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Abstract. The purpose of this paper is to investigate the solutions of refinement
equations of the form

ϕ(x) =
X

α∈Zs

a(α)ϕ(Mx− α), x ∈ Rs,

where the vector of functions ϕ = (ϕ1, ..., ϕr)T is in (Lp(Rs))r, 0 < p ≤ ∞, a(α), α ∈
Zs, is a finitely supported sequence of r × r matrices called the refinement mask,
and M is an s × s integer matrix such that limn→∞M−n = 0. In this article, we
characterize the existence of Lp-solution of refinement equation for 0 < p ≤ ∞. Our
characterizations are based on the p-norm joint spectral radius.

1. Introduction.

A refinement equation is a functional equation of the form

ϕ(x) =
∑

α∈Zs

a(α)ϕ(Mx− α), x ∈ Rs, (1.1)

where ϕ = (ϕ1, ..., ϕr)T is in (Lp(Rs))r, 0 < p ≤ ∞, a is a finitely supported
refinement mask such that each a(α) is an r × r (complex) matrix and M is an
s × s integer matrix such that limn→∞M−n = 0. The equation (1.1) is called a
homogeneous refinement equation and the matrix M is called a dilation matrix.
It is well-known that refinement equations play an important role in wavelet anal-
ysis. Most useful wavelets in applications are generated from refinable functions.
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2 Lp SOLUTIONS OF VECTOR REFINEMENT EQUATIONS

The approximation and smoothness properties of wavelets are determined by the
corresponding refinable functions.

For 0 < p ≤ ∞, by (Lp(Rs))r we denote the linear space of all vectors f =
(f1, ..., fr)T such that ||f ||p < ∞, where

||f ||p :=




r∑

j=1

∫

Rs

|fj |pdx




1
p

, 1 ≤ p < ∞,

||f ||p :=
r∑

j=1

∫

Rs

|fj |pdx, 0 < p < 1,

and ||f ||∞ is the essential supremum of max1≤j≤r |fj | on Rs. When 1 ≤ p ≤ ∞,
|| · ||p is a norm and, equipped with this norm, (Lp(Rs))r is a Banach space. For
0 < p < 1, || · ||p is a invariant metric, with this metric, (Lp(Rs))r is a complete
metric linear space.

The Fourier transform of a vector of functions in (L1(Rs))r is defined by

f̂(ξ) :=
∫

Rs

f(x)e−ix·ξdx, ξ ∈ Rs, (1.2)

where x · ξ denotes the inner produce of two vectors x and ξ in Rs.
The shifts of compactly supported functions f1, ..., fr ∈ Lp(Rs)(0 < p ≤ ∞) are

said to be Lp-stable if there exist two positive constants C1 and C2 such that, for
arbitrary b1, ..., br ∈ `p(Zs),

C1

r∑

j=1

||bj ||p ≤ ||
r∑

j=1

∑

α∈Zs

bj(α)fj(· − α)||p ≤ C2

r∑

j=1

||bj ||p,

where `p(Zs) denotes the linear space of all sequence c for which ||c||p < ∞, the
`p-norm or quasi-norm of c is defined by

||c||p =

( ∑

α∈Zs

|c(α)|p
)1/p

, 0 < p < ∞,

and ||c||∞ is the supremum of |c| on Zs. Clearly, || · ||p is a norm for 1 ≤ p ≤ ∞,
and is a quasi-norm for 0 < p < 1.

In [1], Jia and Micchelli established the following characterization for Lp-stability
when 1 ≤ p ≤ ∞ : The shifts of f1, ..., fr are Lp-stable if and only if, for any ξ ∈ Rs,

the sequence (f̂(ξ + 2βπ))β∈Zs(k = 1, ..., r) are linear independent. In [2], Jia ob-
tained a similar characterization for Lp-stability of the shifts of a finite number of
compactly supported distributions when 0 < p < 1.
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Taking the Fourier transform of both sides of (1.1), we obtain

ϕ̂(ξ) = H((MT )−1ξ)ϕ̂((MT )−1ξ), ξ ∈ Rs, (1.3)

where MT denotes the transpose of M, and

H(ξ) :=
1

|detM |
∑

α∈Zs

a(α)e−iα·ξ, ξ ∈ Rs. (1.4)

Evidently, H(ξ) is 2π-periodic. If ϕ̂(0) 6= 0, then ϕ̂(0) is an eigenvector of the
matrix H(0) corresponding to eigenvalue 1.

