 (Schwartz-Alhfors). For any holomorphic map f : ∆ →
∆, f∗ds2 ≤ ds2, i.e., ρ∆(f(p), f(q)) ≤ ρ∆(p, q) for any two points p, q ∈ ∆.

1.2. Kobayashi-Royden Pseudo-Metric. Let X be a complex manifold
(not necessarily compact). The Kobayashi-Royden pseudo-metric ρX is de-
fined in the following way.

Let p, q ∈ X. Choose a sequence of points p0 = p, p1, ..., pn = q and
holomorphic maps fi : ∆ → X with pi−1, pi ∈ fi(∆). Then

(1.2) ρX(p, q) = inf
{pi},{fi}

n∑
i=1

ρ∆(f−1
i (pi−1), f−1

i (pi))

An alternative way to define ρX is to define the norm || · || : TX → R on
the holomorphic tangent space TX of X.

Let p ∈ X and let v ∈ TX,p be a holomorphic tangent vector at p. We
consider all the holomorphic maps from ∆R = {|z| < R} to X satisfying
f(0) = p and f∗(∂/∂z) = v. Then

(1.3) ||v|| = inf
f

1
R

Geometrically, we are trying to “squeeze” a disk as large as possible into X.
The pseudo-metric induced by || · || is exactly ρX defined above.

Proposition 1.2. ρX satisfies
(1) Triangle Inequality: ρX(p, q)+ρX(q, r) ≥ ρX(p, r) for any p, q, r ∈

X.
(2) Distance Decreasing: Let f : X → Y be holomorphic. Then

ρY (f(p), f(q)) ≥ ρX(p, q).
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1.3. Kobayashi Hyperbolicity. In general, Kobayashi-Royden pseudo-
metric is not a metric, i.e., it might degenerate (ρX(p, q) = 0 for some
p 6= q).

Example 1.3. Let X = C. For any point z0 ∈ C and any number R > 0, we
have the map f : ∆R → C which simply sends z to z + z0. Using the second
definition of ρX , we see ||v|| = 0 for any v ∈ TX,z0 .

Example 1.4. Indeed, as long as there is a nonconstant holomorphic map
f : C → X, ρX degenerates along f(C). For example, ρX degenerates
everywhere for any complex torus X = Cn/Λ.

We call a complex manifold hyperbolic in the sense of Kobayashi if ρX is
a metric. If ρX is metric, it is obviously Riemannian.

We call a complex manifold X Brody hyperbolic (B-hyperbolic) if there
does not exist any nonconstant holomorphic map f : C → X. Obviously,
hyperbolic implies B-hyperbolic. The converse is true for compact complex
manifolds [Br].

Theorem 1.5 (R. Brody). A compact complex manifold is hyperbolic if and
only if it is B-hyperbolic.

1.4. Examples of Hyperbolic Manifolds. Usually, it is difficult to con-
struct interesting examples of hyperbolic manifolds and even more difficult
to prove a certain manifold to be hyperbolic. But at least in dim X = 1,
we know exactly which X is hyperbolic. Let X be a Riemann surface (not
necessarily compact). Let π : Y → X be the universal cover of X. Then Y
must be one of P1, C and ∆. If Y = P1 or C, there are obviously noncon-
stant holomorphic maps f : C → Y → X and hence X is not hyperbolic; if
Y = ∆, it is not hard to see that ρX = π∗ρY does not degenerate. Hence X
is hyperbolic if and only if the universal cover of X is ∆.

In the case that X is quasi-projective and dim X = 1, let X = C −
{p1, p2, ..., pn}, where C is a compact Riemann surface and {pi} are n points
on C. Then X is hyperbolic if and only if

(1.4) 2g(C)− 2 + n > 0

In particular,

Proposition 1.6. P1 − {3 points} is hyperbolic.

Indeed this is equivalent to the classical Little Picard Theorem (LPT).

Example 1.7. Consider the solutions of xn + yn = zn over the field of mero-
morphic functions over C. Every such solution x = x(t), y = y(t) and
z = z(t) gives a holomorphic map f : C → C = {xn + yn = zn} ⊂ P2. The
solution is trivial iff f is constant. Therefore, it has nontrivial solutions if
and only if g(C) ≥ 2, i.e., n = 4.

