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1 Introduction

Let 3’ be a point on the unit sphere S"~! in R™ (n > 2) and do be the induced Lebesgue
measure on S"~!. The Calderén-Zygmund singular integral, initially defined on S(R"), is
defined by

Q(y")
po. [ Bl F e ),

where b is a measurable function and Q € L'(S"7!) is a homogeneous function of degree

0 and satisfies [¢n—1 Q(y')do(y') = 0. The study and applications of this operator have a
long history, for example, see [1], [8]-[11] and their references, etc. In this paper, we are
interested in two maximal operators related to this integral. The first operator is defined
in [5] by

7)) =sup | [ 1) T0 1~ )

where the supreme is over the set of all radial function h satisfying

Il 2 ey = (b))

In [5], Chen and Lin proved that if Q € C(S™~!), then || T(f)

2ﬁ)1/2§1_
r

I, < CarlIf], for p> 52

2n
2n—1

Also, they pointed out that the range p > is the best possible. However, in this
paper, we will prove that the condition 2 € C(S"™!) can be greatly weakened. We will

prove the following theorem.

Theorem 1 (i) If @ € HY(S™ ') and satisfies [gu-1 QUa')do(2') = 0 where H'(S™™1)
is the Hardy space on S™~!, then TN, < Copallfll, for all 2 < p < oo. (i) If
Q € LI(S™Y) satisfies [gu-1 Qa')do(2') = 0, ¢ € (1,2] and nq,in% < p < o0, then
1T, < Crpa llfIl,, where ¢" is the conjugate index of q.

Theorem 1 can be extended to the product space. We define

h Q' v
[ MR
RnxR™

Jul™ o™

T(f)(x7 y) = sup
heA?

where A? consists of all h satisfying

drds
Wl s sy = ([ (s T

)1/2 < 1
RtxR+ rs -

)



and Q € L'(S™ 1 x §™~1) satisfies the cancellation condition

(/ suuxvquuq::/‘ Qo (v) =0 (Y v') € ST x ST (1)
Sn— 1 Sm—
We have

Theorem 2 (i) If Q € L(logTL)2(S"1 x S™ 1) and satisfies (1), then IT(HI, <
Crmpa | fll, for all 2 < p < oco. (i) If © € Li(S"1 x Sm=Y) and satisfies (1) and
20q¢

€ (1,2], then |T(f)ll, < Coma e llf|l, for ;o755 < v <00, where o = min(n, m).

Theorem 2(i7) has the following generalization. For a > 1, consider the maximal

operator

T*(f)(x,y) = sup

h Q / /
/’ (el DXLV ) — )
heA> |JRMxR™

Jul™ o™

where A consists of all h satisfying

o drds. i/,
Il ot = (o I 2 <0

RTtxRt rs

We have

Theorem 3 For a € [1,2], ¢ € (1,2], Q € LI(S"! x ™) satisfying (1), we have

17O, < Crmpas | fIl, for all p € (% o0), where o = min(n,m).

oq'+a’o—a’?

The second operator we shall consider is

h(lul, [v))Q(u', V)

n m
vl

S = | [ P,y — v)duds

Q |ul

where the supreme is over the set of all Q satisfying [ ;¢(gn-1xgm-1y < 1 and the

cancellation condition (1). We have

Theorem 4 For ¢ > 1 and ¢ < p < oo, S is LP—bounded. It also works for the one

parameter case.



2 Proofs of the Theorems

2.1 Proof of Theorem 1

We follow the argument in [5]. By duality,

L. 20N =2 1))doty)

400 2 2dt 1/2
T(f)(x)= i
(@) (k_zw/ t)

Recalling that Q € H'(S"!) has atomic decomposition (see [6]), we may assume that

Qy") = a(y’') is an H'—atom which means that a(y’) is an L>-function satisfying

supp(a) C {y' € S"71: |y — x(| < p for some zf, € S" ! and p € (0,1]};
Jon-1aly')do(y') = 0; lal < pm 1.
Also, without loss of generality, we assume z;, =1 = (1,0,---,0). Now to prove (i) of the

theorem, it suffices to show that

TN, < CrplIfl, for p =2,

where Cy,;, is a constant independent of atoms a(y’).
Let {®;}7% be a smooth partition of the unit in (0,00) adapted to the interval
(27-1,27+1) To be precise, we require the following:
+oo
®; € C®(0,00),0<®; <1, ¥ P(t)=1forallt e (0,00),
j=—o00

supp(®;) C (27971 27+,

Define the multiplier operators S; on R" by

(S;(MNNE) = FOB;(|A4)

where A, is the linear transform such that A,& = (p%&;, pa, -+ -, p&pn).

