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Abstract
For f € S(R?) and Q € L'(S"), [4, Q(z')da’ = 0, define

Ton@ =g, [ P sy

In this paper, we shall prove that there are a class of functions in H!(S*)—L1In*L(S?!)
such that Ty is weak type L'—bounded.
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1 Introduction
For f € S(RY) and € LY(S971), [ga-1 Q(z')da’ = 0, define

To(f)(x) = lim Qy/ lyl)

f(x—y)dy. (1)
=0+ Jjo—yi>e |y

In [1], Calderén and Zygmund proved that if Q € LlnTL(S%1), i.e.
/d 19| In(2 + [9(a")])dz’ < oo, @)
G-

Tq is LP—bounded for 1 < p < oo. In [7] and [5], Ricci, Weiss and independently Connett
proved that if Q € H'(S%1), Ty is LP—bounded for 1 < p < oo. Also see [4]. But, it
remained open for long time if Tq is weak type L!'—bounded under the correspongding
conditions (for Q € LlnTL(S%1), it is a conjecture of Calderén).

In [3], Christ and Rubio de Francia proved that for Q € LIn+L(S9!) (d < 7), Tq is
weak type L'—bounded. And at the same time, in [6], Hofmann independently proved
that for Q € LI(S4™ 1) (d = 2,¢q > 1), T is weak type L' —bounded. Finally, in [8], Seeger
generalized the result to all d > 2 and Q € Lln TL(S%1).

We know that L1ln T L(S9™1) ¢ H'(S%1). So, it is natural to ask a harder question: for
Qe HY(S91), is T weak type L' —bounded? In [9], Stefanov proved that if  is a finite
sum of H!(S')—atoms with the additional assumption that the atoms are supported on
almost disjoint arcs of comparable size (note that such an  must be L°°(S')—function),

| Tall 1y essentially depends only on ||€2|| ;1. Precisely, he proved

Theorem 1 Let N,l be positive integers satisfying N < 2m2'cy where co is suitably
choosen, and I,, denote the arc in S* with center e, and satisfying |I,,| ~ 27, |I, N I,| <
smin(|L,|, [In]) forn # m. Suppose Q = SN \uay, where A, > 0 and a,, is an H'(S')—atom
on St satisfying supp(as) C In, ||lan|| < 27" and [41 an(0)d0 = 0. Then, |To| 1y <C-
(N \,) where C is independent of N and I.

In this paper, we shall prove that there are a class of functions in H'(S') — LIn+tL(S')
such that Tq is weak type L'—bounded. We have



Theorem 2 Let I,, denote the arc in S' with center e,, and length 2p,,, disjoint mutually,

and

P2

A =sup 5 < 00; (3)

oSt a7, 0 — enl
let Q = 329° Mpan, where 3°3° | \,| < 0o and ay, is an HY(SY)—atom on S* satisfying
(i) supp(an) C In,
(i) [g1 an(8)d0 =0, (4)
(i1i) |lanllo < P2
Then,
o+ | Ta(f)(@)] > A < C-AQ M)A IS (5)

n

for all f € S(R?) and \ > 0, where C is independent of f, X\ and Q.

Theorem 3 Suppose p, € (0,1) and ¥, pn < 0o. There are {e,} C S*, arcs I, C S*

with center e, and length 2p, such that for any sequence of H'—atoms {a,} (satisfying
(4))and Q@ =3, Apan,

o [ Ta(H@)| >N <C-D pu- D M-Sl (6)
for all f € S(R?) and A > 0, where C is independent of f,\ and Q.
From Theorem 3, we have
Corollary 4 For any increasing function ¢ : [0,00) — [0, 00) with ¢(0+) =0, if

lim 20) = 00, (7)

t—oo t

then, there must be an Q € H' — (L) such that Tq is weak type L'—bounded, where

o) ={o: [ e120))ds < oo},

2 Some lemmas

Without loss of generality, we always assume that > 7° A\, =1 and A, > 0.



