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A PROOF OF A CONJECTURE OF MARINO-VAFA ON HODGE
INTEGRALS

CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

ABSTRACT. We prove a remarkable formula for Hodge integrals conjectured
by Marifio and Vafa [23] based on large N duality, using functorial virtual
localization on certain moduli spaces of relative stable morphisms.

1. INTRODUCTION

Let M, ,, denote the Deligne-Mumford moduli stack of stable curves of genus g
with n marked points. Let 7 : M, 11 — M, be the universal curve, and let wy
be the relative dualizing sheaf. The Hodge bundle

E = mwr

is a rank g vector bundle over M, ,, whose fiber over [(C,z1,...,z,)] € My, is
HY(C,wc). Let s; : My, — Mg i1 denote the section of m which corresponds to
the i-th marked point, and let

*
L; = s;wx

be the line bundle over Mg, whose fiber over [(C,x1,...,2,)] € Mg, is the
cotangent line T, C' at the i-th marked point x;. A Hodge integral is an integral of
the form
/7 ¢{1 CoqpIn AR ...,\Sg
Mg n
where 1; = ¢1(L;) is the first Chern class of L;, and \; = ¢;(E) is the j-th Chern
class of the Hodge bundle.

Hodge integrals arise in the calculations of Gromov-Witten invariants by local-
ization techniques [T4, §]. The explicit evaluation of Hodge integrals is a difficult
problem. The Hodge integrals involving only 1) classes can be computed recursively
by Witten’s conjecture [26] proved by Kontsevich [I3]. Algorithms of computing
Hodge integrals are described in [3].

In [23], M. Marifio and C. Vafa obtained a closed formula for a generating func-
tion of certain open Gromov-Witten invariants, some of which has been reduced to
Hodge integrals by localization techniques which are not fully clarified mathemat-
ically. This leads to a conjectural formula of Hodge integrals by comparing with
the calculations in [I2]. To state this formula, we introduce some notation. Let

A;/(’U,) =u9 — )\1’(},9_1 + .o+ (_1)9)\9
be the Chern polynomial of EY, the dual of the Hodge bundle. For a partition u
given by

H1 > 2 = 2 g >0,
1



2 CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

let |p| = ZZ(”l) i, and define

\/_MH " w R (T ))
Cg,#(T) = |Aut( )l ( (T+1 l() 111_[1—(1 _1)

3

/ AY (DAY (=7 = 1)AY(7)
iy - 1
Mg, i(w) Hz(:#l) (1 - ,uzdjz)
Cu()‘§ T) = Z )‘29_2”(”)69,#(7)
920
Note that
/ Ag(AG (=7 = DAG(7) _/ 1
Mo,i(u) T (1 — i) Foe [TV (1 — pands)

for I(p) > 3, and we use this expression to extend the definition to the case [(u) < 3.

Introduce formal variables p = (p1,p2,-..,Pn,--.), and define

=| |l(u)—3

Pp = DPuy = Py

for a partition p. Define generating functions

Cximp) = Y CulAiTIpu,
|ul>1
Cump)® = TP

As pointed out in [23], by comparing computations in [23] with computations in
T2, one obtains a conjectural formula for C,(7). This formula is explicitly written
down in [28]:

(1)
R N Gl 0 . Xvi(C()) v=t(r+4)m,0/2y |
C(/\vTvp) Z n Z H Z Vul()‘) Pus

i pi=p =l vl

@ e =3 [ 3 2CW) Fiermazy, )] g,
PECANCETTG
where
B sin [(vg —vp +b—a)\/2)
Vo) = 1<a1_[b<l(y) sin [(b — a)A/2]
®) 1

YT, 2sin (v — i+ 1(w)A/2]
The right-hand side of ([{l) is actually some truncated version of the more general
formula [23| (5.6)] given by Marifio and Vafa.
We now explain the notation on the right-hand sides of () and @). For a
partition p, x,, denotes the character of the irreducible representation of Sy indexed

by p, where d = |u| = Zl | ti- The number x,, is defined by

|M| + Z - 22#1
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For each positive integer 1,
mi(p) = [{J : pj = i}].

Denote by C(v) the conjugacy class of Sy corresponding to the partition v, and by
Xu(C(v)) the value of the character x,, on the conjugacy class C'(v). Finally,

2u = | [mi(u)tims®.
J

In this paper, we will call () the Marifio-Vafa formula. The third author proved
in [2Z7] some special cases of the Marino-Vafa formula and found some applications
[29, 30].

We now describe our approach to the Marifio-Vafa formula ([{Il). Denote the
right-hand sides of ) and @) by R(X\;7;p) and R(\;7;p)® respectively. In [28],
the third author proved that the following two equivalent cut-and-join equations
similar to the one satisfied by Hurwitz numbers (see [7], [T9], [T}, Section 15.2]):

Theorem 1.

OR -1\ ( 0’R . OR OR S OR >
) o= UPits 5+ iPirin 5 + ((+)Pipin— )
( ) aT 2 iJZ>1 .] +J aplap] .] +J apz apj ( j) Japi+j

OR® =1\ ( 9°R® OR® >
i,j>1

G 5 ) iJPi+ apiop; (i + J)pip; s
Here is a crucial observation: One can rewrite ([H) as a sequence systems of
ordinary equations, one for each positive integer d, hence if C(\; 7;p)® satisfies ([{),
then it is determined by the initial value C(X;0;p)®. To prove (@) or @), it suffices
to prove the following two statements:
(a) Equation (@) is satisfied by C(A; 7;p).
(b) C(A;0;p) = R(X; 05 p).
Or equivalently,
(a)” Equation (H) is satisfied by C(X; 7;p)°.
(b)” C(A;0:p)* = R(X; 0;p)°.
The generating function C();0;p) of Hodge integrals has a closed formula [4]
Theorem 2]. This closed formula is shown to be equal to R(); 0; p) in [28]. Therefore,
the Marino-Vafa formula ([{I) follows from the following theorem.

Theorem 2.

aC =1\ . 0%C . oCc oC S oc
6 =" w; <wpl+; pidp; +ijpiy; ps 9p; + (i + 7)pip; apH—j) :

Our earlier paper [ZT] contains an essentially complete proof of the Marino-Vafa
formula based on the approach described above. The purpose of this paper is to
supply various computational details, and to present some related results. See [25]
for another approach to the Marino-Vafa formula.

The rest of this paper is organized as follows. In Section Bl we give a proof of
the initial condition (b). In Section Bl we give a proof of Theorem [l The materials
in these two sections are already contained in [28] and some in [21], and included
here for the convenience of the readers. In Section B we recall the moduli spaces
of relative stable morphisms and obstruction bundles which will be used in the
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proof of Theorem B In Section Bl we use the graph notation to describe the torus
fixed points in the moduli spaces introduced in Section Bl In Section B, we prove
TheoremPlby functorial virtual localization. Details of virtual localization are given
in Appendix [Al In Section [, we reproduce the cut-and-join equation of Hurwitz
numbers (proved in [, [T9)], [T, Section 15.2]) by virtual functorial localization.

2. INITIAL CONDITION

We recall some notations for partitions. For a partition v, let v/ denote its
transpose. Define

(7) LOEDSURIEDS (%).

The hook length of v at the square x located at the i-th row and j-th column is
defined to be:

h(z) =vi+v;—i—j+1.

Then one has the following two identities [22, pp. 10 -11]:

[T o) - BATEL 0 - )

€V Hi<j(1 —trimvimig)

9) Y h(z) =n) + () + .

TEV

(®)

We first obtain a simple expression for V,,()).

Proposition 2.1.

1
2L, silh(x)A/2]

Proof. We rewrite the right-hand side of @) as follows.

