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ON A PROOF OF A CONJECTURE OF MARINO-VAFA ON
HODGE INTEGRALS

CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

ABSTRACT. We outline a proof of a remarkable formula for Hodge integrals
conjectured by Marifio and Vafa [23] based on large N duality.

1. INTRODUCTION

Let Hg,n denote the Deligne-Mumford moduli stack of stable curves of genus g
with n marked points. Let 7 : M, ,11 — M, , be the universal curve, and let wy
be the relative dualizing sheaf. The Hodge bundle

E=mw,

is a rank g vector bundle over ﬂgm whose fiber of over [C,x1,...,2,] € ﬂgm is
H°(C,we). Let s; ﬂgyn — ﬂgﬂﬂrl denote the section of m which corresponds to
the i-th marked point, and let

*
L; = sjwx

be the line bundle over M, ,, whose fiber over [C,z1,...,x,] € M., is the cotan-
gent line T);. C at the i-th marked point z;. A Hodge integral is an integral of the
form
/7 ¢{1 CoqpIn AR ...,\Sg
Mg n
where 9; = ¢1(L;) is the first Chern class of L;, and \; = ¢;(E) is the j-th Chern
class of the Hodge bundle.

Hodge integrals arise in the calculations of Gromov-Witten invariants by local-
ization techniques [I4, [7]. The explicit evaluation of Hodge integrals is a difficult
problem. The Hodge integrals involving only 1) classes can be computed recursively
by Witten’s conjecture [26] proven by Kontsevich [I3]. Algorithms of computing
Hodge integrals are described in [2].

In [23], M. Marifio and C. Vafa obtained a closed formula for a generating func-
tion of certain open Gromov-Witten invariants, some of which has been reduced to
Hodge integrals by localization techniques which are not fully clarified mathemati-
cally. This leads to a conjectural formula of Hodge integrals. To state this formula,
we introduce some notation, following [28]. Let

Ay (u) =u? = Mu+ -+ (=1)9),

be the Chern polynomial of EV, the dual of the Hodge bundle. For a partition p
given by
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let |p| = ZZ(”l) i, and define
K3

|u|+l(u) 1
! 1.5 (i +a)
I 1))t 1H—l
Coni7) TR T e

/ AY (DAY (=7 = DAY (7)
mg,l(u) Hl(#)( /LN/JZ)
CulsT) = Z)‘2g_2+l(u)cg,u( ;)

920

Note that
/ AgAG (=7 — DAG(7) / 1
. ]
Mo, Hz(zul)(l — i) Mo, H H)(l — i)
for I() > 3, and we use this expression to extend the definition to the case I(u) < 3.
Introduce formal variables p = (p1,p2, ..., Pn,-..), and define

= |uft00 =3

Pu = Duy * Py
for a partition = (u1 > -+ > py(,y > 0). Define generating functions

Cximp) = Y CuAiTIpu,
|ul>1
Cump)t = TP

As pointed out in [23], by comparing computations in [23] with computations in
T2, one obtains a conjectural formula for C,(7). This formula is explicitly written
down in [28].

(1)

Conrp) = S EDTE 2 Xl (C()) =ttt dim,iri2y

( 7Tvp)_z n Z H v lﬂ( ) Pus
m |=|

n>1 /’” Mlzl ‘1/
v C — 1
(2) C()\,T,p). _ Z Z X (Z (/’L))e\/_l(T-‘rQ)NV)\/?VU()\) D
lul>0 \|v|=lul "
where
sin[(v, —vp + b —a)A/2)
V,(\) = -
- 1§a1_[b§l(u) sin[(b— a)A/2]

1
TLY TV, 2sin (v — i+ 1(v))A /2]

We now explain the notation on the right-hand sides of () and @). For a
partition p given by

H1 > 2 = 2 g >0,
Xu denotes the character of the irreducible representation of S, indexed by u, where
d=lu|l= Zl | ti- The number x,, is defined by

|M| + Z - 22#1
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For each positive integer 1,
mi(p) = [{J : pj = i}].

Denote by C(v) the conjugacy class of Sy corresponding to the partition v, and by
Xu(C(v)) the value of the character x,, on the conjugacy class C'(v). Finally,

zu = [ [mi(u)tim®.
J

In this paper, we will call @) the Marino-Vafa formula.

The third author proved in [27] some special cases of the Marino-Vafa formula
and found several interesting applications. He showed in [29] that calculation of
BPS numbers in the local P2 and P! x P! geometries can be reduced to the Marifio-
Vafa formula, and proved in [30] a special case of a conjecture by A. Igbal [I1]
assuming the Marino-Vafa formula.