For a rectangle Q = Q(y,r)(C R?) with center y and sides’ length 2r = (271, 2r9), let

mQ = Q(ya mr), d(Q) - max(rl, T2)‘ Set

4, =10 the longer side of @) is parallel to e,, the shorter
" " side length is p, time of the longer side length

and

My (f)(z) = sup @/Q|f(z)|dz.

TEQEA,
It is easy to see that M, is weak type L'—bounded and sup,, | M, ||;1_ 71 < 0o. Now,

we first give a modified Whitney’s decomposition.

Lemma 5 Suppose E C R? is open. There is m € RT such that for any n, there are
mutually disjoint rectangles {Qni} C Ay satisfying

(1) E=UiQn,

(i) 4Qn; C E

(4ii) mQni N EC # 0.

(iv) d(Quy) € {2k =0,41,%2,--}.

This lemma can be proved along the idea of the proof of the Whitney’s decomposition,
see[10].
For f € L'(R?) and A > 0, let

By = {z: Mu(f)(@) > 2}
E = {$ : M(f)(x) > >‘} U (UnEn)

where M is the Hardy-Littlewood maximal operator. For any n, we shall make C' — Z
decomposition of f based on the modified Whitney’s decomposition of E (not FE,, key
point). By Lemma 5, we have that £ = U;Q,; where {Q,;} satisfy the conditions in
Lemma 5. Take

bQu = (F(@) = o077 Jou.. fW)AY)XQ,. ()

(@) = i a1 Jan., fWdyxaq,.. (@)

9(@) = f(z)xpe(2)

Bnj = Xiid(@n.)=2i 0Qui-
We have



Lemma 6 Foranyn, f =g+ gn+ 2, b, ;» and

(i) Jp2bq,(x)dz =0
Sz [b@us (@) de < € 2 1Qud
i fgn s [pan.(@)] dz < 2 £,
(@) lgl3 < CXIFlly s lgnll3 < C- 25 1F1,
(i) B < S0 |Bal + {z: M(f)(@) > N < C- X7 £l

Lemma 7 Under the hypothesis of Theorem 2,
an(77)

AL

Z >\n ‘2

|.
for all f € S(R?) and A > 0.

2

<C-A- Sl (8)
2

* On

Proof. We first prove that

By a well-known computation (see [10] page 39),

ap (17 A ;
( (2)) © = [ an(®) (10— + Fsign(0,6) | a0 (10)
R st 0. &) 2
which is independent of |£]. So, we may assume |¢| = 1. Let ¢&& € S' denote anyone

of the TWO unit vectors orthogonal to &. If £&4 ¢1,,, sign(f,€) is constant for 6 € I,,

thus (without loss of generality, we may assume that ‘Z(en,ﬁl)‘ < 7/2, in this case,

[(ens )] ~ Jen — €4))

(=2) @) =|fsanl® (10168, = en, 1) 0]
< Jgi an(0)| In(1 + {0 — en, €)] |{en. )| ")d0 (11)

97 T n
< Csupyer, ’in_egj‘ = C|enp_§¢’~

By (11), we have (note that A > 1)

an(77) . ? _ ( ) an(77) A
( i ) (g) n:fielng —&tel, " n::l:fzjéln ’ ( [ ) (5)
<CI+Y—Li)<C Al

2
n ‘en—fL’

2

n

5



Thus

2 2

( )

n

=™ (a’],(';')y (9n)"
s popY (“"(!;))A © (9" O (“2) (@ (0m) ©06

. (N |
o 2 ) @ 2 |(252) @] de
<C AT R lgmlls < € AT (- 2 A1) < C- Allfll

2

Lemma 7 is proved.