V.(A) =

RHS
Hl(u) H—H—l l/)( tj) l(v) vi—i+l(v)

= Moa-ewy U 1L 0=

i=1j=1—i+l(v)

i—i () v
— [T, —t) HH i)
H1<J(1_tl’w—’h_1+] i=1j5=1
_ (B0 i i i) S i) /2

[T, (=602 — =02 W) w

’ G=iH))/2 _ 4(G—i+l(v))/2
[1.. .t imvi—iti)/2 — ¢(vimv;—itj)/2) H H " - )-
A i=1j=1
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Now

V) 127
Z(j—i)—Z( —vj—i+7) -i-ZZ]—H—l
i<j 1<j =1 j5=1
I/) Vi l(l/ Vi l(l/ 123
SR EDIED D NED I MES BB
1<j 1<j =1 j=1 =1 j=1 =1 j=1
I(v) I(v) I(v) V'(V' I 1) I(v)
IR M UOEDIED DRSS S SR I
i=1 j=1 i=1 i=1
V ) I(v)
= —v|i(v +ZZVZ+ZJ—1VJ+Z i +|y|—Ziyi+|V|l(V)
i=1
I(v) y _
= Zﬂ—l’/frzz Vi +|1/|
= n(v)+n()+ IVI
= Y h(x)
rEV
Comparing with the left-hand side, one then gets:
I_I(t*h(ﬂﬁ)/2 _ th(x)/Q)
A4
(D2 _i=i)/2 W) v
_ HE<J (t — t( )-+ s H(f(jﬂurz(y))/z _ t(j7i+l(v))/2).
Hi<j(t Vi—Vj—i+] — twi—vj—itj ) pale ol
The proof is completed by taking ¢ = e V1IN (I

We next compute the initial values C(A;0;p).

Proposition 2.2.

Z \/_d+lpd

C(\;0;
22 2dsin(dA/2)’

Proof. When I(n) > 1, we clearly have

Cu(/\§ 0) =
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When p = (d) we have

) - 29—1 d+1 Ha 1(d 0+a) A;(l)Ag(O)Ag(—l)
Cay(Xi0) = —;A vt /H -

d+1
= _Q (d>\)71+2(d)\)2971/7 )\g 3972

d g=>1 Mg

V=TT a2
2\ sin(d\/2)
- 2dsin(dA/2)’

In the second equality we have used the Mumford’s relations [24] 5.4):
v v _ _
A (DA, (=1) = (=1)7.
In the third equality we have used [, Theorem 2]. This completes the proof.

Proposition 2.3. We have the following identity:

d 1
log Z Z § : et/ Xp(n)p = vV _ i Pd
=t 1 Hee, 25in(h(e)A/2) 2y 77 2dsm(d)\/2)'
n20lpl=nini=|p

To prove Proposition B3 we need the following two lemmata.
Lemma 2.4. Introducing formal variables x1, ..., %y, ... such that
pi(T1,. 0 Ty ) =2t 42l
Then we have

n(p) . 1
(10) Z r Z Z HeEP?l —¢"©) Xzin)pn - Hi,j(l —tzig? )’

n20  |pl=nn|=|p|

Proof. Recall the following facts about Schur polynomials:

Xp(n)
(11) sp(x) = Z pz— ()
Inl=lp| "
n(p)
q
(12) S (17Q7q25-'-):—,
’ e, (1 —¢"@)
1
(13) 3 s,(2)sp(y) = -
r%% pz—n o IL;;(1 = taiy))
Combining the last two identities, one gets:
n(p) 1
) e @) = __
nz>0 |p|Z Heep 1 —4q (6)) Hi,j(l — tquﬂfl)

The proof is completed by ([T)).
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Lemma 2.5. For any partition p we have

(14)

Proof.

5 S h(e) (o) = 1+ glol

ecp

5 S (o) (o) = $(n(o') — n(p) + o)

ecp

_ %(; (g) =37 1)+ ol

%

= i(z pi(pi—1) — 2Zipi + 4|p)

Lo L
= — K — .
g T RlP

Proof. (of Proposition Z3])
Let ¢ = e VIA and ¢t = v/=1¢*/?. Then

Hence by (I0),

- ZZ td d(i=1), dlidq

n(p)
n q Xp (1)
t
D I D ]
n>0  |p|=n|n|=|p| = ¢=F

(P) 2Ze€ph(e)

. Xp (1)
VT Y Y Heep (O @) s, P

n=0 [pl=n |n|=|pl

T 02 g remin Xp(m)
Z lq Z Z L. (g2 —gh@/z) ; Py
n>0 ol=n In|=lp| 1lecp'd K

e4l~€p\/ 1A

Xp (1)
Z Z Z [I.c,2sin(h(e)N/2) =, Pn-

n>0 |p|=n |n|=|p| =~ €€

etoV=IA Xp(n)

log Z Z Z [1.c, 2sin(h(e)A/2) ,;n b

n>0 |p|=n [n|=|p|

n(p)

n q Xp(1)

= log E t E E P
[e,(1—¢"©) 2, ™7

n>0  |p|=n|n|=|p|

1
- L td AG=1) zd

i,7>1 d>1

j>1d>1 d>1

T+
Z V- Pd
2dsin(d\/2)’



8 CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

By Proposition Z1] and Proposition 23, we have

g [T F S XPZ_W)einpﬂAVP(A)pn

n>0|p|=n n|=|p| "

R(\;0;p)

B 64"@9\/_)‘ Xp(n)
= log ZZ Z [L.c,2sin(h(e)A/2) 2z, b

n>0 |p|=n |n|=|p| * ¢

T+
_ Z V- i Pd
2ds1n (dX/2)"

By Proposition 22, we have

Z \/_d+lpd

C(\;0;
22 2dsin(dA/2)’

So the initial condition (b) holds.

3. PROOF oF THEOREM [

Let wu,n be two partitions, both represented by Young diagrams. We write
n € J;j(p) and p € C; j(n) if n is obtained from p by removing a row of length ¢
and a row of length j, then adding a row of length ¢ + j. It is easy to see that

mr( ym (1) A
(15) Myt (77) { ?#rsz(k(#‘; ), : 2 7£ Js
- m (p) (m (p) —1 y— 4
Hkmk( L. me()l =]
Recall

c#:Zg

geCy

lies in the center of the group algebra CSy, hence it acts as a scalar f,(u) on
any irreducible representation R,. In other words, let p : S4 — End R, be the
representation indexed by v, then

> (g = fulwid
geC ()

We need the following interpretation of k, in terms of character.

Lemma 3.1. We have
Ry = 2fy(C(2)),

where we use C(2) to denote the class of transpositions.

Proof. By 22, p. 118, Example 7],

L) = |e@d?)

dim R,

I(v) 9 I(v)
= ; <2l> — ;(Z— l)Vl'

l(u

) 1
= —Z —2iv; + ;) = 5 hw-

=n() —n(v)
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In the above we have used (). O

We need the following result:

Lemma 3.2. Suppose h € Sq has cycle type p. The product c(zy - h is a sum of
elements of Sq whose type is either a cut or a join of u. More precisely, there are
igmi(u)m;(p) (wheni < j) or imy;(u)(mi(p)—1)/2 (wheni = j) elements obtained
from h by joining an i-cycle in h to a j-cycle in h, and there are (i + j)miy; (1)
(when i < j) or img;(u) (when i = j) elements obtained from h by cutting an
(i + j)-cycle into an i-cycle and a j-cycle.

Proof. Denote by [s1,...,sk] a k-cycle. Then
[s,t] - [8,82, ..., Sitota, ..., t5] =[s, 82,...,8i][t, ta, ..., L],
i.e., an i + j-cycle is cut into an i-cycle and a j-cycle. Conversely,
[s,t] - [s,82, ..., Sil[t ta, .., ti] =[5, 82, .., 8i, b ta, .., 5],

i.e., an i-cycle and a j-cycle is joined to an i + j-cycle. Hence, for a permutation h
of type u, c(z) - h is a sum of all elements obtained from h by either a cut or a join.
Fix a pair of i-cycle and j-cycle of h, there are i - j different ways to join them to
an (¢ + j)-cycle. Taking into the account of m;(u) choices of i-cycles, and m;(u)
choices of j-cycles, we get the number of different ways to obtain an element from
h by joining an i-cycle in h to a j-cycle in h is

{ijmi(u)mj (1), i<
P*mi(p)(mi(p) —1)/2, i=j.

