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1. Introduction

Based on string duality Mariño and Vafa [10] conjectured a closed formula on
certain Hodge integrals in terms of representations of symmetric groups. This
formula was first explicitly written down by the third author in [13] and proved
in joint work [8] of the authors of the present paper. For a different approach see
[12]. Our proof follows the strategy of proving both sides of the equation satisfy
the same cut-and-join equation and have the same initial values.

In this note we will describe a proof of the ELSV formula relating Hurwitz
numbers and Hodge integrals:

Hg,µ =
(2g − 2 + |µ|+ l(µ))!

|Aut(µ)|

l(µ)∏
i=1

µµi

i

µi!

∫
Mg,l(µ)

Λ∨g (1)∏l(µ)
i=1 (1− µiψi)

along the same lines. By the Burnside formula, the Hurwitz numbers are related
to the representations of symmetric groups, hence so is the Hodge integral on the
right-hand side of the above formula.

Mariño and Vafa have remarked that in principle it is possible to obtain all
Hodge integrals involving up to three Hodge classes from their formula. Another
purpose of this note is to show that our method is not only useful in proving the
MV and ELSV formulas, but also is powerful in deriving some consequences from
them. For example, as easy consequences of the MV formula and the cut-and-join
equation, we will present unified simple proofs of the λg conjecture [3]∫

Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,

for k1 + · · ·+ kn = 2g − 3 + n, and the following identities for Hodge integrals [2]:∫
Mg

λg−2λg−1λg =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

,

∫
Mg,1

λg−1

1− ψ1
= bg

2g−1∑
i=1

1
i
− 1

2

∑
g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2 .

We also describe a method to compute general λg−1 integrals. To summarize, our
results in this work partly verify Mariño and Vafa’s anticipation for the applications
of their formula.

1
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2. Preliminaries

2.1. Mumford’s relations. Let E be the Hodge bundle over Mg,n, and let λi =
ci(E). Define

ct(E) =
g∑

i=0

tiλi, Λ∨g (t) =
g∑

i=0

(−1)iλit
g−i.

Then we have

c−t(E) = ct(E∨) = (−t)gΛ∨g (
1
t
).

Mumford’s relations are given by:

ct(E)c−t(E) = 1.(1)

Equivalently,

Λ∨g (t)Λ∨g (−t) = (−1)gt2g.(2)

2.2. Some consequences. From the following well-known relation between New-
ton polynomials and elementary symmetric polynomials (cf. e.g. [9]):∑

k≥1

pkt
k−1 =

E′n(−t)
En(−t)

,

we get: ∑
n≥1

n!tn−1 chn(E) =
c′−t(E)
c−t(E)

= ct(E)c′−t(E).(3)

It can be rewritten as∑
n≥1

n!tn−1 chn(E) =
g∑

i=1

iλi(−t)i−1

g∑
j=0

λjt
j .

Hence chk(E) = 0 for k ≥ 2g, and

n! chn(E) =
∑

i+j=n

(−1)i−1iλiλj .(4)

It is not hard to see that

ch2m(E) = 0,(5)
(2g − 1)! ch2g−1(E) = (−1)g−1λg−1λg,(6)

(2g − 3)! ch2g−3(E) = (−1)g−1(3λg−3λg − λg−1λg−2).(7)

We will need the following results:

Lemma 2.1.

Λ∨g (1)(Λ∨g )′(−1) = (−1)g−1g +
∑
k≥1

k!(−1)k−1 chk(E),(8)

d

dτ

∣∣∣∣
τ=0

(
Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)

)
= −λg−1 + gλg(9)

−λg

∑
k≥1

k!(−1)k−1 chk(E).
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In particular the degree 3g − 3 part of the left-hand side of (9) is

(−1)g−1λgλg−1λg−2.

Proof.

Λ∨g (1)(Λ∨g )′(−1) = Λ∨g (1)
g∑

j=0

(−1)j(g − j)tg−j−1λj |t=−1

= (−1)g−1gΛ∨g (1)
g∑

j=0

λj + Λ∨g (1) · (−1)g

g∑
j=0

jλj

= (−1)g−1g + (−1)gc−t(E)c′t(E)|t=1

= (−1)g−1g + (−1)g
∑
k≥1

k!(−1)k−1 chk(E).

d

dτ

∣∣∣∣
τ=0

(
Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)

)
= Λ∨g (1)

d

dτ

∣∣∣∣
τ=0

Λ∨g (τ) · Λ∨g (−1) + Λ∨g (1)Λ∨g (0) · d

dτ

∣∣∣∣
τ=0

Λ∨g (−τ − 1)

= −λg−1 − (−1)gλgΛ∨g (1)(Λ∨g )′(−1)

= −λg−1 + gλg − λg

∑
k≥1

k!(−1)k−1 chk(E).

