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1. INTRODUCTIONS

One of the main purpose of this paper is to compare those well-known canonical and complete
metrics on the Teichmiiller and the moduli spaces of Riemann surfaces. We use as bridge two new
metrics, the Ricci metric and the perturbed Ricci metric. We will prove that these metrics are
equivalent to those classical complete metrics. For this purpose we study in detail the asymptotic
behaviors and the signs of the curvatures of these new metrics. In particular we prove that the
perturbed Ricci metric is a complete Kahler metric with bounded negative holomorphic sectional
curvature and bounded bisectional and Ricci curvature.

The study of the Teichmiiller spaces and moduli spaces of Riemann surfaces has a long
history. It has been intensively studied by many mathematicians in complex analysis, differential
geometry, topology and algebraic geometry for the past 60 years. They have also appeared in
theoretical physics such as string theory. The moduli space can be viewed as the quotient of
the corresponding Teichmiiller space by the modular group. There are several classical metrics
on these spaces: the Weil-Petersson metric, the Teichmiiller metric, the Kobayashi metric, the
Bergman metric, the Caratheodory metric and the Kéhler-Einstein metric. These metrics have
been studied over the years and have found many important applications in various areas of
mathematics. Each of these metrics has its own advantages and disadvantages in studying
different problems.

The Weil-Petersson metric is a Kéahler metric as first proved by Ahlfors, both of its holo-
morphic sectional curvature and Ricci curvature have negative upper bounds as conjectured by
Royden and proved by Wolpert. These properties have found many applications by Wolpert,
and they were also used in solving problems from algebraic geometry by combining with the
Schwarz lemma of Yau ([5], [17]). But as first proved by Masur it is not a complete metric
which prevents the understanding of some aspects of the geometry of the moduli spaces. Siu
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and Schumacher extended some results to higher dimensional cases. The works of Masur and
Wolpert, Siu and Schumacher will play important roles in our study.

The Teichmiiller metric, the Kobayashi metric and the Caratheodory metric are only Finsler
metrics. They are very effective in studying the hyperbolic property of the moduli space. Royden
proved that the Teichmiiller metric is equal to the Kobayashi metric from which he deduced the
important corollary that the isometry group of the Teichmiiller space is exactly the modular
group. Recently C. McMullen introduced a new complete Kahler metric on the moduli space
by perturbing the Weil-Petersson metric [9]. By using this metric he was able to prove that
the moduli space is Kahler hyperbolic, and also to derive several topological consequences. The
McMullen metric has bounded geometry, but we lose control on the signs of its curvatures.

In the early 80s Cheng-Yau [2] and Mok-Yau [10] proved the existence of the Kéhler-Einstein
metrics on the Teichmiiller space. Since the Kéhler-Einstein metric is canonical, it also descends
to a complete Kéhler metric on the moduli space. More than 20 years ago Yau [18] conjectured
the equivalence of the Kéahler-Einstein metric to the Teichmiiller metric. We will prove this
conjecture in this paper. Since the McMullen metric is equivalent to the Teichmiiller metric, so
we have also proved the equivalence of the Kéahler-Einstein metric and the McMullen metric.

The method of our proof is to study in detail another complete Kahler metric, the metric
induced by the negative Ricci curvature of the Weil-Petersson metric which we call the Ricci
metric. We first study its asymptotic behavior near the boundary of the moduli space, we prove
that it is asymptotically equivalent to the Poincaré metric, and asymptotically its holomorphic
sectional curvature has negative upper and lower bound in the degeneration directions. But
its curvatures in the non-degeneration directions near the boundary and in the interior of the
moduli space can not be controlled well. To solve this problem, we introduce another new
complete Kéahler metric which we call the perturbed Ricci metric, it is obtained by adding a
multiple of the Weil-Petersson metric. We compute the holomorophic sectional curvature and
the Ricci curvature of this new metric. We show that they are all bounded below and above,
and the holomorphic sectional curvature has negative upper and lower bounds. By applying the
Schwarz lemma of Yau we can prove the equivalence of this new metric to the Kéhler-Einstein
metric. The equivalence of the perturbed Ricci metric to the McMullen metric is proved by a
careful estimate of the asymptotic behavior of these two metrics.

To state our main results in detail, let us introduce some definitions and notations. Here for
convenience we will use the same notation for a Kahler metric and its Kahler form. First two
metrics w,, and wy, are called equivalent, if they are quasi-isometric to each other in the sense
that

Clw,, <w; < Cuws,
for some positive constant C'. We will write this as wy, ~ wz,.

Our first result is the following asymptotic behavior of the Ricci metric near the boundary
divisor of the moduli space. Let 7, denote the Teichmiiller space and M, be the moduli space
of Riemann surfaces of genus g where g > 2. M, is a complex orbifold of dimension 3g — 3 as
a quotient of 7, by the modular group. Let n = 3g — 3. Let wy p denote the Weil-Petersson
metric and w; = —Ric(wwp) be the Ricci metric. It is easy to show that there is an asymptotic
Poincaré metric on M,. See Section 4 for the construction.

Theorem 1.1. The Ricci metric is equivalent to the asymptotic Poincaré metric.

This theorem is proved in Section 4. Our second result is the following estimates of the
holomorphic sectional curvature of the Ricci metric. Note our convention of the sign of the
curvature may be different from some literature.

Theorem 1.2. Let Xo € My \ M, be a codimension m point and let (t1, - ,tm, Smt1, -+, Sn)
be the pinching coordinates at Xg where t1,--- ,t,, correspond to the degeneration directions.
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Then the holomorphic sectional curvature of the Ricci metric is negative in the degeneration
directions and is bounded in the non-degeneration directions. Precisely, there is a 6 > 0 such
that if |(t,s)| <, then
~ 3uy o TR
and
R--=0(1) if i>m+1.

Furthermore, on Mg the holomorphic sectional curvature, the bisectional curvature and the Ricci
curvature of the Ricci metric are bounded from above and below.

This is Theorem 4.4 of Section 4 of this paper. One of the main purposes of our work was to
find a natural complete metric whose holomorphic sectional curvature is negative. To do this,
we introduce the perturbed Ricci metric. In Section 5 we will prove the following theorem:

Theorem 1.3. For suitable choice of positive constant C, the perturbed Ricci metric
Wz = Wr + C(.UWP

is complete and its holomorphic sectional curvatures are negative and bounded from above and
below by megative constants. Furthermore, the Ricci curvature of the perturbed Ricci metric is
bounded from above and below.

Note that the perturbed Ricci metric is equivalent to the Ricci metric, since its asymptotic
behavior is dominated by the Ricci metric. Now we denote the Kahler-Einstein metric of Cheng-
Mok-Yau by wg g which is another complete Kahler metric on the moduli space. By applying
the Schwarz lemma of Yau we derive our fourth result in Section 6:

Theorem 1.4. We have the equivalence of the following three complete Kdhler metrics on the
moduli spaces of curves:

WKE ~ Wy ~ Wi,

Our final result in this paper proved in Section 6 is the equivalence of the Ricci metric and
the perturbed Ricci metric to the McMullen metric. Let us denote the McMullen metric by way.

Theorem 1.5. We have the equivalence of the following metrics: the McMullen metric, the
Ricci metric and the perturbed Ricci metric:

WM ~ Wy ~ Wi,

As a corollary we know that these metrics are also equivalent to the Teichmiiller metric, the
Kobayashi metric, and the Kéhler-Einstein metric. This proved the conjecture of Yau [18]. In
the second part of this work, we will study the Bergman metric and the Caratheodory metric.
We believe that these two metrics are also equivalent to the above metrics. We will also study
the goodness of the Ricci metric in the sense of Mumford, discuss the bounded geometry of the
Kahler-Einstein metric and the perturbed Ricci metric, and study the stability of the tangent
bundle of the moduli space of curves.

This paper is organized as follows. In Section 2 we set up some notations and introduce the
Weil-Petersson metric and its curvatures. In Section 3 we introduce various operators needed
for our computations, we compute and simplify the curvature of the Ricci metric by using these
operators and their various special properties. This section consists of long and complicated
computations. Section 4 consists of several subtle estimates of the Ricci metric and its curvatures
near the boundary of the moduli space. In Section 5 we introduce the perturbed Ricci metric,
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compute its curvature and study its asymptotic behavior near the boundary of the moduli
space. These results are then used in Section 6 to prove the equivalence of the several well-
known classical complete Kéhler metrics as stated above. In the appendix we add some details
of the computations for the convenience of the readers.

Acknowledgements The second author would like to thank H. Cao, P. Li, Z. Lu, R. Schoen
and R. Wentworth for their help and encouragement.

2. THE WEIL-PETERSSON METRIC

The purpose of this section is to set up notations for our computations. We will introduce
the Weil-Petersson metric and recall some of its basic properties. Let M, be the moduli space
of Riemann surfaces of genus g where g > 2. M, is a complex orbifold of dimension 3g — 3. Let
n = 3g—3. Let X be the total space and 7 : X — M, be the projection map. There is a natural
metric, called the Weil-Petersson metric which is defined on the orbiford M, as follows:

Let s1,-- -, s, be holomorphic local coordinates near a regular point s € M, and assume that
2 is a holomorphic local coordinate on the fiber Xy = 7~!(s). For the holomorphic vector fields

8%1, cee %, there are vector fileds vq,--- , v, on X such that
(1) mo(v;) = % fori=1,---,n;
(2) Ov; are harmonic T X,-valued (0, 1) forms for i = 1,--- ,n.
The vector fields v1, - - - , v, are called the harmonic lift of the vectors 6%1’ R %. The existence

of such harmonic vector fields was pointed out by Siu [12]. In his work [11] Schumacher gave an
explicit construction of such lift which we now describe.

Since g > 2, we can assume that each fiber is equipped with the Ké&hler-Einstein, or the
Poincare metric, A = */T_T)\(z,s)dz A dz. The Kéhler-Einstein condition gives the following
equation:

(2.1) 0,0z1log A\ = .

For the rest of this paper we denote 8%1- by 0; and % by 0,. Let
(2.2) a; = —X\"19;0zlog A

and let

(2.3) A; = 0za;.

Then we have the following
Lemma 2.1. The harmonic horizontal lift of 0; is
v; = 05 + a;05.

In particular
B; = A0, ®dz € H'(X,, Tx,)
is harmonic. Further more, the lift 0; — B; gives the Kodaira-Spencer map Ts My — HY(X,, Tx,).

Now we have the well-known definition of the Weil-Petersson metric:

Definition 2.1. The Weil-Petersson metric on Mg is defined to be
(2.4) hg(s) = / Bi . Fj dv = / Azfj dv,
S XS

where dv = @)\dz A dZ is the volume form on the fiber Xs.
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It is known that the curvature tensor of the Weil-Petersson metric can be represented by
Rijkz = /X {(Bz . EJ)(D + 1)71(Bk . El) + (BZ . El)(D + 1)71(Bk . EJ)} dv,

where [ is the complex Laplacian defined by
82
020z

By the expression of the curvature operator, we know that the curvature operator is nonpos-
itive. Furthermore, the Ricci curvature of the metric is negative.

However, the Weil-Petersson metric is incomplete. In [13] Trapani proved the negative Ricci
curvature of the Weil-Petersson metric is a complete Kéahler metric on the moduli space. We call
this metric the Ricci metric. It is interesting to understand the curvature of the Ricci metric,
at least asymptotically. To estimate it, we first derive an integral formula of its curvature.

O=-\"!

3. RICCI METRIC AND ITS CURVATURE

In this section we establish an integral formula (3.30) of the curvature of the Ricci metric.
The importance of this formula is that the functions being integrated only involve derivatives in
the fiber direction which we are able to control. Thus we can use this formula to estimate the
asymptotics of the curvature of the Ricci metric in next section.

The main tool we use is the harmonic lift of Siu and Schumacher described in the previous
section. These lifts together with formula (3.2) enable us to transfer derivatives in the moduli
direction into derivatives in the fiber direction.

We use the same notations as in the previous section. We first introduce several operators
which will be used for the computations and simplifications of the curvatures of the Ricci metric.

Define an (1,1) form on the total space X by

g= \/271881053“)\ = \/;(gijdsi Ndsj — Aaids; N dZ — Xaydz A\ ds; + Adz N dZ).
The form g is not necessarily positive. Introduce

2 _ _
€5 = 7/519(% Uj) = 95 — Aaid;
be a global function. Let us write fﬁ = A;A;. Schumacher proved the following result:

Lemma 3.1. By using the same notations as above, we have

(3.1) O+1Des;=f5

Since e;; and f;z are the building blocks of the Ricci metric, it is interesting to study its

property under the action of the vector fields v;’s.
Lemma 3.2. With the same notations as above, we have
vk(e;z) = vilegs)-
Proof. Since dg = 0, we have the following
0 = dg(vi, vk, U;) = vi(ey5) — vile;z) +0,9(vi, vg)
= 9(vi, [vk, U5]) + g(vw, [v3,75]) — 9(V5, [vi, vi])-

The Lie bracket of v; with ; or vy, are vector fields tangent to X, which are perpendicular to
the horizontal vector fields v; with respect to the form g. Thus the last three terms of the above

equations are zero. On the other hand, g(v;,vg) = 0. The lemma thus follows from the above

equation.
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We also need to define the following operator
P: C%(X,) = T(AY(T™ X)), | 0.(A"0.f).
The dual operator P* can be written as follows
P*: T(A"YTYOX,)) — C®(Xy), B A'0,(A10.(\B)).