Similarly, fix an (i 4+ j)-cycle of h, there are i + j different ways to cut it into an
i-cycle and a disjoint j-cycle when ¢ < j. When ¢ = j, there are only ¢ different ways
to cut it into two i-cycles. And taking into account the number of (i + j)-cycles in
h, we get the number of different ways to obtain an element from h by cutting an
(i + j)-cycle into an i-cycle and a j-cycle is

(@4 G)mivs (1), <3,
ima; (), i=j.
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For any h € S; of cycle type p we have

p;m(#)
- Ztrfu )id-py(h )]HW
m ()
- Tl Y n @)oo [T s
geC(2) ‘ )
p:’h(“)
= Ztrpv > 9-h) HWm(u)'
geC(2)

= D2 X wmiwmixem+ Y+ Hmis ()X ()

poo\i<i \neJi;(u) n€C;,; (k)

1 .
| D FEmnmaw) = Dxu) + D7 imai(u)xw ()
i nE€Ji,i (1) n€C; i (1)
mw(/"/)

. iml(ﬂ)mi(u)!
0 X (1
= 3 Z +.] pnga + .]szrja ap Z
J

In the last equahty we have used ([[H). It follows that

OR(\;75p)*
or
_1A Xv C H —1(r+iHk
= Y (X, ) oty o
JIR% B
\/ T\ ) ) .
= (mea s Jr(Jerng8 )ZX peY IRy, (),

This finishes the proof of Theorem 1.

4. MODULI SPACES OF RELATIVE STABLE MORPHISMS

In this section, we introduce the geometric objects involved in the proof of The-
orem

4.1. Moduli space of relative morphisms. We first describe the moduli space
of relative stable morphisms to P! used in [I8]. The moduli spaces of algebraic
relative stable morphisms are constructed by J. Li [T5].

We introduce some notations. For any nonnegative integer m, let

1 1
P'im] = IP’(O)UIP’(l) e UPG,

be a chain of m + 1 copies P!, where P(z) is glued to ]P’%Hl) at pgl) for0 << m-—1.
The irreducible component ]P’%O) will be referred to as the root component, and
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the other irreducible components will be called the bubble components. A point
pgm) % pgmfl) is fixed on P%m). Denote by 7[m] : P1[m] — P! the map which is
identity on the root component and contracts all the bubble components to pgo).
For m > 0, let
P'(m) =Py, U---UP,,
denote the union of bubble components of P*[m].
Let 41 be a partition of d > 0. Let M, o(P!, 1) be the moduli space of morphisms

Fo(Coan, . aygy) — (Pm]p{™),
such that

(1) (C,z1,...,m3y,)) is a prestable curve of genus g with /(1) marked points.
For convenience, we assume the marked points are unordered.

2) F1p™) = Zi(:l) w;x; as Cartier divisors, and deg(w[m] o f) = d.
(3) The preimage of each node in P![m] consists of nodes of C. If f(y) = pgl)

and C7 and Cy are two irreducible components of C which intersect at vy,
then f|c, and f|c, have the same contact order to pgl) at y.
(4) The automorphism group of f is finite.
Two such morphisms are isomorphic if they differ by an isomorphism of the domain

and an automorphism of the pointed curve (P! (m),pgo), pgm)). In particular, this

defines the automorphism group in the stability condition (4) above.
In [I5,[16], J. Li showed that M, o(P!, u) is a separated, proper Deligne-Mumford
stack with a perfect obstruction theory of virtual dimension

r=29—2+d+1(p),
so it has a virtual fundamental class of degree 7.
4.2. Torus action. Consider the C*-action

t-[20: 21 = [t20: 21

on P!, Tt has two fixed points po = [0 : 1] and p; = [1 : 0]. This induces an action
on P*[m] by the action on the root component induced by the isomorphism to P!,
and the trivial actions on the bubble components. This in turn induces an action

on Mg o(P, p).
4.3. The branch morphism. There is a branch morphism
Br: M, o(P', i) — Sym"P! = P".
Note that P" can be identified with P(H°(P!, O(r)), and the isomorphism
P(H°(P',O(r)) = Sym"P*

is given by [s] — div(s). The C*-action on P! induces a C*-action on H°(P!, O(r))
by

So C* acts on P" by
t-lag:ar:---:a)]=lag:t tay -t " a,),

where [ag : a1 : ... a,] corresponds to >, _, ax(z°)*(z1)""% € HO(P', O(r)). With
this action, the branch morphism is C*-equivariant. See [6l, @] for more details.
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The C*-action on P” has r+ 1 fixed points py, .. ., pr, where pi € P” corresponds
to the complex line C(2%)*(z1)"=% c HO(P*, O(r)).

4.4. The Obstruction Bundle. In [I8], J. Li and Y. Song constructed an ob-
struction bundle over the stratum where the target is P1[0] = P!, and proposed an
extension over the entire M o(P!, ). Here we use a different extension which is
defined in [II, Section 3].

Let

71 Uy — Mg o(P, 1)
be the universal domain curve, and let

P75, — ﬂg,O(Pla 1)
be the universal target. There is an evaluation map

F Uy — Ty,

and a contraction map
7Ty, — PL
Let Dy, C Uy, be the divisor corresponding to the {(x) marked points. Define
VD = Rlﬂ—* (Oug,u (_DQ)H))
Vb, = RWI.F*Opi(-1),
where F = 7 o F : U,,, — P'. The fibers of Vp and Vp, at
[f : (Ov'rla s 7xl(u)) - Pl[m] ] € ﬂg,O(Plvﬂ)

are H'(C,Oc(—D)) and H'(C, f*Opi (—1)), respectively, where D = z1+. . .+ay(
and f = 7[m] o f. Note that

H(C,0c(~D)) = H°(C, [*Op (~1)) = 0,

K)o

so Vp and Vp, are vector bundles of ranks I(y) +¢g — 1 and d + g — 1, respectively.
The obstruction bundle

V:VD@VDd

is a vector bundle of rank r = 29 — 2 + d + ().

We lift the C*-action on M, (P, 1) to Vp and Vp, as follows. The action on
Vp, comes from an action on Op1(—1) — P! with weights —7 —1 and —7 at the two
fixed points pg and p;, respectively, where 7 € Z. The fiber of Vp does not depend
on the map f, so the fibers over two points in the same orbit of the C*-action can
be canonically identified. The action of A € C* on Vp is multiplication by A”.

5. FIXED PoOINTS OF TORUS ACTION

5.1. Graph notation. Similar to the case of M o(P*,d), the connected compo-
nents of the C* fixed points set ﬂg@ (P, u)c* are parameterized by labeled graphs.
Given a morphism

f(Coar,. o ayp) — PHm]
which represents a fixed point of the C*-action on M, (P!, ), let

f=n[mlof:C—P.
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The restriction of f to an irreducible component of C' is either a constant map to
one of the C* fixed points pg, p1 or a cover of P! which is fully ramified over py and
p1. We associate a labeled graph I' to the C* fixed point

[f:(Comy, .. 2y) — P m] ]

as follows:

(1) We assign a vertex v to each connected component C,, of f~({po,p1}), a
label i(v) = i if f(C,) = p;, where i = 0,1, and a label g(v) which is the
arithmetic genus of C, (We define g(v) = 0 if C, is a point). Denote by
V(T)® the set of vertices with i(v) = 4, where i = 0,1. Then the set V(I")
of vertices of the graph T is a disjoint union of V(I')(®) and V(T")™).

(2) We assign an edge e to each rational irreducible component C, of C' such
that f|c, is not a constant map. Let d(e) be the degree of f|c,. Then f|c,
is fully ramified over py and p;. Let E(I") denote the set of edges of T'.