Take 3 € C2°((3,2)) such that 0 < 3 < 1 and > 6(277t) = 1 for all t € RY,
¥ € C((—1,1)) such that 0 < ¢ < 1 and |11 = 1 and p*)(£3) = 0 for all
k=0,1,2,---. Let

N —j an(z/|z])
an,j(x) = B(277 |z|) |z[2 (13)

ph(@) = (v Eoa (g en)) (@),
We have

Lemma 8 Under the hypothesis of Theorem 2,

2

ZZZ)\nan]*gpn*BnJ s

s>0 n

<C- ANl - (14)

2

Proof. By a similar estimate in [9] (see section 5 below for details), we have
2

s A
g * Bnj—s|| <C2 27”f”1 (15)

2

— 2 — s
n gofl(ﬁ)‘ where s > 0. If @5 (§) = w(27€p;1(é—‘,en>) > 0, we have
‘27%p;1<é—|,en>‘ < 1, thus

en)| < 25 py. (16)

Note that ‘(é—',en)) ~ ’§L - en‘ for all n satisfying +¢+ ¢ I,, and ‘Z(en,ﬁl)‘ < 7/2, we
s -1 s

have ‘fL — en‘ < C2sp,, and thus p, ‘ﬁl — en‘ > (C276. By Theorem 2 (3), the number

of n satisfying (16) does not exceed C' A2, thus

Zio)| < cazs. (17)




By (15) and (17),

s>0n j

2 2
S(E ZZ)\nang*‘Pn*BJ s )
2 s>0 9
2
= ( E‘P% (AnZ@BnJ—s) )
s>01(| n J 9
N 9\ 1/2
(Z @%(f)‘ > Z)\% (Zaw n,j— S>
o\ 172\ 2
CA23 Y A2 )
" 2

< <s>0 (CA2§2‘§A (; /\n> HfH1>1/2>2 = CAXfl;-

2

IN

AN
/—_—\/m__\
V
o

7' * anj_s

Lemma 8 is proved.

Lemma 9 Under the hypothesis of Theorem 2,

ZZZA lan,j % (6 = 3) * Buj—slly < ClIf; (18)

s>0 n

Proof. By a similar estimate in [9] (see section 5 below for details), we have

lan; * (6 — 3|, < C27 1. (19)

So
PP IPIP Ha’rL] (6 —oy,) * Bn,j—8H1

s>0n j

< 3 S MC27E Byl = CIfll; -

s>0n j

Lemma 9 is proved.

3 Proof of Theorem 2

For fixed f and A,

To(f)(x) = Ta(g)(x) + Y H * gn(@ +ZZ)\ *me()



S0,

Ha : |To(f)(@)| > A} < T+ 11+ 111
I'=[z: |Ta(g)(z)| > A/3}|
> >\/3H (20)

II = {x: >on )\naj.(lljl) * gn ()
{x: ’zn 5 Aﬁ”ﬁ"ﬁ' > A/3H.

11l = )

By L?—boundedness of Tq,

I <COA?|[Talg)ly < CA2 [l gl

2 2 1 (21)
<Ox2 () Alfl = O sl
Similarly, we have
an(ﬁ) 2
IT <CA\72 ZAHW xgn(z)| < CANTH|S, - (22)
n : 2
For 111, we have
an(77)
ZZ)‘" HIQI * b, (T) = ;OZZ)‘nanJ * By j—s(2)
n s<0 g n
+ Z ZZ)\nan,j * Bn,jfs(x)
s>0 5 n
= > Z Z)\nan,j * Bn,jfs(l') (23)
s<0 57 n
+ Z Z E)\nan,j * (be * Bn,j—s($)
s>0 45 n
+ 22 32 Ananj * (6 — ¢p) * Bpj—s(z)
s>0 5 n
If E(Qn,l) > 2j7 Supp(an,j * an,i) C 4QTL,’£7 50
supp(z ZZ Anan,j * Bn,j—s) C Up U4 4Qn,i =L
s<0 7 mn
Noticing that |E| < CA71||f||;, we have
II1 < |E|+ {x I Y Anan i * @) % By j_s(x)| > )\/9}‘
s>0 5 n
. s (24)
+9x |2 DD Anan * (0 — @) * By j—s(x)] > A/9
s>0 45 n
= |E|+IV4+V.



By Lemma 8,

2

1V < C)\_2 ZZZ)\nan,j * 9078—; * Bn,jfs < CA)‘_l Hf”l .
s>0 5 n 2
By Lemma 9,
V<O ST Man # (65— 95) # Bujos|| < CANTY|If]], -

s>0 5 n

1

Combining (20)-(22) and (24)-(26), we get
{2 [Ta(f)(@)] > A} < CAXTHIfl; -

Theorem 2 is proved.