The operator P is actually a composition of the Maass operators. We recall the definitions
from [16]. Let X be a Riemann surface and let x be its canonical bundle. For any integer p, let

S(p) be the space of smooth sections of (k ® 1)%. Fix a conformal metric ds? = p2(z)|dz|?.

Definition 3.1. The Maass operators K, and L, are defined to be the metric derivatives K, :
S(p) = S(p+1) and L, : S(p) — S(p—1) given by
Kylo) = 105 "0)
and
Ly(o) = p770:(pP0)
where o € S(p).
Clearly we have P = K1 Kj. Also each element o € S(p) has a well-defined absolute value |o]|

which is independent of the choice of the local coordinate. We define the C* norm of o as in
[16]:
Definition 3.2. Let Q be an operator which is a composition of operators K, and L. Denote

by |Q| the number of such factors. For any o € S(p), define

lollo = sup|o|
X

and

lollk = 1Qa]o-
IQI<k
We can also localize the norm on a subset of X. Let Q) C X be a domain. We can define

lollo.0 = sup o]
Q

and

lollke =Y 1Qclloq.
Q<K

Both of the above definitions depend on the choice of conformal metric on X. In the following,
we always use the Kéahler-Einstein metric on the surface unless otherwise stated.

Since the Weil-Petersson metric is defined by using the integral along the fibers, the following
formula is very useful:

(3.2) o[ n={ Lun
XS S

where 7 is a relative (1,1) form on X.

The Lie derivative defined here is slightly different from the ordinary definition. Let ¢; be the
one parameter group generated by the vector field v;. Then ; can be viewed as a diffeomorphism
between two fibers Xy — Xy . Then we define

N
Lyn = }13%;(% (o) — o)
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for any one form o. On the other hand, let & be a vector field on the fiber X;. Then we define
.1
Ly, & = lim— ((9-0)+€ = €).
We have the following

Proposition 3.1. By using the above notations, we have
Ly,0 =i(v;)dyo + dyi(v;)o,
where dy is the differential operator along the fiber, and
L& = [v;, €]
In the following, we denote L, by L;.

Lemma 3.3. By using the above notations, we have
(1) lev = 0,’

(2) Ly(B;) = —P(eg) — [0z ® dz + f;0. ® dz;
(3) Li(Bj) = —P(e5) — fi50: © dz + f502 ® dz;
(4) Li(Bi) = (vk(Ai) — Ai0zax)0; @ dz;

(5) Li(Aj) = (0i(A)) — A10za7)0z @ dz.

Proof. The first formula was proved by Schumacher in [11]. To check the other formulas, we
note that the third and fifth formulas follow from the second and fourth, which we will prove,
by taking conjugation. We first have

D.ap, = 0.(—\"10R0zlog \) = A 7200005 log A — A 710,005 log A
= A1 ap — VM 10,0.0:log N = —AT10hap — AL,
We also have
Ora; = (=X "10;0:1og ) = A\ 209,09z log A — A~ 10:0,0;log A
= -A"19 a; — AN 10:97 = N 10a; — A1 0x(eg + Aaiar)
= —A"'Oa; — A1 0ze; — A0 A aiar — Agar — aidza;
= —(Aflé}l)\ + AT oA + o) a; — Aflageﬁ — Aoy
= —)flageﬂ — A;qy.
For the second formula we have
Li(B;) = (A)0, ® dZ + Ai(—0.@m0%) ® dzZ + A;0. ® (0,@dz + 0za;dZ)
= (01(As) + Ai0:)0, ® dz — f;0: ® dZ + f;0. @ dz.
So we only need to check that 7;(4;) + A;0za; = —65()\*165617). To prove this, we have
T(Ai) + Aidza; = @Oz A; + 0pA; + Aidza; = 0:(Ai@) + 0z05a;
= 0:(Ajai) — 0:(\"L0zey) — D=(Ait) = —0=(\1De).
This proved the second formula. For the fourth one, we have
Li(B;) = vk(Ai)0, ® dz + Aij(—0,a10;) ® dzZ = (vi(A;) — A;0zax)0. ® dZ.

This finishes the proof.

O

An interesting and useful fact is that the Lie derivative of B; in the direction of vy is still

harmonic. This result is true only for the moduli space of Riemann surfaces. In the general case
of moduli space of Kahler -Einstein manifolds, we only have 9" LyB; = 0.

Lemma 3.4. L;(B;) € H' (X, TX,) is harmonic.
7



Proof. From Lemma 3.3 we know that Ly(B;) = (vg(A;) — AiDzax)0. ® dz € H%Y (X, Tx,).
So it is clear that &(Ly(B;)) = 0. To prove & (Lj(B;)) = 0 we only need to check that
0 (A (v (A;) — Aidzar)) = 0.
From the computation in the above lemma, we have
vp(A;) — Aid.ay, =Aajay — Ox(\"10,0;05log \)
=\ajay + A "20:00,0;05 log X — A\ "19;,0;0:0 log A

which implies
(M (As) — Aidzay)) =0.(N2azay, + N L0200,0;0z log X — 03,0;0505log \)

=0.(Nazay) + 0.(A'0:X)940;0s 1og A + A1 9200, (0,00 log \)

— 0,0;0-0,0% log A\
=0.(Na;ay) + MNp0;0zlog A + X L0M0L0;\ — O,0;02).

(3.3)

Now we analyze the second term in (3.3). We have

AOL0;05 log A =0 0; ai)\ VY Aaiagk);ai)@%)‘

_)\)\2(814)\61‘8%/\ + AOLO; 0\ — OrO; A0\ — ai/\ak(?;/\)

24
2AA(ADiOA — D AI=))
-\ X
(3.4) = — AT ORADION + 0p0: 02X — N OROINIZN — AT DA O2N

+ 222N NI
= — ANTL0RON — AT 20, 005)) — O ANTLD105N — A T29;0050)
+ OO0\ — X100 NN
= — 0;\0k0z1log A — OxAD;05log A + Ok0;0=X — AL OO NI\
=ADihag + ApAa; + 0p0;05\ — X LORDNIN.
By combining (3.3) and (3.4) we have
9. (Mo (A)) — Aidzay)) =0.(Naar) + Adidag + AIpAa;
=20, Aa;ay, + N20.a;ar + N2a;0,ar, + N0 Aay, + A a;
=Nap (A0, ha; + 0.a; + ATION)
+ Ma; (A1 ay + 0.a + ATTORAN)
=0.
This proves that 8 (Ly(B;)) = 0.
O

The above lemma is very helpful in computing the curvature when we use normal coordinates
of the Weil-Petersson metric. We have

Corollary 3.1. Let s1,---,s, be normal coordinates at s € M, with respect to the Weil-
Petersson metric. Then at s we have, for all i,k,

Li.B; = 0.
8



Proof. From Lemma 3.4 we know that L;B; is harmonic. Since Bi,---, B, is a basis of
Ts Mg, we have

LyBi = hpq(/ LyB; - By dv) By = h"0yhigB, = 0.

O
The commutator of v; and 7; will be used later. We give a formula here which is essentially
due to Schumacher.

Lemma 3.5. [v7,v;] = —A—la;e,daz + A_lazekiag.
Proof. From a direct computation we have
[01, vk] = Vi(ax)0; — vg(ar) 0.
By using Lemma 3.3 we have
vi(ay) = @dzay, + da, = —A"dzey

and
v (@) = ax0,a; + Oa; = )\_18Zekz.

These finish the proof.

Remark 3.1. In the rest of this paper, we will use the following notation for curvature:
Let (M, g) be a Kahler manifold. Then the curvature tensor is given by

2., _ _
095 _ 093 %%
02,0%; 0z, 0%

In this situation, the Ricci curvature is given by

_ Kkl
R5=—g Rijki'

In [12] and [11], Siu and Schumacher proved the following curvature formula for the Weil-
Petersson metric. This formula was also proved by Wolpert in [14]. Here we give a short proof
here.

Theorem 3.1. The curvature of Weil-Petersson metric is given by

Proof. We have
Rgiq =0i0khi; — hP10khigOrh,;

—0; LkBi-Bjdv—hpq/ LkBi-B(Idv/ B, L;B; dv

(3.7) X, . X,
:/ (LjLyB; - Bj + Ly B; - L;B;) dv — hpq/ LyB;- B, dv/X B, - LiB; dv.
Since By, - -+, By is a basis of T;M,, we have

hpq/ Ly B; -Bqdv/ B, L;B; dv:/ Li.B; - L;B; dv.
S XS S

9



By combining this formula with (3.7) we have
Ry :/ L;LyB; - Bj dv = / LiL;B; - Bj dv + / Lz, Bi - Bj dv
XS Xs XS
(3.8) :3k/ LZBi FJ dv — / LjBi . Lij dv + / L[Fl,vk]Bi Fj dv
s Xs Xs
S XS

since sz L;B; - B; dv = 0. Now we compute sz Lig; ) Bi - Bj dv. Let ﬂ%(L[v—l,vk]Bi) be the
projection of Ly ,,1B; onto H%' (X, Tx,) which gives the 0, ® dz part of L 0, Bi- Since B; is
harmonic, we know 9,(\4;) = 0 which implies 9,4; = —A719,AA;. By Lemma 3.5 we have

W%(L[Tl,vk]Bl) :(—)\_lc%eki@z/li + Aﬁz()\_l(‘)gekz) + %(A_lAiﬁzeki))(‘)Z X dz
(3.9) =(AT20,AA;i0ze,5 — A 20 A Ai0z¢,5 — AOey; + 0:(N 1 A;0.¢,7))0, ® dz
(—AiDekz + &(A_lAiﬁzekz))az ® dz.

This implies

/X Ligi) Bi - Bj dv = / 1 (Ligr,0,) Bi) - Bj dv

_ / (—AOey; + 8=\ Ai0.e,))A; dv

Kl

(310) = — A szDekz dv + /X (%(AflAZ@Zeki)/Tj dv

- _ /X ngekZ dv—/ A_QAiazekzaz()\Ij) dv

= — / fﬁDekz dv.
Xs

To compute [y L;B; - Ly Bj dv, by using Lemma 3.3 we obtain
[ B o= [ @0 00,00 Dueg) — 2i5y) do

_ / (A20.6,50. (\I=(A"zey)) dv — 2 /X fiifa dv

s

= —/ ()\7282)\836685(/\*18;%]) + xlazekjazag(xla;eﬂ)) dv —2 /X fkgfﬁ dv
:/ (A*Qa;eﬂ(%(/\*laz)\azekg) +,\flazagek382(,\*13;eﬂ)) dv — 2/ figfa dv
(3.11) : X

:/ (A~ 2&@ 1(A0, ey — @,AD@@) — Dekj(—)\_Qaz)\ageﬂ —Oe;)) dv — 2/X kafﬁ dv

s

/ “19:e0, e;) + Oey;0e;) dv — / figla dv
Xs

Dekjell + Dek]De / fk]le dv

/ Oegzfia —2fi5/7) dv = —/X (figfa + e fa) dv.

S

10



By combining (3.8), (3.10) and (3.11) with the identity figlfa = A AjALA = fi5fxg» We have
Ry = /X (fila + ewsfa — fiPe) dv = /X (fijem + faex) dv

E]

s

(3.12)

Here we have used the fact the (OO + 1) is a self-adjoint operator. This finished the proof.
O
It is well-known that the Ricci curvature of the Weil-Petersson metric is negative which implies
that the negative Ricci curvature of the Weil-Petersson metric defines a Kahler metric on the
moduli space M.

Definition 3.3. The Ricci metric T On the moduli space M, is the negative Ricci curvature

of the Weil-Petersson metric. That is

= R-—pPR _
(3.13) 75=—Rg5=h"Rz 3.

Now we define a new operator which acts on functions on the fibers.

Definition 3.4. For each 1 < k < n and for any smooth function f on the fibers, we define the
commutator operator £ which acts on a function f by

(3.14) &(f) = 0 (i(Br)of) = —A19.(Ar0 ).

The reason we call & the commutator operator is that & is the commutator of (O 4 1) and
v and the following lemma.

