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A FORMULA OF TWO-PARTITION HODGE INTEGRALS

CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

1. Introduction

Let Mg,n denote the Deligne-Mumford moduli stack of stable curves of genus g

with n marked points. Let π : Mg,n+1 → Mg,n be the universal curve, and let ωπ
be the relative dualizing sheaf. The Hodge bundle

E = π∗ωπ

is a rank g vector bundle over Mg,n whose fiber over [(C, x1, . . . , xn)] ∈ Mg,n is

H0(C, ωC). Let si : Mg,n → Mg,n+1 denote the section of π which corresponds to
the i-th marked point, and let

Li = s∗iωπ

be the line bundle over Mg,n whose fiber over [(C, x1, . . . , xn)] ∈ Mg,n is the
cotangent line T ∗

xi
C at the i-th marked point xi. A Hodge integral is an integral of

the form
∫

Mg,n

ψj11 · · ·ψjnn λk11 · · ·λkg
g

where ψi = c1(Li) is the first Chern class of Li, and λj = cj(E) is the j-th Chern
class of the Hodge bundle.

The study of Hodge integrals is an important part of the intersection theory
on Mg,n. Hodge integrals also naturally arise when one computes Gromov-Witten
invariants by localization techniques. For example, the following generating series
of Hodge integrals arises when one computes local invariants of a toric Fano surface
in a Calabi-Yau 3-fold by virtual localization [29]:

Gµ+,µ−(λ; τ) = − (
√
−1λ)l(µ

+)+l(µ−)

zµ+ · zµ−

[τ(τ + 1)]
l(µ+)+l(µ−)−1

·
l(µ+)
∏

i=1

∏µ+
i −1
a=1

(

µ+
i τ + a

)

µ+
i !

·
l(µ−)
∏

i=1

∏µ−
i −1
a=1

(

µ−
i

1
τ + a

)

µ−
i !

·
∑

g≥0

λ2g−2

∫

M
g,l(µ+)+l(µ−)

Λ∨
g (1)Λ∨

g (τ)Λ∨
g (−τ − 1)

∏l(µ+)
i=1

1
µ+

i

(

1
µ+

i

− ψi

)

∏l(µ−)
j=1

τ
µ−

i

(

τ
µ−

j

− ψl(µ+)+j

) ,

(1)

where λ, τ are variables, (µ+, µ−) ∈ P2
+, the set of pairs of partitions which are not

both empty, and

Λ∨
g (u) = ug − λ1u

g−1 + · · · + (−1)gλg.

We will call the Hodge integrals in Gµ+,µ−(λ; τ) the two-partition Hodge integrals.
The purpose of this paper is to prove the following formula conjectured in [30]:

(2) G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ)
1



2 CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

where

G•(λ; p+, p−; τ) = exp





∑

(µ+,µ−)∈P2
+

Gµ+,µ−(λ; τ)p+
µ+p

−
µ−





R•(λ; p+, p−; τ)

=
∑

|µ±|=|ν±|

χν+(µ+)

zµ+

χν−(µ−)

zµ−

e
√−1(κ

ν+τ+κν−τ
−1)λ/2Wν+,ν−(e

√−1λ)p+
µ+p

−
µ− ,

p± = (p±1 , p
±
2 , . . .) are formal variables, and

p±µ = p±µ1
· · · p±µh

if µ = (µ1 ≥ · · · ≥ µh > 0). See Section 2 for notation in the definition of
R•(λ; p+, p−; τ).

Formula (2) is motivated by a formula of one-partition Hodge integrals conjec-
tured by M. Mariño and C. Vafa in [23] and proved by us in [21]. See [25] for another
approach to the Mariño-Vafa formula. The Mariño-Vafa formula can be obtained
by setting p− = 0 in (2). In a recent paper [4], D.E. Diaconescu and B. Florea
conjectured a relation between three-partition Hodge integrals and the topological
vertex [1]. A mathematical theory of the topological vertex will be developed in
[20].

The generating function R•(λ; p+, p−; τ) is a combinatorial expression involving
the representation theory of Kac-Moody Lie algebras. It is also related to the
HOMFLY polynomial of the Hopf link and the Chern-Simon theory [26, 24]. In
[31], the third author used (2) and a combinatorial trick called the chemistry of
Zk-colored labelled graphs to prove a formula conjectured by A. Iqbal in [12] which
expresses the generating function of Gromov-Witten invariants in all genera of local
toric Calabi-Yau threefolds in terms of Wµ,ν . See [12, 1, 4] for surveys of works on
this subject.

Our strategy to prove (2) is based on the following cut-and-join equation of R•

observed in [30]:

(3)
∂

∂τ
R• =

√
−1λ

2
(C+ + J+)R• −

√
−1λ

2τ2
(C− + J−)R•

where

C± =
∑

i,j

(i+ j)p±i p
±
j

∂

∂p±i+j
, J± =

∑

i,j

ijp±i+j
∂2

∂p±i ∂p
±
j

.

Equation (3) can be derived by the method in [28, 21]. In [30], the third author
proved that

Theorem 1 (initial values).

(4) G•(λ; p+, p−;−1) = R•(λ; p+, p−;−1).

So (2) follows from the main theorem in this paper:

Theorem 2 (cut-and-join equation of G•).

(5)
∂

∂τ
G• =

√
−1λ

2
(C+ + J+)G• −

√
−1λ

2τ2
(C− + J−)G•
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Both [21, Theorem 2] (cut-and-join equation of one-partition Hodge integrals)
and Theorem 2 are proved by localization method. We compute certain relative
Gromov-Witten invariants by virtual localization, and get an expression in terms
of one-partition or two-partition Hodge integrals and certain integrals of target ψ
classes. In [21], we used functorial localization to push forward calculations to
projective spaces, where the equivariant cohomology is completely understood, and
derived [21, Theorem 2] without using much information about integrals of target
ψ classes. In this paper, we relate integrals of target ψ classes to double Hurwitz
numbers, and use properties of double Hurwitz numbers to prove Theorem 2. More
precisely, for each (µ+, µ−) ∈ P2

+, we will define a generating function

K•
µ+,µ−(λ)

of certain relative Gromov-Witten invariants of P1 ×P1 blowup at a point, and use
localization method to derive the following expression:
(6)

K•
µ+,µ−(λ) =

∑

|ν±|=|µ±|
Φ•
µ+,ν+(−

√
−1τλ)zν+G•

ν+,ν−(λ; τ)zν−Φ•
ν−,µ−(

−
√
−1

τ
λ)

In (6), Φ•
µ,ν(λ) is a generating function of double Hurwitz numbers, and zµ is defined

in Section 2.1. It turns out that (6) is equivalent to the following equation:

(7) G•
µ+,µ−(λ; τ) =

∑

|ν±|=|µ±|
Φ•
µ+,ν+(

√
−1τλ)zν+K•

ν+,ν−(λ)zν−Φ•
ν−,µ−(

√
−1

τ
λ)

So Theorem 2 (cut-and-join equation of G•) follows from the cut-and-join equations
of double Hurwitz numbers. As a consequence, one can compute Kµ+,µ−(λ) in
terms of Wν+,ν− (Corollary 3.5). We will give three derivations of the cut-and-join
equations of double Hurwitz numbers: by combinatorics (Section 3.3), by gluing
formula (Section 5.4), and by localization (Section 5.8).

The rest of the paper is arranged as follows. In Section 2, we give the precise
statement of (2), and recall the proof of Theorem 1 (initial values). In Section 3
we give a combinatorial study of double Hurwitz numbers, and derive Theorem 2
(the cut-and-join equation of G•) from (6) and some identities of double Hurwitz
numbers. In Section 4, we review J. Li’s works [16, 17] on moduli spaces of relative
stable morphisms, and virtual localization on such moduli spaces [9, 11]. In Section
5, we give a geometric study of double Hurwitz numbers. In Section 6, we introduce
the geometric objects involved in the proof of (6). In Section 7, we prove (6) by
arranging the localization contribution in a neat way.

Acknowledgments. We wish to thank Jun Li for explaining his works [16, 17]
and Ravi Vakil for explaining relative virtual localization [11]. The research in this
work was started during the visit of the first and the third authors to the Center
of Mathematical Sciences, Zhejiang University in July and August of 2003. The
hospitality of the Center is greatly appreciated. The second author is supported
by an NSF grant. The third author is partially supported by research grants from
NSFC and Tsinghua University.
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2. The Conjecture

2.1. Partitions. We recall some notation of partitions. Given a partition

µ = (µ1 ≥ µ2 ≥ · · · ≥ µh > 0),

write l(µ) = h, and |µ| = µ1 + · · · + µh. Define

κµ =

l(µ)
∑

i=1

µi(µi − 2i+ 1).

For each positive integer j, define

mj(µ) = |{i : µi = j}|.
Then

|Aut(µ)| =
∏

j

(mj(µ))!.

Define

zµ = µ1 · · ·µl(µ)|Aut(µ)| =
∏

j

(

mj(µ)!jmj(µ)
)

.

Let P denote the set of partitions. We allow the empty partition and take

l(∅) = |∅| = κ∅ = 0.

Let

P2
+ = P2 − {(∅, ∅)}.

2.2. Generating functions of two-partition Hodge integrals. For (µ+, µ−) ∈
P2

+, define

Gg,µ+,µ−(α, β)

=
−
√
−1

l(µ+)+l(µ−)

|Aut(µ+)||Aut(µ−)|

l(µ+)
∏

i=1

∏µ+
i −1
a=1 (µ+

i β + aα)

(µ+
i − 1)!αµ

+
i −1

l(µ−)
∏

j=1

∏µ−
j −1

a=1 (µ−
j α+ aβ)

(µ−
j − 1)!βµ

−
j −1

·
∫

M
g,l(µ+)+l(µ−)

Λ∨(α)Λ∨(β)Λ∨(−α− β)(αβ(α + β))l(µ
+)+l(µ−)−1

∏l(µ+)
i=1 (α(α − µ+

i ψi))
∏l(µ−)
j=1 (β(β − µ−

j ψl(µ+)+j)
.

We have the following special cases which have been studied in [21]:

Gg,µ+,∅(α, β) =
−
√
−1

l(µ+)

|Aut(µ+)|

l(µ+)
∏

i=1

∏µ+
i −1
a=1 (µ+

i β + aα)

(µ+
i − 1)!αµ

+
i −1

·
∫

M
g,l(µ+)

Λ∨(α)Λ∨(β)Λ∨(−α− β)(αβ(α + β))l(µ
+)−1

∏l(µ+)
i=1 (α(α − µ+

i ψi))

Gg,∅,µ−(α, β) =
−
√
−1

l(µ−)

|Aut(µ−)|

l(µ−)
∏

j=1

∏µ−
j −1

a=1 (µ−
j α+ aβ)

(µ−
j − 1)!βµ

−
j −1

·
∫

M
g,l(µ−)

Λ∨(α)Λ∨(β)Λ∨(−α− β)(αβ(α + β))l(µ
−)−1

∏l(µ−)
j=1 (β(β − µ−

j ψj))
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By a standard degree argument, one sees that Gg,µ+,µ−(α, β) is homogeneous of
degree 0, so

Gg,µ+,µ−(α, β) = Gg,µ+,µ−(1,
β

α
).

Let

Gg,µ+,µ−(τ) = Gg,µ+,µ−(1, τ).

Introduce variables λ, p+ = (p+
1 , p

+
2 , . . .), p

− = (p−1 , p
−
2 , . . .). Given a partition

µ, define

p±µ = p±1 · · · p±l(µ).

In particular, p±∅ = 1. Define

Gµ+,µ−(λ; τ) =
∞
∑

g=0

λ2g−2+l(µ+)+l(µ−)Gg,µ+,µ−(τ)

G(λ; p+, p−; τ) =
∑

(µ+,µ−)∈P2
+

Gµ+,µ−(λ; τ)p+
µ+p

−
µ−

G•(λ; p+, p−; τ) = exp(G(λ; p+, p−; τ))

=
∑

(µ+,µ−)∈P2

G•
µ+,µ−(λ; τ)p+

µ+p
−
µ−

G•
µ+,µ−(λ; τ) =

∑

χ∈2Z,χ≤2(l(µ+)+l(µ−))

λ−χ+l(µ+)+l(µ−)G•
χ,µ+,µ−(τ)

2.3. Generating functions of representations of symmetric groups. Let

q = e
√
−1λ, [m] = qm/2 − q−m/2.