Let X be a smooth quasi-projective variety. We call X Weakly Algebraic
Hyperbolic (WAH) if there does not exist an algebraic subvariety Y ⊂ X
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such that the normalization Ỹ of Y is either P1 − {2 points} ∼= C∗ or an
elliptic curve C/Λ. Obviously, B-hyperbolic implies WAH.

Very little is known in higher dimension. The first important result in
higher dimension is the following:

Theorem 1.8 (Generalized LPT by A. Bloch). Pn− (H1∪H2∪ ...∪H2n+1)
is B-hyperbolic for 2n + 1 hyperplanes H1,H2, ...,H2n+1 ⊂ Pn in general
position, i.e., no n + 1 of them have nonempty intersection.

This is proved using value distribution theory [B]. It is easy to see the
number of hyperplanes, 2n + 1, is optimal. Suppose that we only remove
2n hyperplanes H1,H2, ...,H2n from Pn. Let p = H1 ∩ H2 ∩ ... ∩ Hn, q =
Hn+1 ∩ Hn+2 ∩ ... ∩ H2n and L = pq be the line passing through p and q.
Obviously, L − {p, q} ∼= C∗ ⊂ X = Pn − (H1 ∪H2 ∪ ... ∪H2n). Therefore,
removing 2n hyperplanes is not enough.

B-hyperbolic does not imply hyperbolic in this case since the manifold is
not compact. Hyperberlicity of Pn− (H1 ∪H2 ∪ ...∪H2n+1) is proved by M.
Green using the techniques of Brody.

Theorem 1.9 (M. Green). Pn − (H1 ∪ H2 ∪ ... ∪ H2n+1) is hyperbolic for
2n+1 hyperplanes H1,H2, ...,H2n+1 ⊂ Pn in general position, i.e., no n+1
of them have nonempty intersection.

Although most research in hyperbolicity centered around hypersurfaces
and their complements in the projective space such as Theorem 1.8 and
1.9. There are some other interesting spaces which has been proved to be
hyperbolic or B-hyperbolic.

Theorem 1.10 (Siu-Yeung, Dethloff-Lu, Demailly). X −D is B-hyperbolic
for any abelian variety X and any ample divisor D ⊂ X.

Theorem 1.11 (Viehweg-Zuo). The moduli space Mg of curves of genus g
is B-hyperbolic for g ≥ 2.

1.5. Notions of “being general” and “very general”. Many state-
ments of algebraic geometry contain the terms such as “general”, “generic”,
“very/sufficiently general”. I want to clarify their meanings here.

Usually, a proposition in algebraic geometry deals with a class of algebraic
varieties with certain properties. More often than not, there is a space M
which parameterizes such varieties and is an algebraic vareity itself. This is
quite a unique phenomenon of algebraic geometry. Just think of the space
parameterizing compact real manifolds of dimension one; it does not even
have finite dimension.

We say proposition A holds for a general member [C] ∈M if there exists
a closed subvariety Y ( M such that A holds for every [C] ∈M− Y .

We say proposition A holds for a very/sufficiently general member [C] ∈
M if there exists a sequence of closed subvarieties Yi ( M such that A
holds for every [C] ∈M−∪∞i=1Yi. Note that this only makes sense over an
uncountable field such as C.
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Example 1.12. A general curve C of genus ≥ 3 has no nontrivial automor-
phism. Here the parameter space is Mg.

Example 1.13 (Noether-Lefshetz). The Picard group of a very general sur-
face X ⊂ P3 of degree d ≥ 5 is Pic(X) = Z. Here the parameter space is
the linear series |OP3(d)| = PN where N =

(
d+3
3

)
− 1.

2. Kobayashi Conjecture

Conjecture 2.1 (S. Kobayshi). (1) X is hyperbolic for a very general
hypersurface X ⊂ Pn of sufficiently high degree.

(2) Pn − D is hyperbolic for a very general hypersurface D ⊂ Pn of
sufficiently high degree.

In its original form, Kobayashi conjecture did not give the lower bound
for deg X and deg D. Zaidenberg proposed the bound deg X ≥ 2n − 1 in
part (1) based on the following results.

Theorem 2.2 (H. Clemens). X is WAH for a very general hypersurface
X ⊂ Pn of deg X ≥ 2n.

Theorem 2.3 (G. Xu). X is WAH for a very general quintic surface X ⊂
P3.

Theorem 2.4 (C. Voisin). X is WAH for a very general hypersurface X ⊂
Pn of deg X ≥ 2n− 1.