Lemma 3.6. As operators acting on functions, we have
(1) (O+ Do — v (04 1) = Ovg, — 0O ifk,
(2) (O+ Do —o(0+1) =0y -y =g;
(3) &(f) = —Ar0:(A\10.f) = AP (f) = —Ap K1 Ko(f).
Furthermore, we have
(3.15) (D + 1)”1@(%3) = 5]4(615) + 51(6,6) + LkBi : E
Proof. To prove (1), we have
(D + 1)vk - ’Uk(D + 1) =0y 4+ v, — v — v = Ovg, — v
= — Aflazag(akaz + 8k) — (akaz -+ 8k)(—)\718z&z)
=— Aflaz(Akaz + a, 0,05 + 8;49;)
+ a0, (A"10.05 + A 1ap0.0.05 + O\ 1005 + N 100,02
= — A 19.(A10.) — X 10.a0.0: — X 1ap0.0.05 — \10,0.0=
— A\20.0a5,0,05 + N 10,0.0.05 — N2k 0,05 + A1 03,0,0+
=&k — A_l(azak: + )\_lazAak + A_lak)‘)az&z =&k
where we have used Lemma 3.3 in the last equality of the above formula. By taking conjugation

we can prove (2) by using (1). To prove (3), we use the harmonicity of By. Since d By = 0 we
have 9,(AAy) = 0. So

E(f) = - AT10(Ak0.f) = AT (AARATIOLf) = —ATIAARD. (A0, f) = —ARD. (A1),
11



To prove the last part, by using part 1 of this lemma, we have
O+ Dov(e;) =vi((O+ 1)(e;5)) + &le;) = velfiz) + Elez)
=Ly.B; - Bj + Bi - Ly Bj + &i(e;5) = LiBi - Bj — 4:0:(A\ ' 0.¢45) + &i(e;5)
=Ly B; - Bj + &i(ey;) + kle;)-

This finishes the proof.
O

Remark 3.2. From Corollary 3.1 and the above lemma, when we use the normal coordinates on
the moduli space, we have the clean formula (1 + 1)vg(e5) = &i(ey5) + r(ej5)-

The main result in this section is to prove the curvature formula of the Ricci metric. The
terms produced here are very symmetric with respect to indices. For convenience, we introduce
the symmetrization operator.

Definition 3.5. Let U be any quantity which depends on indices i, k, o, j,1, 3. The symmetriza-
tion operator o1 is defined by taking the summation of all orders of the triple (i,k,a). That
18

O-l(U(i7 k? a’ 3? Z’ B)) :U(Z’ k? a? 37 Z’ B) + U(/I’7 a? k?;’ i? B) + U(k’ /l:’ a? j’ i? B) + U(k7 a? /1:73? Z? B)
+ U(Oé, ia km?v Z7 B) + U(aa k7 i?ja Z? E)
Similarly, oy is the symmetrization operator of j and B and o1 is the symmetrization operator
of 7, 1 and 3.

Now we are ready to compute the curvature of the Ricci metric. For the first order derivative
we have

Theorem 3.2.
(3.16) Oy = W’ {01 /X (Ek(ei7)eqap) dv} + T ik

where ka is the Christoffell symbol of the Weil-Petersson metric.

Proof. From Lemma 3.1 we know that (OJ + 1)613 = fﬁ By using Lemma 3.6 and Theorem
3.1 we have

akRﬁaB :8k /X (eﬁfaﬁ + eiﬁfaj) d’U

= / (vi(€7) fop T €50k (fop) + vileg) fo5 + egur(foz) dv

s

(B4 Doklez)e,s + e506(fop) + (O 4 Dovelezle,; + egoe(foz) dv

o

(vk(fi7)eas + €70k (fom) + vr(fip)eqs + egun(foz) dv

s

(&k(ej)eas + Eklegles;) dv

s

(L Bi - Bj)eg + (LiBa - Bg)e + (LiBi - Bg)e,; + (LxBa - Bj)e;z) dv

s

((Bl . Lij)eaﬁ + (Ba . LkBig)eﬁ + (Bz . LkBig)eaj + (Ba . Lkﬁj)ezg) dv

B

(Ek(eg)e,s + Euleple,;) dv.

S

(3.17)

_l’_

+

Il
s

_|_

12



Now we simplify the right hand side of (3.17). Since By, --- , B, is a basis of T,M,, we know
that the first line of the right hand side of (3.17) is

/ ((LyB; - B, ) oB + (LgBa Bﬁ)e + (LgB; - Bﬁ) + (LxBq, 373)613) dv

s

:/ (LkBZ‘ . (Eeag + Bigeag) + LkBa . (EGZB + Bi,geﬁ)) dv
1 7 - o
(3.18)  _ppa /X (LiB; - By) dv /X (B, - (Bje, + Baey;) dv

I hpq/ (LyBe - By) dv/ (Bp - (Fjeiﬁ +Fﬂ€i3) dv
=hP akhzq pjaf + P akho‘qujpﬁ R piof + FakR”pﬁ

We deal with the second line of the right hand side of (3.17) by using Lemma 3.3 and Lemma
3.6 to get

(3.19) B;-LyB; = _Aiaz()‘ilazelﬁ) = fi(ekj)-
This implies

| (B LiBeys + (Ba- LiBo)eg + (B LBy + (B LiB)e) do
(3.20) .
= /X (&ilerpleas + &aleggles + &ilegg)e ;s + Ealeggles) du.

s

We also have

By combining (3.17), (3.18), (3.20) and (3.21), together with the fact that fz- is a real symmetric
operator and the definition of T we have proved this theorem.

ijaf

O
To compute the second order derivative, we need to compute the commutator of £ and 7.
We have

Lemma 3.7. For any smooth function f € C*(Xy),

(3.22) (& f) — &(f) = Pleg)P(f) — 2f0f + X710, f70=f.

Proof. We will fix local holomorphic coordinates and compute locally. First we know that
the commutator of 7; and 0, is

(3.23) 00, — 0,0] = —0,a;0- = — A0
Similarly, the commutator of 7; and A~10, is
(3.24) m(AT'.) = A0 m = m(A 0. + AT (0. — 9) = A Ozmd. — A A=
The above two formulae imply
U P — Py = —1(0:(A\10.)) + 0.(A 102w
=(A0z — 0.o1)(N102) + 0. (T(AT102) — A1 0z@m0. + AT AD:)
(3.25) =A40:(\710,) — 0.\ L oz@0,) + 0. (N HA0%)
= = A20:0A10, + N1 A10.02 + A0 00:@10, — N1 02410, — N 00,00,
— NT20NA 0 + N0, A10: + A TTA0.0-.
13



By using the harmonicity, we have d:(AA;) = 0 which implies :4; = —A\"'9:\A;. By plugging
this into formula (3.25) we have

TP — P = — 24,0 + A\ 20,00:a;0. — A" 10:@;0,0, — N 20,0A05 + N0, 4,05

(3.26) __ 9 __ pp—
=240+ 0za;P — A “0, A0 + X\ 0,A,0.

Now, since & = AP, we have

0k f) = &e(@if) =u(AR) P(f) + Ar(uP(f) = Pui(f))

3.27 _ _
(3:27) =(0(Ax) + Ap0za) P(f) — 2f,0F — X 20.AAR A0z + X1 A0, A,0-.

From the proof of lemma 3.3 we know v;(Ay) + Ar0za; = P(e,;). By using the harmonicity we
have —A"10,\Ay = 9, A. So from (3.27) we have

(3.28) T(Erf) — &(TF) =Ple,) P(f) — 2f,30f + A 0. Ay A0 f + A~ A0, Aid=f
Pleyg

P
P(ey) P(f) = 2f30f + X718, f705f.

This finishes the proof.
O

From the above lemma, it is convenient to define the commutator of £, and 7; as an operator.

Definition 3.6. For each k,l, we define the operator Q,; which acts on a function to produce
another function by

(3.29) Qkf(f) = ?(ekZ)P(f) - 2kaDf + )\_laszja?f

Now we are ready to compute the curvature tensor of the Ricci metric. The formula consists
of four types of terms.

Theorem 3.3. Let s1,---, s, be local holomorphic coordinates at s € My. Then at s, we have

By =h"7 {m | @+ D eeqtes) + O+ D nleg)Este.n)} d”}

s

(3.30) +h {Ul /x Qulei)as dv}
_ ppapeBpd {al /X Gelea)eay dv} {51 /X &ile,7)e,3) d’”}

_hPq _
—1—7'pjh Riqkl'

Proof. By Lemma 3.4 we know that L;B; is harmonic. Since Bi,---, B, is a basis of
harmonic Beltrami differentials, from the proof of Theorem 3.1 we have

(3.31) LyB; = T%.B,.
14



We first compute &leS 5;6(62.3)6&3 dv. By Lemma 3.6 and Lemma 3.7 we have

&/ AC)

><\

vl (&k(e))eqg + Sklez)vile,5)) dv

= fk vy (e a,@+§k( z])vl( aﬁ) +le( l]) Ofﬁ) dv

><

ék aﬂ ’Ul ij +§k( z])vl( aﬁ)+le( z]) aﬁ) dv

5) 0+ D)(wile)) dv

><\><

T / O+ )7 @) O+ Dntegy) dot [ Qleg)egs do
/ N Eles) +Tu(f5)) do
X

(3.32)
" / O+ 1) (Ex(er) Elens) + 1(f.3)) dv

/ le 1]
- /X (O+ 1) (Elegz)Eles) + O+ 1)L (Eles)Eiles)) do
" /X (O 17 Gl Eleq) + A L) o

T / O+ 1) (€xles)) Epleny) + Ao - LiAg) dv

+ [ Queg)

Now by using (3.31) we have

[ (@D eap (A L) + O+ 17 6e) (Ao - L)) do
= [ (@17 e A ) + O+ 1) €l [Ty Ao ) o

(3.33)
_rt/ Er(ens) (O +1) 71 (A; - Ay) dv—l—I‘m/ Enlez)(0+1)" Ay A) do

_I‘t/ k(e €l e dv+Fﬂl/ k(e ” ez dv.

15



By combining (3.32) and (3.33) we have

& / Eule)eny dv = /X O+ 17 6l Ealep) + Eple) de
T / O+ 1) (Exlenz) Enleig) + E5(eq)) do
+rﬂ/ Exle eltdv+Fﬁl/ Erles)eqr dv

—I—/ Q,;(e7)e 5 dv.
» wi(eg)eas

(3.34)

We also have
Ol =0y (W Oyhig) = ~hP°HeTOh 50k hig + WP10yDihig

(3.35) _ = =
=hP q(afakhia - haﬂaiho@akhiﬁ) = hquiqu'

From Theorem 3.2, formula (3.34) and (3.35) we derive

878,%3 :(éﬁhaﬁ) {01/ fk(eﬁ)eag dv} 1 poB {0155/){ §k(€i3)ea3 dv}

+hw6{gl/ Ele,)e s dv} P4 gl T 4 WP R

= — hatl“ﬁ {0'1/ 5;.3(623)60@ dv}
Xs

(3.36) 17 {i0s [ (@41 e Eles) + fen) a0

4 poB {01 /X Quiles)e,s dv} + hoPTY {0’1 /X Ek(eir)eqs dv}
+ hO‘EITﬁl {0’1/ fk(eij)eaf dv} + {51 /X gl(eﬁ)evg dv} L

+ Tpglh) Pﬂ—i-T ~hPl qukl

Now from the above formula, by using Theorem 3.2 we can easily check the formula (3.30).
O
The curvature formula of the Ricci metric would be simpler if we have used the normal
coordinates. However, when we estimate the asymptotic behavior of the curvature, it is hard
to describe the normal coordinates near the boundary points. Thus we will use this general
formula directly in our computations. The estimates are quite subtle.

4. THE ASYMPTOTICS OF THE RICCI METRIC AND ITS CURVATURES

From formula (3.6) we can easily see the sign of the curvature of the Weil-Petersson metric
directly. However, the sign of the curvature of the Ricci metric cannot be derived from formula
(3.30). In this section, we estimate the asymptotics of the Ricci metric and its curvatures.
We first describe the local pinching coordinates near the boundary of the moduli space due to
the plumbing construction of Wolpert. Then we use Masur’s construction of the holomorphic
quadratic differentials to estimate the harmonic Beltrami differentials. Finally, we construct 'evg
which is an approximation of e;7. By doing this we avoid the estimates of the Green function of
1+ 1 on the Riemann surfaces

16



Let M, be the moduli space of Riemann surfaces of genus g > 2 and let M, be its Deligne-
Mumford compactification [3]. Each point y € M, \ M, corresponds to a stable nodal surface
Xy. A point p € X, is a node if there is a neighborhood of p which is isometric to the germ
{(u,v) |uv =0, |ul,|v|] <1} C C2.

We first recall the rs-coordinate on a Riemann surface defined by Wolpert in [16]. There are
two cases: the puncture case and the short geodesic case. For the puncture case, we have a
nodal surface X and a node p € X. Let a,b be two punctures which are glued together to form

p-

Definition 4.1. A local coordinate chart (U,u) near a is called rs-coordinate if u(a) = 0 where
u maps U to the punctured disc 0 < |u| < ¢ with ¢ > 0, and the restriction to U of the Kdhler-
FEinstein metric on X can be written as Wklu\? The rs-coordinate (V,v) near b is
defined in a similar way.

For the short geodesic case, we have a closed surface X, a closed geodesic v C X with length
| < ¢, where ¢, is the collar constant.

Definition 4.2. A local coordinate chart (U, z) is called rs-coordinate at v if v C U where z

maps U to the annulus cillt]% <lz| < c|t|%, and the Kdhler-FEinstein metric on X can be written

1 1 mlog|z[2) 7.2
as §(log|t|mcsc Tog 1] )=|dz|=.

Remark 4.1. We put the factor % in the above two definitions to normalize metrics such that
(2.1) hold.