(3) The set of flags of T' is given by

F()={(v,e):veV(),ec EI),C, NC. # 0}.
(4) For each v € V(T'), define

dvy=">_ dle),
(v,e)eF(T)
and let v(v) be the partition of d(v) determined by {d(e) : (v,e) € F(I')}.
When the target is P![m], where m > 0, we assign an additional label

for each v € V(I')(M): let u(v) be the partition of d(v) determined by the
ramification of f|c, : C, — P(m) over pgm).
Note that for v € V(T v(v) coincides with the partition of d(v) determined by

the ramification of f|c, : Cy — PL(m) over p{”.

5.2. Fixed points. Let G, o(P', i) be the set of all the graphs associated to the
C* fixed points in M, (P!, 1), as described in Section Bl 1In this section, we
describe the set of fixed points associated to a given graph I' € G, (P!, p).

5.2.1. The target is P'. Any C* fixed point in M, o(P!, 1) which is represented by
a morphism to P! is associated to the graph I'’, where

VIO ={v}, VAW ={v,.. . uut BT ={e,....eumh
and
9() =g, g(vi) =0, dle;) = pi
fori =1,...,l(p). The two end points of the edge e; are vy and v;. Let Aut(u)

denote the automorphism group of the partition p of d. Any morphism associated
to the graph I'° has automorphism group Apo, where

()
1— HZM — Aro — Aut(p) — 1.
Let )
Mo = {pOint}a (ga l(:u)) = (07 1)5 (07 2)a
FO — JR—
Mg,l(u)v (ga l(:u)) # (07 1)5 (07 2)
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There is a morphism
iro : Mro — Mg o(P*, )
whose image is the fixed locus FTo associated to I'g. The morphism ir, induces an
isomorphism
Mo /Apo = Fro.
The dimension of Fro is

dro = { 0, (gal(:u)) = (071)5 (072)a
: 39 —3+1Uu), (g,Un) #(0,1),(0,2).

5.2.2. The target is P[m], m > 0. Let ' € G, (P!, 1) be a graph associated to a

C* fixed point represented by some morphism to P[m], m > 0. Let ﬂ;l) denote
the moduli space of morphisms

f:C—P! (m)
such that
(a) C is the disjoint union of {C, : v € V(I')(M}.
(b) (CoyTo1s- s Ty i(u(v))s Yo,1s - - 5 Yo i(w(v))) 1S & prestable curve of genus g(v)

with I(u(v)) + I(v(v)) marked points. Here the marked points are ordered.
(c) As Cartier divisors,

A . 1(p(v)) R l(v(v))
Fle) @) = >0 p@izes, (fle) ' @™) = V(0); Yo j-

i=1 j=1

The morphism (f|¢,) ' (B) — B is of degree d(v) for each irreducible
component B of P!(m).
(d) The automorphism group of f is finite.

Two such morphisms are isomorphic if they differ by an isomorphism of the domain
and an automorphism of the pointed curve (P*(m), pgo) , pgm)), which is an element of
(C*)™. In particular, this defines the automorphism group in the stability condition

(d) above.

The moduli space ﬂi«l) is a variant of J. Li’s moduli spaces of stable relative
morphisms [I5, [T6]. It is a separated, proper Deligne-Mumford stack with a perfect
obstruction theory.

Given

f : (Ov'rla' "7xl(u)) _)Pl[m]

associated to the graph T', let C' be the disjoint union of {Cy v e V(T)MD}. Let f
be the restriction of f to C'. Then

f:C =P (m)
represents a point in ﬂ;l).
Define
ro(v) = 2g(v) — 2 + val(v), veV(D)O,
rw) = 29(0) =24 U(u(v)) +1(v(v), ve VD)W,
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VvID© = {vevD)®:r(v) = -1},
VIO = {oe V(D) :r(v) =0},
VS(F)(O) = {ve V(F)(O) :ro(v) > 0},
vIm® = {oevIm® r() =0},
viMm® = {wev@mW:r(v) >0}

Note that V¥(T')) # () by the stability condition (d).
Let Aut(I') denote the automorphism of the labeled graph I'. The automorphism
group of any morphism associated to the graph I' is Ar, where

1— H Zg(ey — Ar — Aut(T') — 1.
ecE(T)

Let Mrp = ﬂ;o) X ﬂg), where

Mo’ = I Mywvaiw-
vEVS (T)©

There is a morphism

ir : Mpr — Mg o(P*, p)

whose image is the fixed locus Fr associated to the graph I'. The morphism ip
induces an isomorphism Mrp/Ar = Fr.

The dimension of ﬂi«o) is given by

dV = > (3g(v) - 3 +val(v)),
veEVS(I)(©)

and the virtual dimension of m;l) is given by

dl(ﬂl): Z ri(v) | — 1.

veV (I
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So the virtual dimension of Fr is given by

dar = d¥+d¥
= > Bgw)=3+valw)+ > m(v) -1
veVS(I)(©) veV (DM
= Y (3g(v) =3+ val(v)) + V(D) O] + 2V (1))
vEV (D) (O
+ Y (29(0) =2+ 1U(u(v)) +1(v(v) — 1
veV(I)™)
= 3 > g(0)=3[VID) O+ [BED)|+ VD) O]+ 2vI(1) )
vEV(I) ()
+2 ) g(o) =2V [+ () + [BT)] -1
veV (I

= 2 > g@) = [VIO)I+IED)+1| =3+

veV (T)
+ Y (gv) = 1)+ VD) 4+ 2v(TD)°
veV(T)©
= 29-3+1w+ > (gv)—1)+ V(D)

veVS(I)(©)

The last equality comes from the following identity:

g= Y gw)+buM)= Y g(v)= |VI)+|ED)+1,

veV(T) veV(T)

where b1 (T") is the first betti number of the graph T.

6. PROOF OF THEOREM

6.1. Functorial localization. Let 7" = C*. We have seen in Section that the
branch morphism

Br: M, o(P!, pu) — P

is T-equivariant. We will compute
T
Br.er(V) = Zal(T)HluT_l.
1=0

by virtual functorial localization [20], where H € H?(P";Z) is the hyperplane class,
and a;(7) is a polynomial in 7. Recall that 7 € Z parametrizes torus actions on the
obstruction bundle, as described in Section EE4
Let po,...,pr € P be the torus fixed points defined as in Section I3l and let

fr : px. — P" be the inclusion. From the torus action on P" described in Section
I3 one gets

JiBrier(V) F(r, k)

er(Tp,PT)  (=1)"FEl(r — k)
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where
s

F(r,x) = Z ay()z!.
1=0
By functorial localization, we have
[iBrier(V) Z 1 iter(V)
er(Tp,Pr) |Ar| Ji®gp e e (NPT)

Pk FrCBr—!(pk)

for k=0,...,r, where N%’ir — M is the pull-back of the virtual normal bundle of
Fr in M, o(P*, u). Note that Br(Fro) = p,, and

BI‘(FF) = pr_dg)_l

for I' € G, o(P', u), T # I'°. Recall that d(Fl) is the virtual dimension of Hg), and
0<d <r—1. 50
- F(r,k)

F(rz) = Y (_1)T_kk!(T_k)!x(x—1)~-~(:c—k—|—1)(z—k—1)-~-(z—7")
k=0

T

Zﬁ" Pz —1)-(z—k+D@—k—1)--(z —r),

where
¥ OeT
IO (1) / L ,
g1 |AF0| Fo Nv1r

and "

% (r) = Z 1 irer(V)

gsH - |Ar| Jitpqvie eT(Nvir)

TeGy.0(Pt,u), DA, dp+ 1=k [(Mr] r

fork=1,...,r

6.2. Contribution from each graph.

6.2.1. The target is P!. Consider the graph I'’ € G, o(P', ). We first consider the
stable case, i.e., (g,1(1)) # (0,1),(0,2). Let d = |u| as before. Using the Feynman
rules derived in Appendix [Al we obtain

1 l;oeT(V)

° (r) = -
R

- I(Ajt)(d >1|(< + 1))t ll(_[ Mo WM)
/ Ag (u)A;/(Tu)AV((—T—1)u)u2l(”)_3
10 me—m%)
- (e
[ Aoy
Mg,y T (1 = pary)
= \/_d l(#)cgu(T)
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In particular,

ou(T) = wTT 1) —1 H)w I
Iyu(r) = |Aut(u)|( (T+1)) (H (i — 1)! /mmm 101 — )

1yd—1 W) yypi—1 rta
— o (£ 1) (_H ot ))dl(“)‘3.