He also proposed the bound deg D ≥ 2n + 1 for part (2) based on the
observation that there are lines meeting D at only two points if deg D = 2n.
Here is the refined version of Kobayashi conjecture.

Conjecture 2.5 (Kobayashi-Zaidenberg). (1) X is hyperbolic for a very
general hypersurface X ⊂ Pn of deg X ≥ 2n− 1.

(2) Pn − D is hyperbolic for a very general hypersurface D ⊂ Pn of
deg D ≥ 2n + 1.

There are some major breakthroughs recently on the conjecture in dimen-
sion 2, although it still looks like intractible in any higher dimensions.

Theorem 2.6 (Siu-Yeung). P2 − D is hyperbolic for a very general curve
D ⊂ P2 of deg D ≥ 80.

Theorem 2.7 (McQuillan, Demailly-El Goul). X is hyperbolic for a very
general surface X ⊂ P3 of deg X ≥ 24.

Theorem 2.8 (El Goul). P2 − D is hyperbolic for a very general curve
D ⊂ P2 of deg D ≥ 15.

It usually involves two steps in proving X hyperbolic:
(1) Show that every holomorphic map f : C → X is algebraically de-

generated, i.e., f(C) is contained in an algebraic curve C ⊂ X.
(2) Show that X is WAH.
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The first step is analytic in nature and by far the more difficult part, while
the second step is purely algebro-geometrical. The first part is essentially a
version of Lang’s conjecture.

Conjecture 2.9 (S. Lang). Let X be a projective variety of general type.
Then there exists a closed subvariety Y ( X such that f(C) ⊂ Y for every
holomorphic map f : C → X.

3. Algebraic Hyperbolicity

Question 3.1. Is Pn −D WAH for a very general hypersurface D ⊂ Pn of
deg D ≥ 2n + 1?

The answer is yes. It is known in n = 2.

Theorem 3.2 (G. Xu). Let D ⊂ P2 be a very general curve of degree d.
Then |C ∩D| ≥ d− 2 for every curve C ⊂ P2 with dim(C ∩D) = 0.

Another proof of the above theorem was given in [C1].
The weak algebraic hyperbolicity of Pn−D for n > 2 was proved in [C3].

Actually, a stronger statement was proved there.

Theorem 3.3 (X. Chen). Pn −D is algebraic hyperbolic for a very general
hypersurface D ⊂ Pn of degree d ≥ 2n + 1. More precisely,

(3.1) 2g(C)− 2 + iPn(C,D) ≥ (d− 2n) deg C

for every C ⊂ Pn with dim(C ∩D) = 0.

Of course, we need to define algebraic hyperbolicity first.

Proposition 3.4 (J.P. Demailly). Let X be a hyperbolic compact complex
manifold and L be an ample line on X. Then there exists εL > 0, depending
only on L, such that for any curve C ⊂ X,

(3.2) 2g(C)− 2 ≥ εL(C · L) = εL degL C

Proof. Let ν : C̃ → C ⊂ X be the normalization of C. Let ωX and ω
C̃

be
the (1, 1) forms associated to the hyperbolic metrics. Due to the distance
decreasing property of hyperbolic metric,

(3.3) ν∗ωX ≤ ω
C̃

Integrating both sides over C̃, we obtain

(3.4)
∫

C̃
ωX ≤

∫
C̃

ω
C̃

There exists a positive constant ε > 0 such that ωX ≥ εc1(L). Therefore,

(3.5)
∫

C̃
ωX ≥

∫
C̃

εc1(L) = ε(C · L)
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Let Φ
C̃

be the curvature form associated to the hyperbolic metric of C̃.
Then Φ

C̃
= −4ω

C̃
. By Guass-Bonett,

(3.6)
∫

C̃
ω

C̃
= −1

4

∫
C̃

Φ
C̃

= −π

4
(2− 2g(C))

Then (3.2) follows from (3.5) and (3.6). �

We call X algebraic hyperbolic (AH) if (3.2) holds for every curve C ⊂ X.
For X a projective variety,

(3.7) X hyperbolic ⇔ X B-hyperbolic ⇒ X AH ⇒ X WAH

Theorem 3.5 (H. Clemens). Let X ⊂ Pn be a very general hypersurface of
degree d. Then

(3.8) 2g(C)− 2 ≥ (d− 2n + 1) deg C

for every curve C ⊂ X. Hence X is AH if d ≥ 2n.