Let ϕ = (ϕ1, ..., ϕr)T be a vector of compactly supported functions in (L1(Rs))r

satisfying refinement equation (1.1). It was proved in [3] and [4] that if ϕ̂(0) 6= 0
and span {ϕ̂(2πβ) : β ∈ Zs} = Cr. Then H(0) satisfies condition E. We say that a
matrix A (or an operator A defined on a finite dimensional linear space) satisfies
condition E if ρ(A) ≤ 1, 1 is the unique eigenvalue on the unit circle and 1 is
simple (the spectral radius of A is denoted by ρ(A)).

In this paper we assume that H(0) satisfies condition E. Thus, there is a non-
singular matrix V so that V H(0)V −1 has the form

(
1 0
0 Λ

)
, (1.5)

where Λ is an (r − 1) × (r − 1) matrix that satisfies limn→∞ Λn = 0. Define
b(α) = V a(α)V −1, then ψ = V ϕ satisfies the refinement equation

ψ =
∑

αZs

b(α)ψ(M · −α), x ∈ Rs, (1.6)

where ϕ is a solution of (1.1). Therefore, we may assume that the r × r matrix
H(0) has the form (1.5), without losing anything.

For j = 1, 2, ..., r, we use ej to denote the jth column of the r×r identity matrix.
It is easily seen that

H(0)e1 = e1. (1.7)

The question of existence of solutions of refinement equations (1.1) has attracted
much attention from mathematicians in approximation theory and wavelet anal-
ysis. The existence of the compactly supported distribution solution of (1.1) was
considered by Heil and Colella [4], by Cohen, Daubechies and Plonk [5] for the
case s = 1 and M = 2, by Zhou [6] for the case r = 2, M = 2I and by Jiang and
Shen [7] for the case M = 2I. Micchelli and Prautzsch [8] obtained necessary and
sufficient condition for the existence of continuous solutions of refinement equa-
tions (1.1) for r = 1, s = 1 and M = 2. Heil and Colella [9] also characterized
the existence of continuous solutions for the case M = 2 and r = 1. The contin-
uous solutions and Lp-solutions (1 ≤ p < ∞) of refinement equations (1.1) were
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also characterized in [10], [11] and [12] for the case s = 1 and M = 2. Under the
assumption that H(0) has the form (1.5), Jiang [13] provided a characterization
of the existence of L2-solutions of the equation (1.1). It is well-known that if the
subdivsion schemes associated with mask a and dilation matrix M converges to
some ϕ in Lp-norm, then the lim ϕ is a solution of (1.1) in Lp space. Therefore, it
is also an efficient way to characterize the existence of the Lp-solution of equation
(1.1) by investigating the convergence of the subdivsion schemes associated with
equation (1.1) in Lp space. Under the condition that H(0) has the form (1.5),
the Lp-convergence of subdivsion schemes was studied by author in [14] for the
case 1 ≤ p ≤ ∞. However, from example 1 provided by Jia, Lau and Zhou in [11],
we know that the Lp-convergence of subdivsion schemes is a sufficient but not a
necessary condition for the existence of Lp-solutions. Therefore, it is necessary to
give a complete characterization of Lp-solutions of refinement equations (1.1).

The purpose of this article is to give a characterization of the existence of Lp-
solutions of refinement equation (1.1) in terms of the p-norm joint spectral radius
of a finite collection of some linear operators determined by the sequence a and
the set E restricted to a certain invariant subspace when 0 < p ≤ ∞, where the set
E is a complete set of representatives of the distinct cosets of the quotient group
Zs/MZs containing 0. We point out that when 0 < p < 1, the results given in this
paper are new even for r = 1, s = 1 and M = 2.