Define

Wµ,ν(q) = q|ν|/2Wµ(q) · sν(Eµ(t)),(8)

where

Wµ(q) = qκµ/4
∏

1≤i<j≤l(µ)

[µi − µj + j − i]

[j − i]

l(µ)
∏

i=1

µi
∏

v=1

1

[v − i+ l(µ)]
,(9)

Eµ(t) =

l(µ)
∏

j=1

1 + qµj−jt

1 + q−jt
·
(

1 +

∞
∑

n=1

tn
∏n
i=1(q

i − 1)

)

.(10)

In the special case of (µ+, µ−) = (∅, ∅), we have

W∅,∅ = 1.

Define

R•(λ; p+, p−; τ) =
∑

|ν±|=|µ±|≥0

χν+(C(µ+))

zµ+

χν−(C(µ−))

zµ−

·e
√
−1(κ

ν+τ+κν−τ
−1)λ/2Wν+,ν−(e

√
−1λ)p+

µ+p
−
µ− .
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2.4. The conjecture and the strategy. The main purpose of this paper is to
prove the following formula conjectured by the third author in [30]:

Theorem 3. We have the following formula of two-partition Hodge integrals:

(2) G•(λ; p+, p−; τ) = R•(λ; p+, p−; τ).

The method in [28, 21] shows that R• satisfies the cut-and-join equation (3).
In [30], the third author proved Theorem 1 (initial values). So (2) follows from
Theorem 2 (cut-and-join equation of G•). We will recall the proof of Theorem 1 in
Section 2.5.

2.5. Initial values. For completeness, we now recall the proof of Theorem 1, which
says

(4) G•(λ; p+, p−;−1) = R•(λ; p+, p−;−1).

We need the skew Schur functions [22]. Recall the Schur functions are related
to the Newton functions by:

sµ(x) =
∑

|ν|=|µ|

χµ(ν)

zν
pν(x),

where x = (x1, x2, . . .) are formal variables such that

pi(x) = xi1 + xi2 + · · · .

There are integers cηµν such that

sµsν =
∑

η

cηµνsη.

The skew Schur functions are defined by:

sη/µ =
∑

ν

cηµνsν .

Note that p± = p(x±).

2.5.1. The left-hand-side. When l(µ+) + l(µ−) > 2,

Gµ+,µ−(λ;−1) = 0;

when l(µ+) = 1 and l(µ−) = 0,

Gµ+,µ−(λ;−1)

= −
√
−1λ−1

∑

g≥0

λ2g

∫

Mg,1

λg
1
µ+

1

(

1
µ+

1

− ψ1

)

∏µ+
1 −1
a=1

(

−µ+
1 + a

)

µ+
1 · µ+

1 !

= (−1)µ
+
1

√
−1 · 1

2µ+
1 sin(µ+

1 λ/2)
=

(−1)µ
+
1 −1

qµ
+
1 /2 − q−µ

+
1 /2

·
pµ+

1

µ+
1

;
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the case of l(µ+) = 0 and l(µ−) = 1 is similar; when l(µ+) = l(µ−) = 1,

Gµ+,µ−(λ;−1) = lim
τ→−1

∑

g≥0

λ2g

∫

Mg,2

Λ∨
g (1)Λ∨

g (τ)Λ∨
g (−1 − τ)

1
µ+

1

(

1
µ+

1

− ψ1

)

· τ
µ−

1

(

τ
µ−

1

− ψ2

)

·τ(1 + τ) ·
∏µ+

1 −1
a=1

(

µ+
1 τ + a

)

µ+
1 · µ+

1 !
·
∏µ−

1 −1
a=1

(

µ−
1

τ + a
)

µ−
1 · µ−

1 !
.

One needs to consider the g = 0 term and the g > 0 terms separately. In the second
case, the limit is zero while in first case, by our convention:

∫

M0,2

Λ∨
0 (1)Λ∨

0 (τ)Λ∨
0 (−1 − τ)

1
µ+

1

(

1
µ+

1

− ψ1

)

· τ
µ−

1

(

τ
µ−

1

− ψ2

) =
(µ+

1 )2(
µ−

1

τ )2

µ+
1 +

µ−
1

τ

,

hence when µ+
1 6= µ−

1 , the limit is zero, when µ+
1 = µ−

1 , the limit is:

lim
τ→−1

(µ+
1 )2(

µ−
1

τ )2

µ+
1 +

µ−
1

τ

· τ(1 + τ) ·
∏µ+

1 −1
a=1

(

µ+
1 τ + a

)

µ+
1 · µ+

1 !
·
∏µ−

1 −1
a=1

(

µ−
1

τ + a
)

µ−
1 · µ−

1 !
=

1

µ+
1

.

Recall that p± = p(x±). With this notation, the initial value is:

G•(λ; p(x+), p(x−);−1)

= exp





∑

n≥1

(−1)n−1

qn/2 − q−n/2
pn(x

+)

n
+
∑

n≥1

(−1)n−1

qn/2 − q−n/2
pn(x

−)

n
+
∑

n≥1

pn(x
+)pn(x

−)

n





=

∞
∏

i,j=1

1

(1 + qi−1/2x+
j )(1 + qi−1/2x−j )

∏

j,k

1

1 − x+
j x

−
k

=
∑

ρ+

sρ+(−q1/2,−q3/2, . . . )sρ+(x+) ·
∑

ρ

sρ(x
+)sρ(x

−)

·
∑

ν−

sρ−(−q1/2,−q3/2, . . . )sρ−(x−)

=
∑

ν±,ρ,ρ±

sρ+(−q1/2,−q3/2, . . . )cν+

ρ+ρsν+(x+) · cν−

ρ−ρsν−(x−)sρ−(−q1/2,−q3/2, . . . )

=
∑

ρ,ν±

sν+/ρ(−q1/2,−q3/2, . . . )sν−/ρ(−q1/2,−q3/2, . . . ) · sν+(x+)sν−(x−).

2.5.2. The right-hand side. The following identity is proved in [30]:

Wµ,ν(q) = (−1)|µ|+|ν|q
κµ+κν+|µ|+|ν|

2

∑

ρ

q−|ρ|sµ/ρ(1, q, . . . )sν/ρ(1, q, . . . ).(11)
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From this one gets:

R•(λ; p(x+), p(x−);−1)

=
∑

|µ±|=|ν±|

χν+(µ+)

zµ+

χν−(µ−)

zµ−

e−
√−1(κ

ν++κ
ν− )λ/2Wν+,ν−(q)p+

µ+p
−
µ−

=
∑

ν±

sν+(x+)q−κν+/2Wν+,ν−(q)q−κν−/2sν−(x−)

=
∑

ν±

sν+(x+)sν−(x−)(−1)|ν
+|+|ν−|q(|ν

+|+|ν−|)/2

·
∑

ρ

q−|ρ|sν+/ρ(1, q, . . . )sν−/ρ(1, q, . . . )

=
∑

ν±

sν+(x+)sν−(x−)
∑

ρ

sν+/ρ(−q1/2,−q3/2, . . . )sν−/ρ(−q1/2,−q3/2, . . . ).

The proof of Theorem 1 is complete.

3. Double Hurwitz numbers and the cut-and-join equation of G•

In this section, we first derive some identities of double Hurwitz numbers, such
as sum formula and cut-and-join equations, which, together with initial values,
characterize the double Hurwitz numbers. Then we combine these identities with
(6) to obtain Theorem 2 (cut-and-join equation of G•).

3.1. Double Hurwitz numbers. Let X be a Riemann surface of genus h. Given
n partitions η1, . . . , ηn of d, denote by HX

d (η1, . . . , ηn)• and HX
d (η1, . . . , ηn)◦ the

weighted counts of possibly disconnected and connected Hurwitz covers of type
(η1, . . . , ηn) respectively. We will use the following formula for Hurwitz numbers
(see e.g. [5]):

HX
d (η1, . . . , ηn)• =

∑

|ρ|=d

(

dimRρ
d!

)2−2h n
∏

i=1

|Cηi |χρ(Cηi )

dimRρ
.(12)

It is sometimes referred to as the Burnside formula.
Suppose C → P1 is a genus g cover which has ramification type µ+, µ− at two

points p0 and p1 respectively, and ramification type (2) at r other points. By
Riemann-Hurwitz formula,

r = 2g − 2 + l(µ+) + l(µ−).(13)

Denote

H◦
g (µ

+, µ−) = HP
1

d (µ+, µ−, η1, . . . , ηr)◦,

H•
g (µ

+, µ−) = HP
1

d (µ+, µ−, η1, . . . , ηr)•,

for η1 = · · · = ηr = (2). We have by (12):

H•
g (µ

+, µ−) =
∑

|ν|=d
fν(2)r

χν(Cµ+)

zµ+

χν(Cµ−)

zµ+

,(14)

where r is given by (13), and

fν(2) = |C(2)|
χν(C(2))

dimRν
.
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Define

Φ◦
µ+,µ−(λ) =

∑

g≥0

H◦
g (µ

+, µ−)
λ2g−2+l(µ+)+l(µ−)

(2g − 2 + l(µ+) + l(µ−))!
,

Φ•
µ+,µ−(λ) =

∑

g≥0

H•
g (µ

+, µ−)
λ2g−2+l(µ+)+l(µ−)

(2g − 2 + l(µ+) + l(µ−))!
,

Φ◦(λ; p+, p−) =
∑

µ+,µ−

Φ◦
µ+,µ−(λ)p+

µ+p
−
µ− ,

Φ•(λ; p+, p−) = 1 +
∑

µ+,µ−

Φ•
µ+,µ−(λ)p+

µ+p
−
µ− .

The usual relationship between connected and disconnected Hurwitz numbers is:

Φ◦(λ; p+, p−) = log Φ•(λ; p+, p−).(15)

By (14) one easily gets:

Φ•(λ; p+, p−) = 1 +
∑

d≥1

∑

|µ±|=d

∑

|ν|=d

χν(Cµ+)

zµ+

χν(Cµ−)

zµ−

efν(2)λp+
µ+p

−
µ− .(16)

Equivalently,

Φ•
µ+,µ−(λ) =

∑

|ν|=d

χν(Cµ+)

zµ+

χν(Cµ−)

zµ−

efν(2)λ.(17)

We also have

Φ•
µ+,µ−(λ) =

∑

|ν|=d
(−1)l(µ

+)+l(µ−)χν(Cµ+)

zµ+

χν(Cµ−)

zµ−

e−fν(2)λ.(18)

3.2. Sum formula and initial values.

Proposition 3.1. We have

Φ•
µ1,µ3(λ1 + λ2) =

∑

µ2

Φ•
µ1,µ2(λ1) · zµ2 · Φ•

µ2,µ3(λ2),(19)

Φ•
µ1,µ3(0) =

1

zµ1

δµ1,µ3 .(20)

Proof. By the orthogonality relation for characters of Sd:

∑

µ

χν1(Cµ)χν2(Cµ)

zµ
= δν1,ν2(21)
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we have
∑

µ2

Φ•
µ1,µ2(λ1) · zµ2 · Φ•

µ2,µ3(λ2)

=
∑

µ2

∑

ν1

χν1(Cµ1 )

zµ1

χν1(Cµ2)

zµ2

efν1 (2)λ1 · zµ2 ·
∑

ν2

χν2(Cµ2 )

zµ2

χν2(Cµ3)

zµ3

efν2 (2)λ2

=
∑

ν1

∑

ν2

χν1(Cµ1 )

zµ1

χν2(Cµ3)

zµ3

efν1 (2)λ1+fν2 (2)λ2 ·
∑

µ2

χν1(Cµ2)χν2(Cµ2 )

zµ2

=
∑

ν1

∑

ν2

χν1(Cµ1 )

zµ1

χν2(Cµ3)

zµ3

efν1 (2)λ1+fν2 (2)λ2δν1,ν2

=
∑

ν

χν(Cµ1 )

zµ1

χν(Cµ3 )

zµ3

efν(2)(λ1+λ2)

= Φ•
µ1,µ3(λ1 + λ2).