The contribution from I'° for the two unstable cases is also given by the above

formula:
d—1
B = (- (%) z

(e I (e +a) | 1
B = Gy 7Y (H (i — 1)1 )E

i=1

Note that Ig# (1) is a degree r = 2g — 2+ d 4 I(p) polynomial in 7 with rational
coefficients, and

10 (=7 —1) = (=)W (7).

6.2.2. The target is P*[m], m > 0. Consider I' € G, (P!,u), T' # Tp. Using the
Feynman rules derived in Appendix [Al we obtain

1 iper(V) _ 1 Hoever By
|AF| MF vir eT(NVIr) |AF| [mr]vir —Uu — ’Q/Jt

IF

where

B, — A’UA’L‘J/ H(v,e)EF(F) (AeA(E,/)7 v E V(F)(O)v
Y A,4Y, veV(ID)m,

More explicitly, in the notation of Appendix [Al

e) 1
_ _1\d(v)—1 (r val(v)—1 H ( ( )T+ a)
BU ( 1) ( ( + 1)) o e)gF(F) (d( ) . 1)
Ag(v o) (TWA ) (—(T + 1)u)u?valv)=3 : S (0)
H (weyerm) (U —d(€)Yw.e) - e VAT
A1 q(v)r +a

d(v)(~ 1)1 (H“_Ed@()d(_ ) - )> d(i)Q, vevim©,
. Ia” 1( d(e)r +a)\ 1

d(e1)d(e2)(—1)" 7 (7(r + 1)) <H (&) — 1)! ) i)’

v e VIO (v, e1), (v, e5) € F(T),

(=1)9@Hvalw)=1 (7 yra (v) H dle), veV(@DW,
(v,e)eF(T)
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Recall that 71 (v) = 2g(v) — 2 + I(u(v)) 4 val(v) for v € V(I')(V, and

d;l): Z ri(v) | =1

VeV (T
is the virtual dimension of M(;).
We have
2
1
o o= g I (Aewe)ig.me) | T e
veV(T)© ecE(T)

1)
[ (-poweie— / (ra)®

——(1) 4. : gy — a/t
VeV (T)™) D —u— Y

19

Here v(v) is the partition of d(v) determined by {d(e) : (v,e) € F(T')}, as in Section

BT
Recall that

(Ar| = [Aut(D)] T] d(e).
ecE

() = m [T (Aut@) .0 ()

veV(I')(©)

dP+1
_1\9(v)+val(v)—1 w
II (-1)¢ II de /(”]V“ Y

veV (D)MW (v,e)EF(T) My
(1) 1
= (-7)% Hm H (IAut (v (V)19 o) ()
VeV (D)©
v val(v)— (1)
[ (oo I da@) [ @)
UEV(F)(I) (v,e)eF [Mp]vir

= Td(Fl)JrlJF(T).
Note that J'(7) is a degree r — dl(ﬂl) — 1 polynomial in 7, and
(=7 = 1) = (~ 1)L (),
6.3. Sum over graphs. We have
I;;L(T) = Tk‘]xiu(T)’
where J§ (1) =19 ,(7), and
JE () = > JH)
TEGg,0(Pl,pu),T£TodY +1=k
for k=1,...,r. Note that J;#(T) is a degree r — k polynomial in 7, and

J;#(_T —-1)= (_1)\u\—l(u)+k‘]§#(7)_
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For k =1, we have
d(Fl) = Z ri(v)—1=0,
veV (I

so V(I consists of one single vertex o with 71(¢) = 1. In particular, g() = 0,
and we have the following two cases:

Case 1: u(v) = (), v(0) = (4, k), where j + k = p;. In this case, we say v € C(p)
(cut) and define a,, = jk. Note that

_1\9(v)+val(v)— d / 1
H ( ) H [mg})]‘dr

veV (I (v,e)EF
( k) Mg
F ) i g
= —Quu.

Case 2: u(v) = (w4, p15), v(0) = (i + p15). In this case, we say v € J(u) (join) and
define b,,, = p; + 1. Note that

H ( ) g(v)+val(v)—1 H d /Ml(})]‘ml

veV(I)M (v,e)EF
_ ( i + uj> Hifdj
= /1’1 e /’Ll(,u.) —

pitty ) B g
= by
So
Aut(v)] | Aut(v)]
J} = — |7b 10 Uk WA N
g,H(T) Z |Aut(I‘)| 122 g,u(T) + Z |Aut(1—\)|a# g—1, 1/( )
veJ(n) veC(p)
| Aut(v!)[] Aut(v?)] 0 0
- | Aut(T)| Otz Ly, i lg,, ve (T 7)

g1+g2=g,v1Ur2eC(u)

- Z Il(y)lg,v(T)"" Z I(v )Ig 1,0(7)

veJ(p) veC(p)

+ Z IB(V17V2)131 I_gg 1/2( )a

g1+g2=g,v1Ur2eC(n)

where Iy, I, and I are defined as in [19].
We have

=l =)
J!?;H(T) = - Cou(T),

gL = VTS nwc. M+ Y B)C1u(7)

veJ(p) veC (p)

+ Z 13(V17V2)0917V1 (7)6927’/2(7)

g1+g2=g,v1Ur2eC(un)
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It follows from the definition that (@) in Theorem Bis equivalent to

d o 1
dTJgu() —Jgu(7)-

6.4. Final Calculations. We have

F(r,z) = ZITk zz—=1)(x—k+)(z-k=-1)---(z—71)
= ZTT Pl Ema@ =1 (e —k+ D@ —k—1)-(x—7)

= ZT’ka z@—1)(@—(r—k=1)(z—(r—k+1)-(@—r).

Therefore,
Br*eT(V)
ZTW H—u)--(H=(r—k—Du)(H-(r—k+1)u)--(H—ru).
Forz=0,...,7"—1,wehave

HiH(H—u)---(H—(r—k.—l)u)(H—(r—k—i—l)u)---(H—ru)
= (H-@r-ku+r—-Kkuw'HH-u)---(H—-(r—k—1)u)
-(H—(r—lk—i-l)u)---(H—ru)
= (r—kuw'HH—-u)--(H-—(r—k—1Du)(H—(r—k+1u)--(H —ru)
H(H—w)---(H—-ru)=0.

Therefore,

/ Broer(VIH' = u' 3 (r — ki7" JE (7).
" k=0

r—k
Let JF (7 T) =20 akr7. We have

uii/ Brier(V)H" = Z (T—k)ia? 7.

1=0 \j+k=I

Here is a crucial observation: as a polynomial in 7, u™" [;, Br,ep(V)H" is of degree
no more than i. Therefore,
> (r—k)aj=0

Jt+k=l
for 0 <i <l <r. Now fix [ such that 1 <[ <r. We have
!

(16) Y (r—k)ay =0, 0<i<l,
k=0
which is a system of [ linear equations of the [ + 1 variables {af , : k=0,...,1}.
Both

{(r—t):i=0,...,1—1}
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and
{1, t,t(t—1),...,t(t—=1)...(t =1+ 2)}

are bases of the vector space

{f(t) € Q[t] : deg(f) <1 -1},
so there exists an invertible [ x [ matrix (A4;;)o<;i j<i—1 such that

-1

Ht—1) - (t—i+1)=> Ay(r—t).

