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A FORMULA OF TWO-PARTITION HODGE INTEGRALS

CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

1. INTRODUCTION

Let M, ,, denote the Deligne-Mumford moduli stack of stable curves of genus g
with n marked points. Let 7 : ﬂg,nﬂ — ﬂg,n be the universal curve, and let w,
be the relative dualizing sheaf. The Hodge bundle

E=mw,

is a rank g vector bundle over M, , whose fiber over [(C,x1,...,2,)] € My, is
HO(C, we). Let s; ¢ Mgm — Mg,n-i-l denote the section of 7 which corresponds to
the i-th marked point, and let
L; = sifws
be the line bundle over Mg, whose fiber over [(C,x1,...,2,)] € Mg, is the
cotangent line T, C' at the i-th marked point x;. A Hodge integral is an integral of
the form
/7 It i A ...,\Sg
Mg n
where 1; = ¢1(L;) is the first Chern class of L;, and \; = ¢;(E) is the j-th Chern
class of the Hodge bundle.

The study of Hodge integrals is an important part of the intersection theory
on M ,,. Hodge integrals also naturally arise when one computes Gromov-Witten
invariants by localization techniques. For example, the following generating series
of Hodge integrals arises when one computes local invariants of a toric Fano surface
in a Calabi-Yau 3-fold by virtual localization [29]:
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where A\, 7 are variables, (u,u~) € ’Pi, the set of pairs of partitions which are not
both empty, and
Ay (u) = u? — Aud™t 4 (=1)9.
We will call the Hodge integrals in G+ ,,- (\; 7) the two-partition Hodge integrals.
The purpose of this paper is to prove the following formula conjectured in [B0):

(2) G*(NpTpTiT) =R (NpTpTiT)
1
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where
G*(\p*,p7i7) = exp Yo GurNTInfip,
(ut,u=)eP?
R*(\spTp7i7)
_ Z Xv+ (:U‘+) Xv- (,U'_) e\/—_l(nu+‘r+nu,rfl))\/2w ( \/_k)
- 24 P vtw— H+pﬂ )
|ut]=[vE] " "
pt = (p1 ,p2 ,...) are formal variables, and

P = PP,
if w = (ur > - > pp > 0). See Section B for notation in the definition of
R*(\pT,ps7).

Formula (@) is motivated by a formula of one-partition Hodge integrals conjec-
tured by M. Marino and C. Vafa in [23] and proved by us in [21]. See [25] for another
approach to the Marino-Vafa formula. The Marino-Vafa formula can be obtained
by setting p~ = 0 in @). In a recent paper H], D.E. Diaconescu and B. Florea
conjectured a relation between three-partition Hodge integrals and the topological
vertex [I]. A mathematical theory of the topological vertex will be developed in
20].

The generating function R®(\;p™,p~;7) is a combinatorial expression involving
the representation theory of Kac-Moody Lie algebras. It is also related to the
HOMFLY polynomial of the Hopf link and the Chern-Simon theory [26, 24]. In
B, the third author used @) and a combinatorial trick called the chemistry of
Zy-colored labelled graphs to prove a formula conjectured by A. Igbal in [I2] which
expresses the generating function of Gromov-Witten invariants in all genera of local
toric Calabi-Yau threefolds in terms of W, ,,. See [I2, [Il H] for surveys of works on
this subject.

Our strategy to prove (B) is based on the following cut-and-join equation of R®
observed in [30):

0 . \/ A, . 4 vV—=1A
(3) ER ——(CT+J")R® — 57 (C~+J)R®
where
0
Ci (z+¢7)p1p + > ]pz
; ’ Ip Ditj Z o iap]

Equation (@) can be derived by the method in ﬂZE, IZEI} In [30], the third author
proved that

Theorem 1 (initial values).
(4) G*(NpTpTs—1) = R*(\pTp s 1)
So @) follows from the main theorem in this paper:

Theorem 2 (cut-and-join equation of G*).
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Both [2I, Theorem 2] (cut-and-join equation of one-partition Hodge integrals)
and Theorem B are proved by localization method. We compute certain relative
Gromov-Witten invariants by virtual localization, and get an expression in terms
of one-partition or two-partition Hodge integrals and certain integrals of target
classes. In [21], we used functorial localization to push forward calculations to
projective spaces, where the equivariant cohomology is completely understood, and
derived [21, Theorem 2] without using much information about integrals of target
1) classes. In this paper, we relate integrals of target ¢ classes to double Hurwitz
numbers, and use properties of double Hurwitz numbers to prove Theorem Bl More
precisely, for each (ut, ™) € 73_%, we will define a generating function

- (A)

of certain relative Gromov-Witten invariants of P* x P! blowup at a point, and use
localization method to derive the following expression:

(6)
N =D e (VTN Gl (A2, (

lvE|=]pt]

—J=T

T

A)

In (@), 5, ,,(A) is a generating function of double Hurwitz numbers, and z,, is defined
in Section XTI It turns out that (@) is equivalent to the following equation:

V-1

T

(7) :ﬁr”u.* ()\77-) = Z (b;*,v*(\/__lT)\)ZV+K;+,U* ()\)va (I)l./*“u*( )\)

[vE|=]n*]

So Theorem B (cut-and-join equation of G*) follows from the cut-and-join equations
of double Hurwitz numbers. As a consequence, one can compute K,+ ,-()) in
terms of W,+ ,— (Corollary BH). We will give three derivations of the cut-and-join
equations of double Hurwitz numbers: by combinatorics (Section B3), by gluing
formula (Section B4, and by localization (Section B:H).

The rest of the paper is arranged as follows. In Section Bl we give the precise
statement of (), and recall the proof of Theorem [ (initial values). In Section
we give a combinatorial study of double Hurwitz numbers, and derive Theorem
(the cut-and-join equation of G*®) from (@) and some identities of double Hurwitz
numbers. In Section ll we review J. Li’s works [I6, [[7] on moduli spaces of relative
stable morphisms, and virtual localization on such moduli spaces [9, [[1]. In Section
B we give a geometric study of double Hurwitz numbers. In Section Bl we introduce
the geometric objects involved in the proof of (@). In Section [ we prove (@) by
arranging the localization contribution in a neat way.

Acknowledgments. We wish to thank Jun Li for explaining his works [I6l [I7]
and Ravi Vakil for explaining relative virtual localization [IT]. The research in this
work was started during the visit of the first and the third authors to the Center
of Mathematical Sciences, Zhejiang University in July and August of 2003. The
hospitality of the Center is greatly appreciated. The second author is supported
by an NSF grant. The third author is partially supported by research grants from
NSFC and Tsinghua University.
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2. THE CONJECTURE
2.1. Partitions. We recall some notation of partitions. Given a partition
po= (1 > p2 > > pp > 0),
write [(u) = h, and |pu| = g1 + - -+ + pp. Define

(1)

Ky = Zm(ui —2i+1).
=1

For each positive integer j, define

m(p) = [{i: pi = j}.
Then
| Aut(u)] = [T ()

J
Define

Zu = | Aut(p)] = [T (mj(u)!jmjw) ,
j

Let P denote the set of partitions. We allow the empty partition and take
1(0) = 0] = rp = 0.
Let
P =P —{(0,0)}.

2.2. Generating functions of two-partition Hodge integrals. For (u™, ™) €
’Pi, define

Gyt - (@, )
_ _\/_l(# S l(f[ 5 1 (Ml B+ ac) (f[) H ( p; o+ ap)
| Aut(pt)|[ Aut(p)| (f — Do =1 25 (Mj —1)pr
| / MM (HA(—a — Hladla +g) DD
M1ty i) Hl(# (o — 7/%))1_[ (5(5 15 Vit y+4)

We have the following special cases which have been studied in [21]:

_ ) Wt 1o+ aor
6): \/_ H al(zﬁ"' )

Gyt 0, | Aut(pt)] o (uh - 1)!04;11-*—1
/ AV (@AY (B)AY (—a — B)(af(a + @)1
My 1) Hﬁ(”;)( (o — i)
_ —\/_ S )H n ( S a+ap)
Covu ()= Tauiey] El (uj — 1)1

/ AY ()N (B)AY (= — B)(af(a + B))H )1
My [T (508 — 15 44)
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By a standard degree argument, one sees that G
degree 0, so

g.ut u-(, B) is homogeneous of

p

Gt u- (o, B) = Gyt u- (1, a)

Let
Gg”u+“u* (T) = Gg,,u*.,u* (17 T)~

Introduce variables A\, p™ = (pi,p3,...), p~ = (py,p3,...). Given a partition
1, define

_ +
P =P1 Py

In particular, p(:,)IE = 1. Define

Gty (NT) = ZW HHEOHEDG o (7)
G\ptpTiT) = > Gurp NTpfp
(ut.nm)eP?
G*NptpTT) = exp(GNpT,pT;7))
= > - N TID D,
(nt,p=)eP?
(] + L]
P (N71) = Z A—XH )+ (™ )G NPT (1)

X€2Z,x<2(U(pt)+1(p™))

2.3. Generating functions of representations of symmetric groups. Let

q= e\/—ilk7 [m] _ qm/2 _ q—m/2'
Define
8) Wiw(a) = 4"V W,(g) - 5, (Eu(t)),
where
[u ] — l(:“‘) Hi
DRIV | G IETES S} ) ; S —
1<i<i<l(p) J i=1v= 1
()
1] e it
10 Eu(t) =
(10) M()Jll‘i‘qjt ( Hzlq_1>
In the special case of (u*,u~) = ((?), 0), we have
Define
ROt pn) =Y X+ (C(r1) X (C(u7))
pESpEz0 e

“1(k 474K Tt
eV 1h, TR, )A/2Wu+,u (e F/\)p;ﬁp -
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2.4. The conjecture and the strategy. The main purpose of this paper is to
prove the following formula conjectured by the third author in [30]:

Theorem 3. We have the following formula of two-partition Hodge integrals:

@ G*(NsptpTiT) =R (NpT,p57).