We now describe our approach to the Marifio-Vafa formula ([{[l). Denote the
right-hand sides of @) and @) by R(\;7;p) and R(\;7;p)® respectively. In [2§],
the third author proved the following two equivalent cut-and-join equations similar
to the one satisfied by Hurwitz numbers [6], [20], [I0, Section 15.2].

Theorem 1.

OR —1A 0’R OR OR OR
g OB _V-IA ip R OROR 7
@4 5 ) ;1 (Z]p i gpeaps TP g g T (i + J)pip; 6pi+j>
OR®* -1\ .. 0’R* L OR*®
G Ho=g > (ijmm + (i + J)pip; m) :

4,521

Here is a crucial observation: One can rewrite () as a sequence of systems of
ordinary equations, one for each positive integer d, hence if C(\; 7;p)® satisfies ([H),
then it is determined by the initial value C(X;0;p)®. To prove (@) or @), it suffices
to prove the following two statements:

(a) Equation (@) is satisfied by C(A; 7;p).
(b) C(%; 0;p) = R(A; 0; p).
Or equivalently,

(a)’ Equation (@) is satisfied by C(A; 7;p)°.

(b)” C(A;0:p)* = R(X; 05 p)*.

It is shown in [28] that (b) holds. Therefore, the Marinio-Vafa formula () follows
from the following theorem.

Theorem 2.

oC  /—1A . o*C . ac oc o ac
(6) 5 = 5 ”2;1 (ijm Opidp; +iipitig, o + (i + J)pip; 6pi+j>
The rest of the paper is organized as follows. In Section Bl we give a proof of
the initial condition (b). In Section Bl we give the proof of Theorem [ in [2§]. In
Section Bl we outline the proof of Theorem B in [22]. The details we omit here are
straightforward calculations which will be given in [22]. Complete lists of relevant
references will be given in [28, 22].
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2. INITIAL CONDITION
The proof of the initial condition (b) needs the following two theorems.
Theorem 2.1. We have

Z \/_nJrlpn

@ C(x;0;p) 2n sin(nA/2)

Proof. When [(p) > 1, we clearly have

Cu(X;0) =
When p = (n) we have
n—1 v v v
_ n _1(n-0+a) A (DAY (0)AY (1)
CimN;0) = — A29-1. /7 +1M/ g g g
(m (X 0) gg) -1 Jm,, 1 — niy
\/_—1714-1
= et [ g
"0 Mg
V=TT a2

n?x sin(n)\/2)

\/_
2nsin(nA/2)’

In the second equality we have used the Mumford’s relations |24} 5.4]:
v v _
AJ(DA (1) = (=1)4.
In the third equality we have used [3, Theorem 2]. This proves ().

Theorem 2.2. We have the following identity:

K \/7)\ dJrl
et X V= Pd
® log Z Z H 2sin(h(e)\/2) =z Z 2dsm (d\/2)
n>0|p|l= e€p n
For a partition 7,
N, o i
) = 36~ 1= 3 (%)
For any box e € n, denote by h(e) its hook length. Then
> h(x) =n(n) +n() + .
xren
Lemma 2.1. Introducing formal variables x1,..., %y, ... such that

pi(T1,. o Ty ) =2 42l

Then for for any positive integer n, we have

n " xp(m) 1
9) Zt Z HeEp(l _ qh(e)) 2 Dy = Hi,j(l — w1

n>0  |p|=
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Proof. Recall the following facts about Schur polynomials:

(10) sp(o) = 32 28y )
2" qn(p)
(11) sp(1,9,q a---):m,
n __ 1
(12) nzzot pz_n sp(x)s,(y) = Hi,j(l o)

Combining these two identities, one gets:

n(p) 1
q"
" = Se(T) = —.
Z Z Heep (1—gh)™” L ;(1 —taigi=1)

n=0  |ol=
The proof is completed by ().

As a corollary we now prove (). First we need the following:

Lemma 2.2. For any partition p we have

(13) 5 S h(e) (o) = 1y + 3ol

ecp

Proof.

