Jiecheng CHEN & Xiangrong ZHU
Dept of Mathematics (Xixi Campus), Zhejiang Universitry

Abstract

For the L^2 -boundedness of the Hilbert transforms along variable curves

$$H_{\phi,\gamma}(f)(x_1, x_2) = p.v. \int_{-\infty}^{+\infty} f(x_1 - t, x_2 - \phi(x_1)\gamma(t)) \frac{dt}{t}$$

where $\gamma \in C^2(R^1)$, odd or even, $\gamma(0) = \gamma'(0) = 0$, convex on $(0, \infty)$, if $\phi \equiv 1$, A. Nagel, J. Vance, S. Wainger and D. Weinberg got a necessary and sufficient condition on γ ; if ϕ is a polynomial, J. M. Bennett got a sufficient condition on γ . In this paper, we shall first give a counter-example to show that under the condition of Nagel-Vance-Wainger-Weinberg on γ , the L^2 -boundedness of $H_{\phi,\gamma}$ may fail even if $\phi \in C^{\infty}(R^1)$. Then, we improve Bennett's result by relaxing the condition on γ and simplifying the proof.

^{*}Supported by 973 project and NSFZJ

1 Introduction

For $f \in \mathcal{S}(\mathbb{R}^2)$ and $\Phi : \mathbb{R}^3 \to \mathbb{R}^2$, define a Hilbert transform along variable curves by

$$H_{\Phi}(f)(x) = p.v. \int_{-\infty}^{+\infty} f(x - \Phi(x, t)) \frac{dt}{t}.$$
 (1)

It is well known that such kind of operators have been studied extensively. For example, see [7] and [2] and [12] for the case $\Phi(x,t) = (t,\gamma(t))$, [10] and [4] for the case $\Phi(x,t) = (t,S(x_1,x_1-t))$, [9] for the case $\Phi(x,t) = (t,P(x_1,t))$ where P is a polynomial on R^2 , [5] for the case $\Phi(x,t) = (t,x_1t)$, [3] for the case $\Phi(x,t) = tv(x)$ where $v: R^2 \to R^2$ is a vector field, [1] for the case $\Phi(x,t) = (t,P(x_1)\gamma(t))$ where P is a real polynomial on R^1 .

In this paper, we shall consider its L^2 -boundedness. Some of related known results are the following.

Theorem 1 For $\Phi(x,t) = (t,\gamma(t))$ where

$$\gamma \in C^2(R^1), \gamma(0) = 0, \text{ convex on } (0, \infty), \tag{2}$$

 H_{Φ} is L^2 -bounded iff

(a) when
$$\gamma$$
 is odd, $h(ct) \ge 2h(t) (\forall t \in (0, \infty) \text{ for some } c > 1,$
where $h(t) = t\gamma'(t) - \gamma(t)$, or (3)

(b) when γ is even, $\gamma'(ct) \ge 2\gamma'(t)$ ($\forall t \in (0, \infty)$ for some c > 1.

See [7]. And note that (2)-(3) imply $\gamma'(0) = 0$, and the condition " $\gamma'(ct) \ge 2\gamma'(t)$ " implies the condition " $h(ct) \ge 2h(t)$ ".

Theorem 2 For $\Phi(x,t) = (t,\phi(x_1)\gamma(t))$ where $\phi = P$ is a real polynomial,

$$\gamma \in C^3(\mathbb{R}^1)$$
 is odd or even, convex on $(0, \infty)$, and $\gamma(0) = \gamma'(0) = 0$, (4)

$$\lambda(t) = t(\gamma''(t)/\gamma'(t)) \text{ is decreasing and positively bounded below on } (0, \infty),$$
 (5) then, H_{Φ} is L^2 -bounded.

See [1]. Also see [5] for $\phi(x_1) = x_1$.

In this paper, we shall prove the following theorems.

Theorem 3 For $\Phi(x,t) = (t,\phi(x_1)\gamma(t))$, there are $\phi \in C^{\infty}(R^1)$ and γ (odd or even) satisfying (2)-(3) such that $H_{\phi,\gamma} \ (\equiv H_{\Phi})$ is not $L^2(R^2)$ -bounded.

Theorem 4 For $\Phi(x,t) = (t,\phi(x_1)\gamma(t))$, if $\phi = P$ is a real polynomial on R^1 , $\gamma \in C^2(R^1)$, and

$$\gamma(0) = \gamma'(0) = 0, \ \gamma''(t) > 0 \text{ for } t \in (0, \infty), \gamma \text{ is odd or even},$$

$$\tag{6}$$

and there are positive numbers λ and M such that

$$\left| \frac{\gamma''(s)}{\gamma'(s)} - \frac{\gamma''(t)}{\gamma'(t)} \right| \ge \frac{\lambda(s-t)^M}{(s+t)^{M+1}} \text{ for } 0 < t < s, \tag{7}$$

then, $||H_{P,\gamma}(f)||_2 \leq C ||f||_2$ where C depends only on λ , M and the degree of P.