Following the argument on page 123 of [5], we have
T(f)(@) = _Ti(f)(=),
J

where

[ Q) (Sess Dl = 21/ o)

1/2
2 dr
, :

—+00 2
7)) = (k;_oo /



By Plancherel’s theorem and Fubini’s theorem,
2 1 2o |?
HTj(f)Hg = N > f2—(k+j)—1§|Ap5|§2—(k+j)+1 f(g)‘
=—00

' {f12 [fsns Qe Sdo(y)

2 2
fff} dg.

By page 327 in [8], we know

—i2kty’. 2 _iokts 2
Ih ‘fswl Qy)e W 4do(y)| & = [} ’fRFa(s)e 2t ‘5|ds‘ dé

2k+1|¢] —i 2 g
ok €] URFa(s)e Z'5Sds| &

where F,(s) satisfies

supp(Fo) C (&1 — 214,861 +2|AE'))

[ Fallog < CALE ™, [5 Fa(s)ds =0,

and & = &, A€ = (0%}, ph, -+, p&)-
Thus

2k+l

f2’“|£|

2k+l

—its 2
| Fals)e™ds” § = [
k+1 2
< Jye A€ P dt < C (21l 14,€'1) = C (28 An¢])

if 2% |A,¢| < 1. For 2% |A,¢| > 1, we have

1] i Fuls) (et — 1€t} as|*

S Fuls)eds & < 0 (2416l) B ~ € (2161) 12
k -1 -1 k -1
= C (2Pel) 14,817 = C (20]4,8])
Thus
9 100 ~ 2
IOl < © 1)

k=—o0 J2~ (k) -1<] A ¢ <2~ (ki) +1
2 -1
-min{(2k|Ap§y) (2%14,¢]) }dg
< C2 W f|l3.

By page 124 in [5], for p > 2, there is a function g in L%/ such that 9]l /2 =1 and

2 gy 2 ket 2
15O, = k:Z_ Jrn JT Jsn—1 |(Skqsf)( — 27ty)

192(y) o (y) ¢ lg(2)] dz 2],
“+oo
Cliely X Jg (k) (@)
S7 Jonr 120 g + 2*2y)

+oo 9
2 Sk )l

k=—o00

IN

do(y)Ldx

IN

cliel,

1Mo (9)l/2)
p/2



where -
Mq(g)(z) = sup g foi Joner 19W)] gz + ty)| do(y')dz

k+1
< s 190)] (s%p 12 o+ 1)) dm) do(y)).
Thus

By Littlewood-Paley theorem, we have

15 (O, < C UL, -

By interpolation, we obtain (i) of Theorem 1.
To prove (7i) of Theorem 1. First, by checking the proof on p.123 in [5], it is easy to

see that for 52 < p < 2,if Q € L?(S""1), then

ITHI, < ClIU I, -

However, in the proof of (i), we obtained

TNz < ClHAp 112 -

So, (ii) follows by interpolation.

2.2 Proof of Theorem 2

We will adapt some standard ideas in the one parameter case. By duality, we have

too 4o o 5 ;.
10w = (5 8RR 2000)

=—00J)=—00
‘ 1/2
flx — 2k y — 2jsv’)d0(u/)d0(2’/)|2%) /
Take Schwartz functions py € S(R") and py € S(R™) such that supp(pr) C {
supp(7D) € {3 < bl <2}, 0 <1 (= 1,2) and

1<zl <2},

+o0 9 400 ‘ )
Y mero[ = Y [mem| =t

k=—o00 j=—00

Set m(é) = ﬁ@ké): @(77) = @(23'17)’ and fu,l/ = (pl,u & pQ,I/) * (pl,u @PQ,V) * f where
PLu @ P2y (2,y) = pru(@)pay(y). Then, f =3, yez2 fripjrv for any (k,j) € Z* where