% > " h(e) —n(p) = %(n(p') —n(p) + |pl)

_ §<Z (’;)-Z:(i—l)pﬁlpl)
= E(sz(m 1)—2Z’Pz+4|/’|)
1 1

Zﬁp""i'p"

Let ¢ = e_\/__l’\, and ¢t = s/—lql/27 then we have

n(p)

n q Xp(n)
t

2" Lo, T—a"@) 2, "

n>0  |p|=

n(p)=% L cc, h(e) (n)
_ /[ n/2 Xp\N
= Z Z HeEp —h(e)/2 — gh(e)/2) " 2, Py

n>0 lol=

1
q_Z“P_En

_ /=" n/2 Xo(n)
Z Lq Z Lo, (g MO —gh@7R) 2, Dy

n>0 lp|=n
_ ZZ ezfp(Q)\/ik Xp(n)p
[lee, 2sin(h(e)A/2)  z, "

n>0 |p|=n
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Hence by (@),
Ko/ —1IA
eirs Xp(n)
log »
7;),)2 He€p2Sln (e))‘/2) Zp K
n(p)
n q Xp(1)
= log t _ Dn
7;) |p|Z HeEp(l_q ( )) Zp
1
= log _1222 tdd(]l)d
[, (1 —tzigd Pt
Lg agi—1 pq  t¢
= ZdgdG-Dp, =y T 22
S Lty 2t
j21d>1 dzl
T+
- Xy
2ds1n (dr/2)°
By @) we have
d+1
Xp(n) LA Pd
R(X;0;p) = log X\ imody v
1%;”,;—:” n P ;Msm (d\/2)’

where we have used the following identity proved in [28]:
1
2! [1.c, sin[h(z)A/2] '

Vi =
Hence (b) is proved.

3. ProoF or THEOREM [

HZZQ

geCy,

Recall

lies in the center of the group algebra CSy, hence it acts as a scalar f,(u) on
any irreducible representation R,. In other words, let p : S4 — End R, be the
representation indexed by v, then

Z pu(g) = fu(,u) id

geC ()

We need the following interpretation of , in terms of character:

kv = 2f,(C(2)).
See e.g. [25] (5)]. Here we use C(2) to denote the class of transpositions. We need
the following result:

Lemma 3.1. Suppose h € Sq has cycle type . The product Cioy - h is a sum of
elements of Sq whose type is either a cut or a join of u. More precisely, there are
ijm;(p)m;(p) elements obtained from h by joining an i-cycle in h to a j-cycle in
h, and there are (i+ j)mi4; (1) elements obtained from h by cutting an (i + j)-cycle
into an i-cycle and a j-cycle.
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Proof. Denote by [s1,...,sk] a k-cycle. Then
[s,t] - [8,82, .-, Siststa, ..., tj] =[s,82,...,8i][t, ta, ..., 1],
i.e., an (i 4 j)-cycle is cut into an i-cycle and a j-cycle. Conversely,
[s,t] - [sy82, .., Sil[t ta, .., t5]) =[5, 82, .., 8i, b ta, .., ],

i.e., an i-cycle and a j-cycle is joined to an (i + j)-cycle. Hence for a permutation
h of type p, ¢ - h is a sum of all elements obtained from h by either a cut or a
join. Fix a pair of i-cycle and j-cycle of h, there are i - j different ways to join them
to an (i + j)-cycle. Taking into the account of m;(p) choices of i-cycles, and my;(u)
choices of j-cycles, we get

igmi(p)m;(p)

different ways to obtain an element from A by joining an i-cycle in h to a j-cycle
in h. Similarly, fix an (i + j)-cycle of h, there are i 4+ j different ways to cut it
into an i-cycle and a disjoint j-cycle in h. And taking into account the number of
(i + j)-cycles in h, we get

(4 + J)mitj ()

different ways to obtain an element from h by cutting an (i+ j)-cycle into an i-cycle
and a j-cycle. O

Now we have for any h € Sy of cycle type u

p’_”i(“)
= Ztrfl/ id - pu( )]Hzmz(“)mz(u)'
Z Z H pmw(ﬂ)
= tr[ @) oM N i
9eC(2) o mma(u)!
SRS SRR b
= tr pu ( g-h) e SN
mz( |
o0 i ()]
p’.’“(“)
= 2| 2 ammem+ Y Grdmeson® | -1 mano
wo\n€Jij(p) n€C;,;(p) g ne

S AL Ay R ZX”
! J@piapj ! J@

Here we have the following notations. Let u,n be two partitions, both represented
by Young diagrams. We write n € J; ;(¢) and p € C; ;(n) if n is obtained from
1 by remove a row of length ¢ and a row of length j, then adding a row of length



8 CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

1+ 7. It follows that

OR(\;7;p)*
or
Vv —1A Xv C M —1(r+ Yk
= 5L fﬂ)i(zﬂ( D) e/mosbearay,
w,v
\/ D) o 0 , e
= UPitig, - p; + (i +7) pnga ZX VIIEERRARY, (),

This finishes the proof of Theorem 1.