Theorem 3 shows that in Theorem 1, if $\gamma(t)$ is replaced by $\phi(x_1)\gamma(t)$, the result shall fail even if ϕ is a real analytic function. And Theorem 4 gives a weaker condition than Theorem 2, and our proof (by dealing with $R_{\mu} \circ R_{\mu}^*$ (see (45))) shall be much simpler than the proof (by dealing with $R_{\mu}^* \circ R_{\mu}$) given in [1]. Note that

• (5)=>(7) because (5) implies that for 0 < t < s,

$$\frac{\gamma''(s)}{\gamma'(s)} - \frac{\gamma''(t)}{\gamma'(t)} \ge \frac{s-t}{st} \cdot \frac{s\gamma''(s)}{\gamma'(s)} \ge \frac{4\lambda_0(s-t)}{(s+t)^2}$$

where $\lambda_0 = \inf_{t>0} t(\gamma''(t)/\gamma'(t))$.

• (7)=>(3) because (7) implies that $\frac{\gamma''(t)}{\gamma'(t)}$ is decreasing and for t>0,

$$\frac{\gamma''(t)}{\gamma'(t)} \ge \frac{\gamma''(2t)}{\gamma'(2t)} + \frac{\lambda}{3^M} \cdot \frac{1}{t} \ge \dots \ge \frac{\gamma''(2^k t)}{\gamma'(2^k t)} + \frac{\lambda}{3^M} \cdot \frac{1}{t} \cdot \sum_{j=0}^{k-1} 2^{-j} \ge \frac{2\lambda \cdot 3^{-M}}{t}$$

which means that $\gamma'(2t) \ge (1 + \lambda \cdot 3^{-M})\gamma'(t)$, so (3) holds.

- $(7) \neq > (5)$ for $\gamma(t) = t^3 e^{|t|}$.
- for $\gamma \in C^3(\mathbb{R}^1) \cap (6)$, if

$$(\gamma''(t)/\gamma'(t))' \le -\lambda/t^2 \tag{8}$$

for all $t \ge 0$ and some $\lambda > 0$, then $\gamma \in (7)$. And, if $\gamma \in (5)$, then $\gamma \in (8)$.

2 Some Lemmas

Before proving the above theorems 3-4, we first give some lemmas.

Lemma 5 Suppose S is a linear bounded operator from $L^p(R^d)$ to itself, $K \in \mathcal{S}(R^{2d})$ is its kernel which satisfies that $K \in L_{loc}(R^{2d} - \{(x, x) : x \in R^d\})$ and

$$\sup_{y \in R^n} \int_{1 \le |x-y| \le 2} |K(x,y)| \, dx \le C, \tag{9}$$

then, the operator

$$S^{1}(f)(x) = \int_{|y| < 1} K(x, y) f(y) dy$$

is also $L^p(\mathbb{R}^d)$ -bounded and $||S^1||_{p,p} \leq C'(1+||S||_{p,p})$.

Proof Take $\varphi \in C_0^{\infty}(R^d)$ which satisfies that $\varphi(y) = 1$ for $|y| \leq 1$, $\varphi(y) = 0$ for $|y| \geq 2$, and $0 \leq \varphi \leq 1$. Define $S_{\varphi} : \mathcal{S}(R^d) \to \mathcal{S}'(R^d)$ by $< S_{\varphi}(f), g > = < K(\cdot, \circ)\varphi(\cdot - \circ), g(\cdot)f(\circ) >$ for all f and $g \in \mathcal{S}(R^d)$. By Lemma 7 in [1], we have that $||S_{\varphi}||_{p,p} \leq ||\hat{\varphi}||_1 ||S||_{p,p}$. On the other hand, we have

$$(S^1 - S_{\varphi})(f)(x) \le \int_{1 \le |x-y| \le 2} |K(x,y)| |f(y)| dy$$

which implies that $||S^1 - S_{\varphi}||_{p,p} \leq C$ by (9). Thus, $||S^1||_{p,p} \leq C + ||\hat{\varphi}||_1 ||S||_{p,p} \leq C'(1 + ||S||_{p,p})$. Lemma 5 is proved.

Now, let

$$\begin{split} \widetilde{f}(x,\lambda) &= \int_{R^1} f(x,s) e^{-i\lambda s} ds \\ \widetilde{T}(f)(x,\lambda) &= p.v. \int_{R^1} \widetilde{f}(x-y,\lambda) e^{-i\lambda \phi(x)\gamma(y)} \frac{dy}{y}. \end{split}$$

By Fourier transform and Plancherel's formula (see [8] p116), we have

$$||H_{\phi,\gamma}(f)||_{L^2(R^2)}^2 = \int_{R^1} ||\widetilde{T}(\widetilde{f})(\cdot,\lambda)||_{L^2(R^1)}^2 d\lambda.$$
 (10)

So, if $H_{\phi,\gamma}$ is $L^2(R^2)$ —bounded, \widetilde{T} is also $L^2(R^2)$ —bounded. In addition, the $L^2(R^2)$ —boundedness of \widetilde{T} means the $L^2(R^1)$ —boundedness of T_{λ} for almost all $\lambda \in R^1$, where

$$T_{\lambda}(g)(x) = p.v. \int_{\mathbb{R}^1} g(x-y)e^{-i\lambda\phi(x)\gamma(y)} \frac{dy}{y}.$$