=0

In particular,
-1

Kk —1)--(k—i+1)=> Ay(r—k).
j=0

for k=0,1,...,1, so [[@) is equivalent to

> k(k—=1)--(k—i+1af , =0, 0<i<l,

l
k=0

ie.,

l
k!
> (k_i)'af_kzo, 0<i<l.
k=i ’

The above equations can be rewritten as

1 1 e e 1 o 0
o 1 2 ... ... l al

0 0 20 3.2 ... ... 11— 1) '

0 0 0 3 .- 11— 1)1~ 2) N

0 g : : : :
0 0 (-1 Ii—1)---2 ap 0

The kernel is clearly one dimensional. One can check that the kernel is given by

!

koo k 0
(17) ai_y = (=1) HO— R
Note that [ for I = 1,...,r is equivalent to
N G O
(18) Jg,;,L(T) - k! W‘]g,u(T)

for k =0,...,r. In particular,

d
J;u(ﬂ == %J;u(ﬂ

which is equivalent to the cut-and-join equation (@) in Theorem Bl Equation ([IX)
and the cut-and-join equation imply that J} () can be obtained from JJ ,(7) by
repeating the cut-and-join operation k-times.
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7. HURWITZ NUMBERS

In this section, inspired by T. Graber and R. Vakil [9], we use virtual localization
on moduli spaces of relative stable morphisms to recover some results on Hurwitz
numbers. We give a unified proof of the ELSV formula and the cut-and-join equa-
tion for Hurwitz numbers.

The Hirwitz numbers can be defined as

(19) Hy, = / BrH'.
(M0 (1))

We lift H" € H*"(P";Z) to [[,_,(H — wyu) € HZ (P";Z), where w; € Z, and

compute
Hy, = / Br* (H — wyu)
[Mg,o (Pt p)]vir <H

k=1
by virtual localization.
Let pr € P" be the C* fixed point defined as in Section L3 and fi : pr — P" be
the inclusion. Then

Fi (T = wew)) = (H(/€ - UH)) u” € Hi (pi).
=1 =1

Remark 7.1. In the definition of M, (P!, i) given in Section Bl if we order the
I(x) marked points on the domain as in [T, [I6], there will be an extra factor
1/] Aut(p)| on the right-hand side of ().

7.1. Contribution from each graph.

7.1.1. The target is P'. Consider the graph I'° € M, (P!, ). We have Br(Fro) =
{pr}. We first consider the stable case. By the Feynman rules derived in Appendix
[Al the contribution from I'V is given by

T

H(r - wl)Ig#,

=1

o, = /
9,1 |AF| O NVlr

1 () #i/ A\/( u 2g+21(p)—3
men.lm- wieo TEE (u = i)

()

B e AY(1)
a |Aut |H /JZ(H)H — pithi)

where

In particular,

oo
Ot |Aut | H ! Mo Hl(u) 1- Mzwz)
l(u)
1 ,Uful () —
- T glms,
|Aut ()] H
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The contribution from I'®) for the two unstable cases is also given by the above
formula:

- a1 di2

hw = G@~ a
o _ 1 LY
0,(p1,p2) [Aut((pr, po))| palus! d

7.1.2. The target is P[m], m > 0. Consider I' € Gy o(P!, pn), T # I'Y. We have
Br(Fr) = {p, ;o _,}- The contribution from I" is given by
r

T

[T —d =1 —w)i",
=1
where
p_o L w1 ThevinBe
|AF| [Mrp]vir €T (leir) |AF| [Mp]vis  —U— Pt ’

- u29()—2+val(v) 4 H(v,e)eF(F)(Aeud(e)) ve V(D)o
T um @) 4, ve V(I)W,

More explicitly, in the notation of Appendix [Al

B, = II e 11

' _ )
(v,e)EF(T) (v,e)EF(T) de)! | Tweerm (v —de)dw.e)
d(e)d(e)72
d(e)! 7
d(el)d(el)d(eg)d(e)2 1
dler)dles) =S a0y’
um () H d(e), veVv(I)W.

(v,e)eF(T)

d(e)d(e) A_Z(U) (u)u2g(v)+val(v)73

ve VSI)©,
v e VIID)©, (v,e) € F(D),

e

ve VIO (v,e1), (v, e9) € F(T),

2 1
i +1

= (18w )y 0i) | TT dte) /%_u—_wt.

|Ar] veV(D)(© e€E(I) M
Recall that
[Ar| = [Auwt(T)[ [T de) J] d),
ecE veVIH()M)

SO

(_1)d§1)+1

.
Aut(D)]

[ oo | T I d@) [, @)

(1) qvi
veV (I)(©) veVS (D)W (v,e)EF My ]vir
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7.2. Sum over Graphs. For k =1,...,r define
_— .
Igp = Z I .
PEGy,0(P!,p) DA, A +1=k
Then

ZH (r—k—w) I’C

k=01=1
for any wy,...,w, € Z.
Setting (wy,...,w,) = (0,1,...,7 —k—1,r —k+1,...,r) yields

Hy = (—1)"kl(r — k)IF .

The k = 0 case implies the following formula due to Ekedahl, Lando, Shapiro,
and Vainshtein [2], also proved by T. Graber and R. Vakil [0]:

- “ﬁ) ! YO
(20) Hgy, =1, =
o |AUt | ! Mg,i(w) Hz (1= .Uz‘/)l)

For k =1, we have

H,, = —(r— 1)1}

g,
which is, by a derivation similar to that in Section B3 equivalent to

T—l Z Il + Z IQ g 1,

(21) VGJ(:U') VGC(:U')

+ Z Z I3(V1’U2)I~s?1-,v1[gz vy

g1+g2=g v1Uuv2eC(pn)

Combining 1) and (IZ[]) one obtains

H!]# g 1,v
) — I
o 2 gt Z =1
veJ(p) velC(p
H 1 H, ,°
D D D B e T e
R~ (g1 =2+ WA+ 1)) (292 — 2+ 7] 107))

which is equivalent to the cut-and-join equation

ZII Hq,+zl2 qlV

veJ(p) veC(p)

r—1 12
i Z Z ( 201 — 2+ [V +1(v") )I3(V V) Hgy 1 Hgy 2.

g1+g2=g v1uv?2eC(pn)

(22)

The above cut-and-join equation was first proved using combinatorics by Goulden,
Jackson and Vainstein in [7] and later proved using symplectic sum formula by Li-
Zhao-Zheng [19] and Ionel-Parker [I1], Section 15.2].

Acknowledgements. We wish to thank Jun Li for explaining his work, Jim
Bryan, Bohui Chen, Tom Graber, Gang Liu, Ravi Vakil for helpful conversations,
and Cumrun Vafa and Shing-Tung Yau for their interests in this work. The first
author wishes to thank the hospitality of IPAM where she was a core participant
of the Symplectic Geometry and Physics Program and did most of her part of



26 CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

this work. The second author is supported by an NSF grant. The third author is
partially supported by research grants from NSFC and Tsinghua University.

APPENDIX A. LOCALIZATION

In this appendix, we provide details of localization in our particular case. Related
results are discussed in [IJ]. We first introduce some notation.

Let (w) be the 1-dimensional representation of C* given by A-z = A%z for A € C*,
z € C. We do calculations on Mr which is a finite cover of Fr C M, o(P, 1), so
the weight w of C*-action can be fractional.

Given I € G4 o(P*, ), let

[f:(Comy,... ) — P m] ]

be a fixed point of the C*-action on M, (P!, 1) associated to I'. Given (v,e) €
F(T"), where v € V()@ U V(I let g(,) € C denote the node at which C,
and C. intersect. Let v, ) denote the first Chern class of the line bundle over My
whose fiber at

[f:(Comy,... 2y) — P m] ]
is Ty Co. Given v € VIHT)© let g, denote the node at which C,, and C.,
intersect, where {e1,e2} = {e € E(T) : (v,e) € F(I')}.
A.1. Virtual Normal Bundle. The tangent space T and the obstruction space
T?% of My (P!, ) at
[f : (Ov'rla s 7xl(u)) - Pl[m] ] S ﬂg,O(Plvﬂ)
are given by the following two exact sequences [I6, Section 5.1]:
0 — Ext’(Qc(D),0¢) — H(D®) — T
—  Ext'(Q¢(D),0¢) — H(D®) - T? — 0
0 — HC.f (e (logp™))") — HOD®) — @i HY(R)
—  H'(C.f* (wpim(logpi™))Y) — H'(D*) — &25 HL(R) — 0
where D = 1 + -+ 4 2y(,), Wp1}y) is the dualizing sheaf of Pt [m)],
HYRY) = @@ T, (f@)) e (Feh)) = e,
acf~1(pi")
Hy(R]) = (Tpgwpb) ® Tp§l>P%l+1))®("hl)a

and n; is the number of nodes over pgl).