By Keen’s collar theorem [4], we have the following lemma:

Lemma 4.1. Let X be a closed surface and let v be a closed geodesic on X such that the length
I of v satisfies | < cx. Then there is a collar & on X with holomorphic coordinate z defined on
Q such that
7l,2
(1) z maps 2 to the annulus %6_27 <|z| < e forec>0;
(2) the Kdhler-Einstein metric on X restricted to S is given by

(4.1) (5

r=|z| and T = ulogr;

u?r=2csc? 7)|dz|?

l

where u = 5,

2

(3) the geodesic ~y is given by the equation |z| =e™ T .
We call such a collar Q a genuine collar.

We notice that the constant ¢ in the above lemma has a lower bound such that the area of
Q) is bounded from below. Also, the coordinate z in the above lemma is rs-coordinate. In the
following, we will keep using the above notations u, r and 7.

Now we describe the local manifold cover of M, near the boundary. We take the construction
of Wolpert [16]. Let X be a nodal surface corresponding to a codimension m boundary point.
Xo,0 have m nodes p1,--- ,pm. Xo = Xo,o0 \ {P1,--* ,pm} is a union of punctured Riemann
surfaces. Fix the rs-coordinate charts (U;,n;) and (V;, ;) at p; for i = 1,--- ,m such that all the
U; and V; are mutually disjoint. Now pick an open set Uy C X such that the intersection of each
connected component of Xy and Uy is a nonempty relatively compact set and the intersection
UpN(U;UV;) is empty for all i. Now pick Beltrami differentials v, 41, - - - , v, which are supported
in Uy and span the tangent space at X of the deformation space of Xo. For s = (sp41,- -+, 8n),

let v(s) = > i, 11 sivi- We assume [s| = (3 |51|2)% small enough such that |v(s)|] < 1. The
nodal surface X s is obtained by solving the Beltrami equation dw = v(s)Ow. Since v(s) is

supported in Uy, (U;, n;) and (V;, ¢;) are still holomorphic coordinates on X ;. Note that they are
17



no longer rs-coordinates. By the theory of Alhfors and Bers [1] and Wolpert [16] we can assume
that there are constants d, ¢ > 0 such that when |s| < d, n; and ¢; are holomorphic coordinates on

Xos with 0 < |n;] < ¢ and 0 < |¢;| < ¢. Now we assume t = (f1,- - ,tm) has small norm. We do
the plumbing construction on X s to obtain X; ;. We remove from X ¢ the discs 0 < |n;| < @
and 0 < |G| < ‘%' for each ¢« = 1,--- ,m, and identify ‘%' < |ni] < ¢ with “%' < |G| < ¢ by

the rule 1;¢; = t;. This defines the surface X; . The tuple (t1,--- ,tm, Sm+1,- - ,5p) are the
local pinching coordinates for the manifold cover of M. We call the coordinates n; (or ¢;) the
plumbing coordinates on X; ¢ and the collar defined by @ < |ni| < ¢ the plumbing collar.

Remark 4.2. From the estimate of Wolpert [15], [16] on the length of short geodesic, we have

U; =

L, __=x
L log |¢i]

We also need the following version of the Schauder estimate proved by Wolpert [16].

Theorem 4.1. Let X be a closed Riemann surface equipped with the unique Kdhler-FEinstein
metric. Let f and g be smooth functions on X such that (O 4+ 1)g = f. Then for any integer
k >0, there is a constant ¢y such that ||g||k+1 < ck|| f||lx where the norm is defined by (3.2).

Now we estimate the asymptotics of the Ricci metric in the pinching coordinates. We will use
the following notations. Let (¢,s) = (t1, - , tm, Sm+1," - , Sn) be the pinching coordinates near

Xo,0. For |(t,s)| < 4, let Q) be the j-th genuine collar on X; ¢ which contains a short geodesic
7; with length I;. Let uj; = 2%, up = Y i us + Z?:m“ |sj|, rj = |z;] and 7; = u;logr; where
z; is the properly normalized rs-coordinate on €2 such that

272

Ql={z|clte b <zl <c}
From the above argument, we know that the Kéhler-Einstein metric A on X restrict to the
collar Q7 is given by

1
(4.2) A= §u§r;2 csc? 7.

For convenience, we let . = U;”ZIQZ and R. = X; 5\ Q¢ In the following, we may change the
constant c finitely many times, clearly this will not affect the estimates.
To estimate the curvature of the Ricci metric, the first step is to find all the harmonic Beltrami

differentials By, --- , B, which correspond to the tangent vectors 8%1, e ,%. In [8], Masur
constructed 3g—3 regular holomorphic quadratic differentials 11, - - - , 1, on the plumbing collars

by using the plumbing coordinate ;. These quadratic differentials correspond to the cotangent
vectors dt1,--- ,dsy.

However, it is more convenient to estimate the curvature if we use the rs-coordinate on X s
since we have the accurate form of the K&hler-Einstein metric A in this coordinate. In [13],
Trapani used the graft metric constructed by Wolpert [16] to estimate the difference between
the plumbing coordinate and rs-coordinate and gave the holomorphic quadratic differentials
constructed by Masur in the rs-coordinate. We collect Trapani’s results (Lemma 6.2-6.5, [13])
in the following theorem:

Theorem 4.2. Let (t,s) be the pinching coordinates on ﬂg near Xoo which corresponds to a
codimension m boundary point of My. Then there exist constants M,6 > 0 and 1 > ¢ > 0
such that if |(t,s)| < 0, then the j-th plumbing collar on X; ¢ contains the genuine collar 0.
Furthermore, one can choose rs-coordinate z; on the collar Ol properly such that the holomorphic
quadratic differentials 11, --- ,, corresponding to the cotangent vectors dti,--- ,ds, have the
form ; = (pi(zj)dz? on the genuine collar Ol for 1 <5 <m, where
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pi(z) = ;g(q;?(z]-) + B ifi>m1;
(2) wi(z;) = )%(qJ(ZJ)JrBj) ifi=j;
(3) ¢i(2)) )% (Z(Zg)+ﬁf) f1<i<mandi#j.

Here ﬁg and B; are functzons of (t,s), qzj and q; are functions of (t s,2;) given by

ql z] Zazktst kz’“%—Zazk

(1

(=
(=

:\:* ﬂ\h

k<0 k>0
and
zj) = Z a;k(t, s)tj_sz + Z ajk(t, s)z;
k<0 k>0
such that

( ) D k<o IaikIC"“ <M and 3oy laflc* < M ifi# j;
(2) Zk<0 ’O‘Jk’C <M and ) ‘O‘jk‘ck < M;
(3) 3] = O(lt;]27) with e < § if i # j;
(4) 18j] = (1 + O(uo)).
An immediate consequence of the above theorem is the following refined version of Masur’s

estimates of the Weil-Petersson metric. In the following, we will fix (¢, s) with small norm and
let X = Xt73.
Corollary 4.1. Let (t,s) be the pinching coordinates. Then

(1) i = 2u73t2 (1 + Oup)) and bz = 3245 (1+ O(ug)) for 1 < i < m;

S u3u

(2) hli = O(|titj|) and hz = O(W) if1<i,j<mandi#j;

(3) K7 = O(1) and hi = 0(1), zfm—i— 1<4,5<n;

(4) h' = O(|t;]) and h;z O(‘t|)ifi§m<j orj<m<i.

Proof. We need the following simple calculus results:

c
1
(4.3) / 22 —sin’ 7 dry = u; ( + O(uy)).
cle b ]
For any k£ > 1,
C
(44) /cvlezl f S1n2 Tj d?"j = O(U?)Ck

and for k < —1,

c o2\ K
(4.5) / 217 f Ysin? 7; dr; = O(u?)c_k (e L > .
C

On the collar Qﬁ, the metric A is given by (4.2). i is given by the formula
hi = / b A" 2dw.
X

By using the above calculus facts, we can compute the above integral on the collars. The bound
on R, was calculated in [8]. A simple computation shows that the first part of all of the above
claims hold. The second parts of these claims can be obtained by inverting the matrix (h¥/)
together with Masur’s result on the nondegenerate extension of the submatrix (h% )i,j>m-This
finishes the proof.

O

Now we are ready to compute the harmonic Beltrami differentials B; = A;0, ® dz.
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Lemma 4.2. For ¢ small, on the genuine collar Qg, the coefficient functions A; of the harmonic
Beltrami differentials have the form:

(1) A; = fsszJ( /(2 )—|—bj) if i #j;
(2) Aj = Zsin® 75(p;(25) + b))
where
(1) pl(z) = D k<1 a“z'kp;kzk + 2 k1 z'kzk if i #J;
(2) pi(%)) = Xp<—195kP; Z + 2 k1 aszk

2

27

In the above expressions, p; = e 4 and the coefficients satisfy the following conditions:

(1) Xk IaZkIC‘k = O(“j_2) and ) p-q Iafklck = O(Uj_Z) ifizm+1;

(2) Dp< s |a2k|c = O(u;z)O(%) and 3y~ |afk|ck = O(uJ_Q)O('t—l‘) ifi<m andi# j;
(3) k<1 lajrle™ = O(|1:J|) and 3 >y |ajlc" = O(|t |)'

(4) |b]| O(u )zfz>m+1

(5) ]b]| =O(u )O(ﬁ) if it <m andi# j;

(6) b;

6 — 2L (14 O(ug)).

Proof. The duality between the harmonic Beltrami differentials and the holomorphic qua-
dratic differentials is given by

(4.6) Bi =X\ hg
=1

which implies 4; = A 7! Y h Zl@ Now by Wolpert’s estimate on the length of the short

geodesic ~y; in [16] we have [; = (14 O(uj)). This implies there is a constant 0 < p <1

loglt |
such that plt;| < pj < p~1|t;|. The lemma follows from equation (4.6) by replacing ¢ by uc, a
simple computation together with Theorem 4.2 and Corollary 4.1.
O
To estimate the curvature of the Ricci metric, we need to estimate the asymptotics of the
Ricci metric by using Theorem 3.1. So we need the following estimates on the norms of the
harmonic Beltrami differentials.

Lemma 4.3. Let || - || be the norm as defined in Definition 3.2. We have
(1) I4ilogs = O(#) and | Alo xia; = O(). if i < m;
(2) [Aillo =0Q), ifi =zm+1;
2
(3) I fillog: = O(‘tuﬁ) and | fillo,x\0: = O(
) [Ifzllo =0Q), ifi,j =2 m+1;
3
(5) :

wu? U UG
5 HfszQQ}: = (\t t]|) and Hfzg”o QL = O(|t,-tjj) and ”fz}”(),)(\(QzUQg) = O(|tit]~\)
ifi,7 <m andi#j;

6
), ifi<m;

7,

= Ew

6) [lfizllo.0 = O(\%ﬂ) and || f;5llox\0i = O(%), ifi<m andj>m+1;
(T) 1fler = O), if i, j = m+1;
(8) fgler = Oy ) ifi<mandj>m+1;
3 3
(9) |fizl = O( ’Z.jﬂ), ifi,j <m andi# j.

Proof. We choose ¢ small enough such that for each 1 < j < m,

tan(u;logc) < —10u;
20



when |(¢, )| < 8. A simple computation shows that, when 1 < p < 10, on the collar 2 we have

|7k sin? 75| < c¥|log clPuf

if £k > 1, and
\r;? sin? 75| < ¢ ¥|log c|pp§u‘;’
if £ < —1. '
To prove the first claim, note that on (2. we have
| A —’ | sin? 73 (7 + by)| < Z |ak|p; Frk sin TZ—FZ‘GZMT’ sin® 7; + |bj|
k<—1 k>1
S(logc)Zu?( Z |laik|c " —i—Z\aik\ck) + |b;]
k<—1 k>1
=0()O(f7) + OWO() + O (1) = O(4).
|ti] [ti] |t:] [ti]

Similarly, on QY with j # i, we have |4;| = (|t |) Also, on R. we have |A4;| = (|t ‘) by the

work of Masur [8], equation (4.6) together with Theorem 4.2 and Corollary 4.1. This finishes
the proof of the first claim.

The second claim can be proved in a similar way. Claim (3)-(6) follow from the first and
second claims by using the fact that fz = A;A;. Claim (7) follows from claim (4) and the fact
that the area of X is a fixed positive constant using the Gauss-Bonnet theorem.

Now we prove claim (9). On %, by using a similar estimate as above, we have

|f 5] =Isin® 7 (i + bi) (1 + 05)| < | sin pip| + | sin® 7ibipl| + | sin® 7ipibl| + | sin’ ;b0

Wl 3,3 2.3
<O( l j) +‘Sln sz bl| - (u )+O(u u )Sin4TZ‘.
[tit;] [tit;] [tit;]
So usu3 wlud w3
_ X v v ) 4 . — (2]
|fl-j’L1(Q'é) < /Q <O(\titj|) +O(’titj’)sm 7‘1>dv O( T ’)

ity
w3
Similarly, |f;5],. @iy < O( iy ). The estimate | ) follows from claim

Lt ] Figlixv@ivndy = O(
(5). This proves claim (9). Slmllarly we can prove claim (8).