2. Characterization of Lp-Solutions.

In this section we give a characterization for the existence of Lp-solutions of
the refinement equation (1.1) by using of some ideas of [10], [14] and [15]. Our
characterizations are based on p-norm joint spectral radius of a finite collection of
some linear operators determined by the sequence a and the set E restricted to a
certain invariant subspace, where the set E is a complete set of representatives of
the distinct cosets of the quotient group Zs/MZs containing 0.

Let (`0(Zs))r denote the linear space of all finitely supported sequences of r×1
vectors on Zs.

Let M be a fixed dilation matrix with m = |detM |. Then the coset spaces
Zs/MZs consists of m elements. Let γk +MZs, k = 0, 1, ..., m−1 be the m distinct
elements of Zs/MZs with γ0 = 0. We denote E = {γk, k = 0, 1, ...,m − 1}. Thus,
each element α ∈ Zs can be uniquely represented as ε + Mγ, where ε ∈ E and
γ ∈ Zs. For ε ∈ E, and a ∈ (`0(Zs))r×r, the linear space of all finitely supported
sequences of r × r matrices, we define the linear operators Aε on (`0(Zs))r as

Aεu(α) :=
∑

β∈Zs

a(ε + Mα− β)u(β), α ∈ Zs, u ∈ (`0(Zs))r. (2.1)

The main tool in our study is the joint spectral radius of a finite collection
of some linear operators defined by (2.1). The uniform joint spectral radius was
introduced by Rota and Strang in [16]. The mean spectral radius was introduced
by Wang in [17]. The p-norm joint spectral radius was introduced by Jia in [18]
for 1 < p < ∞ and was used implicitly by Lau and Wang [12] independently.
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When 0 < p < 1, the p-norm joint spectral radius appeared in [19] and [20].
These concepts play an important role in the investigation of wavelets. Zhou [20]
provided an efficient formula to compute the p-norm joint spectral radius in terms
of the spectral radius of some finite matrix when p is an even integer. Let us
review some notions of p-norm joint spectral radius from [21].

Let A = {Aε : ε ∈ E},W = (`0(Zs))r, where Aε is given by (2.1). A vector
norm || · || on W induces a norm on the linear operators on W as follows:

||A|| := max
||v||=1

{||Av||}.

As usual, for 0 < p < ∞, the `p norm or quasi-norm of an element c = (c1, ..., cr)
in (`0(Zs))r is defined by

||c||p =




r∑

j=1

∑

α∈Zs

|cj(α)|p



1/p

,

and ||c||∞ is the supremum of max1≤j≤r |cj | on Zs.

A subspace of W is said to be A-invariant if it is invariant under every operator
in A. For w ∈ W, we call the intersection of all A-invariant subspace of W con-
taining w the minimal A-invariant subspace generated by w, denoted as W (w).
For a positive integer n we denote by An the Cartesian power of A :

An = {(A1, ..., An) : A1, ..., An ∈ A}.

When n = 0, we interpret A0 as the set {I}, where I is the identity mapping on
W.

Let
||An||∞ := max{||A1 · · ·An|| : (A1, ..., An) ∈ An}.

Then the uniform joint spectral radius of A is defined to be

ρ∞(A) := lim
n→∞

||An||1/n
∞ . (2.2)

The p-norm joint spectral radius of A is defined to be

ρp(A) = lim
n→∞

||An||1/n
p , (2.3)

where

||An||p :=


 ∑

(A1,...,An)∈An

||A1 · · ·An||p



1/p

, 0 < p < ∞.

It is a classical fact that this limit exists and equals the infimum:

lim
n→∞

||An||1/n
p = inf

n∈N
||An||1/n

p . (2.4)
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Clearly, ρp(A) is independent of the choice of the vector norm on W.

We denote, for 0 < p < ∞, w ∈ W,

||Anw||p :=
(∑

(A1,...An)∈An
||A1 · · ·Anw||p

)1/p

,

and, for p = ∞,

||Anw||∞ := max{||A1 · · ·Anw|| : (A1, ..., An) ∈ An}.