The method in [28, 21] shows that R® satisfies the cut-and-join equation ().
In [30], the third author proved Theorem [0 (initial values). So (@) follows from

Theorem B (cut-and-join equation of G*). We will recall the proof of Theorem [ in
Section ZA

2.5. Initial values. For completeness, we now recall the proof of Theorem [l which
says

@) G*(NptpT—=1) = R*(\spt,p;—1).

We need the skew Schur functions [22]. Recall the Schur functions are related
to the Newton functions by:

)= 3 2, o)

Ry
V=[x

where x = (z1, zo, . ..) are formal variables such that
pil@) =2y +ay+ -

There are integers ¢}, such that
5,8, = Z o Sn-
n
The skew Schur functions are defined by:
Sp/u = ZCZVSV.
Note that p* = p(z¥).

2.5.1. The left-hand-side. When I(u™) +1(un~) > 2,

Guﬂ;r (A —=1)=0;
when I(p*) =1 and (™) = 0,
Guﬂu* (A =1)
pi—1 +
- _ /_1)\—12)\29/ )‘9 a=1 (_/1’1 +(1)
— T
=0 IMer o (% - wl) ot
1 ()W P

.
— —1)H14/—1- ;
=1) 2uf sin(ui A/2)  gei /2 — g2



A FORMULA OF TWO-PARTITION HODGE INTEGRALS 7
the case of [(u*) =0 and I(u~) = 1 is similar; when I(p*) =1(p~) = 1,
AV( Ay (7 )AZ(—l - )

1

G

+_ ,u771 ny
b (f7+ a) . a1 (71 + a)
i - pf! py - py!

T(1+7) -

One needs to consider the g = 0 term and the g > 0 terms separately. In the second
case, the limit is zero while in first case, by our convention:

[ MONENCIY i
MO?%(——%) (%—1#2) i+ 7

M

hence when uf # py , the limit is zero, when uf =y , the limit is:

- +_ y =1 (py
()22 S (drra) TN (B 4a)
lim T r(147)- T : —— =—.

Tt 4 b py ! py ! Hq

Recall that p* = p(2®). With this notation, the initial value is:
G*(Aip(z™),p(x7); 1)

_ (=D)" pal " pe(e) o (@ )pn (2~
= Xp an/Q_q—n/Z +Z n/2 n/2 n +Z n

n>1 n>1

o0

- 11 1 i,
(14 q¢i—1/2z )(1+qz /24 )j)k 1—:5}90,;

i,7=1

= Zsp+(—q ,—q/,...)sp+(x+)-Zsp(x
pT p
-Zspf(—ql/Q,—qg/Q,...)spf(:f)
= Z sp+(—q1/2,—q3/2,...)cZipS,ﬁ(er) cp,ps 7(x_)sp7(—q1/2,—q3/2,...)

vE,p,p*

= Z 3U+/p(—q1/2, —¢*2, ... )s,f/p(—qlﬂ, -2, .. e spr(@t)s,— (7).

2.5.2. The right-hand side. The following identity is proved in [30]:

(1) Wulg) = (-1 )‘H‘*"“““”‘“‘“‘ (L, )50/p(1,q, )
v q H/P 7y )Su/p\ Ly Qs ).
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From this one gets:

R*(\sp(z™),p(z™); —1)
")

Xot (W) Xo= (W) Ty o, - -
- Z P P € VoI, ))\/QWu+,u* (Q)p:+pu—
lpE|=]vE]| " "
= Z Spy+ (x+)q_H”+/2WV+,V* (Q)q_ﬁui/%sl/* (ZC_)
vE
= ZSﬁ(gfr)sy,(If)(_l)lu*\ﬂu’Iq(lu*|+\v’|)/2
vt
’ Zq7|p|5v+/p(1a q; .- ')Sv*/p(la q;.-. )
p
= Z S+ (er)Su* (Ii) Z Su*/p(_q1/2v _q3/27 s )Su*/p(_ql/za _q3/2, s )
vt P

The proof of Theorem [l is complete.

3. DOUBLE HURWITZ NUMBERS AND THE CUT-AND-JOIN EQUATION OF G*°

In this section, we first derive some identities of double Hurwitz numbers, such
as sum formula and cut-and-join equations, which, together with initial values,
characterize the double Hurwitz numbers. Then we combine these identities with
@) to obtain Theorem & (cut-and-join equation of G*).

3.1. Double Hurwitz numbers. Let X be a Riemann surface of genus h. Given
n partitions n',...,n" of d, denote by H X (n',...,n")® and HX(n!,...,n")° the
weighted counts of possibly disconnected and connected Hurwitz covers of type
(nt,...,n"™) respectively. We will use the following formula for Hurwitz numbers

(see e.g. [A]):

dim R, \? ™" Xp(Cri)
12 HX(nY, ..., = L B ALt
(12) Kot |¥< ) ey

It is sometimes referred to as the Burnside formula.

Suppose C — P! is a genus g cover which has ramification type pu*, u~ at two
points pp and p; respectively, and ramification type (2) at r other points. By
Riemann-Hurwitz formula,

(13) r=2g—2+1(p")+1u).

Denote

_ 1 —
HE (it p=) = Hy (W 0= ')’
° — ! - °
Hy(u" ™) =Hy (uh 0 n' 0",

for 171::77T:(2) We have by (EZ)Z
. _ Xo(Cpur) Xv(Cu-)
(14) Hy(u*pum) = fu(2)r =—F :
g VIZ—d 2+ 2+

where 7 is given by (&), and

X (Cr2))

1.3 =100 g, -
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Define
A29—2+(p ) H(u)
H(

Z W) g =2 ) F TG

Z 2 A29—2+(p )+ )
A - —7
= 29 24+ 1(pt) +1(p7))!

e Nptp) = D i, (Mplip, s

O (NptpT) =1+ > O (Nplip, .

put

The usual relationship between connected and disconnected Hurwitz numbers is:
(15) °(AipT,p7) =log @*(Xipt,p7).

By (@) one easily gets:

(16) <I>()\p - _1+Z Z ZXV Cput XVO )fu(2)>\p+p7

a1t l=d|vl=d *F

Equivalently,

- o) 3 2B

We also have

(18) e = 3 60 X2l ) X g,
’ Ivl=d Bt A
3.2. Sum formula and initial values.
Proposition 3.1. We have
(19) D%, (M + X)) = Z@H (A1) 22 % s(Na),
Zul

Proof. By the orthogonality relation for characters of Sg:

(21) $oX (CiXﬂ (Cu) _ 51 1
o 3
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we have

Z O o (M) -z - PR s (o)

= ZZX” Xu1 (Cp2) efu1 (22 ZX” ”2(0“3)efu2(2)>\2

#2 w3
= ZZ Xt ( XVz(Oﬂa)ej'u1(2)>\1+fl,2 (2)A2 Z Xt (Cr2)x2(Cp2)
12 Zpt Zpd u? Zp?
_ Z XVI(C,U.l) XVQ( ) f 1(2)>\1+f 2 2))\25 1,2
vl 2 Hl ZM3
= ZXV CHI)X” (Co2) o @ 0 t)
#3
- ¢#17#3()\1+)\2).
Similarly, by the orthogonality relation:
(22) Z XV 1/ C )Z 2#16#11#2.
lv|=d
we have
Xv(Cur) xu(Cu2) 1
(b 1 Z ‘ 2#2 — ;6/‘1)”2'
lv|=d

O

Equation (@) is a sum formula for double Hurwitz numbers, and Equation (20)
gives the initial values for double Hurwitz numbers.

Corollary 3.2. Denote by ®*(\)a the matriz (5, ,(N))|u=|v|=a- Then ®*(N)a is
invertible, and

(23) Z71e0 (=)t = @ (N)aZa.

where Zq = (2,60 )| u|=|v|=d-

Proof. In [[d) we take Ay = A and Ay = — ), then by [E0) we have
Z7 = 0%(0)g = P*(N)aZa®* (= N)a.