Similarly, by the orthogonality relation:
∑

|ν|=d
χν(Cµ1 ) · χν(Cµ2 ) = zµ1δµ1,µ2 .(22)

we have

Φ•
µ1,µ2(0) =

∑

|ν|=d

χν(Cµ1 )

zµ1

· χν(Cµ2 )

zµ2

=
1

zµ1

δµ1,µ2 .

�

Equation (19) is a sum formula for double Hurwitz numbers, and Equation (20)
gives the initial values for double Hurwitz numbers.

Corollary 3.2. Denote by Φ•(λ)d the matrix (Φ•
µ,ν(λ))|µ|=|ν|=d. Then Φ•(λ)d is

invertible, and

Z−1
d Φ•(−λ)−1

d = Φ•(λ)dZd.(23)

where Zd = (zµδµ,ν)|µ|=|ν|=d.

Proof. In (19) we take λ1 = λ and λ2 = −λ, then by (20) we have

Z−1
d = Φ•(0)d = Φ•(λ)dZdΦ

•(−λ)d.

Taking determinant on both sides one sees that Φ•(λ)d is invertible, and (23) is a
straightforward consequence. �

3.3. Cut-and-join equation for double Hurwitz numbers. Recall for any
partition ν of d, one has

fν(2) ·
∑

µ

χν(Cµ)

zµ
pµ =

1

2

∑

i,j

(

(i+ j)pipj
∂

∂pi+j
+ ijpi+j

∂

∂pi

∂

∂pj

)

∑

η

χν(Cη)

zη
pη.

See e.g. [28, 21]. From this one easily proves the following results.
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Proposition 3.3. We have the following equations:

∂Φ•
h

∂λ
=

1

2

∑

i,j≥1

(

ijp±i+j
∂2Φ•

h

∂p±i ∂p
±
j

+ (i+ j)p±i p
±
j

∂Φ•
h

∂p±i+j

)

,(24)

∂Φ◦
h

∂λ
=

1

2

∑

i,j≥1

(

ijp±i+j
∂2Φ◦

h

∂p±i ∂p
±
j

+ ijp±i+j
∂Φ◦

h

∂p±i

∂Φ◦
h

∂p±j
+ (i+ j)p±i p

±
j

∂Φ◦
h

∂p±i+j

)

.(25)

The new feature for the double Hurwitz numbers is that there are two choices
to do the cut-and-join, on the + side or on the − side. One can rewrite (24) as
sequences of systems of ODEs as follows. For each partition µ− of d, one gets
a system of ODEs for {Φ•

µ+,µ−(λ) : |µ+| = d}, hence they are determined by

{Φ•
µ+,µ−(0) : |µ+| = d}. One can also reverse the roles of µ+ and µ−. There are

matrices CJd such that the cut-and-join equations in degree d can be written as

d

dλ
Φ•
d = CJd · Φ•

d = Φ•
d · CJ td.(26)

Example 3.4. When d = 2, the cut-and-join equation becomes

d

dλ

(

Φ•
(2),(2) Φ•

(2),(12)

Φ•
(12),(2) Φ•

(12),(12)

)

=

(

0 1
1 0

)

(

Φ•
(2),(2) Φ•

(2),(12)

Φ•
(12),(2) Φ•

(12),(12)

)

=

(

Φ•
(2),(2) Φ•

(2),(12)

Φ•
(12),(2) Φ•

(12),(12)

)

(

0 1
1 0

)

The initial values are:
(

Φ•
(2),(2) Φ•

(2),(12)

Φ•
(12),(2) Φ•

(12),(12)

)

(0) =

(

1
2 0
0 1

2

)

Hence we have the following solution:
(

Φ•
(2),(2) Φ•

(2),(12)

Φ•
(12),(2) Φ•

(12),(12)

)

(λ) =

(

1
2 coshλ 1

2 sinhλ
1
2 sinhλ 1

2 coshλ

)

This is compatible with (18).

3.4. Cut-and-join equation for two-partition Hodge integrals. For each
(µ+, µ−) ∈ P2

+, we will define a generating function

K•
µ+,µ−(λ)

of relative Gromov-Witten invariants. In Section 7, we will derive the following
identity by relative virtual localization:

(6) K•
µ+,µ−(λ) =

∑

|ν±|=|µ±|
Φ•
µ+,ν+(−

√
−1τλ)zν+G•

ν+,ν−(λ; τ)zν−Φ•
ν−,µ−(

−
√
−1

τ
λ).

In matrix form, one has for d+, d− ≥ 0,

K•(λ)d+,d− = Φ•(−
√
−1τλ)d+Zd+G

•(λ; τ)d+,d−Zd−Φ•(
−
√
−1

τ
λ)d− .

Hence by (23) we have

G•(λ; τ)d+,d− = Φ•(
√
−1τλ)d+Zd+K

•(λ)d+,d−Zd−Φ•(

√
−1

τ
λ)d− .
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Taking derivative in τ on both sides, one then gets:

∂

∂τ
G•(λ; τ)d+,d− =

√
−1λ

(

CJd+ ·G•(λ; τ)d+,d− − 1

τ2
G•(λ; τ)d+,d− · CJ td−

)

.

This completes the proof of the cut-and-join equation for G• and hence the proof
of the formula (2) of two-partition Hodge integrals.

Corollary 3.5. We have

K•
µ+,µ−(λ) =

∑

η±

χη+(Cµ+)

zµ+

· Wη+,η−(e
√
−1λ) · χη−(Cµ−)

zµ−

.

Proof. By (6), (2) and (17) we have

K•
µ+,µ−(λ)

=
∑

|ν±|=|µ±|
Φ•
µ+,ν+(−

√
−1τλ)zν+G•

ν+,ν−(λ; τ)zν−Φ•
ν−,µ−(

−
√
−1

τ
λ)

=
∑

ν±,ρ±,η±

e−
√−1f

ρ+ (2)τλχρ+(Cµ+)

zµ+

χρ+(Cν+)

zν+

· zν+

·χη+(Cν+)

zν+

e
√
−1κ

η+τλ/2Wη+,η−(e
√−1λ)e

√
−1κ

η−τ
−1λ/2χη−(Cν−)

zν−

·zν− · χρ−(Cν−)

zν−

χρ−(Cµ−)

zµ−

e−
√−1f

ρ− (2)τ−1λ

=
∑

η±

χη+(Cµ+)

zµ+

· Wη+,η−(e
√
−1λ) · χη−(Cµ− )

zµ−

.

In the last equality we have used (21). �

4. Relative stable morphisms and relative virtual localization

In this section, we will give a brief review of the moduli spaces of algebraic
relative stable morphisms [16, 17] and virtual localization on such spaces [9, 11].

4.1. Relative stable morphisms. The definitions given in this section are based
on J. Li’s works on relative stable morphisms [16, 17], with minor modifications.

Let Y be a smooth projective variety. Let D1, . . . , Dk be disjoint smooth divisors
in Y . For α = 1, . . . , k, define

∆(Dα) = P(ODα ⊕NDα/Y ) → Dα,

where ND/Y denotes the normal sheaf of a subvariety D in Y . The projective line
bundle ∆(Dα) → Dα has two distinct sections

Dα
0 = P(ODα ⊕ 0), Dα

∞ = P(0 ⊕NDα/Y ).

We have

NDα
0 /∆(Dα)

∼= N−1
Dα/Y , NDα

∞/∆(Dα)
∼= NDα/Y .

Let

∆(Dα)(m) = ∆(Dα)1 ∪ ∆(Dα)2 ∪ · · · ∪ ∆(Dα)m,

where ∆(Dα)i ∼= ∆(Dα) for i = 1, . . . ,m. Let Dα
i,0 and Dα

i,∞ be the two distinct

sections of ∆(Dα)i which correspond to Dα
0 and Dα

∞, respectively. Then ∆(Dα)(m)



A FORMULA OF TWO-PARTITION HODGE INTEGRALS 13

is obtained by identifying Dα
i,∞ with Dα

i+1,0 for i = 1, · · · ,m−1 under the canonical
isomorphisms

Dα
i,∞ ∼= Dα ∼= Dα

i+1,0.

Define

Dα
(0) = Dα

1,0, Dα
(i) = ∆(Dα)i ∩ ∆(Dα)i+1, Dα

(m) = Dα
m,∞,

where i = 1, . . . ,m − 1. The C∗ action on ODα induces a C∗ action on ∆(Dα)
such that ∆(Dα) → Dα is C∗ equivariant, where C∗ acts on Dα trivially. The
two distinct sections Dα

0 , D
α
∞ are fixed under this C∗ action. So there is a (C∗)m

action on ∆(Dα)(m) fixing Dα
(0), . . . , D

α
(m), such that ∆(Dα)(m) → Dα is (C∗)m

equivariant, where (C∗)m acts on Dα trivially.
The variety

Y [m1, . . . ,mk] = Y ∪
k
⋃

α=1

∆(Dα)(mα)

with normal crossing singularities is obtained by identifying Dα ⊂ Y with Dα
(0) ⊂

∆(Dα) under the canonical isomorphism. There is a morphism

π[m1, . . . ,mk] : Y [m1, . . . ,mk] → Y

which contracts ∆(Dα)(mα) to Dα. The (C∗)m
α

action on ∆(Dα)(mα) gives a

(C∗)m
1+···+mk

on Y [m1, . . . ,mk] such that π[m1, . . . ,mk] is (C∗)m
1+···+mk

equi-
variant with respect to the trivial action on Y .

With the above notation, we are now ready to define relative stable morphisms
for (Y ;D1, . . . , Dk).

Definition 4.1. Let β ∈ H2(Y,Z) be a nonzero homology class such that

dα =

∫

β

c1(O(Dα)) ≥ 0.

Let µα be a partition of dα. Define

Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)

to be the moduli space of morphisms

f : (C, {x1
i }l(µ

1)
i=1 , . . . , {xki }l(µ

k)
i=1 ) → Y [m1, . . . ,mk]

such that

(1) (C, {x1
i }l(µ

1)
i=1 , . . . , {xki }l(µ

k)
i=1 ) is a connected prestable curve of arithmetic

genus g with
∑k

α=1 l(µ
α) marked points.

(2) (π[m1, . . . ,mk] ◦ f)∗[C] = β ∈ H2(Y ; Z).
(3)

f−1(Dα
(mα)) =

l(µα)
∑

i=1

µαi x
α
i

as Cartier divisors. In particular, if dα = 0, then f−1(Dα
(mα)) is empty.

(4) The preimage of Dα
(l) consists of nodes of C, where 0 ≤ l ≤ mα − 1. If

f(y) ∈ Dα
(l) and C1 and C2 are two irreducible components of C which

intersect at y, then f |C1 and f |C2 have the same contact order to Dα
(l) at y.

(5) The automorphism group of f is finite.
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Two morphisms described above are isomorphic if they differ by an isomorphism of

the domain and an element in (C∗)m
1+···+mk

acting on the target. In particular,
this defines the automorphism group in the stability condition (5) above.

Remark 4.2. In [16, 17], the number of divisors k = 1, but the construction and
proofs in [16, 17] show that

Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)

is a separated, proper Deligne-Mumford stack with a perfect obstruction theory of
virtual dimension

∫

β

c1(TY ) + (1 − g)(dimY − 3) +

k
∑

α=1

(l(µα) − |µα|),

where TY is the tangent bundle of Y .

Definition 4.3. We define the moduli space M•
χ(Y ;D1, . . . , Dk | β;µ1, · · · , µk)

similarly, with (1) replaced by the following (1)•, and one additional condition (6):

(1)• (C, {x1
i }l(µ

1)
i=1 , . . . , {xki }l(µ

k)
i=1 ) is a possibly disconnected prestable curve with

∑k
α=1 l(µ

α) marked points. Let C1, . . . , Cn be the connected components of
C, and let gi be the arithmetic genus of Ci. Then

n
∑

i=1

(2 − 2gi) = χ.

(6) Let βi = f̃∗[Ci], where Ci is a connected component of C. Then βi 6= 0,
and

∫

βi

c1(O(Dα)) ≥ 0

for α = 1, . . . , k.