It was proved in [21] and [19] that there exist two positive constants C3 and C4

such that

C3||Anw||p ≤ ||An|W (w)||p ≤ C4||Anw||p, n ∈ N, 0 < p ≤ ∞, (2.5)

where W (w) denotes the minimal common A- invariant subspace generated by w.
In order to study Lp-solutions of the refinement equation we shall employ the

following iteration scheme. Let Qa be the linear operator on (Lp(Rs))r given by

Qaf(x) :=
∑

α∈Zs

a(α)f(Mx− α), f ∈ (Lp(Rs))r. (2.6)

Let ϕ0 be an r × 1 initial vector of functions in (Lp(Rs))r(0 < p ≤ ∞). For
n = 1, 2, ..., let ϕn := Qn

aϕ0. If (ϕn)n=1,2,... converges to some ϕ in the Lp space
for 0 < p ≤ ∞, then the limit ϕ is a solution of (1.1) in (Lp(Rs))r(0 < p ≤ ∞).
Iterating (2.6) n times gives

Qn
aϕ0(x) =

∑

α∈Zs

an(α)ϕ0(Mnx− α), n = 1, 2, ..., (2.7)

where for n = 1, 2, ..., a1 = a and an is defined by following iterative relations,

an(α) =
∑

β∈Zs

an−1(β)a(α−Mβ), α ∈ Zs. (2.8)

Lemma 2.1. Let A = {Aε : ε ∈ E} and v ∈ (`0(Zs))r. Then

||Anv||p = ||an ∗ v||p, 0 < p ≤ ∞,

where, for an,∈ (`0(Zs))r×r and v ∈ (`0(Zs))r, the discrete convolution of an and
v, denoted an ∗ v, is given by

an ∗ v(α) =
∑

β∈Zs

an(α− β)w(β), α ∈ Zs, (2.9)
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and an is defined by (2.8).

Proof. Suppose α = ε1 + Mε2 + · · · + Mn−1εn + Mnγ, where ε1, ..., εn ∈ E
and γ ∈ Zs. Then by Lemma 2.1 of [22] we have

an ∗ v(α) = Aεn ...Aε1v(γ).

Hence Lemma 2.1 is true for p = ∞. When 0 < p < ∞ we have

||an ∗ v||p =
∑

α∈Zs

|an ∗ v(α)|p

=
∑

ε1,...,εn∈E

∑

γ∈Zs

|Aεn ...Aε1v(γ)|p.

This verifies Lemma 2.1 for 0 < p < ∞.

For β ∈ Zs, we denote by δβ the sequence on Zs given by

δβ(α) =
{

1, for α = β,

0, for α ∈ Zs \ {β}.

In particular, we write δ for δ0. For a vector λ ∈ Zs, the difference operator ∇λ

on `(Zs) is given by

∇λv = v − v(· − λ), λ ∈ `(Zs).

For simplicity, we write ∇j for ∇ej , j = 1, ..., s.

We are in a position to give characterizations for the existence of Lp-solutions
and continuous solutions of refinement equations.

Theorem 2.2. Let A = {Aε : ε ∈ E}, 1 ≤ p ≤ ∞, where Aε are the linear
operators on (`0(Zs))r given by (2.1). Let M be a general dilation matrix with m :=
|detM |, a ∈ (`0(Zs))r×r such that H(0) defined by (1.4) has the form (1.5). Let V
be the minimal common A-invariant subspace generated by e1∇jδ, e2∇jδ, ..., er∇jδ,
where j = 1, 2, ..., s. If

ρp(A|V ) < m1/p, (2.10)

then there exists a compactly supported solution ϕ ∈ (Lp(Rs))r(ϕ ∈ (C(Rs))r in
the case p = ∞) of refinement equation (1.1) with mask a and dilation matrix
M subject to ϕ̂(0) = (1, 0, ..., 0)T . Conversely, if ϕ ∈ (Lp(Rs))r(ϕ ∈ (C(Rs))r in
the case p = ∞) is a compactly supported solution of (1.1) such that the shifts of
ϕ1, ..., ϕr are stable, then (2.10) holds true.