Lemma 6 For $\theta > 0, 0 < t_1 < t_2$, we have

$$\frac{\gamma'(t_2)}{\gamma'(\theta + t_2)} - \frac{\gamma'(t_1)}{\gamma'(\theta + t_1)} \ge c_{\lambda,M} \frac{\gamma'(t_2)}{\gamma'(\theta + t_2)} \cdot \frac{\theta^M(t_2 - t_1)}{(\theta + t_2)^{M+1}}$$
(11)

where $c_{\lambda,M}$ depends only on λ and M.

Proof If $\frac{\gamma'(t_1)}{\gamma'(\theta+t_1)} \leq \frac{1}{2} \frac{\gamma'(t_2)}{\gamma'(\theta+t_2)}$, noticing that $\frac{\theta^M(t_2-t_1)}{(\theta+t_2)^{M+1}} \leq 1$, we have

$$\frac{\gamma'(t_2)}{\gamma'(\theta+t_2)} - \frac{\gamma'(t_1)}{\gamma'(\theta+t_1)} \ge \frac{1}{2} \frac{\gamma'(t_2)}{\gamma'(\theta+t_2)} \ge \frac{1}{2} \frac{\gamma'(t_2)}{\gamma'(\theta+t_2)} \cdot \frac{\theta^M(t_2-t_1)}{(\theta+t_2)^{M+1}}.$$

If $\frac{\gamma'(t_1)}{\gamma'(\theta+t_1)} \ge \frac{1}{2} \frac{\gamma'(t_2)}{\gamma'(\theta+t_2)}$, noticing that

$$\begin{array}{ll} \frac{\partial}{\partial t}(\frac{\gamma'(t)}{\gamma'(\theta+t)}) &= \frac{\gamma''(t)\gamma'(\theta+t)-\gamma'(t)\gamma''(\theta+t)}{(\gamma'(\theta+t))^2} \\ &= \frac{\gamma'(t)}{\gamma'(\theta+t)}(\frac{\gamma''(t)}{\gamma'(t)}-\frac{\gamma''(\theta+t)}{\gamma'(\theta+t)}) \geq \frac{\lambda\theta^M}{(\theta+2t)^{M+1}}\frac{\gamma'(t)}{\gamma'(\theta+t)} > 0 \end{array}$$

and for $t \in (t_1, t_2)$,

$$\frac{\partial}{\partial t} \left(\frac{\gamma'(t)}{\gamma'(\theta+t)} \right) \ge \frac{\lambda \theta^M}{(\theta+2t_2)^{M+1}} \frac{\gamma'(t_1)}{\gamma'(\theta+t_1)} \ge \frac{\lambda}{2^{M+1}} \frac{\theta^M}{(\theta+t_2)^{M+1}} \frac{\gamma'(t_1)}{\gamma'(\theta+t_1)},$$

we get

$$\frac{\gamma'(t_2)}{\gamma'(\theta+t_2)} - \frac{\gamma'(t_1)}{\gamma'(\theta+t_1)} \ge \frac{\lambda}{2^{M+1}} \frac{(t_2-t_1)\theta^M}{(\theta+t_2)^{M+1}} \frac{\gamma'(t_1)}{\gamma'(\theta+t_1)} \\ \ge \frac{\lambda}{2^{M+2}} \frac{(t_2-t_1)\theta^M}{(\theta+t_2)^{M+1}} \frac{\gamma'(t_2)}{\gamma'(\theta+t_2)}.$$

Lemma 6 is proved.

Lemma 7 For n > 3, there is a $g \in C^2([0,n])$ such that $0 < g'''(t) \in L^{\infty}([0,n])$ for $t \in (0,n)$, and

(a)
$$g(0) = g'(0) = g''(0) = 0,$$

(b) $g(n) = g'(n) = g''(n) = 1.$ (12)

Proof We only need to choose

$$g(t) = 1 + (t - n) + \frac{1}{2}(t - n)^2 + \frac{1}{2} \int_{n}^{t} h(s)(t - s)^2 ds$$

and a suitable h such that

(a)
$$0 < h(t) \in ([0, n]) \text{ for } t \in (0, n)$$

(b) $\int_0^n h(s)ds = 1$
(c) $\int_0^n h(s)sds = n - 1$
(d) $\int_0^n h(s)s^2ds = n^2 - 2n + 2.$ (13)

Now, take

$$h(s) = \begin{cases} \mu & \text{for } 0 < s < \epsilon \\ \nu & \text{for } \epsilon < s < n \end{cases}$$
 (14)

where ϵ, μ, ν are to be determined. From (13)-(14), we get

(a)
$$1 = \epsilon(\mu - \nu) + n\nu$$

(b) $n - 1 = \frac{\epsilon^2}{2}(\mu^2 - \nu^2) + \frac{1}{2}n^2\nu$
(b) $n^2 - 2n + 2 = \frac{\epsilon^3}{3}(\mu^3 - \nu^3) + \frac{1}{3}n^3\nu$. (15)