4 Proof of Theorem 3

(25)

Without loss of generality, we may assume that {p,} is decreasing and >_,, p, < 7/64. Let

dpy = # SUP,<m n?p,. We have
Lemma 10 }  d,, <16, pn.
Proof. For n <m, n?pp, <n?(n' Y, /Pi)? < (Cicm /Pi)?, thus

S € Ym (Y v

i<m

On the other hand,

SmTAHY i) <22 mTE Y Y /PP
m i<m m J<mi<j
=23 /(X vpi) X m™?
J i<j m2>j
<45 i Vi)
J 1<j

< 4(; PG V)Y,

J 1<jJ

SO

Lemma 10 is proved.



By Lemma 10 and the assumption ), p, < /64, we get 23, dp, < 7/2. So, we can
choose {e;,} C S1, such that |e,11 — em| = 2d,, and 0 < arge,, < arge,, 11 < 7/2 for all
m. In addition, by the fact 2d,,, > pm + pm+1, {Im} are disjoint mutually. We shall first
apply induction to prove that

e — e > M=) (27)
m

n(m—n)

for m > n. Form =n+1, |ey, — e,| = 2d,, > THPn = Pn. Suppose |ey, — e,| >

n(m—n)

—Pn, We have

|€m+1 - en| = |€m+l - em‘ + ’em - €n|
_ 2 _
> 2y, + "0 p, > (2 4 M)
n(m+1-—n)

> m+1 Pn

So, (27) holds for all m > n. Now, we shall prove that

2
p
sup Z —— < 00. (28)

gest n:0¢ I, ’9 B €n|
For § € S, we first consider

N0+ def {n:0<argh—arge, <m/2}
Ny def {n:0>argh —arge, > —7/2}

Ny = {n:|argl — arge,| > m/2}.
Label the elements in N9+ by sub-index such that
<0 —en | <0 —en_,| <10 — enl

Then, N7 ={--- <n_1 <ng} or N ={n_g <--- <n_1 <ng}. By (27), in the second

n_i(n_xg-—n_y)

case, [0 — ey | > |en  —en | > =

pn_,, thus

2 K-1 _ -2
S phn <14y (mlnen)
n:nEN;'ﬂ%In " =1

K=l e —n)\ 2

<X (%) < C < o
=0 K

in the fist case, |6 — e, ,| > n_jpn_,, s0

2 00
Pn -

Y e St T=0<0 (29)
nneN, 0¢1, n =1

10



Label the elements in N, by sub-index such that
10 — eny| < |0 —en,| <10 —en,| <---

Then, N;” = {ng <n1 <---} or N ={ng <ni <--- <ng}. By (27), it is easy to show

that
2
Y o <0< (30)
nneN, O¢1 10— enl
In addition, )

nneNQ,0¢1, n:neNy,0¢1y
From (29)-(31), we get (28). By (28) and Theorem 2, we get Theorem 3.

Finally, we prove Corollary 4. By (7), we can choose {t,} such that 1 <) <ty < ---
and @(t,) > 2™,. Set A, = 27", p, =271, Q =3, \a, where {a,} are H'—atoms

satisfying (4) and |a,(0)| = p,* for 6 € I,,. Then, Q € H*(S'), but
[, 10N =23 prp(npy) = .

ie. Q¢ p(L).

5 Appendix

In the proofs of Lemmas 8-9, we apply the estimates (15) and (19) without proofs. In
what follows, we shall give details of their proofs along the ideas developped in [2], [3], [6],
[8] and [9].