4. PROOF OF THEOREM

4.1. Moduli space of relative morphisms. We first describe the moduli space
of stable relative morphisms to P! used in [T9]. The moduli spaces of stable relative
morphisms are constructed by J. Li [T5]. The construction in symplectic geometry
was carried out independently by Li-Ruan [I8] and Ionel-Parker [9l [T0].

Let P1[m] be a chain of m + 1 copies P!, such that the i-th copy is glued to the
(i + 1)-th copy at the point pgl) for ¢ < m. The first copy will be referred to as the
root component, and the other components will be called the bubble components
A point pgm) is fixed on the (m + 1)-th component. Denote by 7[m] : P}[m] — P!
the map which is identity on the root component and contracts all the bubble
components to pgo).

Let p be a partition of d > 0. Let M, (P!, 1) be the moduli space of morphisms

f(Coxy, . my) — P'[m],
such that
(1) (C,x1,...,my,)) is a prestable curve of genus g with /(1) marked points.
2) F1p™) = El(“l) as Cartier divisors, and deg(w[m] o f) =d.
(3) The preimage of each node in P![m] consists of nodes of C. If f(y) = p}
and C7 and C5 are two irreducible components of C' which intersects at v,
then f|c, and f|c, has the same contact order to pé at y.
(4) The automorphism group of f is finite.
Two such morphisms are isomorphic if they differ by an isomorphism of the domain
and an automorphism of the bubble components of P![m]. In particular, this defines
the automorphism group in the stability condition (4) above.
In [I5,[16], J. Li showed that H%O(IEDl , 1) is a separated, proper Deligne-Mumford
stack with a perfect obstruction theory of virtual dimension

r=29—2+|ul +1(n),

so it has a virtual fundamental class of degree 7.

4.2. Torus action. Consider the C*-action

t-[29: 2] = [t20: 21
on P!, Tt has two fixed points po = [0 : 1] and p; = [1 : 0]. This induces an action
on P'[m] by the action on the root component induced by the isomorphism to P,
and the trivial actions on the bubble components. This in turn induces an action
on M, o(P, ).
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4.3. The branch morphism. There is a branch morphism
Br: M, o(P', i) — Sym"P! = P".
Note that P" can be identified with P(H°(P!, O(r)), and the isomorphism
P(H°(P',O(r)) = Sym"P*
is given by [s] — div(s). The C* action on P! induces a C* action on H°(P!, O(r))
b
Y £ (20)R ()R = RO (SR,
So C* acts on P" by
t-lao,ai,...,a,] = [ao,t ta,...,t 7 "a,],

where (ag, a1,...,a,) corresponds to >_p_, ar(z0)*(z1)" =% € H°(P',O(r)). With
this action, the branch morphism is C*-equivariant.

4.4. The Obstruction Bundle. In [I9], J. Li and Y. Song constructed an ob-
struction bundle over the stratum where the target is P[0] = P!, and proposed an
extension over the entire My (P!, 11). Here we use a different extension which is
equivalent to the one used in [IJ.

Let w[m] : P[m] — P! be the contraction to the root component, and denote
f= mlm]o f. Dual to the obstruction space at a map f : (C,z1,...,2y)) — Pt[m],
consider the vector bundle V' with fiber at f given by

HY(C,0c(=D)) @ H'(C, f*Op:(-1)),
where D =21 + ...+ Tyuy- It is a direct sum of two vector bundles Vp and Vp,.
Note that
H'(C,0¢(=D)) = H°(C, [*Op1(-1)) = 0,
so the ranks of Vp and Vp, are, by Riemann-Roch, I(x) +¢g — 1 and d + g — 1,
respectively.

We lift C* action on M, o(P!, i) to Vp and Vp, as follows. The action on Vp,
comes from an action on Op1(—1) — P! with weights p and p + 1 at the two fixed
points pg and pj, respectively, where p € Z. The fiber of Vp does not depend on

the map f, so the fibers over two points in the same orbit of the C* action can be
canonically identified. The action of A € C* on Vp is multiplication by A=P~L.

4.5. Functorial localization. Let T'= C*. We will compute
Br.ep(V) = Z ar(p)H'u ",
1=0
by virtual functorial localization [21].

Let F(p,z) =Y,y a(p)z’. We have

[iBriep(V) F(p,k)
er(Tp,Pr)  (=1)—FKl(r — k)!"

By functorial localization, we have

/ fraBrerlV) g / er(V)
Pr—k eT(TprkaT) [F]vir eT(N}J?””)

FCBr—'(pr—k)
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for K = 0,...,r, where Np is the virtual normal bundle of the fixed loci F in
M o(PL, p). Tt is computed in [22] that

er(V
| s = s D),
FCBr=(p, ) * 1" T

k . . .
where Jg ,(p) is a degree r — k polynomial in p, and
Ty u(=p = 1) = (1)L (p).