Proof. We choose f to be eT
1 ϕ0, where ϕ0 is the function given by

ϕ0(x) =
s∏

j=1

χ(xj), x = (x1, ..., xs) ∈ Rs,
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and χ(t) is the characteristic function of the interval [0, 1). We want to prove that
(Qn

af)n=1,2,... is a Cauchy sequence in (Lp(Rs))r. From (2.7) we have

Qn+1
a f −Qn

af = Qn
af0 =

∑

α∈Zs

an(α)f0(Mnx− α),

where f0 = Qaf − f.
By simple computation, we obtain

||Qn
af0||pp =

∫

Rs

|(Qn
af0)(x)|pdx

=
∑

β∈Zs

∫

M−n([0,1)s+β)

|(Qn
af0)(x)|pdx.

Putting x = M−n(y + β) in the above integral, it follows from Lemma 2.1 that

||Qn
af0||pp = m−n

∫

[0.1)s

∑

β∈Zs

|
∑

α∈Zs

an(α)f0(y + β − α)|pdy

= m−n

∫

[0,1)s

||an ∗ vy||ppdy

= m−n

∫

[0,1)s

||Anvy||ppdy, (2.11)

where vy(α) = f0(y + α) for α ∈ Zs, y ∈ [0, 1)s and for a vector of functions
ψ = (ψ1, ..., ψr)T ∈ (Lp(Rs))r, |ψ|p =

∑r
j=1 |ψj(x)|p. By (2.6), we know that for

y ∈ (0, 1]s, α ∈ Zs,

vy(α) = Qaf(y + α)− f(y + α)

=
∑

β∈Zs

a(β)f(My + Mα− β)− e1δ(α)

=
∑

η∈Zs

a(Mβ − η)f(My + η − β)− e1δ(α).

Note that for any y ∈ (0, 1]s, there exists a unique ηy ∈ Zs, such that My + ηy ∈
(0, 1]s. It follows from that there exist γy ∈ Zs and γl ∈ E such that

vy(α) = a(Mα− ηy)e1 − e1δ(α) = a(Mα−Mγy + γl)− e1δ(α)

= Aγl
(e1δ)(α− γy)− e1δ(α).

Let vi = Aγi(e1δ)− e1δ for i = 0, 1, ...,m− 1. Then

vy(α) = vl(α) + Aγl
(e1δMγy )(α)−Aγl

(e1δ)(α).
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While δMγy
−δ can be written as a finite linear combination of∇jδβ , j = 1, 2, ..., s, β ∈

Zs. By Lemma 2.1, it is easily shown that

||An+1(e1∇jδβ)||p = ||An+1(e1∇jδ)||p, β ∈ Zs. (2.12)

Following (2.2), (2.3), (2.4) and (2.5), in order to prove that the sequence (Qn
af)n=1,2,...

converges in the Lp-norm, it suffices to show that for any y ∈ (0, 1]s

lim
n→∞

||Anvl||1/n
p ≤ ρ(A|V ). (2.13)

In fact, since ρ(A|V ) < m1/p, we can choose a number σ such that m−1/pρ(A|V ) <
σ < 1. Therefore, there exists a constant C independent of n and y such that

m−1/p||Anvl||p ≤ Cσn.

It follows from (2.11) that (Qn
af)n=1,2,... converges to some ϕ in the Lp-norm.

In the case p = ∞, since each Qn
af is continuous, the lim ϕ is also continuous.

Furthermore, by simple computation, we have

Q̂n
af(0) = H(0)nf̂(0) = H(0)ne1 = (1, 0, ..., 0)T .

Taking the limit as n →∞ in the above equation, we obtain ϕ̂(0) = (1, 0, ..., 0)T .
Let us show (2.13). To prove (2.13), it suffices to show that

lim
n→∞

||An(v0 + v1 + · · ·+ vm−1)||1/n
p ≤ ρ(A|V ) (2.14)

and
lim

n→∞
||An(v0 − vi)||1/n

p ≤ ρ(A|V ), i = 1, 2, ...,m− 1. (2.15)

To verify (2.14), we observe that from (1.7)

v0 + v1 + · · ·+ vm−1 =
m−1∑

j=0

∑

β∈Zs

a(Mβ + γj)e1δβ −me1δ

=
m−1∑

j=0

∑

β∈Zs

a(Mβ + γj)e1(δβ − δ).