6



Z is the set of all integers. So, by Minkowski’s inequality, we have

T(f)(z,y) = <Z Z f1 f1| Z fsnflxsmflg(ula”/)

k=—coj==00 (nv)EZ
j 1/2
'fk+m+u(w — 2y — 20! )do () dor (o[22 )

< 2 (Z Z f1f1‘fsn 1y gm—1 (U, V)
(nv)EZ?

k=—00 j=—00

: 1/2
Srtpgro (@ — 28’y — QJSU/)dO'(u’)dO'(U/)F%) /

de
S o).
(w,v)eZ2
Now, let
W' y) = Q( "y )xe, (2, Y)
@0 _{ E Sn— 1 x §m— 1. |Q(."E/,y/)‘ < 1}
O = {(‘T ,y) € Sl x smml 2Tl <O, y)| < 21} for 1 > 1,
and

Ql(wl7y/) = O, y)+ W fSnflxs'rnfl Q (v, v )do(u)do(v')
’

(Sn 1) fSn 1 Ql(u y’)da(u’) - Wfsm,1 Ql(x’,v’)do(v’).

It is easy to see that
Q, satisfies (1) and > Q =

>0
oy <2e2jo
Ll(Sn IXSm 1)
| <2
oo Sn IXSm 1) -
Thus
Yoo > T (D)
120 (u,v)eZ?
where
l e O (ni] o
T‘u, (f)(xay) = . Z f[LZP ’fSnflemfl Ql(u y U )
sJ=—00

A 1/2
Srtpgrv (@ — 287’y — 2JSU,)dO'(U/)dO'(’U,)|2%> / .

Before continuing the proof, we first give two lemmas.

Lemma 5 For

] 0 ok !,
If‘,s(k7]7§>7]) = f[LZP |fS”_1><Sm—1 Ql(ul,’ul)627m2 rul-€
2M2 sV N () do (v') 2 s

rs



Jda € (0,1) such that

2 26| [27n)] 2l|@z|’2k§‘|2j7l|
Iy (k, 5, 6m) < Crmamin [ 200y, 2l]2k§] 29|, 2! n "%, |, (®)
2|2k 2! |2 7E 2 yzﬂny—*
Proof. Similar to the proof of Lemma 10 of [3].
Lemma 6 For Q € L?(S"! x S™~1) and
n m 2 2 o drds
G ={grs}y,; € LP(R" < B™ = I(Z° — L*([1, 2%, = =), dady),

which means that G defines on R™ x R™ and takes values in Hilbert space 1*(Z? —
L3([1,2]?, drds)) and the Hilbert space consists of all I>—sequences defined on Z? and taking
values in L?([1,2]?%, drds) there holds

(G drds
HHH ||L2([1 2]2, ) 12(Z2) LP(R™x R™, dxdy)

< Comyp 192

NG 121 g s

)
12(Z2) || Le (R x R™, dady)

where p € (2,2min(n,m)) and

Z(G)(z,y;r,s) = / Q' 0 ) grj (x + 28’y + 2507, 5)do (v )do (V) :
Sn—1xgm—1 ’ (k,j)€Z?

Proof. We shall use duality method and spherical maximal function. For p > 2,

taking an f € L®/2'(R® x R™) such that ||f||(/2 = 1 and

A ©

IG Tas
HHH ) N

o [, y)dzdy.

= fR”me ||I(G)||L2([1’2}27d:;zs)

Thus, by Holder’s inequality and changes of variables  and y, we get
= Jrnxrm f(,9) kz f[1,2]2(f5n—1 wgm-1 2w, ')
J
grj(z + 2Fru’ y + 295057, s)da(u')da(v’)y%d:):dy
< HQH Jrrnscrm Zf1 2)2 2(fgn-15gm—1 f(2,Y)

: 2
. ‘gkyj z+ 26’y + 20 s0's 1, s)do (u)do (V)| do(u')do (v') 42 dzdy




2 2
= 112 Jrn < g k:Z f[1,2]2 |9k, (@, y; 7, 5)]
7]
+Jon—1ygm-1 f(z — 2krul y — stv’)da(u’)da(v’)%dxdy

< N1QU3 Spn o MEME(S) (2 y) )y Jiv2p2 90,5,y 7y 8) 2 222 dvdy
7]

< 1903 1252251 oy | e L. 5)
7]

p/2
where

M{(f)(z,y) = sup Jon-1 [f(z —ru',y)| do(u)
M (f)(z,y) = Sup Jgm-1 | f(z,y — sv)| do (V).