The concept of algebraic hyperbolicity can be generalized to quasi-projective
varieties. Every quasi-projective variety can be realized as a projective vari-
ety with an effective divisor removed. Let X be a smooth projective variety
and D ⊂ X an effective divisor. We call (X, D) algebraic hyperbolic if there
exists ε > 0 such that

(3.9) 2g(C)− 2 + iX(C,D) ≥ ε deg C

for every curve C ⊂ X with dim(C ∩D) = 0. Here iX(C,D) is defined as
follows. Let ν : C̃ → C ⊂ X be the normalization of C. Then iX(C,D) =
|ν−1(D)|.

Obviously, AH implies WAH. However, the argument of Proposition 3.4
does not go through.

Question 3.6. Does X −D hyperbolic imply (X, D) AH?

On the other hand, the algebraic hyperbolicity of log varieties is a natural
generalization of that of projective varieties. In particular, it behaves well
under deformation.

Proposition 3.7. Let X ⊂ PN ×∆ be a flat family of projective varieties
over ∆. Suppose that X is smooth and X0 =

∑
Dj is a divisor of normal

crossing. If there exists ε ∈ R such that

(3.10) 2g(C)− 2 + iDk
(C,Dk ∩ (∪j 6=kDj)) ≥ ε deg C

for every k and every curve C ⊂ Dk with dim(C ∩ (∪j 6=kDj)) = 0, then for
a very general t ∈ ∆

(3.11) 2g(C)− 2 ≥ ε deg C

for every curve C ⊂ Xt. Hence Xt is AH if (Dk, Dk ∩ (∪j 6=kDj)) is for each
k.
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Theorem 3.3 is proved via a degeneration argument. First we prove it for
D a union of hyperplanes:

Proposition 3.8. Let D ⊂ Pn be a union of d hyperplanes in very general
position. Then (3.1) holds.

Then we degenerate a hypersurface to a union of hyperplanes.
Here is a sketch of the proof of Proposition 3.8. Let D = H1∪H2∪...∪Hd.

Using a deformation-theoretic argument, one can show that there are only
countably many curves C ⊂ Pn satisfying

(3.12) 2g(C)− 2 + iPn(C,H1 ∪H2 ∪ ... ∪Hd−1) < (d− 2n) deg C

If (3.12) fails, we are done. Otherwise, C meets Hd transversely and hence

(3.13) |C ∩Hd| = deg C

Induction hypothesis gives us

(3.14) 2g(C)− 2 + iPn(C,H1 ∪H2 ∪ ... ∪Hd−1) ≥ (d− 2n− 1) deg C

Also for a very general choice of Hd, C ∩Hd ∩Hk = ∅ for each k 6= d. Then
(3.1).

We can also give a proof for Clemens’ theorem 3.5 using Proposition 3.7
and 3.8.

Let X ⊂ Pn×∆ be a pencil of degree d hypersurfaces whose central fiber
X0 = H1∪ ...∪Hd is a union of d hyperplanes. On each Hk

∼= Pn−1, ∪j 6=kHj

is a union of d− 1 hyperplanes. Then by Proposition 3.8,

(3.15) 2g(C)− 2 + iHk
(C,Hk ∩ (∪j 6=kHj)) ≥ (d− 2n + 1) deg C

Then

(3.16) 2g(C)− 2 ≥ (d− 2n + 1) deg C

for C ⊂ Xt. Careful readers may point out that X is not smooth in this
case and Proposition 3.7 cannot be applied directly. This can be resolved by
desingularizing X. But I do not want to go through the extra technicalities
involved. Interested readers might refer [C3] for details.

Note that the bound deg X ≥ 2n for X ⊂ Pn to be AH is not likely
optimal, while the bound deg D ≥ 2n + 1 for Pn −D is.

Question 3.9. Is a very general hypersurface X ⊂ Pn of deg X = 2n − 1
AH? Especially, is a very general quintic surface X ⊂ P3 AH?

Finally, I want to point out that this is not the only approach to prove
Pn−D WAH. Another way to prove it is to directly generalize Xu’s theorem
3.2.

Question 3.10. Let D be a very general hypersurface in Pn of degree d. Is
it true that |C ∩D| ≥ d− 2n for every curve C ⊂ Pn with dim(C ∩D) = 0?

C. Voisin told me that she could prove |C ∩D| ≥ d− 2n− 2.
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