 $(15)(b) - \frac{n}{2}(15)(a)$ and $(15)(c) - \frac{2n}{3}(15)(b)$ imply

$$n - 2 = \epsilon(\mu - \nu)(\epsilon - n),$$

$$n^2 - 4n + 6 = \epsilon^2(\mu - \nu)(\epsilon - n)$$
(16)

which means

$$\epsilon = \frac{n^2 - 4n + 6}{n - 2} > 0. \tag{17}$$

From (16) and (17), we get

$$\mu - \nu = \frac{n-2}{\epsilon(\epsilon - n)} = -\frac{(n-2)^3}{2(n-3)(n^2 - 4n + 6)}.$$

So,

$$\nu = \frac{1}{n}(1 - \epsilon(\mu - \nu)) = \frac{n^2 - 2n + 2}{2n(n - 3)} > 0$$

$$\mu = \frac{1}{\epsilon}(1 - \nu(n - \epsilon)) = \frac{2}{n(n^2 - 4n + 6)} > 0.$$
(18)

For the ϵ, μ, ν determined in (17)-(18) and (14), we get the desired h.

Lemma 8 (Van der Corput's Lemma) If ϕ' is monotone on (a,b) and $\phi' \geq \lambda > 0$, then

$$\left| \int_{a}^{b} e^{i\phi(x)} \psi(x) dx \right| \le C\lambda^{-1} \left(\|\psi\|_{\infty} + \int_{a}^{b} |\psi'(x)| dx \right). \tag{19}$$

See [11], p344.

3 Proof of the Theorems

3.1 Proof of Theorem 3

Take

$$\phi(x) = e^{x}$$

$$\gamma(y) = \begin{cases} e^{n}g_{n}(y) & \text{for } 0 \leq y \leq n \\ e^{y} & \text{for } y > n \\ \gamma(-y) & \text{for } y < 0 \end{cases}$$

where n is a large positive number, and g_n is determined by Lemma 7. Then $\phi \in C^{\infty}(R^1)$, $\gamma(0) = \gamma'(0) = 0$, $\gamma''(t) > 0$ for t > 0 and γ satisfies the condition (3)(b) (note that γ satisfies the condition (3)(a) if we choose $\gamma(y) = -\gamma(-y)$ for y < 0). Now we shall prove that for the above selected ϕ and γ , $H_{\phi,\gamma}$ is not $L^2(R^2)$ bounded. Otherwise, almost all T_{λ} are $L^2(R^1)$ -bounded, say, T_1 is $L^2(R^1)$ -bounded. For T_1 , we have

$$T_1(f)(x) = p.v. \int_{-\infty}^{+\infty} e^{-i\phi(x)\gamma(y)} f(x-y) \frac{dy}{y}$$

$$= \left(p.v. \int_{-n}^{n} + \int_{|y| \ge n}\right) e^{-i\phi(x)\gamma(y)} f(x-y) \frac{dy}{y}$$

$$= S(f)(x) + R(f)(x)$$
(20)

By Lemma 5, S is $L^2(R^1)$ -bounded. So, R is $L^2(R^1)$ - bounded, and thus $L = R \circ R^*$ is also $L^2(R^1)$ -bounded. Now,

$$L(f)(x) = \int_{R^1} L(x, y) f(y) dy$$

$$L(x, y) = \int_{|x-z| > n, |y-z| > n} e^{-i(\phi(x)\gamma(x-z) - \phi(y)\gamma(y-z))} \frac{dz}{(x-z)(y-z)}.$$
(21)

For y > 0 and x < -2n, we have

$$L(x,y) = \left(\int_{x-z>n} + \int_{x-z<-n, y-z>n} + \int_{y-z<-n} \right) \cdot e^{-i(\phi(x)\gamma(x-z)-\phi(y)\gamma(y-z))} \frac{dz}{(x-z)(y-z)}$$

$$= I + II + III$$
(22)

If y > 0, x < -2n, x - z > n, then $(e^{2x-z} - e^{2y-z})''_{zz} < 0$ and $(e^{2x-z} - e^{2y-z})'_z \ge e^y$. So, by Van der Corput's Lemma, we have

$$|I| = \left| \int_{x-z>n} e^{-i(e^{2x-z} - e^{2y-z})} \frac{dz}{(x-z)(y-z)} \right| \le Ce^{-y}.$$
 (23)

If y > 0, x < -2n, x - z < -n and y - z > n, then $(e^z - e^{2y-z})'_z \ge e^y$ and $(e^z - e^{2y-z})_z$ is increasing for z > y and decreasing for z < y. So, by Van der Corput's Lemma, we have

$$|II| = \left| \int_{x-z < -n, y-z > n} e^{-i(e^z - e^{2y-z})} \frac{dz}{(x-z)(y-z)} \right| \le Ce^{-y}.$$
 (24)