Proof of (15)

We have

2

HZ] Qp,j * Bn,j—s = Z Z(an,j * Bn,j—87 Apq * Bn,i—s>
j i

<2 > ’<Bn,j—87 6% * Gp g % Bn,i—s>|

2

J t<jg
. (32)
<23 ||Bn,j—8H1 > |CLn,j * Qg % Bn,i—s|
J 1<j o
§2Hf‘|1supj Z ‘%*an,i*Bn,ifA 5
1<j o

11



where ay, j() = an,j(—x). We first estimate Y, 3|an,0 * @n,i * Bni—s(0)]. We have

An,0 * Gni * B i—s(0) = / Byi—s W)/ ano(y + z)ami(z)dz)dy

R2 R2
+oo —i
= | Bus)([ (] an( et BUH0) B0 ), (6)d) dy
de
lef [ an(0)Tis(an)(6)d0
S
where
fTi,s(an)(e) :Rf2 Bn,l—S(y)L%(an)(g)dy
+o00 —i
_ 0\ B(ly+to]) B2~
LU (@n)(0) = | an(eEi) et 22 D
So, by (4),

ZiS—S |d7;,/0 * Qg * Bn,i—8(0)| < Ziﬁ—?) ‘fsl an(a)TZ’s( n)(@)d9|
< supy Zig_g |Ti,s(an)( )|

For convenience, let

Q)< {y: w0 < 4pn}

1
4
9 +t61) ’t
Onin ! {(3nt) 0 () A 070 )

where 6 be one of the two unit vectors orthogonal to . Then

supp(Li (an)(0)) C Q;,(6).

(33)

(34)

(35)

Actually, if LY(a,)(0) # 0, i < =3 and (y,t) € O, we have |y| < |y +t0] + [t0] <

2+ 27 <3, [y > [y +16] - [t6] > 5 — 277 > ], and

(05| =ty +10,04)] < Iy + 6] | (g, 04| < |y + 6] | 5oy — 0]
< Jy+10] (| 1229 = en] + len — 6]) < 4pn.

Let
Qs(0) = {y: Iyl <4 and |/(y,0)] < pu273}
where s > 0, then
5 Tisla)O1 < 5 g Buis )L (an) (0)dy]
< 2 > + >

1S3 5:Qn NQs(0)£0,d(Qn ) =27 j:Qn ;NQs(0)=0,d(Qn,;)=2¢"*

de
NSz by () LY (an) (0)dy| < 1 4 11,

12

(36)



For I, noticing that

@) < [ BT IENICTD 4 < o,

0 "y +to)? t
we have
1 < Z 27 —1 )x |Qn,]|
1S3 :Qn Qs (0)£0,d(Qn ;)=2i—
< C,O_l ; Z |Qn,j

" QmﬂQ (0)#0,d(Qn j)<27°
< C,o_l A ~pn2” 3= C’ﬁ2_%.

(37)

To estimate I1, for y € Qy; N QF(0) where d(Q, ;) = 207%, Jyg such that y — yp//b,

Yo — yQ//GL where yg is the center of @, j, thus

ly —yol = [y — ¥, 0)| < 2

lvo — val = [(y — yo, 01)| < C2p,
75 N Qs(0) =0

Toyq N Qs(0) = 0.

By Lemma 11 below and (38), we have

LY (an)(0) — LY (an)(0)] < 27=° sup |2

ZEYYe
LY (an)(6) = LY (an)(0)| < 20 sup_|52rL(an)(0)| < €273}
ZE€YYQ
So,
= 3 > |2 b ()L () (0) ]|
€73 5:Qn,jNQs (0)=0,d(Qy, ;) =21
< > S 1bn g ()] | LY (@) (0) = LY® (an)(0) | dy
i€-35:Qn,;NQs (0)=0,d(Qy, ;) =21
< ¥ )> CR- |Qujl

1573 :Qn,5N1Qs (0)=0.Qn ;NQ ()70,d(Qn ;) =21~
-sup,, (1LY (an) (0) = LY (an)(0)] + | L¥* (an)(8) — LY® (an)(0)])

< C2° zp—l A > 1Qnj| < C2 %%
" iQnNQ(0)A0,d(Qn ;) <20

By (33), (36), (38) and (40), we get

Z |a’7;,JU * Qni * Bn,i75(0)| S C2_§

i<-3

13

(38)



By translation arguments,

__ _s A
Z ‘an,O * Qp g % Bn,ifs| < (0272 /\7 (41)
i§*3 LOO(RQ) n
By dilation arguments,
__ _s A
Z\an’j*am*Bn,z_s\ < C2 2)\—.
i<j oo n

Combining with (32), it gives (15).