So, by boundedness of spherical maximal function operators, we get

2
A < Crmyp 192

G Tas
HH ||L2([1’2}27drg) P(Z2) |l Lr (R x R™ dady)

for (p/2)" > max(-"5, -"1), i.e. p < 2min(n,m). The last inequality gives the desired
result.
Now, we shall prove Theorem 2(i).

By Plancherel’s identity, we have

785,

2 = fR"XRm ];I[LQ]Z ‘ f5n71XSm71 Ql(ul,’l)/)
’J

St (@ — 2570y — P50 )do (u)do (v |2 Ll
2 ~
- kz f[1,2}2 fRanm |(fk+u,j+y)/\(§, )| | fS"—lxsm—l Q')
5]
TS 2R g (oo (o) PdEdn 22

Thus, by the definition of fr1, j1., we get

2
l
HT“’”(f)H2 < kz f2*<k+u)fl§|§|§2(k+u>+1727(j+v)71§|n|§27(j+u)+1
J

! ; 217 ?
|2 ok, gogm)|” [ Fiem)| dedn

where I is defined in (5).

8

For p > 2, taking a g € L®P/?'(R™ x R™) such that 191l (/2 =1 and

|atu 2|, = [ (@) e ydady,



by Holder’s inequality, we have

[, = @2, < Can21O0S T Vit n)P

Qv gz + 251y + 29 s0))

[1,2]2 §n—1x §m—1
-do(u)do (v') 24 dxdy

< Cn,m2l ‘®l|R fR Z ‘fk—i—/h]-l—u(l‘ y)| M~ ( )(:L‘,y)dzcdy
n>< m

where

Mg (9)(z,y) =sup [ J
k.j [1,2]2 gn—1xgm—1

dU( )da( )drds

rs

(0 )g(x + 25ru,y + 27 s0')

< Chm Tsll>po ﬁ f{|a:|§r}><{|y|§5} Q0" )g(x +u,y + v)‘ dudv.

This implies

HMﬁz (Q)H(p/g)/ < Cnmp HQlH1 ”gH(p/g)/ < Cn,mprZ |9y .

Thus, by Holder’s inequality and Littlewood-Paley theory, we have

2
|7 < Coma?® 1002 | S Vi@ )| < Cums2® O I,

kg p/2
which shows
|7 < Coma? @211, (> 2). (®)
Now, let
Ty = > Th()y),
(mv)eZ?
we have
(L6l > Tﬁ,y(f)H
(n,v)€Z? p
< ¥ ],

(7,0)eA (,u,u)GEN xEN v,6)EA
where N will be chosen later and large enough, A = {0,1, -1}, EY = {0,£1,---,+NIi},
EN, = {~00, -+, —NI}, B} = {NI,---,+0c0}. For (v,0) = (1,1), we have that V(u,v) €
EN x BN,

|70.5)], < Com2 =" 104111511,

10



by (7) and (6), thus, by (8) and interpolation, we get

|7 D] < Crmp2 =2 | 1.
I 1 (N) < Comp2 N | £,

for some 6, € (0,1). Therefore, for sufficiently large N, we have

> I (N) < Crnp /1], - (9)
>0

Similarly, we have that for sufficiently large NV (or see proof in [3]),

l;)Hl—l,—l(N) < Comp 11,

l;)HlA,l(N) < Cramp 1f1],

EOHZL_I(N) < Crmp 11,

goné,l(N) < CrmpN QU L1ogarn) 111, 0
goHZI’O(N) < CrnpN Q| prog(ar1) 1111,

l;) I 1 (N) < CompN 19| L1ogiarry 111,

EOHQLO(N) < CompN 1] proga+ry 111,

l;)Hé,o(N) < CompN? 19l L 10g 221y I 11, -

By (3), (9) and (10), we get

1T, < CrmpN* 19Ul 10g 2241y 1 £1L (p>2) (11)

which proves Theorem 2(7).
Now, we shall prove Theorem 2(i7).
By duality, 3G = {gkyj}(k ez such that