Taking determinant on both sides one sees that ®*(\)4 is invertible, and E3) is a
straightforward consequence. O

3.3. Cut-and-join equation for double Hurwitz numbers. Recall for any
partition v of d, one has

X (C 1 0 0 X (
2 %pu =3 Z ((l +J)Pnga + mea 3%) Z )pn-
M ,J

See e.g. [28, 21]. From this one easily proves the following results.
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Proposition 3.3. We have the following equations:

oo? 1 0P oP?
(24) b= <ijp?i == + (i + )i Py ) :
oA 2 ij>1 ! Op; 6pj i i+

098 1 0%, 005005, L, 0%
(25) =5 P 5 aaeE + P + (i + )P D; :
OA ii>1 v 8pzi8pj[ ™ opi 8ij ! 8pij5rj

The new feature for the double Hurwitz numbers is that there are two choices
to do the cut-and-join, on the + side or on the — side. One can rewrite ) as
sequences of systems of ODEs as follows. For each partition p~ of d, one gets
a system of ODEs for {®7. _(}) : |uT| = d}, hence they are determined by
{@8: ,-(0): |ut] = d}. One can also reverse the roles of u* and p~. There are
matrices C'Jy such that the cut-and-join equations in degree d can be written as

d

(26) 81 =Cla @y =2} Cj,

Example 3.4. When d = 2, the cut-and-join equation becomes
4 (‘I’.Zz)).,(z) ‘1’_?2>7<12>> _ (O 1) (‘1’32)-,(2) ‘1’_?2>7<12>>
dA \®(i2),2) (2,02 L0J\ 22,0 P02),02)

_ (‘I’.Zz))-,(z) ‘1’_?2»(12))(0 1)
Pliz) 29 Plhizy,az )\ 0

(‘1’32),(2) ‘I’_Zz‘),(l?))(o)_( >
Pliz)2)  Plizy,a2)

Hence we have the following solution:
(I).zz),@) q).f2)7(12) () = (% CF’Sh A %Smh )‘)
@(12)_’(2) @(12)7(12) §smh)\ §cosh)\

This is compatible with ([IJ).

The initial values are:

[es) I
= O

3.4. Cut-and-join equation for two-partition Hodge integrals. For each
(ut, ) € P37, we will define a generating function

e (A)
of relative Gromov-Witten invariants. In Section [ we will derive the following
identity by relative virtual localization:

—V=1

T

@ K, N= S B (VI G (m)z B, (

[vE|=]n*]

N).

In matrix form, one has for d*,d= > 0,

_\i__lx)df.

K*(Na+,a- = @ (V=177 g+ Za+ G*(X; T)ar a- Za- P°(
Hence by [3)) we have

G*(NiT)ar 4 = O (V=17A) g+ Zg+ K*(N) g+ a- Zq-D° (g/\)d* .
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Taking derivative in 7 on both sides, one then gets:

0 1
EG.(A;T)dJF,d* =V —1A (CJd+ 'G.(A;T)d‘F’d* - ﬁG.()\;T)dJr’df CJ;) .

This completes the proof of the cut-and-join equation for G* and hence the proof
of the formula @) of two-partition Hodge integrals.

Corollary 3.5. We have

. Xp+ (Cput) any X (Cu-)
- (A) = Z - P = Wit - (e ).
nt nt Z#

Proof. By @), @) and (@) we have

- (A)
V1
= Z <I>:L+7U+(—\/—17'/\)ZV+G;+7U,()\;T)Z,,JI);,)H,(T/\)
[ |=|p*]
_ Z o V=14 (27X Xp+ (Cpt) Xp+ (Cyt) -
vE pE pE At Zut

. Xnt (OU+)6\/T1N”+T)\/2W77+)777 (e\/—_l)\)e\/—ilﬁn,rfl)\/2 Xn— (CVf)

Zy+ Zy-
s Xp— (Ou*) Xp— (Ou* ) 67\/7711"0, (2)77 '\
. Zy- 2y~
o Xnt (C;ﬁ) V=1 Xn— (O,LF )
=y G gy ey 2 G
T 2yt Zy-
In the last equality we have used ZII). O

4. RELATIVE STABLE MORPHISMS AND RELATIVE VIRTUAL LOCALIZATION

In this section, we will give a brief review of the moduli spaces of algebraic
relative stable morphisms |16l [[7] and virtual localization on such spaces [9, [[1].

4.1. Relative stable morphisms. The definitions given in this section are based
on J. Li’s works on relative stable morphisms [I6, [[7], with minor modifications.
Let Y be a smooth projective variety. Let D!,..., D* be disjoint smooth divisors
inY. For a =1,...,k, define
A(Da) = P(OD()L EBNDOL/Y) — .l)oz7
where Np /v denotes the normal sheaf of a subvariety D in Y. The projective line
bundle A(D%) — D has two distinct sections
D§ =P(Opa ®0), D5 =P(0 @Npa/y).
We have
Nog/awe) = Npa v Nog jawpe) = Npe v
Let
A(D*)(m) = A(DY) UA(DY) U - UA(DY),,
where A(D%); = A(D?) for i = 1,...,m. Let D, and Df*  be the two distinct
sections of A(D®); which correspond to D§ and D%, respectively. Then A(D%)(m)
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is obtained by identifying D with D, ; fori=1,--- ,m—1 under the canonical
isomorphisms
D;))z ~ DOt ~ Dz+1 0

Define
Doy =Dy, Dy =ADY)iNAD)it1, Dy = Dy oo
where ¢ = 1,...,m — 1. The C* action on Op. induces a C* action on A(D?)

such that A(D®) — D® is C* equivariant, where C* acts on D trivially. The
two distinet sections D, DS are fixed under this C* action. So there is a (C*)™
action on A(D%)(m) fixing Dy, -+, DG, such that A(D*)(m) — D% is (C*)™
equivariant, where (C*)™ acts on D trivially.

The variety

k
Yim',....m* =Yy u | JAD)(m*)
a=1
with normal crossing singularities is obtained by identifying D C Y with D(O‘O) -
A(D®) under the canonical isomorphism. There is a morphism

almt, ... mFYmt, . omF] =Y
which contracts A(D®)(m®) to D*. The (C*)™" action on A(D®)(m®) gives a
(C*ym'++m" on Yim!,...,m*] such that w[m',...,mF] is (C*)™'++m" equi-

variant with respect to the trivial action on Y.

With the above notation, we are now ready to define relative stable morphisms
for (Y; DY, ..., D¥).

Definition 4.1. Let 5 € Hy(Y,Z) be a nonzero homology class such that

o = / 1 (O(DY) > 0
B
Let u™ be a partition of d*. Define
ﬂg,O(Y;Dlv"'ka|6;,U‘15"'a:uk)

to be the moduli space of morphisms

Fr(O ey ) S yim L mf

3

such that

(1) (C, {:vl}l 1 ,,{xf}i(:“lk)) is a connected prestable curve of arithmetic
genus g with 22:1 (%) marked points.
(2) (w[m?',...,m*) o f).[C] =B € Ho(Y; 7).
(3)
1(n™)

f ma) Z s

as Cartier divisors. In particular, if do‘ =0, then f~1(D% )) 18 empty.

(me
(4) The preimage ofD o) consists of nodes of C, where 0 <1 < m® —1. If
fly) € D(l) and Cy and Cy are two irreducible components of C which
intersect at y, then f|c, and f|c, have the same contact order to Dy aty.

(5) The automorphism group of f is finite.
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Two morphisms described above are isomorphic if they differ by an isomorphism of

the domain and an element in (C*)mlJr"'erk acting on the target. In particular,
this defines the automorphism group in the stability condition (5) above.

Remark 4.2. In [16, [[7], the number of divisors k = 1, but the construction and
proofs in [16, 7] show that

ﬂg,O(Y;Dlv"'ka|6;,U‘15"'a:uk)

is a separated, proper Deligne-Mumford stack with a perfect obstruction theory of
virtual dimension

k
J e+ —gimy —3) + 3200) = ),

where TY is the tangent bundle of Y.

Definition 4.3. We define the moduli space ﬂ;(Y;Dl, DR Bt k)
similarly, with (1) replaced by the following (1)°, and one additional condition (6):
(1)* (C, {:101}1 1 ,,{xf}i(:“lk)) is a possibly disconnected prestable curve with

22:1 (%) marked points. Let Cq,...,C, be the connected components of
C, and let g; be the arithmetic genus of C;. Then

n

> (2-2g) =x

i=1
(6) Let B; = f.[Ci], where C; is a connected component of C. Then (; # 0,
and
/ 1 (O(D%) > 0
fora=1,... k.

