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Abstract

For the L?—boundedness of the Hilbert transforms along variable curves

+o00

Ho(D2) =pv. [ far —timz = dlor(0) ]
where v € C?(R'), odd or even, v(0) = 7/(0) = 0, convex on (0,0), if ¢ = 1, A.
Nagel, J. Vance, S. Wainger and D. Weinberg got a necessary and sufficient condition
on 7; if ¢ is a polynomial, J. M. Bennett got a sufficient condition on . In this paper,
we shall first give a counter-example to show that under the condition of Nagel-Vance-
Wainger-Weinberg on v, the L?—boundedness of Hy . may fail even if ¢ € C>°(R%).
Then, we improve Bennett’s result by relaxing the condition on v and simplifying the
proof.
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1 Introduction

For f € S(R?) and ® : R® — R?, define a Hilbert transform along variable curves by

o (1)@ =poo. [ fla—w(e,0)T. 0

. t

It is well known that such kind of operators have been studied extensively. For example,
see [7] and [2] and [12] for the case ®(z,t) = (t,7(¢)), [10] and [4] for the case ®(z,t) =
(t,S(x1,21 —t)), [9] for the case ®(x,t) = (t, P(x1,t)) where P is a polynomial on R?
[5] for the case ®(x,t) = (t,x1t), [3] for the case ®(x,t) = tv(z) where v : R? — R? is a
vector field, [1] for the case ®(x,t) = (¢, P(x1)Y(t)) where P is a real polynomial on R!.

In this paper, we shall consider its L?—boundedness. Some of related known results

are the following.
Theorem 1 For ®(x,t) = (t,7(t)) where

v € C*(RY),~(0) = 0, convex on (0, 0), (2)
Hg is L?>—bounded iff

(a)  when 7y is odd, h(ct) > 2h(t)(Vt € (0,00) for some ¢ > 1,
where h(t) =t/ (t) —y(t) , or (3)
(b)  when vy is even, v'(ct) > 27/(t) (Vt € (0,00) for some ¢ > 1.

See [7]. And note that (2)-(3) imply 7/(0) = 0, and the condition "+'(ct) > 2+/(t)”
implies the condition "h(ct) > 2h(t)”.

Theorem 2 For ®(x,t) = (¢, ¢(x1)y(t)) where ¢ = P is a real polynomial,
v € C3(RY) is odd or even, convex on (0,00), and v(0) = ~'(0) = 0, (4)

At) = t(Y"(t) /(b)) is decreasing and positively bounded below on (0, 00), (5)

then, Hg is L?>—bounded.

See [1]. Also see [5] for ¢(z1) = 7.

In this paper, we shall prove the following theorems.



Theorem 3 For ®(z,t) = (t,¢(x1)y(t)), there are ¢ € C®°(R') and v (odd or even)
satisfying (2)-(3) such that Hy ., (= Hg) is not L*(R?)—bounded.

Theorem 4 For ®(z,t) = (t, ¢(x1)y(t)), if ¢ = P is a real polynomial on R', v € C%(RY),
and
7(0) =+/(0) =0, v"(t) > 0 fort € (0,00),v is odd or even, (6)

and there are positive numbers A and M such that

V(s)  A'(®)
V(s) ) ‘ =

then, ||Hp~(f)|y < C| flly where C depends only on X\, M and the degree of P.

s —t)M

(5 1 00 for0<t<s, (7)

Theorem 3 shows that in Theorem 1, if v(¢) is replaced by ¢(x1)7(t), the result shall
fail even if ¢ is a real analytic function. And Theorem 4 gives a weaker condition than
Theorem 2, and our proof (by dealing with R, 0 R}, (see (45))) shall be much simpler than
the proof (by dealing with R}, o R,) given in [1]. Note that

e (5)=>(7) because (5) implies that for 0 < ¢t < s,

Y'(s) () > 5=t $7"(s) _ 4Xo(s — 1)

V(s) () T st y(s) T (s+1)?

where \g :igg t("(t) /' (t)).

e (7)=>(3) because (7) implies that 1/,/(%) is decreasing and for ¢ > 0,

1 1" 1" (ok k-1 .a—M
FICT TSI IS RS
which means that +/(2t) > (1 + X-37M)+/(¢), so (3) holds.
o (7)#>(5) for y(t) = t3eltl.
e for v € C3(RY) N (6), if
(') /A () < =N/t (8)

for all ¢ > 0 and some A > 0, then v € (7). And, if v € (5), then v € (8).