The moduli space

M•
χ(Y ;D1, . . . , Dk | β;µ1, · · · , µk)

is a finite quotient of a disjoint union of products of the moduli spaces defined in
Definition 4.1. By [16, 17], it is a separated, proper Deligne-Mumford stack with a
perfect obstruction theory of virtual dimension

∫

β

c1(TY ) +
χ

2
(dim Y − 3) +

k
∑

α=1

(l(µα) − |µα|).

4.2. Tangent and obstruction spaces. This section is based on [17, Section
5.1]. We first introduce some notation. If mα > 0, define line bundles Lαl on
Dα

(l) ⊂ Y [m1, . . . ,mk] by

Lαl =

{

NDα
(0)
/Y ⊗NDα

(0)
/∆(Dα)1 l = 0

NDα
(l)
/∆(Dα)l

⊗NDα
(l)
/∆(Dα)l+1

1 ≤ l ≤ mα − 1

Note that Lαl is a trivial line bundle on Dα
(l).

The tangent space T 1 and the obstruction space T 2 of

Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)
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at the moduli point
[

f : (C, {x1
i }l(µ

1)
i=1 , . . . , {xki }l(µ

k)
i=1 ) → Y [m1, . . . ,mk]

]

are given by the following two exact sequences:

(27)
0 → Ext0(ΩC(R),OC) → H0(D•) → T 1

→ Ext1(ΩC(R),OC) → H1(D•) → T 2 → 0

(28)

0 → H0



C, f∗
(

ΩY [m1,...,mk](
k
∑

α=1

logDα
(mα))

)∨

→ H0(D•) →
k
⊕

α=1

mα−1
⊕

l=0

H0
et(R

α•
l )

→ H1



C, f∗
(

ΩY [m1,...,mk](
k
∑

α=1

logDα
(mα))

)∨

→ H1(D•) →
k
⊕

α=1

mα−1
⊕

l=0

H1
et(R

α•
l ) → 0

where

R =

k
∑

α=1

l(µα)
∑

i=1

xαi ,

H0
et(R

α•
l ) ∼=

⊕

q∈f−1(Dα
(l)

)

Tq(f
−1(∆(Dα)l)) ⊗ T ∗

q (f−1(∆(Dα)l)) ∼= C⊕nα
l ,(29)

H1
et(R

α•
l ) ∼= H0(Dα

(l), L
α
l )⊕n

α
l

/

H0(Dα
(l), L

α
l ),(30)

and nαl is the number of nodes over Dα
l . In (30),

H0(Dα
(l), L

α
l ) → H0(Dα

(l), L
α
l )⊕n

α
l

is the diagonal embedding.
We refer the reader to [17] for the definitions of Hi(D•) and the maps between

terms in (27), (28). Here we only explain the part relevant to virtual localization
calculations. The vector space

B1 = Ext0(ΩC(R),OC)

is the space of the infinitesimal automorphisms of the domain curve (C,R), and

B4 = Ext1(ΩC(R),OC)

is the space of the infinitesimal deformations of (C,R). Let Ĉ be the normalization

of C, R̂ ⊂ Ĉ be the pull back of R, and R′ ⊂ Ĉ be the divisor corresponding to
nodes in C. From the local to global spectral sequence, we have an exact sequence

0 → B4,0 → B4 → B4,1 → 0,

where

B4,0 = H1(C, Ext0OC
(ΩC(R),OC)) = H1(C,ΩC(R)∨)

is the space of infinitesimal deformations of the smooth pointed curve (Ĉ, R̂+R′),
and

B4,1 = H0(C, Ext1OC
(ΩC(R),OC)) ∼=

⊕

q∈Sing(C)

Tq′Ĉ ⊗ Tq′′Ĉ
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corresponds to smoothing of nodes of the domain curve. Here Sing(C) is the set of

nodes of C, and q′, q′′ ∈ Ĉ are the two preimages of q under the normalization map
Ĉ → C. The tangent line of smoothing of the node q is canonically identified with
Tq′Ĉ ⊗ Tq′′Ĉ.

The complex vector space

B2 = H0



C, f∗
(

ΩY [m1,...,mk](

k
∑

α=1

logDα
(mα))

)∨



is the space of infinitesimal deformations of the map f with fixed domain and target,
and

B5 = H1



C, f∗
(

ΩY [m1,...,mk](

k
∑

α=1

logDα
(mα))

)∨



is the obstruction space to deforming f with fixed domain and target.
Finally, let

B3 =

k
⊕

α=1

mα−1
⊕

l=0

H0
et(R

α•
l ), B6 =

k
⊕

α=1

mα−1
⊕

l=0

H1
et(R

α•
l ).

The complex vector space H1
et(R

α•
l ) correponds to obstruction to smoothing the

nodes in f−1(Dα
(l)). More explicitly, let

f−1(Dα
(l)) = {q1, . . . , qn},

and let νi be the contact order of f to Dα
(l) at qi (of either of the two branches of

f near qi). Then B4 → H1(D•) in (27) induces a map

n
⊕

i=1

Tqi,1Ĉ ⊗ Tqi,2Ĉ → H1
et(R

α•
l ) ∼= H0(Dα

(l), L
α
l )⊕n

/

H0(Dα
(l), L

α
l )

(s1, . . . , sn) 7→ [(sν11 , . . . , s
νn
n )]

where we use isomorphisms

H0(Dα
(l), L

α
l ) ∼= (Lαl )f(qi)

∼=
(

Tq′
i
Ĉ ⊗ Tq′′

i
Ĉ
)⊗νi

.

The first isomorphism follows from the triviality of the line bundle Lαl → Dα
(l). We

see that the obstruction vanishes iff the smoothing of the nodes q1, . . . , qn is com-
patible with the smoothing the target along the divisor Dα

(l), which is parametrized

by the complex line H0(Dα
(l), L

α
l ).

4.3. Relative virtual localization. In this section, we assume that a torus T =
(C∗)r acts on Y , and D1, . . . , Dk are T -invariant divisors.

Under our assumption, NDα/Y → Dα is T -equivariant, and the T -action ex-

tends to ∆(Dα). So T acts on Y [m1, . . . ,mk], and acts on Mg,0(Y ;D1, . . . , Dk |
β;µ1, . . . , µk) by moving the image.

The T fixed points set Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)T is a disjoint union
of

{FΓ | Γ ∈ Gg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)},



A FORMULA OF TWO-PARTITION HODGE INTEGRALS 17

where each Γ ∈ Gg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk) corresponds to a connected

component, or a union of connected components, FΓ of Mg,0(Y ;D1, . . . , Dk |
β;µ1, . . . , µk)T . Let

[f : (C, {x1
i }l(µ

1)
i=1 , . . . , {xki }l(µ

k)
i=1 ) ∈ FΓ ⊂ Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk),

for some Γ ∈ Gg,0(P
1, µ). The T -action on Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)

induces T -actions on the exact sequences (27), (28) which define T 1 and T 2. Let
T i,f and T i,m denote the fixing part and the moving part of T i under the T -action,
respectively, where i = 1, 2. Then

T 1,f − T 2,f

defines a perfect obstruction theory on FΓ, and

T 1,m − T 2,m

defines the virtual normal bundle Nvir
FΓ

of FΓ in Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk).
More explicitly, let Bmi denote the moving part of Bi under T -action, where i =

1, . . . , 6. Then Bm3 = 0. Note that there are subtleties due to the (C∗)m
1+···+mk

action on the target Y [m1, . . . ,mk]. We have

1

eT (Nvir
FΓ

)
=
eT (T 2,m)

eT (T 1,m)
=
eT (Bm1 )eT (Bm5 )eT (Bm6 )

eT (Bm2 )eT (Bm4 )

In [9], T. Graber and R. Pandharipande proved a localization formula for the
virtual fundamental class in the general context of C∗-equivariant perfect obstruc-
tion theory. In [11], T. Graber and R. Vakil showed that moduli spaces of relative
stable morphisms satisfy the technical assumptions required in the general formal-
ism in [9], and derived relative virtual localization under the assumption that the
divisor is fixed pointwisely under the C∗ action [11, Theorem 3.6]. In our context,
the localization formula proved in [9] reads:
(31)

[Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)]
vir

T =
∑

Γ∈Gg,0(Y ;D1,...,Dk|β;µ1,...,µk)

(iFΓ)∗

(

[FΓ]vir
T

eT (Nvir
FΓ

)

)

where
iFΓ : FΓ → Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)

is the inclusion, eT (Nvir
FΓ

) is the T -equivariant Euler class of the virtual normal

bundle Nvir
FΓ

= T 1,m − T 2,m over FΓ,

[Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk)]vir
T ∈ AT∗ (Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk); Q)

is the T -equivariant virtual fundamental class defined by the T -equivariant perfect
obstruction theory T 1 − T 2 on Mg,0(Y ;D1, . . . , Dk | β;µ1, . . . , µk), and

[FΓ]vir
T ∈ AT∗ (FΓ; Q)

is the T -equivariant virtual fundamental class defined by the perfect obstruction
theory T 1,f − T 2,f on FΓ.

Similarly, we have
(32)

[M•
χ(Y ;D1, . . . , Dk | β;µ1, · · · , µk)]vir

=
∑

Γ∈G•
χ(Y ;D1,...,Dk|β;µ1,··· ,µk)

(iFΓ)∗

(

[FΓ]vir

eT (Nvir
FΓ

)

)
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5. Double Hurwitz numbers as relative Gromov-Witten invariants

In this section, we study double Hurwitz numbers by relative Gromov-Witten
theory.

5.1. Relative morphisms to P1. Let [Z0, Z1] be the homogeneous coordinates of
P1. Let C∗ act on P1 by

t · [Z0, Z1] = [tZ0, Z1]

for t ∈ C∗, [Z0, Z1] ∈ P1. Let

s+ = [0, 1], s− = [1, 0]

be the two fixed points of this C∗-action.
Let µ+ and µ− be two partitions of d > 0. Let [P1] ∈ H2(P

1; Z) be the funda-
mental class. Define

Mg,0(P
1, µ+, µ−) = Mg,0(P

1, s+, s−; d[P1], µ+, µ−),

M•
χ(P

1, µ+, µ−) = M•
χ(P1, s+, s−; d[P1], µ+, µ−).

The virtual dimension of Mg,0(P
1, µ+, µ−) is

2g − 2 + l(µ+) + l(µ−),

and the virtual dimension of M•
χ(P

1, µ+, µ−) is

−χ+ l(µ+) + l(µ−).

We extend the C∗ action on P1 to P1[m+,m−] by trivial action on ∆±[m±],
which is a chain of m± copies of P1. This induces C∗-actions on Mg,0(P

1, µ+, µ−)

and M•
χ(P

1, µ+, µ−). Define the moduli spaces of unparametrized relative stable

maps to the triple (P1, s+, s−) to be

Mg,0(P
1, µ+, µ−)//C∗ =

(

Mg,0(P
1, µ+, µ−) \Mg,0(P

1, µ+, µ−)C
∗
)/

C∗,

M•
χ(P1, µ+, µ−)//C∗ =

(

M•
χ(P1, µ+, µ−) \M•

χ(P
1, µ+, µ−)C

∗
)/

C∗.

Then Mg,0(P
1, µ+, µ−)//C∗ is a separated, proper Deligne-Mumford stack with

a perfect obstruction theory of virtual dimension

2g − 2 + l(µ+) + l(µ−) − 1,

and M•
χ(P1, µ+, µ−)//C∗ is a separated, proper Deligne-Mumford stack with a

perfect obstruction theory of virtual dimension

−χ+ l(µ+) + l(µ−) − 1.

5.2. Target ψ classes. In the notation in Section 4.1, we have ∆± ∼= P1, ∆±(m)
is a chain of m copies of P1, and D±

(l) is a point, for l = 0, . . . ,m±. Let L± and be

the line bundle on Mg,0(P
1, µ+, µ−)//C∗ whose fiber at

[

f : (C, x1, . . . , xl(µ+), y1, . . . , yl(µ−)) → P1[m+,m−]
]

∈ Mg,0(P
1, µ+, µ−)

is the cotangent line

T ∗
D±

(m±)

(

P1[m+,m−]
)
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of P1[m+,m−] at the smooth pointD±
(m±). We define L+ and L− on M•

χ(P
1, µ+, µ−)//C∗,

similarly. Define the target ψ classes

ψ0 = c1(L
+), ψ∞ = c1(L

−).