Let f =n[m]o f:C — PL. Then

£ (wpt ) (log pI™))Y 2 F*Opa (1).
Let
Bi = Ext®(Qc(D),0c), Ba=H(C, f*Op (1)), Bs;=a",'H(R}),
By =Ext'(Qc(D),0¢), Bs=H(C, f*Op (1)), Bs=® ;' HL(R}).
We now assume that

[f : (valv"'vxl(u)) - ]P)l[m]] € Fr Cmg,O(Plvﬂ)a
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where I' € Gy (P!, 1), and Fr is the set of fixed points associated to I'. The
C*-action on M, o(P!, i) induces C*-actions on By, ..., Bg. In particular, the C*-
actions on By and Bs come from the C*-action on Op:(1) which acts on Opi(1),,

and Op:(1)p, by (1) and (0), respectively. Let B; denote the moving part of B;
under the C*-action. Then each B form a vector bundle over M. We will use the

same notabt1on~BZ to denote the vector bundle.
Note that B3 = 0, and

- 0, —0,
Bg = . .
0 { Hy(RS) = (Tpgmp%o) ® Tpgmph))@( o= m > 0.
We have ~ ) ) )
1 _ eT(T2) _ eT(Bl)eT(B5)eT(Bﬁ)

eT(leir) eT(Tl) eT(BZ)eT(B‘l)

where T, T? are the moving parts of T, T2, respectively.

A.1.1. The target is P'. We have seen that there is only one graph I'°. Recall that

A {point} (ga l(:u)) = (07 1)5 (07 2)a
Mo = { ﬂgyl(#) (gul(ﬂ)) # (07 1), (072)'

We first compute e (Bi)/er(Bs). When (g,1(1)) # (0,1),(0,2). The domain is
C=ChpUCe U---C

Cl(n) "

We have
1(p)

Bl =0, B4 = @TquUU (9 Tquei,
i=1
where q; = q(yg,e;)- SO

where 1; = Py, e,)-
When (g,1(p)) = (0,1), we have

SO

When (g,1(p)) = (0,2), we have
B =0, By= (i+i).
M1 H2

B)) 1
B)_1+1'
)-

SO

er(B1) _
~( H1 H2
We next compute er(Bs)/er(Bz). When (g,1(1)) # (0,1),(0,2), consider the
normalization sequence
1(p)

0— f*O[FDl( ) — (f|cv0 *Opi (1) ® @ f|c *Op1 (1 @Opl —
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The corresponding long exact sequence reads

0 — HC, fOm(l))
U(p) U(p)

—  H(Cyy, (flen,) 0 (1) @ D HO(Ce,, (fle., ) Op (1 EBOHM

=1
()
— HY(C, f*Op(1)) — H (Cuy, (flc,, ) Om (1 @@H eir (Fle.,) Om (1)) — 0.

The representations of C* are

) I(p) L)
o weFoum - wienoe o0 =B (G (2)) - o
a=1 t

=1 i=1

— HYC, f*Op (1)) = H(Cyy, Oc,,) @ (1) = 0

So we have
>, U(p) i
er(Bs - [ A—
(23) - EB L= Ay Gy 1H(—..u )
T 2) i1 i

One can check that (23)) is also valid for (g,1(r)) = (0, 1), (0, 2).
Finally, Bg =0, so eT(Bg) = 1. We obtain the following Feynman rules:

1

V1r = H Ae’
er(Nps eeE(FO)
where
L, (9:1(n)) = (0,1)
A’Uo = ﬁv (gvl(:u’)) - 52

A, = u

A.1.2. The target is P [m], m > 0. Let T' € G4 o(P', ), I' # I'Y. We first compute
er(B1)/er(Bs). We have

B = <d(v

veVI F)(D)

- 1
B, = Z ﬁ 3 @ @ TQ(U,G)CU@)T‘Z(v,e)Ce

UGV”( )(©0) \ (v,e)eF(T veVS(T)© \ (v,e)eF(T)

@ T
veV (T )(1) (v,e)eF (T
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er(By) B u u -
GT(B4) B vevlf_([r) d(v) H ( Z d(e))

(0) veVILI)© \ (v,e)eF(T)

1

1
Ty — 1/}(1),6) H H T — w(v,e)

weVS(I)©® \ (v,e)eF(T) d(e) veV(D)M \ (v,e)eF(T) d(€)

We next compute er(Bs)/er(Bz). Consider the normalization sequence

0 — fOm(l)— D (fle.) O @& @ (fle.) O (1)

veVS(T)Ouv(Tr)® ecE(T)
- P on)pe P P on) | P P op),, | -0
veVII(T)(0) veVS(I)© \(v,e)eF veV (D)D) \(v,e)eF
The corresponding long exact sequence reads
0 — HC, f*Om(1))
— D H(Cy, (fle,) Om (1) & @ H°(Ce, (flc.) Op: (1))
veVS(T)Ouv ()M ecE(T)
- B omme D | B o] D | D on
veVII(T)(0) veVS(I)© \(v,e)eF veV (D) \(v,e)eF
- HYC, f*Om (1))
— ) H(Cy, (fle,) Om(1)) @ @ H(Ce.(fle.) Opi(1)) — 0.
veVS(T)©uv ()M ecE(T)

The representations of C* are

0 — HC,fOm(1))

d(e)
- @ HC.O0c)eMe P HC.O)e 0 D (@(%@))

veVI(I)© veV (D) ecE(T)

- P me B b ovle P P 0

veEVII(T)(0) veVS(T)O) \(v,e)eF veV (D)D) \ (v,e)eF
— HY(C, [ Op(1))

- P B C.O)eMe P HY(C,Oc)®(0)—0

veVS(I)(© veV(I)®
So
er (B5) . H (AV (u)uval(v)fl) H <d(e)d(e) ud(e)>
D\ g(v) '
er(B2) v\ ccim » U
Finally,

. , O
B = (T, 0Pl @ T0 Py

)
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SO
er(Bs) = (—u —¢")IPOI
where 9! is the first Chern class of the line bundle over Mg) whose fiber at
[f: € — P'(m)]
is T;(lo)Pl (m). Note that ¢ = d(e)i,.) for v € V(I)®), (v,e) € F.
We have the following Feynman ruleS'

1
er (Ny™) - —U—W H H Ae

veV(T) eEE(F)

where
[Lv,e)er(r ﬁ = i.eyerm dle), ve V(@™
Agw () u (1)),
A, = u H(v,e)eF(F) T Yoy veV (F)
a5y ve VIT)O),
+ v E VII(I‘)(O) (v,e1), (v,e3) € F(T),
d(e1) ' d(ez)
Ae = d(e) (e)ufd(e).

d(e)!
The degree of er(Ny¥T) is

1+ > (1=g) -V O+ > dle)

veVS(T)© ecE(T)
= 1+ > (1-g@)-V DO +ad
vEVS(D)(©

We have seen that the virtual dimension of Fr is

20 -3+1w+ D, (9(v)—1)+[VID)

veVS(T)(©
We have
20-3+1w+ > (9v)—1)+[VI(D)
VEVS(I)©®
H1+ Y (1—g) - VDO +d

veVS(I)©
= 29-2+d+1(p)
as expected.
A.2. The bundle Vp. The short exact sequence
0—Oc(-D)— Oc—0Op—0
gives rise to a long exact sequence

()
0 — H°C,0c(-D)) — H(C,0¢) — @oxl

- HI(O,OC(—D))—) (CaOC)_)O
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The representations of C* are
()
0— (1) = P(r) = H'(C.00(-D)) ® () — H'(C,0c) ® (1) — 0.
i=1
So
er(Vp) = er(Vo)(Tu) 1,
where

Vo=R'T.0y,,.