Lemma 11 For 0 € supp(a,), (y,GJ—)‘ > pn272 where s > 0, |y| < 4, we have

)|l 0)] <27
D) | L (an)(0)] < 27,2

Proof. Without loss of generality, we may assume 6 = (1,0). Let e; = (1,0), e
y+to

(0,1), then y = y1e1 + yoea, |ya| > pu27 2. Setting w = ] = ‘Ziii', we have
dw |y2]
J(w,y) = |22 = 11 42
(w,y) )dt ly + tei] (42)

Note that (y + te;,w>) =0, so t = <<61 wj) Obviously, for (y,t) € Oy, where ©,,¢ is
defined by (34), we have

ot _
Walt N 1<62 wt) (e1,w -1 (43)
Ty2 = <61:’wl>’ = 62’10 ‘ <Cp 22.
We first estimate ;2-L¥(ay)(0). By (43), 28tttk — o = 2uHearl mpyg,
OJ(w,y) 9 .yl |
oy Oyr |y +te|
and for (y,t) € Oy,
o1 |y + tey|? t T |On t t2
Therefore
0 21 dw
o LY (an)(0)] < [ lan(w)] |50y (Pt 220, Joul
aJ(w,y)‘
9y1 |dw]

B(ly+to]) B(2~"t)
+ f |a’n (w)| |y+t9‘2 t ’ J(w,y) J(w7y) (44)

—16-9i d
Cl)n12 24 fw([2i,1’2i+1}) J|(1Z7|J)
Cpl2=% [27) at = Cp;12—".

IN

IA

14



Now, we estimate ‘%Lly(an)(ﬁ)‘. At first, by (43), we have

(rter gl reen)| |
= e <[+ te) (15)

+1) < Cp,toz.

Oly+tei]
0y2

< C(‘am

Thus, by (43) and (45), for (y,t) € O,

o (B2~ 2~ Zt 1| 0t —2i —192
‘W G ‘ <Ot ’37;2 ‘ Xoi-1<p<oiti (1) < C27%p, 722

0 (B |y+te1\) ‘ |y+te1|2+\y+te1| O(ly+tei) —193
‘3 y+te1|2 =C ly+ter|” yz | Xi<lytter|<2 < CPn 22,

which means that '
0 B(ly +ter]) B27"t)
dy2" |y +tel]* ¢

< C27%p, 12k (46)

)

In addition, for (y,t) € ©,,;¢ such that ‘(y,GH‘ > pn27 %, we have

(ly2D) A(lytter])
’8J ,y‘ ’ |ya| 333 [y+ter|+|y2] %#21
Byz \y+t81\ = ly+tea|*
< C(1+ |2l pph)
thus,
dJ (w,y) C(1+ |yal ") .
D) )| < COE L) < ot (47)
0y |y

By (46) and (47), we get

s L (an)(e1)| < [ fan(w)| \a%ﬂ'y*”“ |

Oy y+t0|?
J(w,y)
B( y+t9| B2~ Zt)’ ‘9y2 |dw]|
+ [ lan(w \y+t9\ J(w,y)
2 d
= 027 H"’f’ P Sz 201 7J|($L)
EEP d
+Cpa 28" fuaios o) Ty
-8 i+1 - s
< (272t5 )2 fz%jl dt = C2715 2

Lemma 11 is proved.

Proof of (19)

For simplicity, we omit the subindex n. By the definition of ¢* (i.e. ¢ , see (13)) and
1, we have

(6= @) N)=1—p(28p7' =Y ¢ *1<|:‘,e>>

m>0

15



where ¢ € C§°((—2, —1) U (3,2)) is defined by

¢|{u:%<|u|§1} =1-9, dlpui<iu<2y = 1/’(5)7 ¢|{u:%<|u|<2}c =0

which satisfies 3,50 ¢(27"u) = 1 —¢(u) for all u € R'. Take a nonnegative function ¢ €
C’g"({% <|| < 2}) such that > 7% ¢2(27%y) = 1 for all u € R', and set L = (c(27%.))Y,

then

aj* (6 —¢°) = 3 SCHE)Y *aj* Ly,
m>0 k (48)

Cif(y) = 27Fy)p(27 6" p~ (Y e))
where a; is just a, ; defined by (13) with center e = e, and radius p = p,,.