2 Some Lemmas

Before proving the above theorems 3-4, we first give some lemmas.

Lemma 5 Suppose S is a linear bounded operator from LP(RY) to itself, K € S(R%*®) is
its kernel which satisfies that K € L .(R?*® — {(:U, x):x€E Rd}) and

sup / |K(x,y)|dx < C, 9)
yeR® J1<|r—y|<2
then, the operator
SH () = K(z.y)f(y)dy
ly|<1

is also LP(RY)-bounded and HS’1||p7p <1+ 8],

Proof Take ¢ € C§°(R?) which satisfies that ¢(y) = 1 for |y| < 1, ¢(y) = 0 for |y| > 2,
and 0 < ¢ < 1. Define S, : S(R?) — S'(R?) by< Sy(f),9 >=< K(-,0)¢(- —0),g(-) f(c) >
for all f and g € S(R?). By Lemma 7 in [1], we have that 1961, < 1€l [15]],,,- On the
other hand, we have

(5" = 8) (=) < / (K (2, 9)[ |/ (y)] dy

1<|z—y|<2

which implies that ||S* — S‘ppr < C by (9). Thus, ||S|
151l,,)- Lemma 5 is proved.
Now, let

pp < CF I IS, < C7(1+

Fla,\) = [m flz,8)e"ds
T(F)(@,N) = poo. [ Fla =y, e Po@nw) du,

By Fourier transform and Plancherel’s formula (see [8] p116), we have
-~ 2
Eoo (o) = [ [T

LZ(RI)
So, if Hy ~ is L?(R?*)—bounded, T is also L?(R?)—bounded. In addition, the L2(R?)—boundedness
of T means the L?(R')—boundedness of T} for almost all A € R', where
dy
y

(10)

1

Ti(g)(z) = p-v-/ g(x — y)e—i/\¢(r)’v(y)
Rl

Lemma 6 For 6 > 0,0 < t; < to, we have

V() ) V(t2)  OM(ta — 1) (1)
Y(O+t) AO+t) " My O +ty) (0+ty)MHL

where cy pr depends only on A and M.




Proof If -1 < %ﬂléftl), noticing that % < 1, we have

¥ (0+t1)

7' (t2) 7' (t1)

1 A) 1
")/'(9+t2> 7’(9—1—151) - 27’(94—?52) T~ 27

V() Mty —t1)
(0 +tg) (6 +tg) M+

If Ww(e(fft)l) > %7,7(,6(3_232), noticing that
7( @) ) = ()Y (0+1) —y1()y” (0+1)
v (O+t) (v/(0+1))?
— 2 (v”(t) _ 7”(9+t)) M ()
YO+ () A+ ) = (0+20)MF A (0+1)

and for ¢ € (t1,t2),

9 Y (t) )> AN V() oA oM ' (t)

Ot Y (0 +1)" = (0+20)MH /(0 +t1) = 2MFL (0 + )M A/ (0 + 1)’

we get
Yt () s A (ta—t)0M y(t)
Y (0+t2) A (0+t1) = 2MFL (9415) ML 47 (0+t1)
A (ta=t)0M  o'(ty)
2MF2 (0+12) MAT 7 (0+t2)

Y

Lemma 6 is proved.

Lemma 7 For n > 3, there is a g € C?([0,n]) such that 0 < ¢"'(t) € L>([0,n]) for
€ (0,n), and

(12)

Proof We only need to choose

g(t) = 1+ (¢ —m) + 5(t =) + /th(s)(t _ s)ds

n

and a suitable A such that

@)

a
b
c
d

< h(t) € ([0,n]) for t € (0,n)
o h(s)ds =1

o h(s)sds =n—1

o h(s)s*ds =n* —2n + 2.