The following integral of ψ0 arises in the localization calculations in [21]:
∫

[Mg,0(P1,µ+,µ−)//C∗]vir

(ψ0)2g−2+l(µ+)+l(µ−)−1.

In Section 5.8, we will relate such integrals of target ψ classes to double Hurwitz
numbers (Proposition 5.4, 5.5).

5.3. Double Hurwitz numbers. Let µ+, µ− be two partitions of d > 0. There
are branch morphisms

Br : Mg,0(P
1, µ+, µ−) → Sym2g−2+l(µ+)+l(µ−) P1 ∼= P2g−2+l(µ+)+l(µ−)

Br : M•
χ(P1, µ+, µ−) → Sym−χ+l(µ+)+l(µ−) P1 ∼= P−χ+l(µ+)+l(µ−)

The double Hurwitz numbers for connected covers of P1 can be defined by

H◦
g (µ

+, µ−) =
1

|Aut(µ+)||Aut(µ−)|

∫

[Mg,0(P1,µ+,µ−)]vir

Br∗(H2g−2+l(µ+)+l(µ−))

where H ∈ H2(P2g−2+l(µ+)+l(µ−); Z) is the hyperplane class. The double Hurwitz
numbers for possibly disconnected covers of P1 can be defined by

H•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(P1,µ+,µ−)]vir

Br∗(H−χ+l(µ+)+l(µ−)).

We have

H•
2−2g,µ+,µ− = H•

g (µ
+, µ−).

Recall that H◦
g (µ

+, µ−), H•
g (µ

+, µ−) are defined combinatorially in Section 3.
We define generating functions of double Hurwitz numbers as in Section 3:

Φ◦
µ+,µ−(λ) =

∞
∑

g=0

λ2g−2+l(µ+)+l(µ−)

(2g − 2 + l(µ+) + l(µ−))!
H◦
g (µ

+, µ−)

Φ•
µ+,µ−(λ) =

∑

χ∈2Z,χ
2 ≤min{l(µ+),l(µ−)}

λ−χ+l(µ+)+l(µ−)

(−χ+ l(µ+) + l(µ−))!
H•
χ,µ+,µ−

Φ◦(λ; p+, p−) =
∑

µ+,µ−

Φ◦
µ+,µ−(λ)p+

µ+p
−
µ−

Φ•(λ; p+, p−) = 1 +
∑

µ+,µ−

Φ•
µ+,µ−(λ)p+

µ+p
−
µ−

Then

Φ•(λ; p+, p−) = exp(Φ◦(λ; p+, p−)).

Note that

(33) Φ•
µ+,µ−(0) =

δµ+,µ−

zµ+

,
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where zν = ν1 · · · νl(ν)|Aut(ν)|, so

Φ•(0, p+, p−) = 1 +
∑

µ

p+
µ p

−
µ

zµ
.

5.4. Gluing formula. Let k+, k− be positive integers such that

k+ + k− = −χ+ l(µ+) + l(µ−).

By gluing formula of algebraic relative Gromov-Witten invariants [17, Corollary
3.16], we have

∫

[M•
χ(P1,µ+,µ−)]vir

Br∗(H−χ+l(µ+)+l(µ−))

=
∑

−χ±+l(µ±)+l(ν)=k±

∫

[M•
χ+ (P1,µ+,ν)]vir

Br∗(Hk+

)

· aν
|Aut(ν)|

∫

[M•
χ− (P1,ν,µ−)]vir

Br∗(Hk−)

where

aν = ν1 · · · νl(ν).
Therefore, we have the following gluing formula for double Hurwitz numbers:

Proposition 5.1 (gluing formula). Let k+, k− be positive integers such that

k+ + k− = −χ+ l(µ+) + l(µ−).

Then

(34) H•
χ,µ+,µ− =

∑

−χ±+l(µ±)+l(ν)=k±

H•
χ+,µ+,νzνH

•
χ−,ν,µ−

Recall that zν = aν |Aut(ν)|.
Let d = |µ+| = |µ−|. It is straightforward to check that Proposition 5.1 implies

the sum formula

(35)
∑

|ν|=d
Φ•
µ+,ν(λ1)zνΦ

•
ν,µ−(λ2) = Φ•

µ+,µ−(λ1 + λ2)

which was derived in Section 3.2 from the combinatoric definition.
The cut-and-join equations (26) for double Hurwitz numbers are special cases

k+ = 1, k− = 1 of Proposition 5.1. More precisely, differentiate (35) with repect to
λ1, and then set λ1 = 0. We obtain a cut-and-join equation:

(36)
d

dλ
Φ•
µ+,µ−(λ) =

∑

|ν|=d
H•
l(µ+)+l(ν)−1,µ+,νzνΦ

•
ν,µ−(λ).

Differentiate (35) with repect to λ2, and then set λ2 = 0. We obtain another
cut-and-join equation:

(37)
d

dλ
Φ•
µ+,µ−(λ) =

∑

|ν|=d
Φ•
µ+,ν(λ)zνH

•
l(ν)+l(µ−)−1,ν,µ− .

Define the cut-and-join coefficients

(CJ)µν = H•
l(µ)+l(ν)−1,µ,νzν .
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They are the entries of the matrix CJd in Section 3.3. The cut-and-join equations
can be written as

(38)
d

dλ
Φ•
µ+,µ−(λ) =

∑

|ν|=d
(CJ)µ+νΦ

•
ν,µ−(λ) =

∑

|ν|=d
Φ•
µ+,ν(λ)(CJ)µ−ν ,

which is equivalent to (26) in Section 3.3:

d

dλ
Φ•
d = CJd · Φ•

d = Φ•
d · CJ td.

Remark 5.2. The cut-and-join equation of Hurwitz numbers H◦
g (µ), H•

g (µ) was
first proved using combinatorics by Goulden, Jackson and Vainstein [8] and later
proved using gluing formula of symplectic relative Gromov-Witten invariants by
Li-Zhao-Zheng [19] and Ionel-Parker [13].

5.5. Localization. In the spirit of [21, Section 7], we lift

H−χ+l(µ+)+l(µ−) ∈ H2(−χ+l(µ+)+l(µ−))(P−χ+l(µ+)+l(µ−); Z)

to
−χ+l(µ+)+l(µ−)

∏

k=1

(H − wku) ∈ H
2(−χ+l(µ+)+l(µ−))
C∗ (P−χ+l(µ+)+l(µ−); Z),

where wk ∈ Z, and compute

H•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(P1,µ+,µ−)]vir

Br∗





−χ+l(µ+)+l(µ−)
∏

k=1

(H − wku)





by virtual localization.

5.6. Torus fixed points and admissible triples. Given a morphism

f : (C, {x1
i }l(µ

1)
i=1 , . . . , {xki }l(µ

k)
i=1 ) → P1[m+,m−]

which represents a point in M•
χ(P

1, µ+, µ−)C
∗

, let

f̃ = π[m+,m−] ◦ f : C → P1,

and let C± = f̃−1(s±). Then

C = C+ ∪ L ∪C−,

where L is a disjoint union of projective lines. Let

f± = f |C± : C± → ∆±(m±),

f0 = f |L : L → P1.

Then f0 is a morphism of degree

d = |µ+| = |µ−|
fully ramified over s+ and s−. The degrees of f0 restricted to connected components
of L determine a partition ν of d.

Let C+
1 , . . . , C

+
k be the connected components of C+, and let gi be the arithmetic

genus of C+
i . (We define gi = 0 if C+

i is a point.) Define

χ+ =

k
∑

i=1

(2 − 2gi),
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and define χ− similarly. We have

−χ+ + 2l(ν) − χ− = −χ.
Note that χ± ≤ 2 min{l(µ±), l(ν)}. So

−χ+ + l(µ+) + l(ν) ≥ 0,

and the equality holds if and only if m+ = 0. In this case, we have ν = µ+,
χ+ = 2l(µ+), and χ− = χ. Similarly,

−χ− + l(ν) + l(µ−) ≥ 0,

and the equality holds if and only if m− = 0. In this case, we have ν = µ−,
χ− = 2l(µ−), and χ+ = χ. There are three cases:
Case 1: m− = 0. Then f− is a constant map, χ+ = χ, ν = µ−, and f+ represents
a point in

M•
χ(P1, µ+, µ−)//C∗.

Case 2: m+ = 0. Then f+ is a constant map, χ− = χ, ν = µ+, and f− represents
a point in

M•
χ(P1, µ+, µ−)//C∗.

Case 3: m+,m− > 0. Up to an element of Aut(ν), f+ represents a point in

M•
χ+(P1, µ+, ν)//C∗,

and f− represents an element of

M•
χ−(P1, ν, µ−)//C∗.

Definition 5.3. We say a triple (χ+, ν, χ−) is admissible if

• χ+, χ− ∈ 2Z.
• ν is a partition of d.
• χ± ≤ 2 min{l(µ±), l(ν)}.
• −χ+ + 2l(ν) − χ− = −χ.

Let G•
χ(P1, µ+, µ−) denote the set of all admissible triples.

We define

Mχ,µ−,2l(µ−) = M•
χ(P

1, µ+, µ−)//C∗,

M2l(µ+),µ+,χ = M•
χ(P

1, µ+, µ−)//C∗,

and define

Mχ+,ν,χ− =
(

M•
χ+(P1, µ+, ν)//C∗

)

×
(

M•
χ−(P1, ν, µ−)//C∗

)

.

if (χ+, ν, χ−) ∈ G•
χ(P1, µ+, µ−), and

−χ+ + l(µ+) + l(ν) > 0, −χ− + l(ν) + l(µ−) > 0.

For every (χ+, ν, χ−) ∈ G•
χ(P1, µ+, µ−), there is a morphism

iχ+,ν,χ− : Mχ+,ν,χ− → M•
χ(P1, µ+, µ−),

whose image Fχ+,ν,χ− is a union of connected components of M•
χ(P1, µ+, µ−)C

∗

.
The morphism iχ+,ν,χ− induces an isomorphism

Mχ+,ν,χ−/Aχ+,ν,χ−
∼= Fχ+,ν,χ− ,
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where

Aχ,µ−,2l(µ−) =

l(µ−)
∏

i=1

Zµ−
i
, A2l(µ+),µ+,χ =

l(µ+)
∏

i=1

Zµ+
i
,

and for −χ± + l(µ±) + l(ν) > 0, we have

1 →
l(ν)
∏

i=1

Zνi
→ Aχ+,ν,χ− → Aut(ν) → 1.

Recall that aν = ν1 · · · νl(ν), and zν = aν |Aut(ν)|. We have

|Aχ,µ−,2l(µ−)| = aµ− , |A2l(µ+),µ+,χ| = aµ+ ,

and

|Aχ+,ν,χ− | = zν

if −χ± + l(µ±) + l(ν) > 0.

The fixed points set M•
χ(P1, µ+, µ−)C

∗

is a disjoint union of

{Fχ+,ν,χ− | (χ+, ν, χ−) ∈ G•
χ(P

1, µ+, µ−)}

5.7. Contribution from each admissible triple. Let (χ+, ν, χ−) ∈ G•
χ(P1, µ+, µ−).

We have

Br(Fχ+,ν,χ−) = (−χ+ + l(µ+) + l(ν))s+ + (−χ− + l(ν) + l(µ−))s−

∈ Sym−χ+l(µ+)+l(µ−) P1 = P−χ+l(µ+)+l(µ−),

so

i∗χ+,ν,χ− Br∗





−χ+l(µ+)+l(µ−)
∏

l=1

(H − wl)





=





−χ+l(µ+)+l(µ−)
∏

l=1

(−χ+ + l(µ+) + l(ν) − wl)



 u−χ+l(µ+)+l(µ−).