In addition,

$$III = \int_{y-z<-n} \frac{dz}{(x-z)(y-z)} = \frac{\ln(1+\frac{y-x}{n})}{y-x}.$$
 (25)

By (23)-(25), for $x \in (-ce^y, -n^2)$ and y > 0, we have

$$L(x,y) \ge \frac{1}{2} \cdot \frac{\ln(1 + \frac{y-x}{n})}{y-x} \ge \frac{\ln(y-x)}{4(y-x)}.$$
 (26)

Now, taking $m > 2n^2$ and $f_m = \chi_{(m,2m)}$, we have that for $x \in (-ce^m, -n^2)$,

$$L(f_{m})(x) = \int_{m}^{2m} L(x,y) dy \ge \int_{m}^{2m} \frac{\ln(y-x)}{4(y-x)} dy = \int_{m+|x|}^{2m+|x|} \frac{\ln y}{4y} dy$$

$$= \frac{1}{4} \ln((2m+|x|)(m+|x|)) \ln(1 + \frac{m}{m+|x|})$$

$$\ge C \cdot \begin{cases} \ln m & \text{for } |x| < m \\ \frac{m \ln|x|}{|x|} & \text{for } |x| \ge m. \end{cases}$$
(27)

Therefore,

$$||L(f_m)||_2 > \left(\int_{-m}^{-n^2} |L(f_m)(x)|^2 dx\right)^{1/2} \ge Cm^{1/2} \ln m = C \ln m ||f_m||_2$$

which means that L is not L^2 -bounded. Theorem 3 is proved.

3.2 Proof of Theorem 4

By Fourier transform and Plancherel's formula, we have (see [8] p116)

$$||H_{P,\gamma}||_{L^2(R^2)\to L^2(R^2)} \le \sup_{u\in R^1} ||S_u||_{L^2(R^1)\to L^2(R^1)}$$
(28)

where

$$S_u(f)(x) = p.v. \int_{-\infty}^{+\infty} e^{-iuP(x)\gamma(y)} f(x-y) \frac{dy}{y}.$$
 (29)

So, to prove Theorem 4, we only need to prove that

$$||S_u||_{L^2(R^1)\to L^2(R^1)}$$
 is finite and depends only on λ , M and $\deg(P)$. (30)

To be convenient, let deg(P) = -1 if $P \equiv 0$.

For the case $\deg(P) = -1$, S_u is the usual Hilbert transform. So, (30) holds. Suppose that (30) hold for $\deg(P) < n$ (inductive hypothesis). We shall prove that (30) holds for all P with $\deg(P) = n$.

Now, suppose that deg(P) = n and P's coeffecient of the term of the highest order be s_0 . Take ω_0 such that

$$|s_0 u| \,\omega_0^n \gamma(\omega_0) = 1,$$

and set

$$\widetilde{S}(f)(x) = p.v. \int_{R^1} e^{-is_0 u \omega_0^n \gamma(\omega_0) \frac{P(\omega_0 x)}{\omega_0} \frac{\gamma(\omega_0 y)}{\gamma(\omega_0)}} f(x - y) \frac{dy}{y}.$$

Then, $S_u(f)(x) = \widetilde{S}(f_{\omega_0})(\frac{x}{\omega_0})$ where $f_{\omega_0}(x) = f(\omega_0 x)$. Obviously, $||S_u||_{L^2(R^1) \to L^2(R^1)} = ||\widetilde{S}||_{L^2(R^1) \to L^2(R^1)}$. Noting that $|s_0 u| \omega_0^n \gamma(\omega_0) = 1$, to prove (30) with $\deg(P) = n$, we only need to show that

$$||S||_{L^2(\mathbb{R}^1)\to L^2(\mathbb{R}^1)}$$
 is finite and depends only on $\lambda,\,M$ and n

where

$$S(f)(x) = p.v. \int_{\mathbb{R}^1} e^{iP(x)\gamma(y)} f(x-y) \frac{dy}{y}$$

and P's coeffecient of the term of the highest order is 1, $\gamma(1) = 1$.

Decompose S into two parts

$$S(f)(x) = \left(p.v. \int_{-1}^{1} + \sum_{k \ge 0} \int_{2^{k} \le |y| \le 2^{k+1}} \right) e^{iP(x)\gamma(y)} f(x-y) \frac{dy}{y}$$

= $\overline{S}(f)(x) + \sum_{k \ge 0} S^{(k)}(f)(x).$ (32)

Step 1 We first have

$$\left\| \overline{S} \right\|_{L^2(R^1) \to L^2(R^1)} \le C_{\lambda, M, n}. \tag{33}$$

To do so, we make decomposition $f = \sum_j f_j$ where $f_j = f\chi_{I_j}$ and $I_j = [2j-1, 2j+1)$. For any $x, \#\{j : \overline{S}(f)(x) \neq 0\} \leq 2$, so

$$\left|\overline{S}(f)(x)\right|^2 \le 2\sum_{j} \left|\overline{S}(f_j)(x)\right|^2.$$
 (34)