Since a(α) is a finitely supported sequence of r×r matrices, δβ−δ can be written as
a finite linear combination of ∇jδη, j = 1, 2, ..., s, η ∈ Zs. Therefore, v0 +v1 + · · ·+
vm−1 can be written as a finite linear combination of ei(∇jβη), i = 1, 2, ..., r, j =
1, 2, ..., s, η ∈ Zs. By using of (2.5) and (2.12), this proves (2.14). To prove (2.15),
we observe that

Aγ0(e1δ)(α) =
∑

β∈Zs

a(Mα− β)e1δ(β) = a(Mα)e1 = Aγi(e1δγi)(α).



10 Lp SOLUTIONS OF VECTOR REFINEMENT EQUATIONS

It follows that

v0 − vi = Aγ0(e1δ)−Aγi
(e1δ) = Aγi

(e1δγi
− e1δ).

Hence, for n = 1, 2, ..., we have

||An(v0 − vi)||p ≤ ||An+1(e1(δγi
− δ))||p.

Following above discussion, we can prove (2.15). This complete the proof of the
sufficiency part of the theorem.

Next, we establish the necessity part of the theorem. Let ϕ = (ϕ1, ..., ϕr)T be a
compactly supported Lp-solution of (1.1). Iterating the refinement equation (1.1)
n times, we obtain

ϕ =
∑

α∈Zs

an(α)ϕ(Mn · −α),

where the sequence an(n = 1, 2, ...) are defined by (2.8). It follows that

ϕ− ϕ(· −M−nej) =
∑

α∈Zs

∇jan(α)ϕ(Mn · −α).

If the shifts of ϕ1, ..., ϕr are stable, then there exists a constant C5 > 0 such that
for n = 1, 2, ...,

m−n/p||∇jan||p ≤ C5||ϕ− ϕ(· −M−nej)||p.

Therefore, we obtain

m−n/p||∇janel||p ≤ C5||ϕ− ϕ(· −M−nej)||p, j = 1, 2, ..., s, l = 1, 2, ..., r, n ∈ N.
(2.16)

Note that ||∇janel||p = ||an ∗ (el∇jδ)||p. It follows from Lemma 2.1 that

lim
n→∞

||∇janel||1/n
p = lim

n→∞
||An(el∇jδ)||1/n

p .

Since limn→∞ ||ϕ − ϕ(· − M−nej)||p = 0, then we obtain from (2.5) and (2.16)
that ρ(A|V ) < m1/p. This complete the proof of the necessity of the theorem.

Remark 2.3. We remark that under the stability condition on ϕ, we give a com-
plete characterization for the existence of the Lp-solution of equation (1.1) with
1 ≤ p ≤ ∞. When s = 1 and M = 2, this result was established in [10]. In
[11], Jia, Lau and Zhou gave a complete characterization for the existence of the
Lp-solution of equation (1.1) without assuming stability when s = 1,M = 2 and
1 ≤ p ≤ ∞.

By using same method as in the proof of Theorem 2.2, we can obtain following
theorem.
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Theorem 2.4. Let A = {Aε : ε ∈ E}, 0 < p < 1, where Aε are the linear operators
on (`0(Zs))r given by (2.1). Let M be a general dilation matrix with m := |detM |,
a ∈ (`0(Zs))r×r such that H(0) defined by (1.4) has the form (1.5). Let V be
the minimal common A-invariant subspace generated by e1∇jδ, e2∇jδ, ..., er∇jδ,
where j = 1, 2, ..., s. If

ρp(A|V ) < m1/p, (2.17)

then there exists a compactly supported solution ϕ ∈ (Lp(Rs))r(0 < p < 1) of
refinement equation (1.1) with mask a and dilation matrix M. Conversely, if ϕ ∈
(Lp(Rs))r(0 < p < 1) is a compactly supported solution of (1.1) such that the shifts
of ϕ1, ..., ϕr are stable, then (2.17) holds true.

Remark 2.5. We remark that Theorem 2.4 is new even for s = 1,M = 2 and
r = 1.