Let Nvir
χ+,ν,χ− on Mχ+,ν,χ− be the pull-back of the virtual normal bundle of

Fχ+,ν,χ− in M•
χ(P1, µ+, µ−). Calculations similar to those in [21, Appendix A]

show that

1

eC∗(Nvir
χ,µ−,2l(µ−))

=
aµ−

u− ψ∞ ,

1

eC∗(Nvir
2l(µ+),µ+,χ)

=
aµ+

−u− ψ0
,

and for −χ± + l(µ±) + l(ν) > 0, we have

1

eC∗(Nvir
χ+,ν,χ−)

=
aν

u− ψ∞
+

aν
−u− ψ0

−
,

where ψ∞
+ , ψ0

− are the target ψ classes on

M•
χ+(P1, µ+, ν), M•

χ−(P1, ν, µ−),

respectively.
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Let w = (w1, . . . , wl). Then

Iχ,µ−,2l(µ−)(w)

=
1

aµ−

∫

[M
χ,µ−,2l(µ−)]

vir

i∗χ,µ−,2l(µ−) Br∗
(

∏−χ+l(µ+)+l(µ−)
l=1 (H − wlu)

)

eC∗(Nvir
χ,µ−,2l(µ−))

=





−χ+l(µ+)+l(µ−)
∏

l=1

(−χ+ l(µ+) + l(µ−) − wl)





∫

[M
χ,µ−,2l(µ−)]

vir

u−χ+l(µ+)+l(µ−)

u− ψ∞

=





−χ+l(µ+)+l(µ−)
∏

l=1

(−χ+ l(µ+) + l(µ−) − wl)





∫

[M•
χ(P1,µ+,µ−)//C∗]vir

(ψ∞)−χ+l(µ+)+l(µ−)−1

I2l(µ+),µ+,χ(w)

=
1

aµ+

∫

[M2l(µ+),µ+,χ
]vir

i∗2l(µ+),µ+,χBr∗
(

∏−χ+l(µ+)+l(µ−)
l=1 (H − wlu)

)

eC∗(Nvir
2l(µ+),µ+,χ)

=





−χ+l(µ+)+l(µ−)
∏

l=1

(−wl)





∫

[M2l(µ+),µ+,χ]vir

u−χ+l(µ+)+l(µ−)

−u− ψ0

=





−χ+l(µ+)+l(µ−)
∏

l=1

wl





∫

[M•
χ(P1,µ+,µ−)//C∗]vir

(ψ0)−χ+l(µ+)+l(µ−)−1

Iχ+,ν,χ−(w)

=
1

zν

∫

[M
χ+,ν,χ− ]vir

i∗χ+,ν,χ− Br∗
(

∏−χ+l(µ+)+l(µ−)
l=1 (H − wlu)

)

eC∗(Nvir
χ+,ν,χ−)

=
aν

|Aut(ν)|





−χ+l(µ+)+l(µ−)
∏

l=1

(−χ+ + l(µ+) + l(ν) − wl)





∫

[Mχ+,ν,χ− ]vir

u−χ+l(µ+)+l(µ−)

(u − ψ∞
+ )(−u− ψ0

−)

=
aν

|Aut(ν)|





−χ+l(µ+)+l(µ−)
∏

l=1

(−χ+ + l(µ+) + l(ν) − wl)



 (−1)−χ
−+l(ν)+l(µ−)

·
∫

[M•
χ+ (P1,µ+,ν)//C∗]vir

(ψ∞)−χ
++l(µ+)+l(ν)−1

∫

[M•
χ− (P1,ν,µ−)//C∗]vir

(ψ0)−χ
−+l(ν)+l(µ−)−1

5.8. Sum over admissible triples. We have

H•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(P1,µ+,µ−)]vir

Br∗





−χ+l(µ+)+l(µ−)
∏

l=1

(H − wlu)





=
1

|Aut(µ+)||Aut(µ−)|
∑

(χ+,ν,χ−)∈G•
χ(P1,µ+,µ−)

Iχ+,ν,χ−(w).



A FORMULA OF TWO-PARTITION HODGE INTEGRALS 25

Let w = (0, 1, . . . ,−χ+ l(µ+) + l(µ−) − 1), we have

H•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|Iχ,µ−,2l(µ−)(w)

=
(−χ+ l(µ+) + l(µ−))!

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(P1,µ+,µ−)//C∗]vir

(ψ∞)−χ+l(µ+)+l(µ−)−1.

Let w = (1, 2, . . . ,−χ+ l(µ+) + l(µ−)), we have

H•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|I2l(µ+),µ+,χ(w)

=
(−χ+ l(µ+) + l(µ−))!

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(P1,µ+,µ−)//C∗]vir

(ψ0)−χ+l(µ+)+l(µ−)−1.

So we have

Proposition 5.4.

H•
χ,µ+,µ−

(−χ+ l(µ+) + l(µ−))!

=
1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(P1,µ+,µ−)//C∗]vir

(ψ0)−χ+l(µ+)+l(µ−)−1

=
1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(P1,µ+,µ−)//C∗]vir

(ψ∞)−χ+l(µ+)+l(µ−)−1

If we replace M•
χ(P

1, µ+, µ−) by Mg,0(P
1, µ+, µ−) in Section 5.5, we get

Proposition 5.5.

H◦
g (µ

+, µ−)

(2g − 2 + l(µ+) + l(µ−))!

=
1

|Aut(µ+)||Aut(µ−)|

∫

[Mg,0(P1,µ+,µ−)//C∗]vir

(ψ0)−χ+l(µ+)+l(µ−)−1

=
1

|Aut(µ+)||Aut(µ−)|

∫

[Mg,0(P1,µ+,µ−)//C∗]vir

(ψ∞)−χ+l(µ+)+l(µ−)−1

Let w = (0, 1, . . . , k − 1, k + 1, . . . ,−χ+ l(µ+) + l(µ−)), where

1 ≤ k ≤ −χ+ l(µ+) + l(µ−) − 1,
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ρ1ρ2

ρ3

ρ4

ρ5

Figure 1. The fan of X

we have

H•
χ,µ+,µ−

=
1

|Aut(µ+)||Aut(µ−)|
∑

(χ+, ν, χ−) ∈ G•
χ(P1, µ+, µ−)

−χ+ + l(µ+) + l(ν) = k

Iχ+,ν,χ−(w)

=
∑

(χ+, ν, χ−) ∈ G•
χ(P1, µ+, µ−)

−χ+ + l(µ+) + l(ν) = k

(−χ+ + l(µ+) + l(ν))!

|Aut(µ+)|

∫

[M•
χ+ (P1,µ+,ν)]vir

(ψ∞)−χ
++l(µ+)+l(ν)−1

· aν
|Aut(ν)| ·

(−χ− + l(ν) + l(µ−))!

|Aut(µ−)|

∫

[M•
χ− (P1,ν,µ−)]vir

(ψ0)−χ
−+l(ν)+l(µ−)−1

=
∑

(χ+, ν, χ−) ∈ G•
χ(P1, µ+, µ−)

−χ+ + l(µ+) + l(ν) = k

H•
χ+,µ+,νzνH

•
χ−,ν,µ− .

This gives an alternative derivation of the gluing formula (34), and in particular,
the cut-and-join equations (36), (37).

6. Moduli spaces and obstruction bundles

In this section, we introduce the geometric objects involved in the proof of (6),
and fix notation.

6.1. The target X. Let X be the toric surface defined by the fan in Figure 1. Let
Φi be the homogeneous coordinate associated to the ray ρi, i = 1, . . . , 5, and set

Zij = {(Φ1,Φ2,Φ3,Φ4,Φ5) ∈ C5 | Φi = Φj = 0},
Z = Z12 ∪ Z35 ∪ Z24 ∪ Z15 ∪ Z34.

Then
X = (C5 \ Z)/(C∗)3,

where (C∗)3 acts on C5 by

(u1, u2, u3) · (Φ1,Φ2,Φ3,Φ4,Φ5) = (u1Φ1, u1u3Φ2, u2Φ3, u2u3Φ4, u
−1
3 Φ5),

for (u1, u2, u3) ∈ (C∗)3, (Φ1,Φ2,Φ3,Φ4,Φ5) ∈ C5.
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T = (C∗)2 acts on X by

(t1, t2) · [Φ1,Φ2,Φ3,Φ4,Φ5] = [t1Φ1,Φ2, t2Φ3,Φ4,Φ5]

for (t1, t2) ∈ T , [Φ1,Φ2,Φ3,Φ4,Φ5] ∈ X .
Let

Di = {[Φ1,Φ2,Φ3,Φ4,Φ5] ∈ X | Φi = 0} ⊂ X

be the T -invariant divisor associated to the ray ρi. Let βi ∈ H2(X ; Z) be the
homology class represented by Di. We have

H2(X ; Z) =

(

5
⊕

i=1

Zβi

)

/ (Z(β1 − β2 − β5) ⊕ Z(β3 − β4 − β5))

= Zβ1 ⊕ Zβ3 ⊕ Zβ5

Let β∗
i ∈ H2(X ; Z) be the Poincare dual of βi, i = 1, . . . , 5. The intersection form

on
H2(X ; Z) = Zβ∗

1 ⊕ Zβ∗
3 ⊕ Zβ∗

5

is given by
β∗

1 β∗
3 β∗

5

β∗
1 0 1 0
β∗

3 1 0 0
β∗

5 0 0 −1

So
β∗

2 · β∗
2 = β∗

4 · β∗
4 = −1, β∗

2 · β∗
4 = 0.

Note that X is a toric blowup of P1 × P1 at a point, and D5 is the exceptional
divisor. More explicitly, we have

h : X → P1 × P1

[Φ1,Φ2,Φ3,Φ4,Φ5] 7→ ([Φ1,Φ2Φ5], [Φ3,Φ4Φ5])

which is an isomorphism outside D5, and h(D5) = {([1, 0], [1, 0])}.
The T -invariant divisor

KX = −D1 −D2 −D3 −D4 −D5

is a canonical divisor of X , so

c1(TX) = 2β∗
1 + 2β∗

3 − β∗
5 .

For (µ+, µ−) ∈ P2
+, define

Mg,0(X,µ
+, µ−) = Mg,0(X ;D2, D4 | |µ+|β3 + |µ−|β1;µ

+, µ−),

and let M•
χ(X,µ

+, µ−) be the subset of

M•
χ(X ;D2, D4 | |µ+|β3 + |µ−|β1;µ

+, µ−)

which consists of morphisms

f : C → X [m+,m−]

such that for each connected component Ci of C, f̃∗[Ci] ∈ H2(X ; Z) is an element
of

{aβ3 + bβ1 | a, b ∈ Z≥0, (a, b) 6= (0, 0)}.
The virtual dimension of Mg,0(X,µ

+, µ−) is

rg,µ+,µ− = g − 1 + |µ+| + l(µ+) + |µ−| + l(µ−),
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and the virtual dimension of M•
χ(X,µ

+, µ−) is

r•χ,µ+,µ− = −χ
2

+ |µ+| + l(µ+) + |µ−| + l(µ−).

The moduli space Mg,0(X,µ
+, µ−) plays the role of Mg,0(P

1, µ) in the proof of
Mariño-Vafa formula [21].

We have
D2

∼= P1 ∼= D4, ND2/X
∼= OP1(−1) ∼= ND4/X ,

so
∆(D2) ∼= F1

∼= ∆(D4)

in the notation of Section 4.1, where F1 is the Hirzebruch surface

P(OP1 ⊕OP1(−1)) → P1.

6.2. The obstruction bundles. Let

π : Ug,µ+,µ− → Mg,0(X,µ
+, µ−)

be the universal domain curve, and let

P : Tg,µ+,µ− → Mg,0(X,µ
+, µ−)

be the universal target. There is an evaluation map

F : Ug,µ+,µ− → Tg,µ+,µ−

and a contraction map
π̃ : Tg,µ+,µ− → X.

Let Dg,µ+,µ− ⊂ Ug,µ+,µ− be the divisor corresponding to the l(µ+) + l(µ−) marked
points. Define

Vg,µ+,µ− = R1π∗
(

F̃ ∗OX(−D1 −D3) ⊗OU
g,µ+,µ− (−Dg,µ+,µ−)

)

where F̃ = π̃ ◦ F : Ug,µ+,µ− → X . The fibers of Vg,µ+,µ− at
[

f : (C, x1, . . . , xl(µ+), y1, . . . , yl(µ−)) → X [m+,m−]
]

∈ Mg,0(X,µ
+, µ−)

is
H1(C, f̃∗OX(−D1 −D3) ⊗OC(−R))

where f̃ = π[m+,m−] ◦ f , and

R = x1 + . . .+ xl(µ+) + y1 + · · · + yl(µ−).