=1
L? (R™x R™ dady)

H H HGHLQ([LQ]Q?%) l2(z2)

and
[T (O, <1082 [gny gm kZ{fkw,jw(% Y)
7-]

'(f[l,Z]Q |(I(G))k,j(xa ur, S)|2 %)1/2}d$dy

11



<1082 fpncpon (5 oo (2, 9) )
7]
(kz f[1,2]2 |(Z(G))k,j (@, y; 7, ) ? %)UQClmdy
7]

< Comp 192

)

p

(5 o))/
3J

which means that

20

[T (D, < Covmp 122 11, forp € (5—7,2) (12)

by Littlewood-Paley theory. On the other hand, by Fourier transform, it is easy to show
that

1T (Hlly < Com2” #= QUL 1£1 - (13)

So, by interpolation, we get

20
1T, < Crmp 1€2]2 1£1l,, forp € (5——7,2). (14)
Now, for Q € LI(S"~! x ™7 1) and 1 < ¢ < 2, write
T(f) @.9) = [0 F) W) e i
where
oDy = [ Q) =y — oo (),
Sn—l XSm—l
and, set
Téms(f)(SU, y) = / Qz(u/, V) f(z —ru,y — sv')do(u')do(v')
Snfl XS'mfl
where

ﬁz(xla y/) = Qz(xlv yl) + W fS"*1><Sm*1 Qz(u’, v')da(u’)da(v’)
_0(5771171) Jon-1 (' y")do(u') — 70(53%1) Jgm—1 Q. (2,0 )do (V).
Du(a',y') = |0(,y)"HE sign(a',y)
where x € (1 — 4,1) is to be determined and z is a complex number. When Re(z) = 0,
Q. € L2(8"1 x §™~1) by (14), we have

< Cran 11122 (111, (15)
LP(R"xXR™)

7G0s()|

L2(Rt xR+, drds

T8

12



for p € (5227,2). When Re(z) = 1, Q. e LY/H3)(§n=1 5 §m=1) < L(log T L)2(S" ! x
S™m=1) by (11), we have

] 6 s (F)]

Now, for v € (#2‘1;2,2) taking zo = (1 — 4)/k € (% —1,1) and p € (5221, 2) such that

< Com 19 1og 224 1) [1f1l2 - (16)

L2(R+ xR+, drds) L2(Rnx R™)

1 _ 1—=z Z q 20 ” 2
5= 0 + 7, which is possible because for K /" 5 and p N\ ST (where ” /” means

7 increasmgly tends to”, ”\,” means ”decreasingly tends to”),

1—20 20 ,0¢+20—2
3 4 20

and, for K \,1— % and p /" 2, 1—sz +2 % Noting that Q,, = €, so, by (15)-(16) and

the interpolation of analytic family of operators, we get

1T(f

S Cn7m7779 HfH’y’
LY(R™*xR™)

QT‘S L2R+XR+d'r.s

T8

which proves Theorem 2(ii) because the case v € [2,00) is a corollary of Theorem 2(7).

2.3 Proof of Theorem 3

When a = 1, by duality and Holder’s inequality, we have

/ 1//
T f)(z,y) < €[], sup (/Snlxsml |f(x —ra’,y—sv')|? da(u’)da(v’)) ! .

rsO

So, by the LP—boundedness of spherical maximal function (see [11]),

7)), < Cuman 19,111,

for p > q . On the other hand, for a = 2, by Theorem 2,

€2l 11711,

751, = o

20q’
oq'+20—-2"

Now, for o € (1,2) and H(-,-;x,y) € A%, consider

for p >

Tu.(f)(x,y) = [ Ho(r,s52,y) [gn-1,gm—1 Qu',0)
RtxRt

flx =71,y — sv')do(u)do(v')2rds

rs

13



where

H.(r,s32,y) = [H(r, s;2,9)|" =2 sign(H(r, 5;2,y))

and z is a complex number. When Re(z) =0, [|H.(-,;z,y)||a1 = [H(-, 52, 9)|ae < 1, 80
17 (£l < [T < Crma 121, 171, (17)
for p € (L%, 00). When Re(z) = 1, |Ha (-, 2.9)ll 2 = [H( s 2,9)| %0 <1, 50
17 (D), < 72D < Crma 121, 111, (18)

for p € (M/in;;iz,oo). Now, for f € C°(R"™ x R™), taking H such that ||[H (-, ;z,9)|| e <
1 and

T(f)(x,y) = Tu(f)(z,y).
Note that for zg = 2(1 — 1), Ty.,(f) = Tu(f), so, by (17) and (18) and interpolation

of analytic family of operators, for p € (O_q?:izq‘;d,oo), taking pg € (%,oo) and p; €

(72‘”, o0) such that L = 1=20 4 20 we have
oq'+20—-27 p PO p1’

17l = || T2y (D)) < Crman 12, 171,

which proves Theorem 3.