N N N T
~— — ~—~ ~—

Now, take

h(s) = po for 0<s<e (14)
v for e<s<n



where €, pi, v are to be determined. From (13)-(14), we get

(a) 1=€¢(p—v)+nv
(b) n—1= %(,Lﬂ — %) + $n?v (15)
() n?—2n+2= %(u?’ — %) + tndu.

(15)(b) — 2(15)(a) and (15)(c) — Z2(15)(5) imply

’I’L—2:€(/,L—V)(€_n), (16)
n? —4n+6 = e2(u —v)(e —n)
which means N
—4 6
e ) (17)
n—2
From (16) and (17), we get
n—2 (n —2)3

M_Vze(efn)  2(n—3)(n?—4n+6)

So,
n?—2n
= L ) = g 50 &

=11 -vin—€) = sratnrg > 0.

For the €, u, v determined in (17)-(18) and (14), we get the desired h.

Lemma 8 (Van der Corput’s Lemma) If ¢' is monotone on (a,b) and ¢’ > X > 0, then

/b @) (x)da

gcxﬂ@ww+LWmeQ- (19)

See [11], p344.

3 Proof of the Theorems

3.1 Proof of Theorem 3

Take



where n is a large positive number, and g, is determined by Lemma 7. Then ¢ € C*°(R!),
v € C2(RY), 4(0) = ~'(0) = 0, ¥"(t) > 0 for t > 0 and ~ satisfies the condition (3)(b)
(note that 7 satisfies the condition (3)(a) if we choose v(y) = —y(—y) for y < 0). Now we
shall prove that for the above selected ¢ and v, Hy - is not L?(R?)— bounded. Otherwise,
almost all Ty, are L?(R!)—bounded, say, T} is L?(R')—bounded. For Ty, we have

PV f+<>0 —ig(z)v(y) flo — )dy
(po- 7+ fiysn) €7 $>v<y>f<sc—y>%y (20)
S(f)( ) R(f)(z)

By Lemma 5, S is L?(R!)—bounded. So, R is L?(R!)— bounded, and thus L = Ro R* is
also L?(R')—bounded. Now,

L(f)(z) = [p L(z,y) f(y)dy

— —i(p(x)y(x—2)— —z dz (21)
Y) = fio—spomysfom € O =000 =) e

Ty (f)(x)

For y > 0 and x < —2n, we have

L(z,y) = (f:c—z>n + fx—z<—n,y—z>n + fy—z<—n) ’
e—i(@@)y(z—2)—¢(y)v(y—2)) __dz (22)

(z—2)(y—2)
= I+11+1I1

Ify>0,z<—2n, 7 —2z>n, then (e2*7% — e =%)" < 0 and (e?*7% — e ~%), > e¥. So,

by Van der Corput’s Lemma, we have

/ _i(62172_82y7z) dZ
e .
z—z>n (z —2)(y —2)

Ify>0,2<-2n,—2z<-nandy—=z>n, then (e —e?¥ %), > ¢e¥ and (e* —e2¥™7), is

1] =

< Ce V. (23)

increasing for z > y and decreasing for z < y. So, by Van der Corput’s Lemma, we have

11| = / emile—ev 4z < Ce™V. (24)
T—2z<—n,Yy—z>n (33 - Z)(y - Z)
In addition,
In(1 + ¥£=2
IH:/ dz _m+50) (25)
y—z<—n x—Z)(y—Z) y_x
By (23)-(25), for x € (—ce¥, —n?) and y > 0, we have
1 In(1+ £=* In(y —

2 y—z  4dy—z)



Now, taking m > 2n? and f,, = X(m,2m)> We have that for z € (—ce™, —n?),

L(fm)(@) = 2" Lia,y)dy > [27 B2y = il g,
1

= ;In((2m + [z|)(m + |2[) In(1 + 22)

ZC'{lmm for |z| <m

minfe] o |x| > m.
]

Therefore,

2

—n 1/2
L)l > ( / rL<fm><x>2dw> > Cm!2nm = Clam |,

—m

which means that L is not L2—bounded. Theorem 3 is proved.