Note that
H0(C, f̃∗OX(−D1 −D3) ⊗OC(−R)) = 0,

and

deg f̃∗OX(−D1 −D3) ⊗OC(−R) = −|µ+| − |µ−| − l(µ+) − l(µ−),

so Vg,µ+,µ− → Mg,0(X,µ
+, µ−) is a vector bundle of rank

rg,µ+,µ− = g − 1 + |µ+| + l(µ+) + |µ−| + l(µ−).

The vector bundle Vg,µ+,µ− → Mg,0(X,µ
+, µ−) plays the role of the obstruction

bundle V → Mg,0(P
1, µ) in the proof of Mariño-Vafa formula [21, Section 4.4].

Similarly, we define a vector bundle V •
χ,µ+,µ− of rank

r•χ,µ+,µ− = −χ
2

+ |µ+| + l(µ+) + |µ−| + l(µ−)
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D1

D2

D3

D4

D5

z0
z+

z−

z̃+

z̃−

α

α

β β

−α

−α

−β

−β

β − α

α− β

Figure 2. The image of µTR
: X → t

∗
R

on M•
χ(X,µ

+, µ−).

6.3. Torus action. Recall that T = (C∗)2 acts on X by

(t1, t2) · [Φ1,Φ2,Φ3,Φ4,Φ5] = [t1Φ1,Φ2, t2Φ3,Φ4,Φ5]

for (t1, t2) ∈ T , [Φ1,Φ2,Φ3,Φ4,Φ5] ∈ X .
Let TR = U(1)2 be the maximal compact subgroup of T The TR-action on X

determines a moment map

µTR
: X → t

∗
R,

where t
∗
R
∼= R2 is the dual of the Lie algebra tR of TR.

We now lift the T -action on X to the line bundle OX(−D1−D3) as follows. We
only need to specify the representation of T on the fiber of one fixed point of the
T action. The fixed points of the T action on X are

z0 = D1 ∩D3 = [0, 1, 0, 1, 1]

z+ = D3 ∩D2 = [1, 0, 0, 1, 1]

z− = D1 ∩D4 = [0, 1, 1, 0, 1]

z̃+ = D2 ∩D5 = [1, 0, 1, 1, 0]

z̃− = D4 ∩D5 = [1, 1, 1, 0, 0]

Figure 2 shows the image of D1, . . . , D5 and the above five fixed points under
the moment map µTR

: X → t
∗
R
.

Let (w1, w2) denote the one dimensional representation given by

(t1, t2) · z = tw1
1 tw2

2 z

for (t1, t2) ∈ T , z ∈ C. The character ring of T is given by

ZT ∼= Z[α, β],

where α, β are the characters of the representations (1, 0), (0, 1), respectively. The
representations of T on the fibers of TX and OX(−D1 − D3) at fixed points are
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D2,0

D2,∞
D4,0

D4,∞
α

α

α

ββ

β

−α

−α

−α

−β

−β

−β

β − α

β − αα− β

α− β

Figure 3. The images of µ−
TR

: ∆(D4) → t
∗
R

and µ+
TR

: ∆(D2) → t
∗
R

given by:

TX OX(−D1 −D3)
z0 α, β −α− β
z+ −α, β −β
z− α,−β −α
z̃+ β − α,−β 0
z̃− α− β,−α 0

Note that

t
∗
R
∼= Rα⊕ Rβ,

and the representations of T on the fibers of TX at the fixed points can be read off
from the image of the moment map as in Figure 3.

The action of T on ∆(D2) and ∆(D4) can be read off from Figure 3. This
extends the action of T on X to X [m+,m−]. So T acts on Mg,0(X,µ

+, µ−) and

M•
χ(X,µ+, µ−) by moving the image of the morphism.
The T action on OX(−D1−D3) induces T actions on Vg,µ+,µ− and on V •

χ,µ+,µ− .

7. Proof of (6)

Let X be defined as in Section 6.1. Recall that T = (C∗)2 acts on X . Let
D1, . . . , D5 be T -invariant divisors in X defined in Section 6.1.

Let

V •
χ,µ+,µ− → M•

χ(X,µ
+, µ−)

be defined as in Section 6.2, with the torus action defined in Section 6.3. Define

K•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(X,µ+,µ−)]vir

e(V •
χ,µ+,µ−),

K•
µ+,µ−(λ) =

∑

χ∈2Z,χ≤2(l(µ+)+l(µ−)

λ−χ+l(µ+)+l(µ−) (−1)|µ
+|+|µ−|

√
−1

l(µ+)+l(µ−)
K•
χ,µ+,µ− .

In this section, we will compute

K•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(X,µ+,µ−)]vir

eT (V •
χ,µ+,µ−)

by relative virtual localization, and derive the following identity:
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Proposition 7.1.

(6) K•
µ+,µ−(λ) =

∑

|ν±|=|µ±|
Φ•
µ+,ν+(−

√
−1τλ)zν+G•

ν+,ν−(λ; τ)zν−Φ•
ν−,µ−(

−
√
−1

τ
λ).

7.1. Torus fixed points. Given a morphism

(C, {xi}l(µ
+)

i=1 , {yj}l(µ
−)

j=1 ) → X [m+,m−]

which represents a point in M•
χ(X,µ

+, µ−)T , let

f̃ = π[m+,m−] ◦ f : C → X.

Then

f̃(C) ⊂ D1 ∪D2 ∪D3 ∪D4 ∪D5,

f̃(xi) ∈ {z+, z̃+}, f̃(yj) ∈ {z−, z̃−}.
See Figure 3 in Section 6.3 for the configuration of the T -invariant divisorsD1, . . . , D5

and the T fixed points z0, z+, z−, z̃+, z̃−.
If

f̃∗(C) = n1D1 + n2D2 + n3D3 + n4D4 + n5D5

as divisors, then

f̃∗[C] = (n1 + n2)β1 + (n3 + n4)β3 + (n5 − n2 − n4)β5

as homology classes.
Let

J = {(n1, n2, n3, n4, n5) ∈ Z5 | ni ≥ 0, n1+n2 = |µ−|, n3+n4 = |µ+|, n5 = n2+n4}.
Given n̂ = (n1, n2, n3, n4, n5) ∈ J , let

Mn̂ ⊂ M•
χ(X,µ

+, µ−)T

be the subset which corresponds to

f̃∗(C) = n1D1 + n2D2 + n3D3 + n4D4 + n5D5.

Then M•
χ(X,µ

+, µ−)T is a disjoint union of

{Mn̂ : n̂ ∈ J}.
We have the following vanishing lemma:

Lemma 7.2. Let n̂ ∈ J , and let in̂ : Mn̂ → M•
χ(X,µ+, µ−)T be the inclusion.

Then
i∗n̂eT (V •

χ,µ+,µ−) = 0

unless n̂ = (|µ−|, 0, |µ+|, 0, 0).

Proof. We use the notation in Section 6.2. Let L = OX(−D1 −D3). We have the

following short exact sequence of sheaves on M•
χ(X,µ

+, µ−):

(39) 0 → F̃ ∗L(−D•
χ,µ+,µ−) → F̃ ∗L→ (F̃ ∗L)D•

χ,µ+,µ−
→ 0.

Let
si : M•

χ(X,µ+, µ−) → U•
χ,µ+,µ−

be the section corresponds to the i-th marked point,

evi = F̃ ◦ si : M•
χ(X,µ+, µ−) → X
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be evaluation at the i-th marked point. Then (39) gives the following long exact
sequence:

0 → R0π∗F̃
∗L(−D•

χ,µ+,µ−) → R0F̃ ∗L→
l(µ+)+l(µ−)
⊕

i=1

ev∗
iL

→ R1π∗F̃
∗L(−D•

χ,µ+,µ−) → R1F̃ ∗L→ 0.

We have R0F̃ ∗L = 0, so
Ṽ •
χ,µ+,µ− = R1F̃ ∗L

is a vector bundle over M•
χ(X,µ

+, µ−). We have the following short exact sequence

of vector bundles over M•
χ(X,µ

+, µ−):

(40) 0 →
l(µ+)+l(µ−)
⊕

i=1

ev∗
iL→ V •

χ,µ+,µ− → Ṽ •
χ,µ+,µ− → 0.

The restriction of the above exact sequence to Mn̂ is

0 → L⊕l(σ1)
z− ⊕ L

⊕l(σ2)
z̃−

L⊕l(σ3)
z+ ⊕ L

⊕l(σ4)
z̃−

→ i∗n̂V
•
χ,µ+,µ− → i∗n̂Ṽ

•
χ,µ+,µ− → 0,

where σ1, . . . , σ4 are partitions determined by
(41)

{µ−
j : f̃(yj) ∈ z−}, {µ−

j : f̃(yj) ∈ z̃−}, {µ+
i : f̃(xi) ∈ z+}, {µ+

i : f̃(xi) ∈ z̃+},
respectively. Note that σ1, σ2, σ3, σ4 are constant on each connected components
of Mn̂, and

σ1 ∪ σ2 = µ−, σ3 ∪ σ4 = µ+.

We have seen in Section 6.3 that

eT (Lz+) = −β, eT (Lz−) = −α, eT (Lz̃+) = eT (Lz̃−) = 0,

so
i∗eT (V •

χ,µ+,µ−) = 0

unless

(42) (σ1, σ2, σ3, σ4) = (µ−, ∅, µ+, ∅).
Let n̂ = (n1, n2, n3, n4, n5) ∈ J , n5 6= 0. Let Mn̂(k) be the subset of Mn̂ which

consists of points
[

f : C → X [m+,m−]
]

∈ Mn̂

such that (42) is true, and
f−1(D5 − {z̃+, z̃−})

has k connected components, where 1 ≤ k ≤ n5. Each Mn̂(k) is a union of
connected components of Mn̂.

We claim that
eT (V •

χ,µ+,µ−)|Mn̂(k) = 0

for all n̂ = (n1, n2, n3, n4, n5) ∈ J , n5 6= 0, k = 1, . . . , n5. This will complete the
proof.

Let
[

f : C → X [m+,m−]
]

∈ Mn̂(k).

Then C = C1∪C2, where C1 is the closure of f−1(D5−{z̃+, z̃−}), which is a disjoint
union of k projective lines, and C2 is the union of other irreducible components of
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C. By (42), the ramification divisor R ⊂ C2, and C1 and C2 intersect at 2k nodes.
We have

0 → H0(C, f̃∗L(−R)) → H0(C1, f̃
∗L|C1) ⊕H0(C2, f̃

∗L(−R)|C2) → L⊕k
z̃+ ⊕ L⊕k

z̃−

→ H1(C, f̃∗L(−R)) → H1(C1, f̃
∗L|C1) ⊕H1(C2, f̃

∗L(−R)|C2) → 0

where

H0(C, f̃∗L(−R)) = 0 = H0(C2, f̃
∗L(−R)|C2).

The restriction of L to D5 is (equivariantly) trivial, so

H0(C1, f̃
∗L|C1) ∼= L⊕k

z̃− , H1(C1, f̃
∗L|C1) = 0.

We have

0 → L⊕k
z̃+ → H1(C, f̃∗L) → H1(C2, f̃

∗L) → 0,

so

V •
χ,µ+,µ− |Mn̂(k) = Lkz̃+ ⊕ V ′,

and

eT (V •
χ,µ+,µ−)|Mn̂(k) = 0.

�

Lemma 7.2 tells us that Mn̂ does not contribute to the localization calculation
of

K•
χ,µ+,µ− =

1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(X,µ+,µ−)]vir

eT (V •
χ,µ+,µ−)

if n̂ 6= (|µ−|, 0, |µ+|, 0, 0).

7.2. Admissible labels. From now on, we only consider

M̂ = M(|µ−|,0,|µ+|,0,0) ⊂ M•
χ(X,µ+, µ−)T .