The moduli space
NV . Nl k L1 k
Mx(YaDv"'vD |67,U‘7a:u’)

is a finite quotient of a disjoint union of products of the moduli spaces defined in
Definition EETl By [I6] 7], it is a separated, proper Deligne-Mumford stack with a
perfect obstruction theory of virtual dimension

k
/ﬁcl(TY)+§(dimY—3 Z:: — @),

4.2. Tangent and obstruction spaces. This section is based on [0, Section
5.1]. We first introduce some notation. If m® > 0, define line bundles L{* on
D& CY[m!,...,m*] by

@)
o { ND(O)/Y®ND(O)/A(DQ)1 =0

"1 Nog /amey @ Nog japey,, 1<1<m® -1

Note that Lj* is a trivial line bundle on D(l)
The tangent space T and the obstruction space T2 of

ﬂg,O(Y;Dlv"'ka|6;,U‘15"'a:uk)
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at the moduli point

[ Ay ) = Yot
are given by the following two exact sequences:

0 — ExtO(Qc(R), Oc

(27) — Ext! (Qc(R), Oc

J
=
E
l
r
J
(an)

(28)

~
<
!
5
E
!
@3
D
gm
o
.

k
0 — H° Ca f* <QY[m1,...,mk](Z1OgDzlmD‘))

a=1
k
— H' Ca f* <QY[m1,...,mk](Z1OgDzlmD‘))

a=1

~
<
!
=
E
!
sy
=
.

k_1(p™)
= D@
a=1 =1
(200 Ho®P)= @ T(FHADN) @ T; (fH(AD)) = Co,
qef~ I(D(Z))
(80)  HL(R*)= HO(Df), Li)®" [ HO(
and nf* is the number of nodes over Djf*. In (BD])

HO( (1) a) HO( Ok a) i
is the diagonal embedding.
We refer the reader to [I7] for the definitions of H(D®) and the maps between
terms in 27), @5). Here we only explain the part relevant to virtual localization
calculations. The vector space

By = Ext’(Qc(R), O¢)
is the space of the infinitesimal automorphisms of the domain curve (C, R), and

By = Ext' (Qc(R), Oc)

is the space of the infinitesimal deformations of (C, R). Let C be the normalization
of C, R C C be the pull back of R, and R’ C C be the divisor corresponding to
nodes in C. From the local to global spectral sequence, we have an exact sequence

0— B470 — By — B4,1 — 0,

where

By = H'(C,Exty, (Qc(R), Oc)) = H'(C,Qc(R)Y)
is the space of infinitesimal deformations of the smooth pointed curve (C, R+ R'),
and

By = H°(C,Eath (R (R),0c) = P T,C0T,C
g€Sing(C)
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corresponds to smoothing of nodes of the domain curve. Here Sing(C') is the set of
nodes of C, and ¢, ¢” € C are the two preimages of ¢ under the normalization map
C — C. The tangent line of smoothing of the node ¢ is canonically identified with
qué & Tq// é

The complex vector space

k \%
.82 = HO C7f* (QY[ml _____ mk] ZIOgD m"‘)))

is the space of infinitesimal deformations of the map f with fixed domain and target,
and

& \
B5 _ Hl O,f* <Qy[m1,...,mk](z log D(ama))>
a=1

is the obstruction space to deforming f with fixed domain and target.
Finally, let

me—1 k m*—1
Bs :6_91 l@ HY(Ry™), 6_9 E_I% w(RP).

The complex vector space HL (R®®) correponds to obstruction to smoothing the
nodes in f~*(D{})). More explicitly, let

fﬁl(Da ) = {Q17' e aqn}v
and let v; be the contact order of f to D ) at ¢ (of either of the two branches of
f near ¢;). Then By — H'(D®) in 1) induces a map

@T%,lé ® Tq~;,2é - Helt(Rla.) = HO l)’ La /H l)7
i=1
($1y.vy8n) +— [(sTh, ..., s0m)]

where we use isomorphisms

Vi

HO( 3)’Ll) (L )f(ql) = (T C®T~O)

The first isomorphism follows from the triviality of the line bundle L{* — Da). We
see that the obstruction vanishes iff the smoothing of the nodes q1,...,q, is com-
patible with the smoothing the target along the divisor D(z) which is parametrized

by the complex line HO(D(”7 L.

4.3. Relative virtual localization. In this section, we assume that a torus T =
(C*)" acts on Y, and D', ..., D* are T-invariant divisors.

Under our assumption, Npa )y — D% is T-equivariant, and the T-action ex-
tends to A(DO‘). So T acts on Y[m!,...,mF], and acts on M, o(Y;D?,..., D" |
B;pt, ..., 1¥) by moving the image.

The T fixed points set M, o(Y; DY, ..., D¥ | B;put,. .., 1uF)T is a disjoint union
of

{fF|F€Gg,O(Y;Dla"'aDk |6;,u17"'7luk)}7
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where each I' € Gyo(Y;DY,...,D* | B;ut, ..., u¥) corresponds to a connected
component, or a union of connected components, Fr of ﬂg,o(Y;Dl, ...,D*¥ |
Bipt, ... )T Let
1 1 1 k R
[f = (O {aty ) (Y)Y € Fro @ Myo(Y; DY, ..., DR | By, .., ib),
for some I' € G, o(P*, p). The T-action on M, o(Y; DY, ..., D* | gyul,..., uk)
induces T-actions on the exact sequences 1), @8) which define T and T?. Let

T%f and T»™ denote the fixing part and the moving part of 7% under the T-action,
respectively, where ¢+ = 1,2. Then

TV —T2f
defines a perfect obstruction theory on Fr, and
Tl,m _ T2,m

defines the virtual normal bundle N}‘Fr of Frin My o(Y; DY, ..., DF | Byt ... 1),
More explicitly, let B]" denote the moving part of B; under T-action, where i =
1,...,6. Then BJ* = 0. Note that there are subtleties due to the (C*)m +-+m"

action on the target Y[m?!,..., mF]. We have
1 ex(T*™)  er(B")er(Bg")er(By)
er(Ng) — er(Thm) er(B3*)er(B]")

In @], T. Graber and R. Pandharipande proved a localization formula for the
virtual fundamental class in the general context of C*-equivariant perfect obstruc-
tion theory. In [II], T. Graber and R. Vakil showed that moduli spaces of relative
stable morphisms satisfy the technical assumptions required in the general formal-
ism in [9], and derived relative virtual localization under the assumption that the
divisor is fixed pointwisely under the C* action [IIl Theorem 3.6]. In our context,
the localization formula proved in [9] reads:

(31)
N vir ) [fr]vir
[Mg,O(Y;Dla-'-aDk|6;,U‘17"'7,uk)]’]’ = Z (Z]:F)* f\Z/Wir
r .p1 k|31 k eT(N]: )
€Gg,0(Y;D!,....DF|B;pt ..., u7) r
where

izt FT Hﬂg,o(Y;Dl,...,Dk | B, ..., pb)
is the inclusion, eT(N}’_-iFr) is the T-equivariant Euler class of the virtual normal
bundle Ny = T1™ — T2™ over Fr,
[mg,O(Y;Dla cee aDk | ﬁJ,Ula cee v,uk)]%ir € A*T(Mg,O(YJDla S 7Dk | 6§,U1a cee aﬂk)§Q)
is the T-equivariant virtual fundamental class defined by the T-equivariant perfect
obstruction theory Tt — T2 on M, o(Y; DY, ..., D* | B;ut, ..., u¥), and

[Fr]f € AL (Fr; Q)

is the T-equivariant virtual fundamental class defined by the perfect obstruction
theory TV/ — T2/ on Fr.

Similarly, we have
(32)

)Hk)

e Nvir
PEGY (YiDY,...,DF|Bipi? - r(NE)
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5. DOUBLE HURWITZ NUMBERS AS RELATIVE GROMOV-WITTEN INVARIANTS

In this section, we study double Hurwitz numbers by relative Gromov-Witten
theory.

5.1. Relative morphisms to P'. Let [Zy, Z1] be the homogeneous coordinates of
P!. Let C* act on P! by

t- 2o, Z1] = [tZo, Z1]
for t € C*, [Zo, Z1] € PL. Let
sT=10,1], s =][1,0]
be the two fixed points of this C*-action.

Let u* and p~ be two partitions of d > 0. Let [P!] € Hy(P!;Z) be the funda-
mental class. Define

mg,o(]}blau+au7) ﬂg,O(PlaS+757;d[]P)1]7IUJ+7IUJ7)a
MRt ) = MyP st s idP, pt uo).

The virtual dimension of M (P, ut, ™) is
29— 24+ 1(u") + ("),
and the virtual dimension of ﬂ; (P, pt,pu) is

=X A+ U(pT) +1(u7).

We extend the C* action on P! to P'[m™,m~] by trivial action on A*[m¥],
which is a chain of m* copies of P!. This induces C*-actions on M, (P, u*, ™)
and ﬂ; (P!, u*, ™). Define the moduli spaces of unparametrized relative stable
maps to the triple (P*, s*,s7) to be

Mgo(Pt b, )/ /C* = (ﬂg,o(lPl,u*,u_)\ﬂg,o(Pl,uﬂu_)C*)/C*’
Myt 1)/ /€ = (MYt w )\ Myt w7 ) ) [

Then M, (P!, ut, n7)//C* is a separated, proper Deligne-Mumford stack with
a perfect obstruction theory of virtual dimension

29 =2+ 1) +l(p) - 1,

and M; (PY,ut,u=)//C* is a separated, proper Deligne-Mumford stack with a
perfect obstruction theory of virtual dimension

=X ") +i(p) - L.