�

3. Cut-and-Join Equation, Mariño-Vafa Formula and ELSV Formula

We recall in this section the Mariño-Vafa formula recently proved in [8]. We
also describe a proof of the ELSV formula along the same lines. Both of these
formulas can be proved by the cut-and-join equation method. These formula relate
the geometry of moduli spaces of Riemann surfaces encoded in Hodge integrals to
combinatorics of the representations of symmetric groups, and hence to the theories
of affine Kac-Moody Lie algebras and symmetric functions.

3.1. Mariño-Vafa formula. For every partition µ = (µ1 ≥ · · ·µl(µ) ≥ 0), define

Cg,µ(τ) = −
√
−1

|µ|+l(µ)

|Aut(µ)|
[τ(τ + 1)]l(µ)−1

l(µ)∏
i=1

∏µi−1
a=1 (µiτ + a)
(µi − 1)!

·
∫
Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)∏l(µ)
i=1 (1− µiψi)

,

Cµ(λ; τ) =
∑
g≥0

λ2g−2+l(µ)Cg,µ(τ).

Note that∫
M0,l(µ)

Λ∨0 (1)Λ∨0 (−τ − 1)Λ∨0 (τ)∏l(µ)
i=1 (1− µiψi)

=
∫
M0,l(µ)

1∏l(µ)
i=1 (1− µiψi)

= |µ|l(µ)−3

for l(µ) ≥ 3, and we use this expression to extend the definition to the case l(µ) < 3.
Introduce formal variables p = (p1, p2, . . . , pn, . . .), and define

pµ = pµ1 · · · pµl(µ)
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for a partition µ = (µ1 ≥ · · · ≥ µl(µ) > 0). Define the following generating series

C(λ; τ ; p) =
∑
|µ|≥1

Cµ(λ; τ)pµ.

This finishes the definitions of the geometric side of the Mariño-Vafa formula.
For the representation theoretical side, for a partition µ, denote by χµ the charac-

ter of the irreducible representation of S|µ| indexed by µ, and by C(µ) the conjugacy
class of S|µ| indexed by µ. Define:

Vµ(λ) =
∏

1≤a<b≤l(µ)

sin [(µa − µb + b− a)λ/2]
sin [(b− a)λ/2]

· 1∏l(ν)
i=1

∏µi

v=1 2 sin [(v − i+ l(µ))λ/2]
.

(10)

This has an interpretation in terms of quantum dimension [10]. Define

R(λ; τ ; p) =
∑
n≥1

(−1)n−1

n

∑
µ

 ∑
∪n

i=1µi=µ

n∏
i=1

∑
|νi|=|µi|

χνi(C(µi))
zµi

e
√
−1(τ+ 1

2 )κνiλ/2Vνi(λ)

 pµ.

The Mariño-Vafa formula is:

C(λ; τ ; p) = R(λ; τ ; p).(11)

These formulas were explicitly written down in this form in [13]. In [7, 8] it is
proved by showing C and R both satisfy the following cut-and-join equation:

∂Γ
∂τ

=
√
−1λ
2

∑
i,j≥1

(
ijpi+j

∂2Γ
∂pi∂pj

+ ijpi+j
∂Γ
∂pi

∂Γ
∂pj

+ (i+ j)pipj
∂Γ
∂pi+j

)
,(12)

and have the same initial values:

C(λ; 0; p) = R(λ; 0; p) = −
∑
d≥1

√
−1

d+1
pd

2d sin(dλ/2)
.(13)

3.2. A proof of ELSV formula by cut-and-join equation. Given a partition
µ of length l(µ), denote by Hg,µ the Hurwitz numbers of almost simple Hurwitz
covers of P1 of ramification type µ by connected genus g Riemann surfaces. The
ELSV formula [1, 5] states:

Hg,µ =
(2g − 2 + |µ|+ l(µ))!

|Aut(µ)|

l(µ)∏
i=1

µµi

i

µi!

∫
Mg,l(µ)

Λ∨g (1)∏l(µ)
i=1 (1− µiψi)

.(14)

We now describe how to prove this formula by the cut-and-join equation.
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Define

Φµ(λ) =
∑
g≥0

Hg,µ
λ2g−2+|µ|+l(µ)

(2g − 2 + |µ|+ l(µ))!
,

Φ(λ, p) =
∑

µ

Φµ(λ)pµ,

Ψµ(λ) =
∑
g≥0

λ2g−2+|µ|+l(µ)

|Aut(µ)|

l(µ)∏
i=1

µµi

i

µi!