3. Characterization of the existence of continuous solution.

In this section we give a complete characterization for the existence of continu-
ous solution of equation (1.1) without assuming stability when M is an isotropic
dilation matrix. A dilation matrix M is isotropic if M is similar to a diagonal
matrix diag(σ1, ..., σs) such that |σ1| = · · · = |σs|. Some other notions used in
this section are same as in section 2. Let ϕ ∈ (C(Rs))r be a nonzero compactly
supported solution of (1.1), then

ϕ(α) =
∑

β∈Zs

a(Mα− β)ϕ(β), α ∈ Zs.

By (2.1), we know that
Aγ0ϕ(α) = ϕ(α).

That is, the sequence u ∈ (`0(Zs))r given by u(α) = ϕ(α), α ∈ Zs, is an eigenvector
of Aγ0 associated with eigenvalue 1.

Given an eigenvector u ∈ (`0(Zs))r of Aγ0 associated with eigenvalue 1, we
want to find a continuous solution ϕ of refinement equations (1.1) for the case
in which M is isotropic such that ϕ|Zs = u. When M is an isotropic dilation
matrix, a necessary and sufficient condition for the existence of thus solution is that
ρ∞(A|U ) < 1, where U is the minimal common A-invariant subspace generated
by ∇ju, j = 1, 2, ..., s.

Theorem 3.1. Let A = {Aε : ε ∈ E}, a ∈ (`0(Zs))r×r,M be defined to be an
isotropic dilation matrix and u ∈ (`0(Zs))r be an eigenvector of Aγ0 associated
with eigenvalue 1. Then there exists a continuous solution ϕ = (ϕ1, ..., ϕr)T of
refinement equation (1.1) such that ϕ(α) = u(α), α ∈ Zs, if and only if

ρ∞(A|U ) < 1. (3.1)

Proof. Let ϕ be a compactly supported continuous solution satisfying (1.1) with
ϕ(α) = u(α) for every α ∈ Zs. Iterating the refinement equation (1.1) n times, we
have

ϕ =
∑

α∈Zs

an(α)ϕ(Mn · −α).
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Then
ϕ(M−nη) =

∑

α∈Zs

an(α)ϕ(η − α) = an ∗ u(η), η ∈ Zs, n ∈ N.

By the definition of the difference operator ∇λ, we have

ϕ(M−nη)− ϕ(M−n(η − ej)) = an ∗ ∇ju(η), η ∈ Zs, n ∈ N.

Since ϕ is compactly supported, it follows that

||an ∗ ∇ju||∞ ≤ ||ϕ− ϕ(· −M−nej)||∞ → 0, n →∞.

By (2.4), (2.5) and Lemma 2.1, we show that

ρ∞(A|U ) < 1.

Which implies the proof of the necessity part.

Next,we prove the sufficiency part. We follow the lines of [15]. Suppose that
(3.1) holds, then there exist ρ with ρ∞(A|U ) < ρ < 1 and constant C > 0 such
that

||An∇j u||∞ ≤ Cρn, j = 1, ..., s, n ∈ N.

By Lemma 2.1, we have

||an ∗ ∇j u||∞ = ||∇j (an ∗ u)||∞ ≤ Cρn, j = 1, ..., s, n ∈ N. (3.2)

We define the solution ϕ on the sets {M−nZs|n ∈ N} by

ϕ(η) := u(η), ϕ(M−nη) := an ∗ u(η), η ∈ Zs, n ∈ N.

We observe from Aγ0u = u that for η ∈ Zs and n ∈ N,

an ∗ u(Mη) =
∑

β∈Zs

an−1(β)
∑

α∈Zs

a(α−Mη)u(Mη − α)

=
∑

β∈Zs

an−1(β)Aγ0u(η − β)

=an−1 ∗ u(η).

It follows that ϕ is well-defined on the sets {M−nZs|n ∈ N}, and ϕ(α) = u(α), α ∈
Zs.

When x ∈ Rs is not in the sets {M−nZs|n ∈ N}. Note that

Rs = ∪α∈Zs(T + α), (3.3)

where T = {∑∞
j=1 M−jηj−1 : each ηj ∈ E}. Then x can be uniquely written as

x = α +
∞∑

j=1

M−jηj−1, α ∈ Zs, ηj ∈ E.
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The solution ϕ on Rs \ {M−nZs|n ∈ N} is defined by

ϕ(x) = lim
n→∞

ϕ(α +
n∑

j=1

M−jηj−1) =: lim
n→∞

ϕn(x).