We first estimate H(Cfnk)le Define an inversible linear operator Ay, : R — R? by

Apmy = (28767 py1 2Fy5) where y1//e and yo Le.

Let h = 287™p, by Sobolev imbedding theorem (Hf”l < O jaj<2 107 £(Q())ll, where Q

is a nonsingular linear transform on R?)

o], <e =, o (it annm),
| <2 (49)
— (0] < 7€>
¢ |Oc%2 Hay (g(hyl +12) |h1j111+y2| )) HQ '
In the supports of ¢ and ¢, we have
1 1 |y
—<|hy1 +y2| <2,- <
p <Mt <25 = Gy
which means that
il <4l <2,n < P00l o (50)
v
SO
<y17 €>
8a<§h + )‘gc. 51
Yy ( Y1 92)¢(|hy1+y2|) ( )
From (49)-(51), we get
s,k\V < a ( <y1a6> )
[y, <o 3 o5 (st + w0 )| <€ (52)

o] <2
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Now,

laj * L], —IUMLW;— dy‘dw
= f’fsl JoB27Ir)" alf )Lk( TG)deQ'dx

< Jp2 [s1 22]-]_+1 277 a(0)||Lp(x — r8) — Ly(x — re)| drdfdz

<C sup Jge |Li(x — 70) — Li(x — re)| dx
re[2i—1,2i+1] 0esupp(a)

<C sup 710 —e| | VL, < C28Fp.

re[29—1,29+1] fesupp(a)

By (52)-(53),
H(C’f,;k)v * aj LkHl < C2ktip,

(54)

But, for larger k (say, k + j > 0), the estimate (54) is not enough, we need some other

estimate.
Applying Sobolev imbedding thorem again, we get
|ty sa;« Ly, <C =, 05 (C Ak )@ (i)

<C % |05 @ (Akn) Xouppiostann |

la]<2 2

by (50)-(51). Write

y = yie + yaet € supp(C5F (Apm)),
0 = 01 + O2e € supp(a), |61] < 1, (0| < p.

Note that
S(27FAgmy) # 0 = |Agmy| ~ 2"
—2_m —1; Ak,mY Ag,my ~ 24+m
ST ) # 0= e ~ 25

In addition, |# —e| < p and § +m >0, so

Akmy ~ +m
sy o] ~ 28

‘(Ak,mya >’ ~ 2%+m+kp7

and
’@?‘(Akmy, ) = ’ e (9123+m+kpy1 + 922’@2)’
( 25+ m+kp>a1 . (Qkp)az < C(2§+m+kp)|a\.
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(55)

(56)

(58)



Now, by integration by parts,

@G(Aemy) = Ja ()fﬂ@ 1) e=ir(Akmy ) drdg
= | gy S (P emirtAemu ) drdp.

So, by (57)-(58) and the fact

Bl < 09-33-Iol+D) e have

05 @ (Akmy))| <O 3 | AT v o3 D20 ymirtAin ) i

0<7<a ( 7/<Ak mY,0

S C Z ppf (26+m+kp)7327.7(37|7|+1)2j(2%+m+kp)|7|
0<y<a

=C ¥ (2%+m+k+jp)—3+h\‘
0<v<a

By (55), (50) and (59), we have

3
H(Cﬁik)v . LkH1 <oy (2§ Fmth+i =3+l — CZ(Q%+m+k+jp)—l' (60)

|| <2 =1
So,
> YO xajxLy| < C % me{ﬂfﬂp 2.2 6+m+’“+jp>—’}
m>0 k 1 m>0 k
< X 2 28+p
m>0k2k+Jp<2 B , S | (61)
+C X > Z(2g+m+k’+]p)—l

= l=1

m20pok+ip>o~ 127 %

< CY 21t =0210.

m>0

From (48), (61), we get (19).
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