∫
Mg,l(µ)

Λ∨g (1)∏l(µ)
i=1 (1− µiψi)

,

Ψ(λ; p) =
∑

µ

Ψµ(λ)pµ.

The Φ(λ; p) and Ψ(λ; p) both satisfy the following cut-and-join equation:

∂Θ
∂λ

=
1
2

∑
i,j≥1

(
ijpi+j

∂2Θ
∂pi∂pj

+ ijpi+j
∂Θ
∂pi

∂Θ
∂pj

+ (i+ j)pipj
∂Θ
∂pi+j

)
.(15)

For Φ this was proved in [4] by combinatorial method, and in [6] by symplectic
method. For Ψ one can apply the method of [8]. The initial values can be easily
determined as follows. It is easy to see that

H0,µ = δµ,(1),

hence
Φ(0; p) = p1.

On the other hand, since 2g − 2 + |µ| + l(µ) > 0 unless g = 0 and µ = (1), it is
straightforward to see that

Ψ(0; p) = p1.

Hence after transferring the cut-and-join equation to a sequence of systems of ODEs
for eΦ and eΨ, one sees that

eΦ = eΨ.

This proves the ELSV formula.
By the Burnside formula, one easily gets the following expression (see e.g. [13]):

Φ(λ; p) =
∑
n≥1

(−1)n−1

n

∑
µ

∑
∪n

i=1µi=µ

n∏
i=1

∑
|νi|=|µi|

χνi(µi)
zµi

eκνi
λ/2 dimRνi

|νi|!
pµ.

This reveals the close relationship between the Mariño-Vafa formula and the ELSV
formula.

4. A Simple Proof Of The λg Conjecture

The following formula is called the λg conjecture:∫
Mg,n

ψk1
1 · · ·ψkn

n λg =
(

2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,(16)

for k1 + · · ·+ kn = 2g − 3 + n, g > 0. It is proved in [3] in a very complicated way.
We will give in this section a simple proof based on the Mariño-Vafa formula and
the cut-and-join equation.
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4.1. A reformulation of the λg conjecture. We begin with the following refor-
mulation:

Lemma 4.1. the λg conjecture is equivalent to∑
g≥0

λ2g

∫
Mg,n

λg∏n
i=1(1− µiψi)

= dn−3 dλ/2
sin(dλ/2)

,(17)

for all partitions of d.

Proof. The left-hand side of (17) is∑
g≥0

λ2g

∫
Mg,n

λg∏n
i=1(1− µiψi)

=
∑
g≥0

λ2g
∑

k1+···+kn=2g−3+n

n∏
i=1

µki
i ·

∫
Mg,n

λg

n∏
i=1

ψki
i .

By (32) in the Appendix the right-hand side is:

dn−3

1 +
∑
g≥1

22g−1 − 1
22g−1

|B2g|
(2g)!

(dλ)2g


= (

∑
i

µi)n−3 +
∑
g≥1

λ2g
∑

∑
i ki=2g−3+n

n∏
i=1

µki
i ·

(
2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

.

The Lemma is proved by comparing the coefficients. �

4.2. A simple proof of the λg conjecture by the Mariño-Vafa formula.
The following result has been proved in [13] by the cut-and-join equation.

Theorem 4.2. Write R(λ; τ ; p) =
∑

µRµ(λ; τ)pµ. Then one has

lim
τ→0

λ2−l(µ) 1
(τ(τ + 1))l(µ)−1

l(µ)∏
i=1

(µi − 1)!∏µi−1
j=1 (j + µiτ)

∏
j mj(µ)!

√
−1

|µ|+l(µ)
Rµ(λ; τ)

=dl(µ)−3 · dλ/2
sin(dλ/2)

.

(18)

By the Mariño-Vafa formula, the left-hand side of (18) is∑
g≥0

λ2g

∫
Mg,l(µ)

Λ∨g (1)Λ∨g (0)Λ∨g (−1)∏l(µ)
i=1 (1− µiψi)

=
∑
g≥0

λ2g

∫
Mg,l(µ)

λg∏l(µ)
i=1 (1− µiψi)

.

Therefore, we have established (17) hence proved the λg conjecture (16).

5. Derivation of Some Other Hodge Integral Identities

In this section we show how to derive from the Mariño-Vafa formula and the
cut-and-join equation the following formula proved in [2] by different method:∫

Mg

λg−2λg−1λg =
1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

,(19)

∫
Mg,1

λg−1

1− ψ1
= bg

2g−1∑
i=1

1
i
− 1

2

∑
g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2 ,(20)
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where

bg =

{
1, g = 0,
22g−1−1
22g−1

|B2g|
(2g)! , g > 0.