5.2. Target ¢ classes. In the notation in Section Bl we have AT = P! A% (m)
is a chain of m copies of P!, and D?z[) is a point, for [ =0,...,m*. Let L* and be
the line bundle on M, o(P*, u*, 7))/ /C* whose fiber at

[f : (Ov'rlv e Lt Y, e yl(,u.*)) - ]P)l[m+7m7]:| € ngo(Plvlqunui)
is the cotangent line
17+ (P'm*,m™7])

(m¥)
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of P[m™, m~] at the smooth point D?fni). We define L+ and L.~ on ﬂ; (PYut,u™)//C,
similarly. Define the target ¢ classes
¢ =ca(lF), ¥ =call)
The following integral of 4 arises in the localization calculations in [Z]:
/ 020 -2+ )H(u™) -1
[Mg.o (Pt put,p=)/ /CH]vir
In Section BE8, we will relate such integrals of target ¢ classes to double Hurwitz

numbers (Proposition 2 BH).

5.3. Double Hurwitz numbers. Let u*, 4~ be two partitions of d > 0. There
are branch morphisms
Br: My (P!, ut, p7) — Sym20 2+ pl o p2o= 241G+
Br: ML (P, pt,p7) —  Sym XHEDHE) Lo poxctleh) )

The double Hurwitz numbers for connected covers of P! can be defined by
1

— Br*(H29—2+l(u+)+l(u*))
RGO AT ] it o e

HY(p* pu7)

where H € H2(P29-2+")+(17). 7 is the hyperplane class. The double Hurwitz
numbers for possibly disconnected covers of P! can be defined by

1
H? - =
ot | Aut ()| Aut ()] J 72 @t um)pir

We have

Br* (H—X'i'l(lﬁ)'f‘l(ﬂf))_

2.—297;1*#* = Hg.(/ﬁ_’u_)'
Recall that HJ (™), Hg'(;ﬁ‘, w1~ ) are defined combinatorially in Section Bl
We define generating functions of double Hurwitz numbers as in Section 3:
e A29—2+(p )+ )

W= 2 g ey )

. A )H () .
“+’“7()\) - Z _ 1+ - IHX#ﬁ,u*
o2z, <min{iGe gy (X T HAT) BT

*°(NptpT) = Y @ (Vplip,-
put
*(NptpT) = 1+ Y O (Mphp,
up—
Then
(N pT,p7) = exp(®°(A;pF,p7)).
Note that
° 5 +ou
(33) utou— (0) = F;—“,

ut
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where z, = vy - -y, | Aut(v)], so
+ —
@ (0,p",p7) = 143
PR
5.4. Gluing formula. Let k', k™ be positive integers such that
KT+ k™ = —x+1p") +1(p).

By gluing formula of algebraic relative Gromov-Witten invariants [I7, Corollary

3.16], we have
/ Br* (H-XH0 )+
M (BTt )] v
= /_ Br*(H*")
() () =k M5+ (Bt )] vir
a —
v Br*(H*
| Aut(u)| /[/\/[;< (PL,v, 0 )]vir ( )
where

Ay = V1 Vi(v)-
Therefore, we have the following gluing forr(m)ﬂa for double Hurwitz numbers:
Proposition 5.1 (gluing formula). Let k%, k™ be positive integers such that
KT+ k™ = —x+1p") +1(p).
Then
(34) HY peu- = Z Hyw w2y 0
—XEH(pF) +Hi(v)=k*

Recall that z, = a,| Aut(v)].
Let d = |u*| = |u~|. Tt is straightforward to check that Proposition Bl implies
the sum formula

(35) S (M), (M) =00 (M + )
lv|=d
which was derived in Section from the combinatoric definition.
The cut-and-join equations ([Z8]) for double Hurwitz numbers are special cases

k+ =1, k_ =1 of Proposition Bl More precisely, differentiate [BH) with repect to
A1, and then set A\; = 0. We obtain a cut-and-join equation:

d [ ] [ ] [ ]
(36) e N = D Hiey 1)1 020 - (V)
lv|=d

Differentiate ([BH) with repect to Az, and then set Ay = 0. We obtain another
cut-and-join equation:

d ] ] L]
(37) e N = D (N2 H ) i )t
lv|=d

Define the cut-and-join coefficients

(O'])#V = Hl.(,u)Jrl(l/)fl,,u,uZV'
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They are the entries of the matrix C'Jy in Section The cut-and-join equations
can be written as

(38) d‘i e N =D (CD), P, =Y o (N(CT)y-ss

lv|=d |v|=d
which is equivalent to ([Z0) in Section B3

d L] o L]
01 =CJa- 9= f CJj.

Remark 5.2. The cut-and-join equation of Hurwitz numbers Hg(u), Hy(p) was
first proved using combinatorics by Goulden, Jackson and Vainstein [§] and later
proved using gluing formula of symplectic relative Gromov-Witten invariants by

Li-Zhao-Zheng [19] and Ionel-Parker [13].

5.5. Localization. In the spirit of [ZIl Section 7], we lift
H X+ ¢ 2ot H) (pxt ) ™), 7)

to
—xH () +Up) ) B § )
H (H — wyu) € Hég—xH(u )+ (w ))(]Prxqtl(u JH(T), 7)
k=1
where wy € Z, and compute

)

—xH () (7))
Br* H (H — wyu)
k=1

1

H.
xXouto s |Aut(u+)|| Aut | [pl ot Vi

by virtual localization.
5.6. Torus fixed points and admissible triples. Given a morphism
FeC ) )y - Bt o]
which represents a point in MX(]P’l, pt ), let
f=nlm*m o f:C—P,
and let C= = f~1(s%). Then
C=CTuULuUC™,
where L is a disjoint union of projective lines. Let
F=fles : CF — AFm¥),
=flp:L — P.
Then £ is a morphism of degree
d=|p*| = ||
fully ramified over s* and s~. The degrees of f° restricted to connected components
of L determine a partition v of d.
Let C’f sy C,j be the connected components of C*, and let g; be the arithmetic
genus of C;". (We define g; = 0 if C;" is a point.) Define
k

Xt ="(2- 24,

i=1
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and define x~ similarly. We have

X" +2(r) = x" = —x.
Note that x* < 2min{l(u%),1(v)}. So

X ) 1) > 0,

and the equality holds if and only if m™ = 0. In this case, we have v = ut,
X" =2i(uT), and x~ = x. Similarly,

=X 1) +i(p") =0,

and the equality holds if and only if m~ = 0. In this case, we have v = u~,
X~ =2l(17), and xT = x. There are three cases:
Case 1: m~ = 0. Then f~ is a constant map, x™ = x, v = u~, and fT represents
a point in

M (P, 7))/ /T
Case 2: m™ = 0. Then fT is a constant map, Y~ = x, ¥ = uT, and f~ represents
a point in

M (P u* 57/ /.

Case 3: m*,m™ > 0. Up to an element of Aut(v), f* represents a point in
m)fr (Plv,u—i_v V)//C*a

and f~ represents an element of

M, (P, v,u7)//C*.

X
Definition 5.3. We say a triple (x™,v,x™) is admissible if
xT,x~ €2Z.

v is a partition of d.

X+ < 2min{l(n*), 1(v)}.

—xT+2v)—x =—x.

Let G;((]P’l, pwt, ) denote the set of all admissible triples.

We define

My 21y = My (P ut,p7)//C,
M2l(,u+),,u+,x = ﬂ.( 7# ) )//C

and define
Myt i = (M B, 0)//€7) x (R (B, 07)//C7)
if (x*,v,x7) € G3(P*, uT, ™), and
X"+ +1v) >0, —x" +Iw)+1(p") > 0.
For every (x*,v,x7) € GY(P', uT, ™), there is a morphism
Iyt ux— ﬂxwx — ﬂ;(]P’l, whop),
whose image F,+ , - is a union of connected components of ﬂ; (]P’l,u*,,u*)(c*.