O
In the following, we will denote the operator (O + 1)~! by T. We then have the following
estimates about L? norms:

Lemma 4.4. Let f € C*°(X,C). Then we have
(4.7) / Tf2 dvg/ Tf.F dvg/ ]2 do.
X X b's

Proof. This lemma is a simple application of the spectral decomposition of the operator
(O + 1) and the fact that all eigenvalues of this operator are greater than or equal to 1. One
can also prove it directly by using integration by part.

O

To estimate the Ricci metric, we also need to estimate the functions e We localize these
functions on the collars by constructing the following approximation functions.

Pick a positive constant ¢; < ¢ and define the cut-off function n € C*(R, [0, 1]) by

n(z) =1, x <loger;
(4.8) n(z) =0, x > logc;

0<n(z)<l, loge <z <loge.
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It is clear that the derivatives of 1 are bounded by constants which only depend on ¢ and ¢;.
Let e;5(z) be the function on X defined in the following way where z is taken to be z; on the

collar Q¢:

(1) ifi <m and j > m + 1, then

% sin? Tibﬁ)ﬁ, z E Qél,
() (4 sin? Tibibé-)n(log i), z€Qand ¢; <71; < ¢
e=(z) = — ;
Y (3 sin? 7ibib;)n(log p; —logri), 2z € Q¢ and i < < e
0, ze€ X\ Qi
(2) ifi,j5 <m and i # j, then
%sm szzb;, z e Qél;
(4 sin? 7;b; b’)n(log i), z€Qand ¢; <7 < ¢
(3 sin TLbe;)n(log pi —logry), z€Qland ¢ lp; <r <clpi;
e;(2) = 1 5in? ijﬁ)j, 2 € O
sin? 7;b;b;)n(log ), z€N and 1 <7j < ¢

sin Tib{bj)n(log pj —logrj), ze€ Q) and cilpj <rj<ctpj;
z€ X\ (L UQ);

% sin? 7;b;|?, z€QL;
() = (2 sin? 7;|b;|*)n(log r;), z € QZ} and ¢; <1 < ¢
* (3 sin? 7]bi|*)n(log pi — logri), z € QL and ¢ lp; <1 < ' ps;
0, z€e X\ QL.

Also, let ]T; = O+ 1)%. It is clear that the supports of these approximation functions are
contained in the corresponding collars. We have the following estimates:

Lemma 4.5. Let e €; - be the functions constructed above. Then

- ud
(1) e = 5+ O(h). ifi < m;
—~ U3U3
P _ t
(2) €7 —eij—kO(téj ), ifi,7 <m andi# j;
(3) eiE:éE—FO(rZ—?), ifi<moandj >m+1;
(4) llegzllo=0(1), if i,j = m+1.

Proof. The last claim follows from the maximum principle and Lemma 4.3. To prove the
first claim, we note that the maximum principle implies

le; —e;zllo < Nfi7 = fillo-

Now we compute the right hand side of the above inequality. Since f | x\q:= 0, by Lemma 4.3

we know that || f;; — = O(|t |2) On Q. we have

ZZ
o . 4 .4 T . 4 U'6
\fiz = fi] < |sin® 7ipibi| + | sin® mbips| + | sin® mpipi| = O(ﬁ)
(3
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— 6 . .
which implies || f;; — fﬁ||07921 = O(7%). On QL \ QL with ¢ < r; < ¢, we have

[t:|?

|f7— fil <(1—n)|b;|?*sin® 7 + | sin® 7p:0;] + | sin® 73bipi| + | sin 7,54
b, Zu._2 77// ) b, 2u‘—1 77/
g B
4
1

~0lGg)

+ sin? ;| sin 27;

. . — 4
Similarly, on Q% \ Q% with ¢71p; <r; < e tpi, we have |f; — fi] < O(lzﬁ) By combining the

—~ 4
above estimate, we have || f; — fzllo = O(ﬁﬁ) which implies the first claim. The second and
the third claims can be proved in a similar way.
O
As a corollary we prove the following estimates which are more refined than those of Trapani’s
on the Ricci metric [13]. The precise constants of the leading terms will be used later to compute
the curvature of the Ricci metric.

Corollary 4.2. Let (t,s) be the pinching coordinates. Then we have

1) r= 355 (140 i — a6 o PR

(1) 73 = g2 (1 + O(uo)) and 7 = =15 (1+ O(uo)), if i < m;
UQUQ 7 . . . . .

(2) TG = O< tzitjj‘ (u; +uj)> and 7 = O(|tit;|), if i,7 <m and i # j;

(3) 75 = O(ﬁ—i) and 79 = O(|t;]), if i <m and j > m + 1;

(4) 73 =0Q), ifi,j >m+1.

Remark 4.3. The second part of the above corollary can be made sharper. However, it will not
be useful for our later estimates.

Proof. The second part of the corollary is obtained by inverting the matrix (Ti;) in the first
part together with the fact that the matrix (hij)i,jZerl is nondegenerate which was proved by
Masur and the fact that the matrix (Tij)i’jzm_Fl is bounded from below by a constant multiple
of the matrix (hij)i,jzmﬂ which was proved by Wolpert.

Now we prove the first part. In the following, we use Cy to denote all universal constants
which may change. Recall that

ijof

To prove the last claim, let 7,7 > m + 1. We first notice that if a # 8 or a = 8 > m + 1, then
|hB|| Aallo]|Asllo = O(1) by Lemma 4.3 and Corollary 4.1. In this case, we have

@Mmm%mm+m%@ms%mmmwﬂ%w@m

<Co(|lf;5llollfozll0 + [ fizlloll fazllo) = O) | Aalloll Asllo
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which implies ]hafBR O(1). If & = 8 < m we have

”aa ’/ e fam dv| + ‘/ eiaf,; dv (He”|]0]foéa|L1 + (/ e dv/ ‘fa E dv)
souxx1ﬁg+—(/Wﬁang/rﬂMZWQQ

3 3
’tz’2 </ fmfaa dv/ faaf dU> § O(‘ZP) + ||A ||0||A ||(]|faoz‘L1 = (’le)

which implies ]h‘mRZ] wal = O(1). So we have proved that last claim.
To prove the third claim, let ¢t < mand j > m+1. fa# g or a =6 > m+ 1 in formula
(4.9), by using integration by part we have
< Co(lleagllol fizlr + lleazllol fizl 1)

|R23a3| é ‘/X fﬁeaﬁ d’U —|— ‘/X fiaeag dv
3
7

<Co(llfozllolfizlr + [l fazllolfizl ) = (‘t ,)HA allollAsllo + Ol Aallol fi5]L1-

zgaﬁ’

- 3 3
By the above argument we have \ho‘ﬂO(%) | Aallol|Agllo] = (|u—’|) and by Lemma 4.3 we have

\haBHAaHo\fighﬂ = (‘:|) So the claim is true in this case.
If a =0 <m and a # i, we have
+ ‘/ fia@aj dv| .
X

To estimate the second term in the above formula, we have

|Rﬁaa| < ‘/ fgeaa dv
X

3,,3 3,4
Ug, usu usu
e = dv| <lle =|lolfialr < ||f.3llolfialpy = O(——)O(=2) = LA,
’/Xfwéeaj Y= ”ea]HO‘fwéhl o Hfa]||0|f7,a’L1 (|ta|) (|tito¢|) (|ti||ta’2)
To estimate the first term, we have
‘/WmmsUMQM+Um@Va@w
X X X
s/ﬂ@www%—%wmp
Qg
4 3 3,,3
u, us usu
P L+ 0 O(—) = O(—iZa_
ij al€omL (|t ‘2) (|tz\) (|ti||ta|2)
aa u?
which implies [A** Rz | = O(W)
Finally, if o = 8 = i, we have
AR uy
|R55] = 2 fmeu dv| < 2legllol Szl < 2l fzllol fi7lr = 0(|ti|2)0(m) = O(|ti|3)

which implies ]h“Rzﬁ\ = (%) This proves the third claim.
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The second claim can be proved in a similar way. Now we prove the first claim. If o # § or

a = >m+1 in formula (4.9), we have
1
2
R 3l < / Jizeag dv —}—‘/ fi€as dv| < |le zllo|fi;lrr + (/ eoﬂ,Qdu/ ff2 dv>
| 5|‘X 3 im leqgllolfizl Xl\ X|5|

1
2
<l fuzllolfilrs + (/X | f il dU/X £ 5l dv) < (Ifa5llo + [AallollAgllo) [ £ 1

which implies |ho‘ﬂRﬁaﬁ\ = O(W)
If a =0 <m and a # i, we have

[ Riiozl <

ol —

/ e;;fam dv| + '/ eiafq; dv
X X

To estimate the second term in the above inequality, we have

‘/ 6Z‘afa; dv
X

To estimate the first term in the above inequality, we have
‘/ 6Z-gfaa dv S ‘/ gﬁfoza dv + ’/ (eﬁ — gﬁ)foza dv
X X X

/. €ifom dv
QL
<l foallooilezlrr + lleg — €zllol faalrt
UG U3 U3 U4 U3
:O( t aZ)O( t.ZZ) +O( t QQ)O( t,ZQ) = O( Z
ltal |t ltal |t]

< fleiallol foiler < I falolfudler = O(y )0 5) = O

< + [leg — egzllol fam

These imply |h““R - O(%)

zza&’ :7
Finally, we compute h"R--. Clearly Rz-=2] y €ifi7 dv and

100 ]

/ eqli dUZ/ il dv+/ &i(fs — fa) dv+/ (e —€7)fi7 dv.
X X X X

We also have 7

~ !

<|f7 — filloleglr = O( |t~2|4)
(A

’/X Cilf— ) dv

’/X falez —€5) dv

= uy 7 uy
Also, we have ||€ﬁ||07gé\9él = O(W) and Hfﬁ“o@g\% = O(W) So

/ Cif dv = /
X [9]
u?

By using Corollary 4.1 we have hﬁRﬁﬁ = % e (1 4+ O(ugp)). By combining the above results

and

u?

<lleg —egzlolfizlr = O(W)
1

o~ o~ 37'(2 4 UZS
€l dv+ &t dv = ——1bil"ui(1 + O(u)) + O (7 17)-
QiNQL, 6 4

1

i
€1

we have proved this corollary.
O
It is well known that there is a complete asymptotic Poincaré metric w, on M,. We briefly
describe it here. Please see [7] for more details. o
Let M be a compact Kahler manifold of dimension m. Let Y C M be a divisor of normal
crossings and let M = M \'Y. Cover M by coordinate charts Uy,---,Up,---,U, such that
25



(Upr1U---UU,) NY = ®. We also assume that, for each 1 < a < p, there is a constant n,
such that Uy \' Y = (A*)" x A™ " and on Uy, Y is given by 2{ - - -z = 0. Here A is the disk
of radius % and A* is the punctured disk of radius % Let {"i}lﬁiﬁi be the partition of unity
subordinate to the cover {U;}1<i<q. Let w be a Kéhler metric on M and let C' be a positive

constant. Then for C' large, the Kahler form

wp =Cw + Z F@@(m loglog 1zz>
=1 ng
defines a complete metric on M with finite volume since on each U; with 1 < i < p, w, is
bounded from above and below by the local Poincaré metric on U;. We call this metric the
asymptotic Poincaré metric.
As a direct application of the above corollary, we have

Theorem 4.3. The Ricci metric is equivalent to the asymptotic Poincaré metric. More precisely,
there is a positive constant C such that

Cilwp < wr < Cuwy,.

Now we estimate the holomorphic sectional curvature of the Ricci metric. We will show that
the holomorphic sectional curvature is negative in the degeneration directions and is bounded in
other directions. We will need the following estimates on the norms to estimate the error terms.

Lemma 4.6. Let f,g € C*(X,C) be smooth functions such that (O + 1)f = g. Then there is
a constant Cy such that

(1) [Kof|r2 < ColKoglr2;
(2) [K1Kof|r2 < ColKog|r2;

Proof. Let h = |Kof|?>. By using Schwarz inequality, we easily see that the lemma follows
from the Bochner formula:

Oh + h+ | K1 Kof|* = KofKog + KofKog — | f — g|*.

O
We also need the estimates on the sections Ky fﬁ. We have:
Lemma 4.7. Let Ko and K be the Maass operators defined in Section 3. Then
2 6 o
(1) [1Kofillog: = O(ﬁ) and || Ko fzllo,x\0i = O(|Z"2)} if i <my
(2) [Kofijllo=0(1), ifi,j =m+1;
3) |K = O(1) and | K 0“4 and |K oy
3) |l OfinO,Q}: = (|tt ‘) and || Of@]HOQJ = (Itij\) and | Of@jH(),X\(Qzugé) = (Ititj\)’

ifi,7 <m (mdz;é],
() IKofllo.0; = O(fy) and [1Kofizlloxa: = O(y), ifi < m and j = m+1;
3 ud -
(B) Ifiz— falh = O(W); if i <m.