2.4 Proof of Theorem 4

We shall use the rotation method and only consider the product case. Let
LI(S™ 1 x sm71y = {Q € LIS x ™71 . Q satisfies (1)}

Similarly, we can define L ngFL(S"*1 x S™=1) and L(lo/g\jFL)Q(S"*1 x S™~1). Decompose
LI(S™ 1 x §™~1Y into four parts

1= I, + Lo+, + I,
where ”0” means odd and ”e” means even, Egye consists of all L9(S™~! x §™~1) functions
which is odd in the first variables and even in the second variables, etc. Say, Refers to [2].

So, we only need to consider the boundedness of

Sap(f)(w,y) = sup ‘/ T,)Lf( —u,y — v)dudv
ol <9kt , /R xR \“| o

14



where o, 3 = o or e.
For a = 8 = 0, we have

Qu' v’
fRnXRm W (SU - u,y - U)dud’l}
= % gn-1ygm—1 Qu V") Hy Hy (f)(x,y)do(u)do(v')

where

By duality,

=

) 1q
SolDw) < 3 ([ 1B do)o))

which means that
[190,0(NIl, < Cp Il fIl, (19)

by LP—boundedness of H, and H,, where ¢’ < p < oc.
To continue the proof, we need a Lemma from [2]. Let R} (i = 1,---,n) and R]
(j =1,---,m) denote the i — th and j — th Riesz transform on R™ and R™ respectively,

and
K{(x,y) = B (pv-QC.p) 17" 1y ™) ()
K (w,y) = B} (pv-0, ) Ja] ™" [17") (9):

Note that the functions in (20) are all homogeneous of order —n in x and homogeneous of

(20)

order —m in y, which means that there are wj, w7 on Sn=1 x §™=1 such that

Ki(z,y) = wj(@, ) =] " Jy|™™

—m

K (z,y) = wj(@, ) |2 " [y]
Define R} and R;’ as follows
R(Q)(a',y) = wi(2',y/)
R;-/(Q)({L‘/, y/) _ w;’(ﬂjl, y/).

We have

Lemma 7 R, and R;’ are bounded from Llog +L(S""1 x §™1) to L(S"1 x S™~1), and
]-?i;o]%;’ is bounded from L(loger)Q(S”_]L x SM=1) to LS 1x S™ 1) fori=1,---,n and
j=1,---.m. And, all of them are bounded from f/q(Sn_l x S™=1Y to itself for ¢ € (1, 00).
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Now, we continue the proof of Theorem 4.
For o = 8 = e, note that I = 37, >~ E;oﬁg’oﬁgoég and E;ofiy(ﬂ) € INL&O(S"*l x §m=1)
for Q Egye(S”*I x S™~1) by Lemma 7, so
See(f)(zy) = sup ‘fR"me %f(x—u,y—v)dudv‘
9l <1,Q€Lé.
RIoR! (Q)(u/ ')

ZZ]RnXRm Wﬁ; o R;’(f)(x —u,y — v)dudv
i j

= sup
e, <1,9€L e

RoR!(Q)(W/ 0) =, =~
< Z Z sSup " ’fRanm WR; o R;l(f)(l' —Uu,y — v)dudv
v all<1eeLd.

< Cnimg 2 Z]I So.o(Rj o Rj(f))(x,y)
which means that
1Se.e (N, < CrmapllfIl, (for ¢ < p < 0) (21)
by (19). Similarly, we have

[Se.o(Dl, < Crmap I£1l, (for ¢’ < p < o0)
150.e(Pll, < Crmoagw 111, (for ¢' < p < ).

(19), (21) and (22) give the desired results.
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