The morphism 4, .+ , - induces an isomorphism

MM ~
MX*%X*/AX*,V,X* = Yxtxs
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where

(™) (u*)
A oiw) = 1] Zuos Asgorr = 1] Zurs
i=1 i=1

and for —x* +1(u*) +1(v) > 0, we have
l(v)
1— HZW — Ayt - — Aut(v) — L
i=1
Recall that a, = v1--- vy, and 2, = a, | Aut(v)|. We have
Ay 21| = ap= 1Azt )t x| = @
and
Ayt vy =20
if —x* 4+ 1(p*) +1(v) > 0.
The fixed points set ﬂ; (P, ut, p7)C is a disjoint union of
{Fer o | (X x7) € GY(BY i, 1)}

5.7. Contribution from each admissible triple. Let (xT,v,x™) € G, (PY ot u).
We have

Br(Futwx-) = (=x" 1) +10)sT + (=X + 1) +1(n7))s”
€ Sym X HEDHET) pl — poxtluh)+Uu™)

SO
—xH () +(uT)
it - BT H (H — wy)
=1
—x+Up )+ . B
- H (=xt + 1) + 1) —wy) | wXHEDHET),
=1
Let N;{T y— On Mxmxf be the pull-back of the virtual normal bundle of
Fy+ py- In m;(Pl,,u*,,u*). Calculations similar to those in 21, Appendix A]
show that
.1 _ -
et (Nl 2i(u-)) U=
1 _ Qi+
€cx (N;llgyﬂ,#ﬂx) —u— 0’

and for —x* + I(uF) 4+ I(v) > 0, we have

1 a4y a,
(N, ) u—oF —u—y2

where ¥5°, 1Y are the target 1) classes on

MX+(Plau+ay)v m;*(]}blayvﬂi)v

respectively.
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Let w = (wq,...,w;). Then

Ly = 21(u—) (W)

. * —xH () (™
_ 1 b= 2U(u) Br ( l:Xl e )(H B wlu))
Ay~ M= a1y ec- (N;CJZLTW(M*))

—xH () +Up)

(—x + Ut) + 1) — wy) /

N vi u — o0
=1 [Mx,;ﬁ,m(u’)] " w

u XU ) FH(T)

—xH () +Up)

(x 1) + 1) —wn) | [ () X )

=1 [M (Pt =)/ /C]vi

Ioi(uet )t x (W)

1 / i;l(‘u+)ﬂu+7x Br* ( l—:)(1+l(H+)+l(H7)(H _ wlu))
Ut S Moty ot 07 ec (N;liguﬂyu* X
_X+l(ﬁ+l(u)( ) / w—XH )+
- —W _ . 0
=1 Moty wt 7 u—1

=X)L ()

[1

wy /
=1 M3 (BY, b, u=) / /CH] i

.
X

(¢0)—x+l(u+)+l(u’)—l

Lt = (W)
1 4 - BT ( ;:><1+z(u+)+z(u’)(H _ wlu))
S E N ec- (N, 0)
- R u—XFEH)+(p7)
- ll;Il IR /[MXJF,u,x]ViF (u—PF)(—u—y?)
a —xH )+ ) )
B m H (—xT+ 1) + 1) —wy) | (=1)7x FHEFED)

=1

)X HGH) ) =1 / (0) X HO)+HG)=1

/[M;+ B+ )/ /T (M5 - (P wga=)/ /]

5.8. Sum over admissible triples. We have

—xHUpT)+U(pT)

e |
e . = Br* (H — wyu)
Xobs o | Aut ()] Aut(p)| (M (Pt )i g

1
= I + 7(w)
+ — z : X VX
| Aut(u )] Aut(u)| (xtwx )EGY (P ut,u—)
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Let w=(0,1,...,—x+(u") + (") — 1), we have
= : (w)
ot T TR AwG )] )

(= + 1) +1(p0))!

N _
1/,OO)—XH(H JH(pT)-1
| Aut(ph)[] Aut(p)] /M S (Pt um )/ /Cvir

Let w=(1,2,...,—x +I(p") +1(x7)), we have
. - . i ()
e T TRt ()| Aut(um)] X
(—x + 1) +1(p))!

¢0)fx+l(u+)+l(u*)*1.

| Aut(pt)]] Aut(p)| /M S (Pt um)/ /Cvir

So we have

Proposition 5.4.

;c,u*,u*
(=x+ Upt) +Up )
1
| Aut ()| Aut ()] Jag2 @t o)) joe i
1
| Aut ()| Aut ()] JAa2 @1t o) oo

( O)forl(u*)Jrl(M)*l

OO)forl(u*)Jrl(u*)*l

If we replace M; (P, ut, 1n™) by My o(PL, ™, ™) in Section BEH we get

Proposition 5.5.

Hy(p* pm)
(29 =2+ 1(p") + U p))!
1 w)O)forl(u*)Jrl(u*)*l
| Aut(pt)|[ Aut(w)| J3, 01t )/ jcepvie

1 / o)X+ ) 1
| Aut ()| At ()] Jra, o1t )/ jco]vir

Let w=(0,1,....k =1, k+1,...,—x+ (") +1(r7)), where

1<k <—x+Ip")+1p) -1,
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P3
P2 P1
Ps5
P4
FIGURE 1. The fan of X
we have
H;Jﬁ,;r
1
= I + 7(w)
Aut(pH)|| Aut(p— Z XX
RGO P
—xT+ ) +iv) =k
_ > (—X++l(u+)+l(’/))l/ o)X H )+ -1
| Aut(pt)] (A4 (Bt )]vin

v xT) € GLP pt )
X 1) i) = K

a (=xT ) +Z(M7))!/ ()X HOH( )1
| Aut(v)] | Aut(p))] [ — (B v, )]vir

— ° °
- § : Hxﬂu*,VZVHX*,V,u*'
P xT) e GL® pt )
P ) ) =k

This gives an alternative derivation of the gluing formula ([B4)), and in particular,
the cut-and-join equations (BH), B).

6. MODULI SPACES AND OBSTRUCTION BUNDLES

In this section, we introduce the geometric objects involved in the proof of (H),
and fix notation.

6.1. The target X. Let X be the toric surface defined by the fan in Figure 1. Let

®; be the homogeneous coordinate associated to the ray p;, i =1,...,5, and set
Zii = {(®1, D9, D3, P4, 05) € C° | &; = &, = 0},
Z = Zi12UZs5UZoy U Z15U Zsy.
Then

X =(C°\ 2)/(C")?,
where (C*)? acts on C5 by
(u1,ug,uz) - (D1, Do, B3, By, P5) = (w1 Py, uruzPe, usPs, uguz Py, uz ' e5),

for (u1,u2,u3) € (C*)3, (@1, o, @3, Py, 5) € C5.
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T = (C*)? acts on X by
(t1,t2) - [ @1, Do, P3, Py, P5] = [t1 D1, Po, t2P3, Py, Ps5)

for (tl, tg) (S T, [(1)1, (1)2, (1)3, (1)4, (1)5] cX.
Let
D, = {[@1,@2,@3,@4,@5] e X | P, = 0} cX
be the T-invariant divisor associated to the ray p;. Let §; € Hy(X;Z) be the
homology class represented by D;. We have

Hy(X;Z)

5
(@ Zﬁi) [ (Z(By — B2 — B5) D Z(Bs — s — B5))

= Z01 ®LbBs® ZLbs

Let 8 € H?*(X;Z) be the Poincare dual of 3;, i = 1,...,5. The intersection form
on

H*(X;Z) = 7B} ® LB} & LB;

is given by
BT B3 Bs
By 0 1 0
By 1 0 0
Bs 0 0 -1
So

By Py =P5-Bi=-1, pB3-B;=0.
Note that X is a toric blowup of P! x P! at a point, and D5 is the exceptional
divisor. More explicitly, we have

h:X — PLxP!
(D1, Dy, 3, Dy, P5] — ([P, PaP5], [P3, PyP5])

which is an isomorphism outside Ds, and h(Ds) = {([1,0],[1,0])}.
The T-invariant divisor

Kx =—-Dy— Dy — D3 —Dy— Ds
is a canonical divisor of X, so
a(Tx) =267 + 265 — B5-
For (u*,pu~) € P, define
Mgo(X, 1", 17) = My o(X; Do, Dy | |1 185 + 1™ [Bry 't 7).
and let H; (X, T, ™) be the subset of
M.(X; Do, Dy | |85 + ™ [t )
which consists of morphisms
f:C— X[mt,m™]

such that for each connected component C; of C, f.[C;] € Ho(X;7Z) is an element
of
{a63 + bﬁl | a, be ZZO) (av b) # (07 O)}
The virtual dimension of M o(X, ut, ™) is

Pgut- =9 — L4 |t [+ 1t + ||+ 1(p7),
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—e
. . . + — .
and the virtual dimension of M, (X, ™, u7) is

. X _ ~
. :—§+Iu+|+l(u+)+lu |+ ().

The moduli space M, o(X, ut, u~) plays the role of M, o(PP!, 1) in the proof of
Marifio-Vafa formula [21].
We have
Dy 2P' > Dy, Np,/x = Op(—1) = Np,/x,
SO
A(Dy) 2Ty 2 A(Dy)
in the notation of Section EZIl where Fq is the Hirzebruch surface
]P)(O[pl D Opl(—l)) — Pl.
6.2. The obstruction bundles. Let
T Uy — Mgo(X,ph 1)
be the universal domain curve, and let
P T, v - — Mgo(X,pFp17)
be the universal target. There is an evaluation map
F:L{g#ﬂﬂf — gt
and a contraction map
T %;H*;H’ — X.