This lemma can be proved by using similar methods as we used in the proof of Lemma 4.3
together with direct computations. So are the following L' and L? estimates:

Lemma 4.8. Let P = K1Kq be the operator defined Section 3. We have
(1) ’fﬂ %2 = (\;4)7 if t <mj;
(2) [Kofal2: = (55 o), ifi<m
(3) [Kofyl3: = O ), ifi,j <m andi+# j;
(4) |Kofjl7. = (W), ifi <m andj>m+1;
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(5) |Kofil7. =0Q), if i,5 >m+1;
~ 3 o
(6) P(€;)l = O(55), ifi < m.
To estimate the curvature of the Ricci metric by using formula (3.30), we first expand the

term [ Qie;5)e,5 dv. A simple computation shows that

Lemma 4.9. We have
/X ka(eﬁ)eag dv = — /X sz(KoegfoeaB +F06i3K0€aB) dv
_/ (DeﬁKoeanoeki + DeaBKoeﬁfoekZ) dv.
X

To estimate the holomorphic sectional curvature, in formula (3.30) we let : = j = k = 1. We
decompose R;; into two parts:

R--=G1+ Gy

where (G1 consists of those terms in the right hand side of (3.30) with all indices a, 3, 7, d, p
and ¢ equal to i and G2 = R;; — G1 consists of those terms in (3.30) where, in each term, at

least one of the indices «, 3, v, §, p or q is not i. If i < m, the leading term is G; which is given
by

Gy =24h" / O+ 1) (&ileg)iles) dv
X
+6h" / Qii(ez)e;; dv
X

/X Sileg)es dv

(4.10) )

. 36Tii(hii)2

+ b R
The main theorem of this section is the following estimate of the holomorphic sectional cur-
vature of the Ricci metric.

Theorem 4.4. Let Xg € My\ M, be a codimension m point and let (t1,- - ,tm, Sm+1,- - »Sn) be
the pinching coordinates at Xg where t1,--- ,t,, correspond to the degeneration directions. Then
the holomorphic sectional curvature is negative in the degeneration directions and is bounded in
the non-degeneration directions. More precisely, there is a § > 0 such that, if |(t, s)| < §, then

(4.11) R = 37“?(1 + O(ug)) > 0
it — grd|t;|4

if i <m and

(4.12) Rz =0(1)

ift>m+ 1.

Furthermore, on My, the holomorphic sectional curvature, the bisectional curvature and the
Ricci curvature of the Ricci metric are bounded from above and below.

Proof. We first compute the asymptotics of the holomorphic sectional curvature. By Lemma
4.9 we know that

[ Qatereq dv= [ |oeg?ee; — 15 do
X X
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By (4.10) we have

Gy =241 [ T(&le)Eileq) dv+ on" [ |Koegl?(2eq ~ 4f5) do
X X

2
/&(eZZ e; dv
X

+ 7h" Ry
We first consider the degeneration directions. Assume i < m. In this case G is the leading
term. We have the following lemma.

(4.13) t

Lemma 4.10. If i < m, then |G| = O(%)

Proof. The lemma follows from a case by case check. We will prove it in the appendix.
O
Now we go back to the proof of Theorem 4.4. We compute each term of G1. By the proof of

Corollary 4.2 we know that h¥ R - = s |t e (14 O(up)). So we have

(224

3u 2 Qus
414 ” s = e "t .
( ) h Rzzm <47T2’ti|2) (1+O(u0)) 167 4‘t ’4( +O(u0))

Now we compute the second term. We have
/ |Koeg;|*(2e; — 4f;7) dv
@is) = [ e eE - af) o+ [ (Kue? = |Kozl) 28 — 4T do
+ /X | Ko *(2(e;; — €3) — 4(f5 = f)) dv

For the second term in the above equation, we have

/ (| Koezl* — [ Koz |*) (2857 — 4f5) dv
X

< 1Koesl? — 1Kozl /X (20e] + 4/751) do

~—

~ ~ u? ul ud ud
<|[1Koez] + [Koeglllol Kole; — eii)Ho/ (2fez] +41.7]) dv O(|t Z|2)O(|t.2|2)0(|t.2|2) = O(W
1 1 1 (2
For the second term in the above equation, we have
| / |Koe”| ~ &) — Alfs ~ Fa)) dv| < CollKueglB2le; — gl + 41 — Fallo)
8
u. us
=0(—4%)0(—%) =0(—%).
So we get
8
~ ~ irs u,
/X |K0€ﬁ|2(2€ﬁ —4f;) dv= /X |K0€ﬁ|2(2€ﬁ —Afz) dv+ O( ‘t:‘e)
(4.16) w8

:/ |Koe;|3(26; — 4f;7) dv+/ | K02, (26; — 4F5) dv + O(—).
i Qi\QL It

We also have the estimate

/ |K06m| (2 € — 4fﬁ) dv
QiNQE

8

;):0(%)-

i

< CO”KogﬁH(Q)(HgﬁHO,Qg\le
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A direct computation shows that
3u’

/ | VK228~ 17) do = i1+ Ofun)
So
(4.17) 6h" /X |Koe;|*(2e;; — 4f7) dv
Now we compute the third term. We have

(4.18) /fl e;)e; dv = /éz €;7)e; dv—i—/ &ile;)(e;; —€; dv—l—/ &ile Je;; dv.
X

By using the same method as above, we obtain

/X §i(e)(e; — ez) dv

9u4

m(l + O(up)).

< Goll&i(e)llolles — €gzllo < CollAilloll K1 Ko (e5)llolle; — €llo

<Call Aol llle; ~ 25l = OO0 (25) = 0 )
and
] / (e — Eo)es dv| < lEites — ) o /X ez dv < | Aillolle;; — Ellahs
- U ud usd ud
guAiuo||fﬁ—f,;||mﬁ=OWOWMW) - 0( %)
and

u’

< Coll€i(ep)llollesllo.oane:, = O(ﬁ)-

/ §i(ez)e; dv
QINQE

By putting the above results together, we get
o’

/fl e;)e; dv = o &i(e;)e; dv+0(’t2|5)

On Qil we have
~N_ R .9 FPN Zi.27P~
§i(€;) = ——sin” by P(e;;) — — sin” 7ipiP(&5)-
(2 (2
. o~ 5 S .
However, we have [|£ sin? TipiP(eﬁ)HO,Qil = O(IZZ\S) which implies

8

/- = sin? TipiP(€7)e; dv| = O( Ui5)'
A direct computation shows that
6
ZZ .2 -_— ~ ~ U;
/i —= sin” 7;b; P(€;;))é; dv = m(l + O(uyp))

which implies

i = d O )
[ &teateg do = gt (14 Oun)
So we obtain

3u4

4.1 i (it)2 _
9

e dv (1+ O(ug))-

e;)




Now we estimate the first term. We have
[ Tateaiten do= [ T6@EEED dv+ [ Teleq— 8@ do
+ /X Téi(e)Si(e; — &) dv.
By using the same method we can get

/X T&i(e; — €;)i(e;) dv| <Col|T&(ez — €;)lloll&i(€5)llo < Coll&ilesz — €3)lloll&:(€5)llo

5 3 8
:O(|ZZ|3)O(|ZZ|3) = O(‘Zlyﬁ)'
Similarly,
8
’/ T&(em)gl(eﬁ 6”) dv| = O(’:ZIG)

X 7

So we have .
/ Téi(e;7)€i(e;;) dv = / T&i(€7)&(e) dv + O (;Ze)

X X il

To estimate T¢;(e;;), we introduce another approximation function. Pick ¢z < ¢ and let 7, €
C*(R,[0,1]) be the cut-off function defined by

m(z) =1, x < log ca;
(4.20) m =< mx) =0, x > logey;
0<m(z) <1, logece <x<loges.
For i < m define the function d; by

—%sin2 7; cos 27;|b;|2b;, AS Qég;
di(2) (— g sin 7; cos 27;1b;|2b; ) (log ), z €, and ey <71y <en
\WZ) = pa— ;
! (—% sin® 7; cos ZTi\bini)m (log pi —logr;), z¢€ 2, and Cl_lpz‘ <r; < Cg_ll)z‘S

07 ze X \ Q’él
A simple computation shows that

u.
|ti|3)

I1€i(€;7) — (O + L)dilo = O(

which implies

1T¢i(e;;) — dillo = O(‘t.73)‘

So
[ re@nEE) do= [ ag@) dos [ (166 - dEE) do
X X X

We have the estimate

[ e - @) o
X

_ 8
< GollT&:(E) — dillolEEi)lo = O(j7)

which implies
8

_ — U
/X Tﬁi(%)fé(eﬁ) dv = /X di‘fi(eﬁ) dv + O(,mﬁ)'

We also have

— Z . — - Zi . — .
di&i(e;) = —diz—z sin? ;b P(e;;) — diz—z sin? Tipi P(€;).
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ud ud
Since ||d; L sin 2rpiP(ez)|lo = O(| 216) and ||d; % —Sln 21ibiP(ez) o, Qi \Qi, = O(\tj ), we get
- - u8
/JE@MQQMdv: 4E (@) dv+ O,
X Qi |t:]
A direct computation shows that
3u7

[ TéieaEeq) dv = gt (14 Ofu))

which implies
9u4

(121) 2447 [ T (eq)Eeq) do = i

By combining formulas (5.3), (4.17), (4.19) and (4.14) we obtain
3u}
8 |t; |
Together with Lemma 4.10 we proved formula (4.11). The formula (4.12) can be proved using

similar method with a case by case like the proof of Lemma 4.10.
Now we give a weak estimate on the full curvature of the Ricci metric. Let

(1) Ai:ﬁ—;'ifigm;

(2) Ay =1ifi >m+1.
We can check the following estimates by using the methods in the proof of Lemma 4.10. We
have

(1 + O(uo)).

Gl (1 +O(UO))

(4.22) R =0(1)
if 4,5, k,1 >m+1 and
(4.23) Rizq = O(MihjAgA)O(uo)

if at least one of these indices i, j, k,[ is less than or equal to m and they are not all equal to
each other.

Now we prove the boundedness of the curvatures. For the holomorphic sectional curvature,
from (4.11) and (4.12) and Corollary 4.2, it is clear that there is a constant Cp > 1 depending
on Xy and § such that if |[(¢,s)| < J, then

()C 1T2<R~§C’077 if i <m;

(2243

(2) ’Rzzzz’ < C()Tﬁ, ifi >m+ 1.
We cover the divisor Y = ﬂg\/\/lg by such open coordinate charts. Since Y is compact, we can
pick finitely many such coordinate charts =y, - - - ,Z, such that Y C [J?_; Z,. Clearly there is an

open neighborhood N of ¥ such that N € J?_; E;. From formulas (4.22), (4.23) and the above
argument, we know that the holomorphic sectional curvature of 7 is bounded from above and
below on N. However, M, \ N is a compact set of My, so the holomorphic sectional curvature
is also bounded on M, \ N which implies the holomorphic sectional curvature is bounded on
M.

The bisectional curvature and the Ricci curvature of the Ricci metric can be proved to be
bounded by using (4.22), (4.23) and a similar argument as above, together with the covering
and compactness argument. This finishes the proof.

O

Remark 4.4. The estimates of the bisectional curvature and the Ricci curvature are not optimal.
A sharper estimate will be given in our next paper [6].
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5. THE PERTURBED RICCI METRIC AND ITS CURVATURES

In this section we introduce another new metric, the perturbed Ricci metric. This metric
is obtained by adding a constant multiple of the Weil-Petersson metric to the Ricci metric.
By doing this we construct a natural complete metric whose holomorphic sectional curvature
is negatively bounded. We will see that the holomorphic sectional curvature of the perturbed
Ricci metric near an interior point of the moduli space is dominated by the curvature of the
large constant multiple of the Weil-Petersson metric. Similar argument holds for the holomor-
phic sectional curvature of the perturbed Ricci metric in the non-degenerate directions near a
boundary point.

Definition 5.1. For any constant C > 0, we call the metric

the perturbed Ricci metric with constant C'.

We first give the curvature formula of the perturbed Ricci metric. We use Pﬁki to denote the
curvature tensor of the perturbed Ricci metric.

Theorem 5.1. Let s1,---, s, be local holomorphic coordinates at s € My. Then at s, we have

Piju =he? {0102/ {(D +1)7 (&(eg))Gle,p) + (O+ 1)_1(£k(6i3))gﬁ(e°‘z)} dv}

51 o [ Qutesrns

~pG 1B 0 Ve — fod &les)es
— TP PR {01 /Xs k(egle,s dv} {01 /XS 51(610]-)675) dv}
+ ijhquiﬁkZ + CRZE]J

Proof. Let s1,---,s, be normal coordinates at a point s € M, with respect to the Weil-
Petersson metric. By formula (3.16), at the point s we have

6}65';3 = 8;67'13 + Cakh,g = haﬁ {0’1 /X (gk(eij)eaﬁ) dU} + Tpgl“fk + C@khﬁ

_ poP {al /X ((eg)eas) dv}

since ka = 8khi3 = 0 at this point. Now at s the curvature of the Weil-Petersson metric is
Rigig = 0i0khyj.
The theorem follows from formulas (3.5), (5.2) and (3.36).

(5.2)

O

Now we estimate the curvature of the perturbed Ricci metric using formula (5.1). The fol-

lowing two linear algebra lemmas will be used to handle the inverse matrix 7/ near an interior
point and a boundary point.