Given a morphism

(C, {x1
i }l(µ

1)
i=1 , . . . , {xki }l(µ

k)
i=1 ) → X [m+,m−]

which represents a point in M̂, let

C0 = f̃−1(z0), C± = f̃−1(z±),

where z0, z+, z− are defined as in Section 6.3. Then

C = C+ ∪ L+ ∪ C0 ∪ L− ∪ C−,

where L+, L− are unions of projective lines, f |L+ : L+ → D3 is a degree d+ = |µ+|
cover fully ramified over z0 and z+, and f |L− : L− → D1 is a degree d− = |µ−|
cover fully ramified over z0 and z−.

Define

P±(m±) = π[m+,m−]−1(z±).

Let

f± = f |C± : C± → P±(m±),

f̃+ = f |L+ : L+ → D3,

f̃− = f |L− : L− → D1.

The degrees of f̃± restricted to irreducible components of L± determine a partition
ν± of d±.



34 CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

Let C0
1 , . . . , C

0
k be the connected components of C0, and let gi be the arithmetic

genus of C0
i . (We define gi = 0 if C0

i is a point.) Define

χ0 =

k
∑

i=1

(2 − 2gi).

We define χ+, χ− similarly. Then

−χ+ + 2l(ν+) − χ0 + 2l(ν−) − χ− = −χ.
Note that χ± ≤ 2 min{l(µ±), l(ν±)}. So

−χ+ + l(ν+) + l(µ+) ≥ 0,

and the equality holds if and only if m+ = 0. In this case, we have ν+ = µ+,
χ+ = 2l(µ+). Similarly,

−χ− + l(ν−) + l(µ−) ≥ 0,

and the equality holds if and only if m− = 0. In this case, we have ν− = µ−,
χ− = 2l(µ−). There are four cases:
Case 1: m+ = m− = 0. Then f+, f− are constant maps, and ν± = µ±.
Case 2: m+ > 0,m− = 0. Then f− is a constant map, ν− = µ−, and f+ represents
a point in

M•
χ+(P1, µ+, ν+)//C∗

up to an element in Aut(ν+).
Case 3: m+ = 0,m− > 0. Then f+ is a constant map, ν+ = µ+, and f− represents
a point in

M•
χ−(P1, ν−, µ−)//C∗

up to an element in Aut(ν−).
Case 4: m+,m− > 0. Then f+ represents a point in

M•
χ+(P1, µ+, ν+)//C∗

up to an element of Aut(ν+), and f− represents an point in

M•
χ−(P1, ν−, µ−)//C∗

up to an element in Aut(ν−).

Definition 7.3. An admissible label is a 5-uple (χ+, ν+, χ0, ν−, χ−) such that

• χ+, χ0, χ− ∈ 2Z.
• ν± is a partition of d±.
• χ0 ≤ 2 min{l(ν+), l(ν−)}, χ± ≤ 2 min{l(µ±), l(ν±)}.
• −χ+ + 2l(ν+) − χ0 + 2l(ν−) − χ− = −χ.

Let G•
χ(X,µ+, µ−) denote the set of all admissible labels.

For a nonnegative integer g and a positive integer h, let Mg,h be the moduli

space of stable curves of genus g with h marked points. Mg,h is empty for (g, h) =

(0, 1), (0, 2), but we will assume that M0,1 and M0,2 exist and satisfy
∫

M0,1

1

1 − dψ
=

1

d2

∫

M0,2

1

(1 − µ1ψ1)(1 − µ2ψ2)
=

1

µ1 + µ2

for simplicity of notation. Such an assumption will give the correct final results.
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For a nonnegative integer g and a positive integer h, let M•
χ,h be the moduli of

possibly disconnected stable curves C with h marked points such that

• If C1, . . . , Ck are connected components of C, and gi is the arithmetic genus
of Ci, then

k
∑

i=1

(2 − 2gi) = χ.

• Each connected component contains at least one marked point.

The connected components of M•
χ,h are of the form

Mg1,h1 × · · · ×Mgk,hk
.

where
k
∑

i=1

(2 − 2gi) = χ,

k
∑

i=1

hi = h.

The restriction of the Hodge bundle E → M•
χ,h to the above connected component

is the direct sum of the Hodge bundles on each factor, and

Λ∨(u) =

k
∏

i=1

Λ∨
gi

(u).

We define
M2l(µ+),µ+,χ,µ−,2l(µ−) = M•

χ,l(µ+)+l(µ−).

For −χ± + l(µ±) + l(ν±) > 0, we define

Mχ+,ν+,χ0,µ−,2l(µ−) =
(

M•
χ+(P1, µ+, ν+)//C∗

)

×Mχ0,l(ν+)+l(µ−),

M2l(µ+),µ+,χ0,ν−,χ− = Mχ0,l(µ+)+l(ν−) ×
(

M•
χ−(P1, ν−, µ−)//C∗

)

,

Mχ+,ν+,χ0,ν−,χ−

=
(

M•
χ+(P1, µ+, ν+)//C∗

)

×M•
χ0,l(ν+)+l(ν−) ×

(

M•
χ−(P1, ν−, µ−)//C∗

)

.

For every (χ+, ν+, χ0, ν−, χ−) ∈ G•
χ(X,µ+, µ−), there is a morphism

iχ+,ν+,χ0,ν−,χ− : Mχ+,ν+,χ0,ν−,χ− → M•
χ(X,µ

+, µ−),

whose image Fχ+,ν+,χ0,ν−,χ− is a union of connected components of M̂. The mor-
phism iχ+,ν+,χ0,ν−,χ− induces an isomorphism

Mχ+,ν+,χ0,ν−,χ−/Aχ+,ν+,χ0,ν−,χ− ∼= Fχ+,ν+,χ0,ν−,χ− ,

where A2l(µ+),µ+,χ,µ−,l(µ−) is trivial, and for χ± + l(µ±) + l(ν±) > 0, we have

1 →
l(ν+)
∏

i=1

Zν+
i
→ Aχ+,ν+,χ0,µ−,2l(µ−) → Aut(ν+) → 1,

1 →
l(ν−)
∏

j=1

Zν−
j
→ A2l(µ+),µ+,χ0,ν−,χ− → Aut(ν−) → 1,

1 →
l(ν+)
∏

i=1

Zν+
i
×
l(ν−)
∏

j=1

Zν−
j
→ Aχ+,ν+,χ0,ν−,χ− → Aut(ν+) × Aut(ν−) → 1.
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So for −χ± + l(µ±) + l(ν±) > 0, we have

|Aχ+,ν+,χ0,µ−,2l(µ−)| = zν+ , |A2l(µ+),µ+,χ0,ν−,χ− | = zν− ,

|Aχ+,ν+,χ0,ν−,χ− | = zν+zν− .

The stack M̂ is a disjoint union of

{Fχ+,ν+,χ0,ν−,χ− : (χ+, ν+, χ0, ν−, χ−) ∈ G•
χ(X,µ+, µ−)}.

7.3. Contribution from each admissible label. LetNvir
χ+,ν+,χ0,ν−,χ− on Mχ+,ν+,χ0,ν−,χ−

be the pull back of the virtual normal bundle of Fχ+,ν+,χ0,ν−,χ− in M•
χ(X,µ+, µ−).

Calculations similar to those in [21, Appendix A] show that

i∗χ+,ν+,χ0,ν−,χ−eT (V •
χ,µ+,µ−)

eT (Nvir
χ+,ν+,χ0,ν−,χ−)

= A+A0A−,

where

A0 = (−1)|ν
+|+|ν−|+1aν+aν−

l(ν+)
∏

i=1

∏ν+
i −1
a=1 (ν+

i β + aα)

(ν+
i − 1)!αν

+
i −1

l(ν−)
∏

j=1

∏ν−
j −1

a=1 (ν−j α+ aβ)

(ν−j − 1)!βν
−
j −1

·Λ
∨(α)Λ∨(β)Λ∨(−α− β)(αβ(α + β))l(ν

+)+l(ν−)−1

∏l(ν+)
i=1 α(α − ν+

i ψi)
∏l(ν−)
j=1 β(β − ν−j ψl(ν+)+j)

A+ =

{

(−1)l(µ
+), χ− = 2l(µ−)

(−1)−
χ+

2 +l(ν+)+l(µ+)aν+
β−χ++l(µ+)+l(ν+)

−α−ψ+ , otherwise

A− =

{

(−1)l(µ
−), χ+ = 2l(µ+)

(−1)−
χ−

2 +l(ν−)+l(µ−)aν−
α−χ−+l(µ−)+l(ν−)

−β−ψ− , otherwise

From the definitions in Section 2.2 and Proposition 5.4, we have

Iχ+,ν+,χ0,ν−,χ−(α, β)

=
1

|Aχ+,ν+,χ0,ν−,χ− |

∫

[M
χ+,ν+,χ0,ν−,χ− ]vir

i∗χ+,ν+,χ0,ν−,χ−eT (V •
χ,µ+,µ−)

eT (Nvir
χ+,ν+,χ0,ν−,χ−)

= |Aut(µ+)||Aut(µ−)|
√
−1

l(µ+)+l(µ−)

(−1)|µ+|+|µ−| G
•
χ0,ν+,ν−(α, β)

·zν+

(−
√
−1β/α)−χ

++l(ν+)+l(µ+)

(−χ+ + l(ν+) + l(µ+))!
H•
χ+,ν+,µ+ · zν−

(−
√
−1α/β)−χ

−+l(ν−)+l(µ−)

(−χ− + l(ν−) + l(µ−))!
H•
χ−,ν−,µ−

Let τ = β/α. Then

Iχ+,ν+,χ0,ν−,χ−(α, β)

= |Aut(µ+)||Aut(µ−)|
√
−1

l(µ+)+l(µ−)

(−1)|µ+|+|µ−| G
•
χ0,ν+,ν−(τ)

·zν+

(−
√
−1τ)−χ

++l(ν+)+l(µ+)

(−χ+ + l(ν+) + l(µ+))!
H•
χ+,ν+,µ+ · zν−

(−
√
−1/τ)−χ

−+l(ν−)+l(µ−)

(−χ− + l(ν−) + l(µ−))!
H•
χ−,ν−,µ−
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7.4. Sum over admissible labels.

K•
χ,µ+,µ−

=
1

|Aut(µ+)||Aut(µ−)|

∫

[M•
χ(X,µ+,µ−)]vir

eT (V •
χ,µ+,µ−)

=
1

|Aut(µ+)||Aut(µ−)|
∑

(χ+,ν+,χ0,ν−,χ−)∈G•
χ(X,µ+,µ−)

1

|Aχ+,ν+,χ0,ν−,χ− |

·
∫

[M]
vir

χ+,ν+,χ0,ν−,χ−

i∗χ+,ν+,χ0,ν−,χ−eT (V •
χ,µ+,µ−)

eT (Nvir
χ+,ν+,χ0,ν−,χ−)

=
1

|Aut(µ+)||Aut(µ−)|
∑

(χ+,ν+,χ0,ν−,χ−)∈G•
χ(X,µ+,µ−)

Iχ+,ν+,χ0,ν−,χ−(α, β)

=

√
−1

l(µ+)+l(µ−)

(−1)|µ+|+|µ−|





∑

(χ+,ν+,χ0,ν−,χ−)∈G•
χ(X,µ+,µ−)

G•
χ0,ν+,ν−(τ)

·zν+

(−
√
−1τ)−χ

++l(ν+)+l(µ+)

(−χ+ + l(ν+) + l(µ+))!
H•
χ+,ν+,µ+ · zν−

(−
√
−1/τ)−χ

−+l(ν−)+l(µ−)

(−χ− + l(ν−) + l(µ−))!
H•
χ−,ν−,µ−

)

Recall that

K•
µ+,µ−(λ) =

∑

χ∈2Z,χ≤2(l(µ+)+l(µ−))

λ−χ+l(µ+)+l(µ−) (−1)|µ
+|+|µ−|

√
−1

l(µ+)+l(µ−)
K•
χ,µ+,µ− .

We have

K•
µ+,µ−(λ) =

∑

|ν±|=|µ±|
Φ•
µ+,ν+(−

√
−1τλ)zν+G•

ν+,ν−(λ; τ)zν−Φ•
ν−,µ−

(−
√
−1

τ
λ

)

.

This finishes the proof of (6).
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