Set $Q_j(x) = P(x) - (x - 2j)^n$, and

$$\overline{S}_{Q_j}(f)(x) = p.v. \int_{-1}^1 e^{iQ_j(x)\gamma(y)} f(x-y) \frac{dy}{y}.$$

By inductive hypothesis, Lemma 5 and the fact that $deg(Q_j) \leq n-1$, we have

$$\|\overline{S}_{Q_j}\|_{L^2(R^1) \to L^2(R^1)} \le C_{\lambda, M, n}.$$
 (35)

In addition,

$$\left| \overline{S}_{Q_{j}}(f_{j})(x) - \overline{S}(f_{j})(x) \right| \leq \int_{-1}^{1} \left| e^{iQ_{j}(x)\gamma(y)} - e^{iP(x)\gamma(y)} \right| |f_{j}(x-y)| \frac{dy}{y} \\
\leq \int_{-1}^{1} \left| \frac{\gamma(y)}{y} \right| |f_{j}(x-y)| dy \leq C_{\gamma} \int_{R^{1}} |f_{j}(x-y)| dy$$
(36)

because $\gamma(y) \leq |y|$ for $|y| \leq 1$ Combining (34)-(36), we get

$$\begin{aligned} \left\| \overline{S}(f) \right\|_{2} &\leq \left(2 \int_{-1}^{1} \sum_{j} \left| \overline{S}(f_{j})(x) \right|^{2} dx \right)^{1/2} \\ &\leq \left(2C_{\lambda,M,n}^{2} \int_{R^{1}} \sum_{j} \left| f_{j}(x) \right|^{2} dx \right)^{1/2} \leq \sqrt{2} C_{\lambda,M,n} \left\| f \right\|_{2}. \end{aligned}$$

So, (33) holds.

Step 2 There is $\epsilon' = \epsilon'(M, n) > 0$, such that

$$||L_{\mu}||_{L^{2}(R^{1})\to L^{2}(R^{1})} \le C_{\lambda,M,n}\mu^{-\epsilon'}$$
(37)

where $\mu \in \mathbb{R}^1$ and

$$L_{\mu}(f)(x) = \int_{R^{1}} L_{\mu}(x, y) f(y) dy$$

$$L_{\mu}(x, y) = \int_{1 \le x - z \le y - z < 2} e^{i\mu(P(x)\gamma(x - z) - P(y)\gamma(y - z))} \frac{dz}{(x - z)(y - z)}.$$
(38)

To do so, let $\varphi(x, y, z) = P(x)\gamma(x - z) - P(y)\gamma(y - z)$, and $U = \{Rez : P(z) = 0\}$, $U_{\delta}^{y} = \{x \in R^{1} : d(x, U) \leq \delta \text{ or } y - x \leq \delta\}$ where δ is to be determined. It is easy to see that $|P(x)| \geq \delta^{n}$ for $x \notin U_{\delta}^{y}$. Obviously, $|L_{\mu}(x, y)| \leq 1$, so

$$\sup_{y} \int_{U_{\delta}^{y}} |L_{\mu}(x,y)| dx \le (2n+1)\delta \le C_{n}\delta.$$
(39)

In addition, for z < x < y, $\frac{\gamma'(x-z)}{\gamma'(y-z)}$ is strictly decreasing on $z \in (-\infty, x)$, so, there is at most one z' such that

$$\frac{\gamma'(x-z')}{\gamma'(y-z')} = \frac{P(y)}{P(x)}.$$

Now, to be convevient, we may assume that $z' = -\infty$ for the case that $\frac{P(y)}{P(x)} \ge \lim_{z \to -\infty} \frac{\gamma'(x-z)}{\gamma'(y-z)}$, and z' = x for the case that $\frac{P(y)}{P(x)} \le \lim_{z \to x-0} \frac{\gamma'(x-z)}{\gamma'(y-z)} = 0$. And let $B_{\delta} = \{z \in \mathbb{C} : |z-z'| \le \delta\}$. For $z \notin B_{\delta}$, let z" be the point in $\overline{zz'}$ such that $d(z,z") = \delta$. For $1 \le x-z \le y-z < 2$, $x \notin U^y_{\delta}$ and $z \notin B_{\delta}$, we have

$$\begin{vmatrix}
\frac{\varphi_z'(x,y,z)}{P(x)\gamma'(y-z)} &= \left| \frac{\gamma'(x-z)}{\gamma'(y-z)} - \frac{P(y)}{P(x)} \right| \ge \left| \frac{\gamma'(x-z)}{\gamma'(y-z)} - \frac{\gamma'(x-z')}{\gamma'(y-z)} \right| \\
&\ge \left| \frac{\gamma'(x-z)}{\gamma'(y-z)} - \frac{\gamma'(x-z'')}{\gamma'(y-z'')} \right| \ge c_{\lambda,M} \frac{(y-x)^M \delta}{(2+\delta)^{M+1}} \frac{\gamma'(x-z)}{\gamma'(y-z)} \\
&\ge c_{\lambda,M} \delta^{M+1} \frac{\gamma'(x-z)}{\gamma'(y-z)}
\end{aligned} (40)$$