Lemma 5.1. Let D be a neighborhood of 0 in C™ and let A and B be two positive definite n X n
Hermitian matriz functions on D such that they are bounded from above and below on D and
each entry of them are bounded. Then each entry of the inverse matriz (A + CB)~! = O(C™1)
when C' is very large.

Proof. Consider the determinant det(A 4+ CB). It is a polynomial of C' of degree n and the
coefficient of the leading term is det(B) which is bounded from below. All other coefficients are
bounded since they only depend on the entries of A and B. So we can pick C' large such that
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det(A+CB) > 1 det(B)C". Now the determinant of the (4, j)-minor of A+ CB is a polynomial
of C of degree at most n — 1 and the coeflicients are bounded since they only depend on the
entries of A and B. From the fact that the (i, j)-entry is the quotient of the determinant of the

(4,7)-minor and the determinant of the matrix A + C'B, the lemma follows directly.
O

Lemma 5.2. Let Xy € ﬂg be a codimension m boundary point and let (t1,---,s,) be the
pinching coordinates near Xo. Then for |(t,s)| < 0 with 6 small, we have that, for any C > 0,
(1) 0 <7 < 7% for all i;
(2) 79 = O(|t:t;]), if i,5 < m and i # j;
(3) 79 = O(|ts]), if i <m and j > m+1;
(4) 79 = 0(1), ifi,j > m+1.

Furthermore, the bounds in the last three claims are independent of the choice of C.

Proof. The first claim is a general fact of linear algebra. To prove the last three claims, we
denote the submatrices (7, w)’ j>m+1 and (h =)ij>m+1 by A and B. These two matrices represent
the non-degenerate directions of the RlCCl metric and the Weil-Petersson metric respectively.
By the work of Masur, we know that the matrix B can by extended to the boundary non-
degenerately. This implies that B has a positive lower bound. By Corollary (4. 1) we know that
B is bounded from above. Now by the work of Wolpert, since w, > C’wW p where C only depend
on the genus of the Riemann surface, we know that A has a positive lower bound. By Corollary
4.2 we know that A is bounded from above. So both matrices A and B are bounded from above
and below and all their entries are bounded as long as |(, s)| < 6.

By Corollary 4.1 and Corollary 4.2 we know that

(3 o)

where T is an m X m matrix given by

u? [ u2ugn
(2 + G+ 0(w)) ... = (O0(uo) + CO(uruy))
T = : : :
2 2 u2 Um
|t1t |(O(u0) + CO(ulum)) s |tm|2 (471'2 + 2 )(1 + O(UO))

which represent the degenerate directions of the perturbed Ricci metric and W is an m x (n —m)
matrix given by

[t1]

ﬁ(o(1)+00(u1)) L E(0(1) + COm))

Ui (O(1 )—i—C’O(um)) L (o0 )—i—C’O(um))

[tm]
which represents the mixed directions of the perturbed Ricci metric.
A direct computation shows that

- s u? 3 C’uZ
detT:{HW(4 5 )} det(A + CB)(1+ O(up))
i=1""

where the O(ug) term is independent of C. Let ®;; be the (i,;)-minor of (7,;) obtained by

deleting the i-th row and j-th column of (?Zj) By using the fact that

det (I)ij
det 7

77| =
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the lemma follows from a direct computation of the determinant of ®;;.
O
Now we prove the main theorem of this section.

Theorem 5.2. For a suitable choice of positive constant C, the perturbed Ricci metric 7~‘i3 =
75 + Chyg is complete and its holomorphic sectional curvatures are negative and bounded from
above and below by negative constants. Furthermore, the Ricci curvature of the perturbed Ricci
metric is bounded from above and below.

Proof. It is clear that the metric ?2-3 is complete as long as C' > 0 since it is greater than the
Ricci metric which is complete.

Now we estimate the holomorphic sectional curvature. We first show that, for any codimension
m point Xg € My\M,, there are constants Cy, § > 0 such that, if (£,5) = (t1,"* , tm, Smt1, "+ » Sn)
is the pinching coordinates at p with |(¢, s)| < § and C' > Cj, the holomorphic sectional curvature
of the metric 7 is negative. We first consider the degeneration directions. Leti = j =k =1 < m.
As in the proof of Theorem 4.4, we let

61 24}1”/ (5@( u))gz( u) dv +6h”/ |K06u| (2615 - 4fﬂ) dv

/51 ZZe dv

and G be the summation of those terms in (5.1) in which at least one of the indices p, q, «, 3,7, 0
is not . We have P - = G1 + G2 + CR;;. We notice here that we can use Lemma 5.2 instead

of Corollary 4.2 in the proof of Lemma 4.10 without changing any estimate. This implies that
~ 5
|Ga| = O(;ﬁ) By the proof of Theorem 4.4 we have

~ 9 3 2m2Cu;y 1\ uf
5.4 Gy = - 1
(54) ! <167r4 167r4( T3 ) >|t,\4

(5.3)

~m hm —I—T h“R**

(224

(1+ O(uo))

which implies

9 3 22Cu; —1\ ul 3C u?
5.9 P--= — 1 ! —— ) (14+0 0
( ) 212 <(167T4 167’(‘4( + 3 ) ) |ti|4 + 87T2 |ti|4 ( + (UO)) >

as long as ¢ is small enough. Furthermore, P is bounded above and below by constant
multiple of ?Z% where the constants may depend on C. However, when C is fixed, the constants
are universal if § is small enough.

Now we let i = j = k=1 > m + 1. By the proof of Theorem 4.4 and Lemma 5.2 we know
that P;- = O(1) + CR;;;. We also know that R > 0 has a positive lower bound. Again, by
using the extension theorem of Masur, we can choose Cj large enough such that, when C > Cj,
We have P;- > 0. Furthermore,P;- is bounded from above and below by constant multiple of
7'@.g where the constants may depend on C,m,n, Xy and the choice of vy,11, -+ , v, if 4 is small

enough. We also have estimates similar to (4.22) and (4.23):

(5.6) P =O0(1) + CRyy
if 4,75, k,1 >m+1 and

(5.7) ]Dzjkf = O(AZAJAkAl)O(UQ) + CRZ;]{?Z

if at least one of these indices i, j, k,[ is less than or equal to m and they are not all equal to
each other. So we can choose § small such that, if |(¢,s)| < J, then the holomorphic sectional
curvature is bounded from above and below by negative constants which may depend on C.
Now we consider the interior points. Fix a point p € M, and a small neighborhood D of p
such that D C M. Since the Ricci metric and Weil-Petersson metric are uniformly bounded in
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D, we have Pz = O(1) + CR;;;. Using a similar argument as above, we can choose a Cj such
that, when C' > Cj, the holomorphic sectional curvature is bounded from above and below by
negative constants which may depend on C.

Since the divisor M, \ M, is compact, we can find finitely many boundary charts of M,
described above such that the holomorphic sectional curvature of 7 is pinched by two negative
constants which depend on C' on these charts. Furthermore, there is a neighborhood N of
My \ My in My such that N is contained in the union of these charts. It is clear that we
can find a constant Cy such that on N, the holomorphic sectional curvature of 7 is pinched by
negative constants when C > (4.

Also, since the set M, \ N is compact, by the above argument, we can find finitely many
interior charts described above such that their union covers My \ N and a constant Cs, such
that the holomorphic sectional curvature of 7 is pinched by negative constants when C' > Cs.
Again, the bounds may depend on C.By taking a constant C' > max{C1, C2}, we have proved
the first part of the theorem. The Ricci curvature can be estimated in a similar way as we did
in the proof of Theorem 4.4 together with Lemma 5.1 and 5.2.

O

Remark 5.1. By using the negativity of the Ricci curvature of the Weil-Petersson metric and
estimates (5.5), (5.6) and (5.7), we can actually show that the Ricci curvature of the perturbed
Ricci metric is pinched between two negative constants. The detail will be given in our next

paper.

6. EQUIVALENT METRICS ON THE MODULI SPACE

In this section, we prove the equivalence among the Ricci metric, perturbed Ricci metric,
Kaéhler-Einstein metric and the McMullen metric. These equivalences imply that the Teichmiller
metric is equivalent to the Kahler-Einstein metric which gives a positive answer to Yau’s Conjec-
ture. The main tool we use is the Schwarz-Yau Lemma. Also, to control the McMullen metric,
we give a simple formula of the first derivative of the geodesic length functions.

Lemma 6.1. The Weil-Petersson metric is bounded above by a constant multiple of the Ricci
metric. Namely, there is a constant o > 0 such that wywp < awr.

Proof. This lemma follows from Corollary 4.1 and Corollary 4.2. It also follows directly from
Schwarz-Yau Lemma.
O
By using this simple result, we have

Theorem 6.1. The Ricci metric and the perturbed Ricci metric are equivalent.

Proof. Since 7~'i3 =75+ Chg and C' > 0, we know that the Ricci metric is bounded above
by the perturbed Ricci metric. By using the above lemma, we also have the bound of the other
side.

O

By the work of Cheng and Yau [2] and Mok and Yau [10], there is a unique complete Kéhler-
Finstein metric on the moduli space whose Ricci curvature is —1. One of the main results of
this section is the equivalence of the Kéhler-Einstein metric and the Ricci metric. To prove this
result, we need the following simple fact of linear algebra.

Lemma 6.2. Let A and B be positive definite n x n Hermitian matrices and let o, B be positive
constants such that B > aA and det(B) < Bdet(A). Then there is a constant v > 0 depending
on o, 8 and n such that B < yA.

Theorem 6.2. The Ricci metric is equivalent to the Kdhler-Einstein metric gk k.
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Proof. Consider the identity map i : (Mg, gxr) — (Mg, 7). We know that the Kéhler-
Finstein metric is complete and its Ricci curvature is —1. By Theorem 5.2 we know that the
holomorphic sectional curvatures of the perturbed Ricci metric is bounded above by a negative
constant. From the Schwarz-Yau Lemma, there is a constant ¢y > 0 such that

gKE > CoT.

From Theorem 6.1 we know that the K&ahler-Einstein metric is bounded below by a constant
multiple of the Ricci metric

(6.1) 9KE > CoT.

Now we consider the identity map j : (Mg, 7) — (My,9xE). By Theorem 4.4 we know that
the Ricci curvature of the Ricci metric is bounded from below. Also, the Ricci curvature of
the Kéhler-Einstein metric is —1. From the Schwarz-Yau Lemma for volume forms, there is a
constant ¢; > 0 such that

(6.2) det(grg) < c1det(r).

By combining formula (6.1), (6.2) and Lemma 6.2 we have proved the theorem.
O
Now we consider the McMullen metric. In [9] McMullen constructed a new metric g;/; on

M which is equivalent to the Teichmhller metric and is Kéhler hyperbolic. More precisely, let
Log : Ry — [0,00) be a smooth function such that

(1) Log(z) =logz if x > 2;

(2) Log(z) =0if z < 1.

For suitable choices of small constants 6, ¢ > 0, the Kahler form of the McMullen metric g, /; is

. — €
wi =wwp — 0 Z 68Loga
ly(X)<e

where the sum is taken over primitive short geodesics v on X. We will also write this as wyy.
To compare the Ricci metric and the McMullen metric, we compute the first order derivative
of the short geodesics.

Lemma 6.3. Let Xy € ﬂg be a codimension m boundary point and let (t1,--- ,s,) be the
pinching coordinates near Xq. Let l; be the length of the geodesic on the collar QL. Then

Gz-lj = —WUjbg
ifi £ j and
8ilj = —TFUjE'

ifi =7j. Here bz and b; are defined in Lemma 4.2.

Proof. It is clear that on the genuine collar Qg, AA; is an anti-holomorphic quadratic dif-
ferential. By using the rs-coordinate z on €%, we can denote AA; by x;(Z)dz2. We consider the
coefficient of the term Z~2 in the expansion of ; and denote it by C_»(x;). From formula (4.2)
and Lemma 4.2 we know that
Now we use a different way to compute C_a(k;). Fix (to, sp) with small norm and let X = Xy .

Let w be the rs-coordinates on the j-th collar of X; ¢ and let z be the rs-coordinate on the j-th
36
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collar of X. Clearly w = w(z,t,s) is holomorphic with respect to z and when (¢,s) = (to, s0),
we have w = z. We pull-back the metric on the j-th collar of X; s to X. We have

ow |?
0z
is the Kéhler-Einstein metric on the j-th collar of X;,. Now from formulas (2.2) and (2.3), at
point (o, s9), a simple computation shows that

ool = ese?(u; log )

2
. w:0: U ut+1 - 'LL —|‘ _
(64) K’L’(z) = — jé; J + ]23 alw |(t0,50) a &'UJ |(t0750) —&%&Zagw ‘(tOVSO) :
From the above formula we can see that C’,g(m) = —u;j0;u; since the contribution of the last

three terms in the above formula to C'_5(k;) is 0. By comparing equations (6.3) and (6.4) we
have

1 e
8iu]' = —§ujbg.
The lemma follows from the fact that [; = 2mu;. Again, the above argument also works when
i = j. In this case, we replace b! by b;.
O

Now we can prove another main theorem of this section.