3.2 Proof of Theorem 4

By Fourier transform and Plancherel’s formula, we have (see [8] p116)
HHP7“/||L2(R2)_>L2(R2) < Sugl HSuHL2(R1)HL2(R1) (28)
ue

where
“+o0

Su()@) =pa. [ e e (o - )2 (20)

So, to prove Theorem 4, we only need to prove that
[Sull p2(r1)—r2(g1 i finite and depends only on A, M and deg(P). (30)

To be convenient, let deg(P) = —1if P = 0.

For the case deg(P) = —1, S, is the usual Hilbert transform. So, (30) holds. Suppose
that (30) hold for deg(P) < n (inductive hypothesis). We shall prove that (30) holds for
all P with deg(P) = n.

Now, suppose that deg(P) = n and P’s coeffecient of the term of the highest order be
sg. Take wg such that

|sou| wyy(wo) = 1,

and set

~ . n P(woz) v(woy) d
() (o) = pa. [ e A T o
R! Y



Then, Sy(f)(z) = g(fwo)(w%) where fu,(z) = f(wox). Obviously, |[Sull2(g1)—r2(rr) =

HS L2(RY)—L2(RY)
need to show that

. Noting that |sou|wfy(wo) = 1, to prove (30) with deg(P) = n, we only

15112 (R1)— £2(R1) is finite and depends only on A, M and n (31)

where p
S(F)@) =po. [P0 fa -y
R! Y
and P’s coeffecient of the term of the highest order is 1, (1) = 1.

Decompose S into two parts

= E fh +2 k>0 f2k§|y|§2k+1) e P@vW) f(z — y)% )
= S(N)(@) + X0 SP(f) ().
Step 1 We first have
HS L2(RY)—L2(RY) < C)\,M,n- (33>

To do so, we make decomposition f =7, f; where f; = fxy, and I; = [2j —1,2j +1).
For any «, #{j : 5(f)(z) # 0} <2, so0

st <23 st (34)
J
Set Qj(z) = P(z) — (x — 2j)", and
S, () =pa. [ U0z ) Y.

By inductive hypothesis, Lemma 5 and the fact that deg(Q;) < n — 1, we have

< C)\,M,n- (35)

Hng L2(R')—L2(R))

In addition,

\SQJfJU <><>]<f
<[4 P21 —w)lay < € le\fa(l‘— )l dy

Q) — PENW)||fi(z —y)|

because y(y) < |y| for |y| < 1 Combining (34)-(36), we get

1/2

5], = (s Fupe] d
< (208 ppo i 5 i) ) < V3O a1
So, (33) holds.



Step 2 There is € = € (M,n) > 0, such that
1Ll L2(mry— L2ty < Oxngnit™ (37)
where ;1 € R' and

Lu(f)(@ = le Lu(x,y)f(y)dy

L(z,y) = f1§x—z§y—z<2 ei#(P(m)v(w—Z)—P(y)v(y—z))@75’%.

To do so, let p(z,y,2) = P(z)y(x — 2) — P(y)y(y — 2), and U = {Rez : P(z) = 0},
U{ ={z € R': d(z,U) < 4§ or y —x < §} where § is to be determined. It is easy to see
that |P(z)| > 6™ for « ¢ UJ. Obviously, |L,(z,y)| <1, so

(38)

sup / Lyl de < (204 1)5 < Cd. (39)
y JUY
In addition, for z < z < y, ’77:%;:2 is strictly decreasing on z € (—o0, z), so, there is at
most one 2’ such that . .
V(e—2) _ Py)
Y(y—2) Plx)
Now, to be convevient, we may assume that 2z’ = —oo for the case that ggg; > lim
zZ——00
%, and 2’ = z for the case that % Szlgrlo z,g:z; = 0. And let Bs = {z €

C:|z—2| <§}. For z ¢ Bs, let 27 be the point in 22’ such that d(z,2”) = 6. For
1<z—2z<y—2<2,z¢U{ and z ¢ B;, we have

’ @ (%,y,2) _ | (==2) _ P(y) Y(z=2)  A'(z=2")
P(z)'(y—2) ’Y:Ey—2§ P/((x) - 7 (y—=2) ’Y’(yg?) oes)
y \r—=2 Yy \x—z Yy— Y (x—z2
Z 7= "//’((y—Z)”)‘ = oM (2+0)MF1 ' (y—2) (40)
M+17 (z—2
N L )