Thus, for $1 \le x - z \le y - z < 2$, $x \notin U^y_{\delta}$ and $z \notin B_{\delta}$, we have

$$|\varphi_z'(x, y, z)| \ge c_{\lambda, M} \delta^{M+1} \gamma'(x - z) |P(x)|$$

which means that for $1 \le x - z \le y - z < 2$, $x \notin U_{\delta}^{y}$, $z \notin B_{\delta}$,

$$|\varphi'_{z}(x,y,z)| \ge c_{\lambda,M} \delta^{M+1+n} \text{ (because } \gamma'(1) \ge 1)$$

$$|\varphi'_{z}(x,y,z)| \ge c_{\lambda,M,n} \delta^{M+1} \cdot \begin{cases} \gamma'(x-z) |P(x)| \\ \gamma'(y-z) |P(y)| \end{cases}$$
(41)

Therefore,

$$\frac{|\varphi_{zz}''(x,y,z)|}{|\varphi_{z}'(x,y,z)|^{2}} \leq \frac{\gamma''(x-z)|P(x)|}{|\varphi_{z}'(x,y,z)|^{2}} + \frac{\gamma''(y-z)|P(y)|}{|\varphi_{z}'(x,y,z)|^{2}} \\
\leq C_{\lambda,M,n}\delta^{-2(M+1)} \left(\frac{\gamma''(x-z)}{|\gamma'(x-z)|^{2}|P(x)|} + \frac{\gamma''(y-z)}{\gamma'(x-z)\gamma'(y-z)|P(x)|} \right) \\
\leq C_{\lambda,M,n}\delta^{-2(M+1)-n} \frac{\gamma''(x-z)}{\gamma'(x-z)} \tag{42}$$

because $\frac{\gamma''(y-z)}{\gamma'(y-z)} \le \frac{\gamma''(x-z)}{\gamma'(x-z)}$.

For fixed x and y, $x \notin U_{\delta}^{y}$, $\{z : 1 \leq x - z \leq y - z < 2\} - B_{\delta}$ consists of at most two intervals. To be convenient, we assume that it consists of one interval Δ . By (41) and (42), we have

$$|L_{\mu}(x,y)| \leq \left| \int_{\Delta} e^{i\mu\varphi} \frac{dz}{(x-z)(y-z)} \right| + 2\delta$$

$$\leq \frac{1}{\mu} \frac{e^{i\mu\varphi}}{(x-z)(y-z)\varphi'_{z}} \Big|_{\partial\Delta} + \frac{1}{\mu} \left| \int_{\Delta} e^{i\mu\varphi} \frac{1}{\varphi'_{z}} \frac{\partial}{\partial z} \left(\frac{1}{(x-z)(y-z)} \right) dz \right|$$

$$+ \frac{1}{\mu} \left| \int_{\Delta} e^{i\mu\varphi} \frac{\varphi''_{zz}}{(\varphi'_{z})^{2}} \frac{1}{(x-z)(y-z)} dz \right| + 2\delta$$

$$\leq \frac{C}{\mu} \left(\sup_{z \in \overline{\Delta}} |\varphi'_{z}|^{-1} + \int_{\Delta} \frac{|\varphi''_{zz}|}{|\varphi'_{z}|^{2}} dz \right) + 2\delta$$

$$\leq \frac{C_{\lambda,M,n}}{\mu} \left(\delta^{-1-n-M} + \delta^{-2-n-2M} \int_{\Delta} \frac{\gamma''(x-z)}{|\gamma'(x-z)|^{2}} dz \right) + 2\delta$$

$$\leq \frac{C_{\lambda,M,n}}{\mu} \delta^{-2-n-2M} + 2\delta$$

$$(43)$$

for $\gamma'(1) \geq 1$ and γ' is increasing. Noting that $L_{\mu}(x,y) = 0$ for y - x > 1, by (39) and (43), we have

$$\sup_{y} \int_{R^{1}} |L_{\mu}(x,y)| dx \le C_{\lambda,M,n} \left(\frac{\delta^{-2-n-2M}}{\mu} + \delta \right).$$

Taking $\delta = \mu^{-\epsilon}$ with $\epsilon = \frac{1}{2M+n+3}$, we get

$$\sup_{y} \int_{R^1} |L_{\mu}(x,y)| \, dx \le C_{\lambda,M,n} \mu^{-\epsilon}$$

which means that $||L_{\mu}||_{L^{1}(R^{1})\to L^{1}(R^{1})} \leq C_{\lambda,M,n}\mu^{-\epsilon}$. On the other hand, it is obvious that $||L_{\mu}||_{L^{\infty}(R^{1})\to L^{\infty}(R^{1})} \leq C$. So, by Marcinkiewicz interpolation theorem, there is $\epsilon' = \epsilon'(M,n)$ such that (37) holds.