Theorem 6.3. The Ricci metric is equivalent to the McMullen metric, the Teichmiiller metric
and the Kobayashi metric.

Proof. Royden proved that the Teichmiiller metric is the same as the Kobayashi metric. Also,
the equivalence of the McMullen metric and the Teichmiiller metric was proved by McMullen [9].
We only need to show the equivalence between the Ricci metric and the McMullen g, ; metric.

Since the Ricci curvature of the g ; metric is bounded from below and it is complete, by the
Schwarz-Yau lemma we know that

T <71 < Cogiy
for some constant Cy. Now we prove the other bound. Fix a boundary point Xy and the pinching
coordinates near Xy. By Theorem 1.1 and Theorem 1.7 of [9] we know that there are constants
c1, co such that, when 7 < m,

2 2

o d? a
— < (Ologly)
(91/1)i Hatl <z ). @(Hatz +)  |(0logl, >
911 ly<e
o |2 i
tiIWP j=1
By Lemma 6.3 we know that
B I
logl|? = | L] = = |y
|0; log 1] ? 1 b/
From Lemma 4.2 we have

From the above formulas and Corollary 4.1 and Corollary 4.2 we know that there is a constant
c3 such that

PRIE
H Ai|lwp

m
+ Z ’81 log lj‘Q < 3T
j=1
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which implies

(6.6) (9105 < et

where ¢4 is another constant. The same argument works when ¢ > m 4 1. So formula (6.6)
holds for all 7. Since the McMullen metric is bounded from below by a constant multiple of the
Ricci metric and the diagonal terms of its metric matrix is bounded from above by a constant
multiple of the diagonal terms of matrix of the Ricci metric, a simple linear algebra fact shows
that there is a constant ¢ such that

T 2 C591/1-

The theorem follows from a compactness argument as we have used in previous sections.

7. APPENDIX: THE PROOF OF LEMMA 4.10

We will prove Lemma 4.10 in this appendix which consists of some computational details.
We fix a nodal surface Xy which corresponding to a codimension m boundary point in M. Let
(t,s) be the pinching coordinates near Xy such that Xoo = Xo. Fix (¢, s) with small norm, we
denote X; s by X. In the curvature formula (3.30), we let i = j = k =1 < m. The term G3 is a
summation of the following four types of terms:

(1) 1= 0B {0100 [y {T(&(e3)Eeop) + T(Ele)Eale) } dv} with (@, 8) # (i,0);
(2) IT = h? {01 Jx, Qulezless d”} with (a, 8) # (i,4);
(3) II1 = 7PapoBpe {gl Jx. &xlei)ens dv} {51 Ix. €le,)e.) dv}

(4) IV = TpghpaRiqu with (p, q) # (4,19)

where T = (0 + 1)~1. Now we check that the norm of each type is bounded by O(%) In the
following, Cy will be a unversal constant which may change but is independent of the Riemann
surface as long as (¢, s) has small norm.

Case 1. We check that each term in the sum IV has the desired bound. By Corollary 4.2
and its proof we have

) if g>m+1;
3

|f|)7 if g <m, and q # i;
) if g =1.

R_-= O( “

1q11 |
( u?

By using the above formula and Corollary 4.1 and 4.2, and by a case by case check we have

7
U,

|77 -hPIR.

1qit |

This proves that the norm of the last term is bounded by = O(| t_‘4).
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Case 2. We check that each term in the sum [ has the desired bound. Firstly, when
i =7 =k=1, we have

o100 {T(En(e)Elenz) + T(Erleq)Eslen) |
=2{T(&(e5)Eileap) + 2T (Ele;3)Ei(eur) + T(Eles))Eplen) }

(71) + 2 {T(&(ea )) Z(€ZB> + QT(&( aﬁ))§z< zz) + T(fZ( az))fﬁ( )}
+2{ T(Ealeq)Eile) + T(ale)Eileq) + T(€aleq)Ealeq) b
+ 2T(€a(eiﬁ)) i(ez)-

We estimate the integration of each term in the above summation. To estimate these terms, we
note that, if « # for a = > m+ 1, then

(7.2) (P11l | = 0(1).
Also, we have
(7.3) 1P(eaz)llo < lleqgllz < Coll £yl

These formulae can be checked easily by using Theorem 4.1, Corollary 4.1, Lemma 4.3 and
Lemma 4.7.
Now we estimate

paB Ix T(gi(eﬁ))@(eaﬁ) dv‘. If o # B ora=03>m+1, we have

‘/){T(&(Gii))gi(e < (/ IT(&(es)]? dv/ ezl dv)
<(flatar a [ e dv)2 ~ ([ sarteaP as [ gipie ) dvf
5

Us
<lPea)llollP(esp)llohi < Coll fllill fugpllihi = O(W)Hfaglh

2
since || fz|l1 = O(éﬁ) Together with formula (7.2) we have

5
U

)

P /X T(Ei(e)Exlens) du

:0(

If a =0 <m and « # i, we have

‘/x T(&i(e))Ei(eam) dv

= ‘/X T(&i(e)€i(eam) dv
* ‘/X T(&i(ez))Ei(eam — am) dv

4
e — - — — Uu
I P(ea = €aa)lo < lleas = Caale < | fox = aalls = O(;%5).
(0%
39

(7.4)

From Lemma 4.7 we have



So

< [|1P(eam — €aa)llo

‘/ T(&i(e7))Ei(eam — €am) dv

<HP(€O<a eocoz HO </ ‘T & u |2 d’l)/ f d’t})
73 <Plews o ([ l6teol do [ 1 dv>
=[|P(eaa — €aa)llo </X fialP(e)]? dv/Xfu‘ dv>2

ug uy
<[|P(eam — eaa)HOH€“H2 i O(|t |2)O( t-|4)'
o

12

[ mealial do
X

Since the support of e, is inside Q, we know the support of P(e,z) is inside Q¢. From Lemma
4.8 we have

\ [ Tt | = | [ TiEeE ) do
X e
<o 1T (e ol PElur < I Ailosl&en)lolP(Em) 1

3 . 2 3
=il 14l (e ol Pleam)lze = O (OO0 )

(7.6)

OO )

By combining the inequalities (7.5) and (7.6) we know that

'/X T(&ile;))Ei(eam) dv

From Lemma 4.1 we have

5 ug

= O(ltj‘*)o(!tap)'

5
U

)

poo /X T(Ee))Es(com) do

:0(

We finish the estimate of the first term in the sum (7.1). The integration of other terms in this
sum can be estimated in a similar way:.

Case 3. We check that each term in the sum /77 has the desired bound. By Lemma 4.2 we
first prove that when ¢ # ¢ and k = 4,

u? .
— i uiq . <
(7.7) heP {Ul/ 5k(eié)eaﬁ dv}‘ = (tlg) (|t¢J\) tg=m
X O(‘Zz|2)1fq>m+1
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Again, we do a case by base check. First we estimate hoB S < Cileigle, dv’ If a # 0 or
a=0>m+ 1, we have
= ‘/ eigi(e,p) dv

‘/ &ileig)e,g dv < (/ [€i(eq5) I dv/ leig|? dv)
(7.8) é( | talPtegP do [ 1fqP dv>2 < I1P(e.5)lo ( [ tado [ satn dv)

3
us
<[IP(eqp)lloll Agllohs = O(W) 1 fagll1lAqllo-

haﬁ /X 51 (eiq) e

If a =0 <m and a # i, we have
| &temeam ao
X

/ &ileig)eam dv| <
X

For the second term in the above formula, we have

' [ &) ean —eam) av] = | [ catilean — ) v
X X

s( / eil? dv / €i(can — e dv>2§ ( /X Fual? do /X FAPleas — eam)P dv>2

<|[P(ea = €aa)llo (/ filaa dv/ fii dv> < |lea — €aall2ll Aqllof;;

U4

S”fa& - é:z?i/H2||Aq||0hﬁ = O(‘t 0‘42) (‘t ‘Q)HA ”0
«

For the first term in the above formula, we have

'/X Si(eig)eam dv| =

3
< [|Aillo,00 lleigll2 e ea dv < O(’ NE 5)O (\t ’)HfquI

c

This implies
3

42

v = 0(=5) 144

; \ | élemlenm - am) dol.

&i(eig)eam dv
%

< 1 Asllos | Pler)llo / eom dv
Qg

By combining the above two formulas we have the desired bound for ‘ho‘a f x &i(eig)ean dv‘.
When o« = # = 4, by using a similar method we can show that ‘hﬁ Jx Gileig)e; dv‘ =
O(%) |Aqllo. From the above estimates we have proved that the term ‘ho‘ﬁ Jx Gileigle s dv)

in formula (7.7) has the desired estimate. By using similar method we can show that the other
terms in (7.7) have the desired estimate. This proves formula (7.7).
In a similar way, in the case ¢ = ¢ we can prove that, when k =i,

3
3 O, Cifa=p3=1;
hw{al/fk(ez‘q)ea@ dv}‘: (\tuf) ?O‘ 5 v |
X O(W)ﬂfoz#zorﬂ;«éz.

By combining formulas (7.8) and (7.9) we conclude that each term in the sum II7 is of order
5

0(i).

(7.9)
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5
Case 4. We need to show that each term in the sum I is of order O(lfﬁ) This case can

be proved by a case by case check by using the similar estimates as in the third case together
with Lemma 4.9. This finishes the proof.
O

Remark 7.1. The method we estimate these terms can be directly applied to the computations
of the full curvature tensor and we can get certain bounds for the bisectional curvature and the
Ricci curvature of the Ricci metric as well as the perturbed Ricci metric.

REFERENCES

[1] L. Ahlfors and L. Bers. Riemann’s mapping theorem for variable metrics. Ann. of Math. (2), 72:385-404,
1960.

[2] S.Y. Cheng and S. T. Yau. On the existence of a complete Kihler metric on noncompact complex manifolds
and the regularity of Fefferman’s equation. Comm. Pure Appl. Math., 33(4):507-544, 1980.

[3] P. Deligne and D. Mumford. The irreducibility of the space of curves of given genus. Inst. Hautes Etudes Sci.
Publ. Math., (36):75-109, 1969.

[4] L. Keen. Collars on Riemann surfaces. In Discontinuous groups and Riemann surfaces (Proc. Conf., Univ.
Maryland, College Park, Md., 1973), pages 263-268. Ann. of Math. Studies, No. 79. Princeton Univ. Press,
Princeton, N.J., 1974.

[5] K. Liu. Remarks on the geometry of moduli spaces. Proc. Amer. Math. Soc., 124(3):689-695, 1996.

[6] K. Liu, X. Sun, and S.-T. Yau. Ricci metric on the moduli space of riemann surface II. Preprint, 2004.

[7] Z. Lu and X. Sun. On the Weil-Petersson volume and the first chern class o of the Moduli Spaces of Calabi
-Yau Manifolds. submitted to Communications in Mathematical Physics, 2003.

[8] H. Masur. Extension of the Weil-Petersson metric to the boundary of Teichmuller space. Duke Math. J.,
43(3):623-635, 1976.

[9] C. T. McMullen. The moduli space of Riemann surfaces is Kahler hyperbolic. Ann. of Math. (2), 151(1):327—
357, 2000.

[10] N. Mok and S.-T. Yau. Completeness of the Kahler-Einstein metric on bounded domains and the character-
ization of domains of holomorphy by curvature conditions. In The mathematical heritage of Henri Poincaré,
Part 1 (Bloomington, Ind., 1980), volume 39 of Proc. Sympos. Pure Math., pages 41-59. Amer. Math. Soc.,
Providence, RI, 1983.

[11] G. Schumacher. The curvature of the Petersson-Weil metric on the moduli space of Kéhler-Einstein manifolds.
In Complex analysis and geometry, Univ. Ser. Math., pages 339-354. Plenum, New York, 1993.

[12] Y. T. Siu. Curvature of the Weil-Petersson metric in the moduli space of compact Kéhler-Einstein manifolds
of negative first Chern class. In Contributions to several complex variables, Aspects Math., E9, pages 261-298.
Vieweg, Braunschweig, 1986.

[13] S. Trapani. On the determinant of the bundle of meromorphic quadratic differentials on the Deligne-Mumford
compactification of the moduli space of Riemann surfaces. Math. Ann., 293(4):681-705, 1992.

[14] S. A. Wolpert. Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math., 85(1):119—
145, 1986.

[15] S. A. Wolpert. Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces.
Comm. Math. Phys., 112(2):283-315, 1987.

[16] S. A. Wolpert. The hyperbolic metric and the geometry of the universal curve. J. Differential Geom.,
31(2):417-472, 1990.

[17] S. T. Yau. A general Schwarz lemma for Kédhler manifolds. Amer. J. Math., 100(1):197-203, 1978.

[18] S.-T. Yau. Nonlinear analysis in geometry, volume 33 of Monographies de L’Enseignement Mathématique
[Monographs of L’Enseignement Mathématique]. 1L'Enseignement Mathématique, Geneva, 1986. Série des
Conférences de 'Union Mathématique Internationale [Lecture Series of the International Mathematics Union],
8.

42