Thus, for 1 <z — 2 <y—2<2, 2z ¢ UJ and z ¢ B, we have
oL@, y,2)| > ex ™ (@ — 2) [ P(2))|
which means that for 1 <z —2<y—2<2,2¢U?, 2 ¢ By,

lL(z,y, 2)| > ex M (because v/(1) > 1)
|

" —2)|P 41
ol (2,y,2)| > CA,M,n5M+1 { 'Y/(JJ z) |P(z) (41)
Yy —2) [P(y)|
Therefore,
o2 (9,2)| " (@=2)|P(@)] | 7"(y=2)|P(y)|
oL (@y,2)” = |<ﬂ’z(x7y,Z)|22(M ) Isﬂfz(ﬂc,y;,z()l2 ) "
- + v (x—z Y (y—=z

< Oxand (W_z)fp(xn + wl(x—z)w’(y—z)w(xn) (42)

—2(M+1)—n7"(z—2
< C)\,M,n(s ( ) (z—2)

10



V' (Y=2) ¥ (x=2)
V=) = V=2
For fixed z and y, z ¢ UY, {z : 1 <2 — 2z <y — 2 < 2} — B, consists of at most two

because

intervals. To be convenient, we assume that it consists of one interval A. By (41) and
(42), we have

+ 20

Lu@ ) < |fa e =iy ,
1 ethe i 1 1

F T o + 1 o R )

+1 |[a e mdzl“fs

! (43)

w

IA

sup || + [a |¢f2|dz> + 26
zEA
Comn (s—1-n—M 2-n—2M [ '(z—z)

2 (5 +6- fa 22k dz) + 25

IN

IN

C)\Mn 2—n—2M
m ) + 26

for 4/(1) > 1 and +/ is increasing. Noting that L, (z,y) = 0 for y — 2 > 1, by (39) and

(43), we have
§—2-n—2M
sup / |Lu(z,y)| de < Cx pm ( + 5) _
v JR! 7

Taking 6 = p~¢ with € = m, we get

sup / L2,y dx < Copgpi™
y JR!

which means that ||LM||L1(R1)_>L1(R1) < Cyxmnp~ ¢ On the other hand, it is obvious
that HLu||L<>o(Rl)_>Loo(Rl) < C. So, by Marcinkiewicz interpolation theorem, there is ¢ =
€¢/(M,n) such that (37) holds.

Step 3 We have

1Rl 2y — 2ty < Crntmtt™ (44)
where
inP(z)y(z—y) dy
Ru(f)(z) = eIV £ (y) :
1<zx—y<2 r—y
«||M/? «
Actually, [|R,]|;- (RV)—L2(Rl) = HR o Ry, il 2 (ry -2 (r1y’ and the kernel of R, o R, is
R, o R (z,y) = / Gin(P@na—2)-Pnw—=)____ 4%
K p 1<z—2<2,1<y—2z<2 (z—2)(y —2)

Note that R, o R} (z,y) = Lu(z, y) + L,u(y,x) for z # y, R, o R, (@, y) = Lyu(z,y) = 3 for
x =1y. So,

HRu o R, L2(R')—L2(RY) < 2Ll 2y~ p2 ey - (45)

11



By (37) and (45), we get (44).

Now, by the oddness or evenness of v, we have

Hg(k) < Hs(k)
e L e )
where J
gk) _ / iP(z)y(z—y) v
Bn@=[_ . O
Note that for 2/ = 2 %z,
. k.1 ko1 _ .1 /
(k}) B Z2kn,y(2k)P(2 nm ) (2% (= —y")) k dy B €T
=/ (@) 5 = R () ()
where for () = f(2F2). So,
s = R < Ot ®
T llz2(rY)—L2(RY) well L2(RY)—r2(RY) = ©AM
where p, = 2#7v(2%). Therefore,
Z Hs(k) L2(R')—L?(R') = Z CXMWanV@k))_% < C&,M,n' (46)
k>0 k>0

From (32)-(33) and (46), we get (31). Theorem 4 is proved now.

12
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