Moreover, we have

J;#(p) _ \/—_ll(#)im‘cg”u(p)a
ST ll=1 > LW)Cewp)+ Y L(¥)Cou(p)

veJ(p) veC(un)

1
Jg.u(P)

+ 303 BN e (p)Cu ()

g1+92=g v1Uuv2eC(pn)

Here we use the notation in [20]. The set J(u) (join) consists of partitions of d of
the form

V= (Mlu'"7/11'7'"7/lj7"'7ul(,u.)7/1’i+uj)
and the set C'(u) (cut) consists of partitions of d of the form
V= (Mlu'"7ﬂi7"'7ul(,u)7j7k)

where j + k = p;. The precise definitions of I, I», and I3 can be found in [20]. It
follows from the definition that (@) in Theorem B is equivalent to

d 1
EJ;{#(T) =—J, (7).
Since
F(p,z)
S (_1)TF§;"E€2_@'$($—1)---(:v—k+1)(x—k—1)---(:v—r)
k=0 ’ ’
= Z(p—i— 1)T_kJ;7;k(p)x(x -z —k+D)(xz—-k—-1)---(z—1)
k=0
= > e+, -1 (- (r—k=1)(z—(r—k+1)-(x—7),
k=0
therefore,

T

Br.er(V) =Y (p+1)*J} , (p)H(H—u) - - (H—(r—k=1)u)(H—(r—k+1)u) - - (H—ru).
k=0
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4.6. Final Calculations. Let 7 = —p — 1, then
Br.er(V) = XT:(—T)’“J;M(—T —~DH(H —u)-(H - (r—k—1)u)
kj)(H— (r—k+1)u)---(H —ru)
= Y (DR )T (DH(H —w)--- (H = (r = k = 1)u)
k:?(H— (r—k+1)u)-(H —ru)

Therefore,
Br.ep(V) = (—=1)47tw Z TRIE (M H(H—u) - (H—(r—k—1)u)(H—(r—k+1)u) - - - (H—ru).
k=0

Fori=0,...,r—1, we have
HHH—-u)--(H—(r—k—1u)(H—(r—k+1)u)---(H —ru)
= (H-r-ku)+@r—ku'HH-u)-(H—(r—k—1)u)
-(H—(r—lk—i-l)u)---(H—ru)
= (r—ku'HH—-v)--(H-—(r—k—1Du)(H—(r—k+1u) - (H —ru)

since

Therefore,
Br*eT(V)Hl = (—1)d_l(u)ui Z(,r. _ k)iTkJ!I;”u(T),
v k=0
Let J;u (1) = Z;;g G?Tj. We have

uji/ Br.er(V)H' = (—1)(171(“)23 Z (r—k)ak | 7.

1=0 \j+k=l

Here is a crucial observation: as a polynomial in 7, v ™* fPT Br.er(V)H' is of degree
no more than ¢. Therefore,
Z (r— k)iaé? =0

Jt+k=l
for 0 <i <!l <r. Now fix [ such that 1 <[ <r. We have

!
(14) Y (r—k)ay =0, 0<i<l,
k=0
which is a system of [ linear equations of the [ + 1 variables {af , : k=0,...,1}.
Both

{(r—t):i=0,...,1—1}
and
{1, t,t(t—1),...,t(t—=1)...(t =1+ 2)}
are bases of the vector space

{£(t) € Q[t] : deg(f) <1—1},
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so there exists an invertible [ x [ matrix (A;;)o<i j<i—1 such that

-1

Ht—1)-(t—i+1) =Y Ai(r—t).

=0
In particular,
l
k(k—1)--(k—i+1)=> Ay(r—k).
j=0

for k=0,1,...,1, so ([[d) is equivalent to

S k(k—1)---(k—i+1af, =0, 0<i<l,

l
k=0

i.e.

1 1 e e 1 o 0
0o 1! 2 .. ... l al

0 0 2 3.2 o .. I(1—1) ,

0 0 0 3 .- 11— 1)(1 - 2) L=

0 g : : : :
0 0 (-1 I(—1)--2 ap 0

The kernel is clearly one dimensional. One can check that the kernel is given by

l!

(15) af_y = (-Ukm

.

Note that @) for I = 1,...,r is equivalent to
(=D* a*

k _
on(T) = = 7 Jau(7)
for k =0,...,r. In particular,
d
J;u(T) = _d_TJ;u(T)

which is equivalent to the cut-and-join equation () in Theorem
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