Recall that 7 : U, ,, — Mgy o(PL, i) is the universal curve.

A.2.1. The target is P1. There is only one graph I'V in this case. When (g,1(u)) #
(0,1),(0,2), consider the normalization sequence
1) W(w)
0— Oc¢ — Oc¢,, @@Ocq — @Oqi — 0.
i=1 i=1
The corresponding long exact sequence reads
I(p) L)
0 — HC,0¢)— H(Cy,0c,,) @ P H(C.,, Oc.,) = EP Oy,
i=1 i=1
L)
— H'C,0¢) — H'(Cy,,0c,,) ® P H'(C,,Oc,,) = 0
i=1
The representations of C* are

Up) W)

0 - (N->maPr)—Pr
i=1 i=1
— HYC,00)® (1) — HI(CUO,OCWO) ® (1) — 0.
So
irer(Vp) = A;/(T’U,)
which is clearly also valid for (g,1(1)) = (0,1),(0,2).
We have
i;oeT(VD) = A,ﬁ),
where

D W(w)—1
Ay = A (Tu) - (Tu) (=1,
Note that the degree of if.ner(Vp) is I(1t) + g — 1, as expected.

A.2.2. The target is P'[m], m > 0. Givena graph ' € G, o(P*, ), T' # I'°, consider
the normalization sequence

0 — O¢— @ OCU@@OCS

veVS(I)Ouv(T)®) ecE(T)

— @ Oy, ® @ @ 4y | =0

veVII(T)(O) veVS(T)OuV(T)M \(v,e)eF
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The corresponding long exact sequence reads

0 — HC,00)— ) H(C,,00,)® @ H°(C.,0c,)
veEVS(M)OUV(I)™ ecE(T)
- @ Oq, @ @ @ Oy
veEVII(T)(0) vEVS(T)OUV(T)M) \ (v,e)EF
— HYC,0¢) — ) H'Y(C\,,00,)® @ H'(C.,00,) =0
veVS(T)Ouv(T)™ ecE(T)

The representations of C* are

0 — (T)—> @ (T)@ @ (T)

veVS(I)Ouv(I)® ecE(T)
- D e S, D »
veVII(T)(©) veEVSIT)@OUV(T)D \ (v,e)EF
- H(CO)em— P H(C,0c)8(r) =0
weVS (D) OuV(r)®)
So
iter(Vo) = (rw)/POIEWVORLTT AY ) (ru)
UGV(F)
iter(Vp) = (ru)lPOEVORG TT AY,, (ru)
veV (T)

We have the following Feynman rules:
lFeT VD H A
veV (T')

where

AD

Ao () - (r) )1y € (1)),
Note that the degree of ifer(Vp) is

> (o) +valw) =)+ > (g(v) +U(p(v) - 1)

{A;/(v J(Tu) - (ru)@ e V(D)©),
g

veV(T)©) veV ()M
= Y @)+ [ED) - VD) +Uuw)
veV (T')

)+ Y g+ [EQ) - V@) +1] ~1

veV (T)
= lp+g-1

as expected.

A.3. The bundle Vp,.
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A.3.1. The target is P1. There is only one graph I'V in this case. When (g,1(u)) #
(0,1), (0,2), consider the normalization sequence

0= f*Opi(~1) = (flc,, ) O (~ @@ fle.,) O (- @OIF” -

The corresponding long exact sequence reads

0 — HOC,f*Oun(-1))
U(p)

= H°(Cuy, (fle,, ) Opi (-1)) @ @D HO(Ce,, (fle., )" Osr (— @Opl
i=1
— H'(C, [*Op(-1))
= H'(Cuy, (fle,) Opi (- EB@H eir (fle.,) Opi (—1)) = 0.
The representations of C* are
0 — 0— HCy,0c,)®(-7—1) = @P(-7-1)
— HY(C, [ Op(-1))

() [d(e)—1 "

We have the following Feynman rules:

i;oeT(VDd) = Ai?od H Aede

ec E(I)
where
ADe = AY((—7 = D)) - ((—7 — Du)' =1
ADa  — HZ(:e%_l(d(e)T +a) (—u) %1,
e d(e)d@-1
It is)easily) checked that the above Feynmann rules are also valid for (g,1(n)) =
(0,1), (0,2).

Note that the degree of ifer(Vp,) is d + g — 1, as expected.

A.3.2. The target is P'[m], m > 0. Givena graph ' € G, o(P*, ), T' # I'°, consider
the normalization sequence

0 — [ Op(-1)— D (fle.) On(-1) @ @ (fle.) O (-1)

veVS(M)OuV (D)@ ecE(T")
- D Oon-bwe B | D -
veVII(D)(0) veVS(T)O) \(v,e)eF

o P B Ow(-1),, | =0

veV (M) \ (v,e)eF
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The corresponding long exact sequence reads

0 — HC,f*Op(-1))

- D H(Co, (fle,) On )& P H(Ce.(fle.)" Op (1)
veVS(T)Ouv(r)m ecE(T)

- D omlne D | D omi-
veVIN(T)© veVS(L)© \(v,e)eF

o B | D oni-

veV(T)™ (v,e)EF
— HYC, f*Op(-1))
- ) H'(Cy, (fle,) 0 ())& @ H'(Ce,(fle.)*Op(~1)) = 0.

veVS(T)©Ouv(T)™ ecE(T)

The representations of C* are

0 — HC,fOp(-1))
- @ st Ne @ NG00 e )
(T)© veV ()M
- P v P [ Dr-v]e B | B n
veVII(T)(©) veVS(M)©® \(v,e)eF veV ()M \(v,e)eF

— HYC, f*Op(-1))
- P HYC,Oc)@(-T-De @ H(C,Oc)® (-7)

veVS(I)(0) veV (I
d(e)—1 a

o @ (I () ) -0

ecE(T) a=1

We have the following Feynman rules:

iter(Vo,) = [TAY*- T AP,

v ecE(T)

where

pr. {AX@((—T 1) (o7 — DO e V),

A;]/(U)(—T’U,) - (—Tu)val) -1 veV(I)m,

d(_e)_l dle)t +a
AeDd — Hail(e)(d((e))l‘F )(

_u)d(e)—l'
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Note that the degree of ifer(Vp,) is

> (g(v) +vallw) — 1)+ Y (dle) — 1)

veV(T) ecE(T)
= > g +2ABED)| = [V(D)| +d~|E|
veV (T')

= d+ | > g +|ED)| - V(D)|+1] -1
veV(T)

= d+g-1
as expected.
A.4. The obstruction bundle. Combining results in Section and Section
[A2 we obtain Feynman rules for the obstruction bundle

V=Vpa®Vp,.
A.4.1. The target is P1. We have
itoler(V) = Ay, I A
e€E(I'0)

where

d l —
AV = AP AD AY (Tu)AY (= (7 + D) - (ru(—7 — L)) W1

d(e)—1
v _ b ape _ 1l (dlep+a), e
Ae - Ae Ae ¢ = d(e)d(e)_l ( u) :

A.4.2. The target is P [m], m > 0. For any I € Gy (P!, p), T’ # I'°, we have
irer(V))= ] Ay ] AY.
vev(r) e E(T)
where

AY = AD AP = {AZ@) (o)A (=7 + D) - (ru(—r = DO, v e VD),

g(v
(_1)g(v)+val(v)71(Tu)Tl(v)7 vE V(I‘)(l)

AV — ADADd — Hi(zei_l(d(e)T + a)

d(e)d@-1
Recall that 71 (v) = 2g(v) — 2 + I(u(v)) + val(v) for v € V/(I')(V).

(_u)d(e)fl'
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