Let Dy 1+ - be the divisor corresponding to the {(u*) + I(x~) marked

points. Deﬁne
Voutu- = R'z, (F*Ox(—Dl —D3)® (’)L{‘wﬁy,r (_Dg,,uﬂ;ﬁ ))

- CU,

g,ut

where '=7 o F': Uy ,+ ,~ — X. The fibers of V, ,+ ,- at
[f : (Cuxlu' < Ly(pt)s Yis - "7yl(,u*)) - X[m+7m7]] € Mg,O(XJ ,U,+,/147)

is
HY(C, f*Ox(=D; — D3) ® Oc(—R))

where f = 7[m*,m~]o f, and

R:xl+...+xl(#+)+y1+-~+yl(#7).
Note that ~

HY(C, f*Ox(—Dy — D3) ® Oc(—R)) = 0,
and

deg f*Ox(=D1 = D3) ® Oc(=R) = —|u*| = |u~| = Uu*) = Uu"),
$0 Vit - — Mg o(X, ™, ™) is a vector bundle of rank
Tout g =9 = 1+ [pt [+ 1" + |n7[+1(p7).
The vector bundle V, 4+ ,— — M o(X, ut, ) plays the role of the obstruction

bundle V — M, o(P ,u) in the proof of Marino-Vafa formula [21], Section 4.4].

Similarly, we define a vector bundle VX° e of rank

. X _ -
Pt = =5 F T IET) + T+ 1)
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FIGURE 2. The image of g, : X — t}

on M (X, i, ).

6.3. Torus action. Recall that T'= (C*)? acts on X by
(t1,t2) - [P1, P2, 3, Py, P5] = [t1 D1, o, 12 D3, Py, 5]

for (tl, tg) eT, [(1)1, Dy, D3, Dy, (1)5] e X.
Let Tk = U(1)? be the maximal compact subgroup of T' The Tg-action on X
determines a moment map

KTy X — tﬁiu
where t; = R? is the dual of the Lie algebra tg of Tk.
We now lift the T-action on X to the line bundle Ox (—D; — D3) as follows. We

only need to specify the representation of 7" on the fiber of one fixed point of the
T action. The fixed points of the T" action on X are

2=DiNDs = [0,1,0,1,1]
2y =DsNDy = [1,0,0,1,1]
z.=DNnDy = [0,1,1,0,1]
Z, =DyNDs = [1,0,1,1,0]
i_=D4ynD; = [1,1,1,0,0]

Figure 2 shows the image of Dy,..., D5 and the above five fixed points under
the moment map p7, : X — t5.
Let (w1, ws) denote the one dimensional representation given by

(tl,tQ) 2= tiultéwz
for (t1,t2) € T, z € C. The character ring of T is given by

where «, 8 are the characters of the representations (1,0), (0, 1), respectively. The
representations of T on the fibers of T'x and Ox(—D; — D3) at fixed points are
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FIGURE 3. The images of pup, : A(Ds) — tf and pg, : A(Dy) — t

given by:
Tx Ox(—Dl — Dg)
20 a, 3 —a—pf
2+ _aaﬁ _6
Z_ o, —0 -«
Zy pB—a,—f0 0
. a—-p0,—« 0
Note that
tr =2 Ra® Rp,

and the representations of 7" on the fibers of T'x at the fixed points can be read off
from the image of the moment map as in Figure 3.

The action of T on A(D3) and A(Dy) can be read off from Figure 3. This
extends the action of T on X to X[m™,m~]. So T acts on M, o(X,u", ™) and
ﬂ;(X, pT, ) by moving the image of the morphism.

The T action on Ox (—D1 — Ds) induces T actions on Vg .+ ,- andon V? . _.

7. PrROOF OF (@)

Let X be defined as in Section Bl Recall that T = (C*)? acts on X. Let
D+, ..., D5 be T-invariant divisors in X defined in Section Bl
Let
X.,uﬂu* - Mx(X7 M+7 M_)
be defined as in Section 2 with the torus action defined in Section B3 Define

1
K? - = / e(V® 2),
ot = TR AGE itz 0
)t
° - § : —x+I( +)Jrl( ) ( 1) °
M)V(/\) - Y : \/__1l(u+)+l(H*)KX>uﬂu*'

XE2Z,x<2(L(wt)+1(k)
In this section, we will compute
L[] 1 L[]
ot T A NIA - /— cer(V )
| Aut ()| Aut ()] J 72 (x o

by relative virtual localization, and derive the following identity:
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Proposition 7.1.

(H) :ﬁ‘,u* ()\) = Z (I);+,V+(_ v _1T)\)ZV+G1./+,V7 (A;T)ZV7¢;*7M*(

[vE]=|pt]

/=

T

).

7.1. Torus fixed points. Given a morphism
(C {0 () = X[t m)
which represents a point in H; (X, ut, )T Tet
f=nmt,m )of:C—X.

Then

f(C) Cc Dy UDy U Ds U DyU Ds,

fle) e{z,2¢}, Fly) e{=— 2}
See Figure 3 in Section B3l for the configuration of the T-invariant divisors Dy, ..., Ds

and the T fixed points 2, 24,2_, 24, 2.
If

f+«(C) =n1D1 4+ n2Dy + ngD3 + nyDy + nsDs
as divisors, then
£:[C) = (n1 +n2)B1 + (n3 +14) B3 + (5 — N2 — 14) B

as homology classes.
Let

J ={(n1,n9,n3,n4,n5) € Z° | n; > 0,n14+n9 = |p~ |, n3+ng = ||, n5 = no+n4}.
Given 1 = (n1,n2,n3,n4,n5) € J, let
M € ME(X, i, )"
be the subset which corresponds to
f+(C) =n1 Dy +naDy + n3Ds + naDy + 15 Ds.
Then ﬂ;(X, put,u)T is a disjoint union of
{My ne J}.
We have the following vanishing lemmas:

Lemma 7.2. Let n € J, and let ip : My — ﬂ;(X, wh,u™)T be the inclusion.
Then

er(Viuru-) =0
unless i = (|p~1,0,|p],0,0).
Proof. We use the notation in Section Let L = Ox(—D; — D3). We have the
following short exact sequence of sheaves on ﬂ;(X St )

(39) 0— F*"L(— ;wﬁ,u*) — F*L — (F*L)D;,,ﬁ,u— — 0.
Let L
Si :MX(XJILL+7/'L7)_> ;”Uﬂr”uf
be the section corresponds to the i-th marked point,

ev; = Fos; :m;(X,;ﬁ,,u_) — X
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be evaluation at the i-th marked point. Then [Bd) gives the following long exact
sequence:
) . Up ™) +H(u7)
0 — R'mF'L(-D}, ,)—RFL—- P el
i=1
— RYn,F*L(- Nta) = RYF*L — 0.

We have ROF*L = 0, so

7o _ pl

Vet - =R F'L
is a vector bundle over M; (X, ™, 7). We have the following short exact sequence

of vector bundles over M;(X, pt,p):

W) +1(n7) .
(40) 0— @ eviL - Ve o - = V2 - —0
i=1
The restriction of the above exact sequence to M is
1 a? ol ot kY@ kTr@
0 L2 @ LRI § L) L itye L T -0

where ¢!, ..., 0% are partitions determined by
(41)
{u;  fly) ez}, A{py - fly) €z}, g« flw) ez}, {p: flw) €z},

respectively. Note that o', 0%, 03, 0% are constant on each connected components

of My, and
ol Uo? =u, o3 Uo? =put.
We have seen in Section that

er(L.,)=—-0, er(L. )=-a, er(Lz+)=-er(L:-)=0,

SO
i*eT(VX.vﬂ+7N7 ) =0

unless

(42) (0,0%,0% 0%) = (u™,0,u",0).

Let 7 = (n1,n2,n3,n4,n5) € J, ns # 0. Let My, (k) be the subset of M, which

consists of points
[f:C— X[mT,m7]] e M
such that @2 is true, and
fHDs = {2727}

has k connected components, where 1 < k < ns. Each Mj(k) is a union of
connected components of M.

We claim that

eT(VX.”u*“u*)'Mﬁ(k) =0

for all 7 = (n1,n2,n3,n4,n5) € J, n5 # 0, k = 1,...,n5. This will complete the
proof.

Let

[f:C— X[mT,m™]] € Mu(k).

Then C' = C,UCs, where (1 is the closure of f~1(D5—{z%,27}), which is a disjoint
union of k projective lines, and C is the union of other irreducible components of
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C. By [#3), the ramification divisor R C Co, and Cy and C5 intersect at 2k nodes.
We have

0 — H°(C,['L(=R)) — H%(C1, f*Llc,) ® H*(Ca, f*L(=R)|c,) — LEF & L
— HY(C,f'L(=R)) = H'(C1, [*Llc,) ® H'(Cy, f*L(-R)|c,) — 0
where
HY(C, [*L(=R)) = 0 = H*(Cy, ['L(=R)|c,).
The restriction of L to Ds is (equivariantly) trivial, so

HO(CY, f*L|CY) = L?f, HY(Cy, f7L|Cy) = 0.