To prove the existence of the limit, we only need to show that (ϕn)n∈N is a Cauchy
sequence in (L∞(Rs))r. We observe that for n ∈ N,

ϕn+1(x)− ϕn(x)

= ϕ(α +
n+1∑

j=1

M−jηj−1)− ϕ(α +
n∑

j=1

M−jηj−1)

= an+1 ∗ [u(Mn+1α + Mnη0 + Mn−1η1 + · · ·+ ηn)

− u(Mn+1α + Mnη0 + Mn−1η1 + · · ·+ Mηn−1)].

Since u(Mn+1α+Mnη0+Mn−1η1+· · ·+ηn) −u(Mn+1α+Mnη0+Mn−1η1+· · ·+
Mηn−1) can be written as a finite linear combination of ∇ju(Mn+1α + Mnη0 +
Mn−1η1 + · · ·+ Mηn−1 + β), j = 1, 2, ..., s, β ∈ Zs. By (3.2), we see that (ϕn)n∈N
is a Cauchy sequence in (L∞(Rs))r which implies that the limit exists and ϕ is
well-defined for x ∈ Rs.

To prove the continuity of ϕ, let || · ||E be the Euclidean norm on Rs. From [23],
we know that there exists an equivalent norm || · || on Rs (or on Cs) such that

||Mx|| = m1/s||x||. (3.4)

Let x, y ∈ Rs. Suppose that

m
−n−1

s ≤ ||x− y|| < m
−n
s

for certain n ∈ N. There exist α, β ∈ Zs such that Mnx ∈ T +α and Mny ∈ T +β.
By (3.4), we have

m
−1
s ≤ ||Mnx−Mny|| < 1. (3.5)

Therefore, there exists an absolute constant C1 such that

||ϕ(M−nα)− ϕ(M−nβ)||∞

≤ C1

s∑

j=1

||an ∗ ∇ju||∞

≤ C1Csρn. (3.6)

Since x ∈ M−nT + M−nα and y ∈ M−nT + M−nβ. By (3.2), we have for any
n ∈ N,

||ϕ(x)− ϕ(M−nα)||∞

≤
∞∑

l=n+1

||ϕn+1(x)− ϕn(x)||∞

≤ C

∞∑

l=n+1

ρl =
Cρn+1

1− ρ
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and

||ϕ(y)− ϕ(M−nβ)||∞

≤
∞∑

l=n+1

||ϕn+1(y)− ϕn(y)||∞

≤ C

∞∑

l=n+1

ρl =
Cρn+1

1− ρ
.

Hence

||ϕ(x)− ϕ(y)||∞
≤ ||ϕ(x)− ϕ(M−nα)||∞ + ||ϕ(y)− ϕ(M−nβ)||∞
+ ||ϕ(M−nα)− ϕ(M−nβ)||∞

≤ 2Cρn+1

1− ρ
+ CC1sρ

n.

By (3.5), it follows that there exists an absolute constant C2 such that

||ϕ(x)− ϕ(y)||∞ ≤ C2||x− y||− log
m1/s ρ.

This proves the continuity of ϕ.

Finally, we prove the refinement relation (1.1). Let n ∈ N and α ∈ Zs, it is easy
to prove by induction that

an+1(α) =
∑

β∈Zs

a(β)an(α−Mnβ), (3.7)

where the sequence (an)n∈N be given by (2.8). Hence, for any η ∈ Zs

ϕ(M−n−1η) =
∑

α∈Zs

∑

β∈Zs

a(β)an(α−Mnβ)u(η − α)

=
∑

β∈Zs

a(β)an ∗ u(η −Mnβ)

=
∑

β∈Zs

a(β)ϕ(M−nη − β).

This show that ϕ satisfies refinement equation (1.1) on the set {M−nZs|n ∈ N}.
By the continuity of ϕ, we know that ϕ satisfies refinement equation (1.1) for all
x ∈ Rs. We finish the proof of Theorem 3.1.
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Remark 3.2. Theorem 3.1 was established in [15] for the case s = 1 and M = 2.
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