Step 3 We have

$$||R_{\mu}||_{L^{2}(R^{1})\to L^{2}(R^{1})} \le C_{\lambda,M,n}\mu^{-\frac{\epsilon'}{2}}$$
 (44)

where

$$R_{\mu}(f)(x) = \int_{1 \le x - y < 2} e^{i\mu P(x)\gamma(x - y)} f(y) \frac{dy}{x - y}.$$

Actually, $||R_{\mu}||_{L^{2}(R^{1})\to L^{2}(R^{1})} = ||R_{\mu}\circ R_{\mu}^{*}||_{L^{2}(R^{1})\to L^{2}(R^{1})}^{1/2}$, and the kernel of $R_{\mu}\circ R_{\mu}^{*}$ is

$$R_{\mu} \circ R_{\mu}^{*}(x,y) = \int_{1 \le x - z \le 2, 1 \le y - z \le 2} e^{i\mu(P(x)\gamma(x-z) - P(y)\gamma(y-z))} \frac{dz}{(x-z)(y-z)}.$$

Note that $R_{\mu} \circ R_{\mu}^*(x,y) = L_{\mu}(x,y) + \overline{L_{\mu}(y,x)}$ for $x \neq y$, $R_{\mu} \circ R_{\mu}^*(x,y) = L_{\mu}(x,y) = \frac{1}{2}$ for x = y. So,

$$\left\| R_{\mu} \circ R_{\mu}^{*} \right\|_{L^{2}(R^{1}) \to L^{2}(R^{1})} \le 2 \left\| L_{\mu} \right\|_{L^{2}(R^{1}) \to L^{2}(R^{1})}. \tag{45}$$

By (37) and (45), we get (44).

Now, by the oddness or evenness of γ , we have

$$\left\|S^{(k)}\right\|_{L^2(R^1)\to L^2(R^1)} \le \left\|S_+^{(k)}\right\|_{L^2(R^1)\to L^2(R^1)}$$

where

$$S_+^{(k)}(f)(x) = \int_{2^k \le x-y \le 2^{k+1}} e^{iP(x)\gamma(x-y)} f(y) \frac{dy}{x-y}.$$

Note that for $x' = 2^{-k}x$,

$$S_{+}^{(k)}(f)(x) = \int_{1 \le x' - y' \le 2} e^{i2^{kn}\gamma(2^k)\frac{P(2^kx')}{2^{kn}}\frac{\gamma(2^k(x' - y'))}{\gamma(2^k)}} f(2^ky') \frac{dy'}{x' - y'} = R_{\mu_k}(f_{2^k})(\frac{x}{2^k})$$

where $f_{2^k}(x) = f(2^k x)$. So,

$$\left\| S_{+}^{(k)} \right\|_{L^{2}(R^{1}) \to L^{2}(R^{1})} = \left\| R_{\mu_{k}} \right\|_{L^{2}(R^{1}) \to L^{2}(R^{1})} \le C_{\lambda, M, n} \mu_{k}^{-\frac{\epsilon'}{2}}$$

where $\mu_k = 2^{kn} \gamma(2^k)$. Therefore,

$$\sum_{k\geq 0} \|S^{(k)}\|_{L^2(R^1)\to L^2(R^1)} \leq \sum_{k\geq 0} C_{\lambda,M,n} (2^{kn} \gamma(2^k))^{-\frac{\epsilon'}{2}} \leq C'_{\lambda,M,n}. \tag{46}$$

From (32)-(33) and (46), we get (31). Theorem 4 is proved now.

References

- [1] J. M. Bennett, Hilbert transforms and maximal functions along variable flat plane curves, Trans. Amer. Math. Soc. 354(2002), 4871-4892.
- [2] A. Carbery, M. Christ, J. Vance, S. Wainger and D. K. Watson, Operators associated to flat plane curves: L^p estimates via dilation methods, Duke Math. J. 59(1989), 675-700.
- [3] A. Carbery, A. Seeger, S. Wainger and J. Wright, Classes of singular operators along variable lines, J. Geom. Anal. 9(1999), 583-605.
- [4] A. Carbery and S. Pérez, Maximal functions and Hilbert transforms along variable flat curves, Math. Res. Lett. 6(1999), 237-249.
- [5] A. Carbery, S. Wainger and J. Wright, Hilbert transforms and maximal functions along variable flat plane curves, J. Fourier Anal. Appl. Special Issue(1995), 119-139.
- [6] A. Carbery, S. Wainger and J. Wright, Hilbert transforms and maximal functions along variable flat plane curves on the Heisengerg group, J. Amer. Math. Soc. 8(1995), 141-179.
- [7] A. Nagel, J. Vance, S. Wainger and D. Weinberg, *Hilbert transform for convex curves*, **Duke Math. J.** 50(1983), 735-744.
- [8] D. H. Phone and E. M. Stein, *Hilbert integrals, singular integrals and Randon transforms I*, **Acta Math.** 157(1986), 99-157.
- [9] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals, J. Funct. Anal. 73(1987), 179-194.
- [10] A. Seeger, L^2 -estimates for a class of singular oscillatory integrals, **Math. Res.** Lett. 1(1994), 65-73.
- [11] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.
- [12] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84(1978), 1239-1295.