We have ) .
0— LEF — H'(C, f*L) — H'(Cy, f*L) — 0,
SO
Vx.,u*,u* |Mﬁ(k) = Lg* eV,
and

er(Vy ot )My = 0.
0

Lemma, tells us that My does not contribute to the localization calculation
of

1
K. _ = / er ° —
Xopt 1 |Aut(,u+)||Aut(;r)| [ﬂ;(X,;ﬁ,u*)]Vir ( Xt )

if 2 # (|u~1,0,[u*],0,0).
7.2. Admissible labels. From now on, we only consider

M = M=ot 0.0) © ML (X, u)T
Given a morphism

(C g} {2 ) = X [t m)

=1 >

which represents a point in M, let
C° = fN(=), CF=f"(22),
where zg, 2z, z_ are defined as in Section Then
c=ctuLtuc®uL uc-,
where LT, L™ are unions of projective lines, f|;+ : LT — D3 is a degree d* = |u™|
cover fully ramified over zp and z4, and f|;,- : L~ — D; is a degree d~ = |u~|
cover fully ramified over zy and z_.
Define
PE(m*) = n[m*, m~] " (2).
Let
fr="flos:CF = PH(mb),
fr=fl+: LT — Ds,
fm=fli-:L~ — D
letle degiees of f *+ restricted to irreducible components of L* determine a partition
v* of d*.
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Let CY,...,C} be the connected components of CY, and let g; be the arithmetic
genus of CY. (We define g; = 0 if C? is a point.) Define

k
X’ = 2(2 —2g;).
i=1

We define x*, x~ similarly. Then
X 2) X+ 267) —x = —x
Note that x* < 2min{l(u*),1(v*)}. So
=X+ +1ut) >0,
and the equality holds if and only if m* = 0. In this case, we have v+ = pt,
xT =2l(p). Similarly,
-Xx +l7)+i(p") =0,
and the equality holds if and only if m~™ = 0. In this case, we have v~ = u~,
X~ = 2l(x7). There are four cases:

Case 1: m* =m™~ =0. Then fT, f~ are constant maps, and v+ = p*.
Case 2: m™ > 0,m~ = 0. Then f~ is a constant map, v~ = u~, and fT represents
a point in

m;+ (Plv :u+7 V+)//(C*
up to an element in Aut(v™).
Case 3: m™ =0,m~ > 0. Then f7 is a constant map, v™ = u™, and f~ represents
a point in
M- (P, v, )/ /T
up to an element in Aut(v—).

Case 4: m™,m~ > 0. Then fT represents a point in
M. (Pt vt/

up to an element of Aut(v*), and f~ represents an point in
e
M, (P, v, u7)//C

up to an element in Aut(v™).

Definition 7.3. An admissible label is a 5-uple (x*, v, X%, v=,x~) such that
o xT, X", x~ €2Z.
e v* is a partition of d*.
o 0 <2min{l(v1),I(v7)}, xT < 2min{l(p*),I(vT)}.
o —xT+2wt) —x"+20(r7) —x" =—x.
Let G3(X, u™, u~) denote the set of all admissible labels.

For a nonnegative integer g and a positive integer h, let M, , be the moduli
space of stable curves of genus g with h marked points. M, ;, is empty for (g, h) =
(0,1),(0,2), but we will assume that Mg 1 and My exist and satisfy

/ 11
Mo 1 — dv iz

1 1

/Mo,z (1= patpr) (1 — potba) 1 + pio

for simplicity of notation. Such an assumption will give the correct final results.
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For a nonnegative integer ¢ and a positive integer h, let ﬂ; 5, be the moduli of
possibly disconnected stable curves C' with h marked points such that

o If C1,...,C} are connected components of C, and g; is the arithmetic genus
of C;, then
k
> (2—-2¢) = x.
i=1

e Each connected component contains at least one marked point.
The connected components of H; 5, are of the form

Mghhd X X M!]lmhk'
where
k k
> (2-29)=x, Y hi=h
i=1 i=1

The restriction of the Hodge bundle E — ﬂ; 5, to the above connected component
is the direct sum of the Hodge bundles on each factor, and

k
A (u) = HA; (u).
i=1
We define

ﬂ2l(u+)7u+,x7u*,ZZ(AF) = MXJ(H*)H(H’)'
For —x* + 1(pF) + 1(vF) > 0, we define

Mx*,u*,x“,u*ﬂl(u*) = (m;fr (]P)lu /1’+7 V+)//(C*) X Mxo,l(u+)+l(u*)7

MQZ(#*),MXO,V*,X* = ﬂ><°7l(u+)+l(u*) x (ﬂ;, (]P)la Vﬁ,lf)//C*) )
mx*wﬂx”wix*

= (R (L v )/ /€)X Mo sty oy % (Mo (B, 07, 17)//C)

For every (x*,v%,x% v, x7) € Gy (X, uT, ), there is a morphism

. v rwrid + —

It xO=x— Mokt 0= - = M(X i),
whose image F,+ ,+ 40, -~ is a union of connected components of M. The mor-
phism 4, + ,+ y0 - ,~ induces an isomorphism

Myt vt 300 X /Axﬂuﬂxo,lf-,x* = Iyt xOwm x
where Ayt ut you—,i(u—) 18 trivial, and for Xt +1(p) +1(vF) > 0, we have

I(vh)

1— H ZV_+ - AX+»V+7X07#7»21(#7) - Aut(VJr) - 1,
i=1
I(v™)
1= 1_[1 Zv; = Agi(ut)ut x0w-x- = Aut(vT) = 1,
J:
U U
1— H L+ x H Z,- — AX+,V+7X°7V’7X’ — Aut(l/+) x Aut(v™) — 1.

i=1 j=1
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So for —x* + 1(uF) + 1(v*) > 0, we have
[ Axt ot x0, 20— | = 2oty [Aaiuty ut x0,0- x| = 20—,
X X0, 20(p) (w),mt,x X~
|Ax+,u+,xo,v*,xf| = Zy+Zy-.
The stack M is a disjoint union of
{fx+,u+,xo,u*,xf : (X+7V+7X07V_7X_) S G;((Xv /L+7/L_)}'

7.3. Contribution from each admissible label. Let N)‘(’ﬂf X0 X on HX+1V+1X07U—7X—

be the pull back of the virtual normal bundle of F,+ ,+ o0 ,- - in ./\/lX(X, wrop).
Calculations similar to those in 21, Appendix A] show that
* 3k L]
Zxﬂuﬂx‘),f,x*eT(VXJﬁ,;F) — AT A A
eT(N;g7V+,X“,V*,X*)

where

-Jrﬁ-i-aa) e )Ha 1 (Ja‘*‘aﬁ)
1)'0& —1 ] ( ) 1/ =1

j=1

.AV( a)AV(B)AY (—a — 5)(a5(a + ﬂ))l(v*)Jrl(u’)fl
Hi(l’;) a(a - V+wz) Hl(l/ )ﬁ(ﬁ - V;wl(u+)+j)

(—1)1(“+), X~ =2l(p")
AT = px G +eT)

A0 = ()P g H Ha - (v

( ) X7+l(u+)+l(#+)a oo , otherwise
S e X =27)
(-1)~ XT ) g, o T T ) otherwise
B—1
From the definitions in Section and Proposition 4l we have
Lt ot 50 = x— (@, B)
= 1 / Gt @ = €T (Ve i)
[ Ayt vt x0 0= x| ot x0T (N;(’f x0T X" )

() +(p™)
=T .
vt,p— (av 6)

(= 1)l ] o,

(—=V=18/a)™x XTI )H(M)H. ( V—1a/B)7X “H(v H(M)H'
B B A & e 7 B[ 70 R

Let 7 = $/a. Then

= [Aut(p")]] Aut(p”)]

IX+)V+)X07V77X7 (a7ﬁ)
\/_—11(#+)+l(lf)
(—1)let I+l
. +(_\/__17-)*x++l(u+)+l(u+)H. . 7(_\/__1/7)7X7H(V7)+l(#7)H‘, o
(75 e A e [ 70 R 750 R

= [Aut(p")]] Aut(p”)]

G;O,Iﬁ,u— (1)
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7.4. Sum over admissible labels.

nyuﬂu*
1 / (Vi)
— er + 5
TRt () TAU ] o (g oy 0
_ 1 Z 1
= - -
|AU‘t(/’L )||AU't(/’L )l (X+,U+,XO,I/7,Xf)GG;((X,,Uj',,UI*) |AX+;V+7X07V77X7
/ ii*wﬂx“wjx*eT(Vx.,M,V)
[ﬂ];iiw*,xo,'/’,x* eT(N;(/g7V+7XO7V77X*)
1
= I o
| Aut ()| Aut ()] > a0 (@)

(X Tt X0 v x7)EGL (X, ut u)

\/_—11(#+)+l(lf)
e 7 Z 7 Gso v - (1)
(xt vt X0 v xT)eGY(X,ut u)
(—y/=Tr) X HEOHED (—v/=1/7)~x HEDHW)
T [ L A e 7 (7 | e

Recall that

(V)= Z A X))
XE2Z,xL2(L(pt)+(p1 ™))

Zy+

(=)t
\/__11<u+>+l<;r> Xoutop
We have
e N= ) @;ﬂﬁ(_\/__hx)z,ﬁa;ﬂy(A;r)zy@;)u(
lvE|=|pt]

This finishes the proof of ({@).

—h).

T
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