5.1. The derivative. We begin with the following special case of the Mariño-Vafa
formula:

(21)
∑
g≥0

λ2g

∫
Mg,1

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)
1− dψi

= − λ
√
−1

d+1

(d− 1)!∏d−1
a=1(dτ + a)

R(d)(λ; τ).

Lemma 5.1.

d

dτ

∣∣∣∣
τ=0

R(d)(λ; τ) =
∑

i+j=d,i 6=j

−
√
−1

d+1
λ

8 sin(iλ/2) sin(jλ/2)
.(22)

Proof. This is an easy consequence of the cut-and-join equation:

d

dτ

∣∣∣∣
τ=0

R(d)(λ; τ) =
√
−1λ
2

∑
i+j=d

(
ijR(i,j)(λ; 0) + ijR(i)(λ; 0)R(j)(λ; 0)

)
=

√
−1λ
2

∑
i+j=d

ij
−
√
−1

i+1

2i sin(iλ/2)
−
√
−1

j+1

2j sin(jλ/2)

=
∑

i+j=d

−
√
−1

d+1
λ

8 sin(iλ/2) sin(jλ/2)
.

�

Corollary 5.1. We have∑
g≥0

λ2g

∫
Mg,1

d
dτ

∣∣
τ=0

(
Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)

)
1− dψ1

=−
d−1∑
a=1

1
a
· dλ/2
d sin(dλ/2)

+
∑

i+j=d

λ2

8 sin(iλ/2) sin(jλ/2)
.

(23)

Proof. Take derivative in τ and set τ = 0 on both sides of equation (21). By (22)
we get ∑

g≥0

λ2g

∫
Mg,1

d
dτ

∣∣
τ=0

(
Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)

)
1− dψ1

= − λ
√
−1

d+1

d

dτ

∣∣∣∣
τ=0

(d− 1)!∏d−1
a=1(dτ + a)

·R(d)(λ; 0)− λ
√
−1

d+1

d

dτ

∣∣∣∣
τ=0

R(d)(λ; τ)

= −
d−1∑
a=1

1
a
· dλ/2
d sin(dλ/2)

+
∑

i+j=d

λ2

8 sin(iλ/2) sin(jλ/2)
.

�

Now the left-hand side of (22) is a polynomial in d hence so must be the right-
hand side. If we find explicit expressions for the right-hand side, then by comparing
the coefficients, we get Hodge integral identities. This is how we prove (19) and
(20).
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5.2. The right-hand side. We have

−
d−1∑
a=1

1
a
· dλ/2
d sin(dλ/2)

= −
d−1∑
a=1

1
a

∑
g≥0

bgd
2g−1λ2g

hence the coefficient of λ2g is

−
d−1∑
a=1

1
a
· bgd2g−1.(24)

This cancels with a similar term from the second term on the right-hand side of
(23).

We also have ∑
i+j=d

λ2

8 sin(iλ/2) sin(jλ/2)

=
∑

i+j=d

1
2ij

∑
g1≥0

bg1(iλ)2g1 ·
∑
g2≥0

bg2(jλ)2g2

=
1
2

∑
g≥0

λ2g
∑

g1+g2=g

bg1bg2

∑
i+j=d

i2g1−1j2g2−1.

By (34) in the Appendix we have for g1, g2 > 0, and g1 + g2 = g,

Fg1,g2(d) =
∑

i+j=d

i2g1−1j2g2−1 =
d−1∑
i=1

i2g1−1(d− i)2g2−1

=
2g2−1∑
k=0

(−1)2g2−1−k

(
2g2 − 1
k

)
dk

d−1∑
i=1

i2g1+2g2−2−k

=
2g2−1∑
k=0

(−1)2g2−1−k

(
2g2 − 1
k

)
dk

2g−2−k∑
l=0

(
2g − 1− k

l

)
2g − 1− k

Bld
2g−1−k−l

=
2g2−1∑
k=0

2g−2−k∑
l=0

(−1)2g2−1−k

2g − 1− k

(
2g2 − 1
k

) (
2g − 1− k

l

)
Bld

2g−1−l.

It is easy to see that the coefficient of d in Fg1,g2(d) receives contribution only from
the term with k = 0 and l = 2g − 2, hence it is

−B2g−2.

The coefficient of d2g−1 in Fg1,g2(d) receives contributions from terms with l = 0,
hence it is given by:

2g2−1∑
k=0

(−1)2g2−1−k

2g − 1− k

(
2g2 − 1
k

)
.
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We can deal with the case of g1 = 0 or g2 = 0 in the same fashion.

F0,g(d) =
∑

i+j=d

i−1j2g−1 =
d−1∑
i=1

i−1(d− i)2g−1

=
2g−1∑
k=0

(−1)2g−1−k

(
2g − 1
k

)
dk

d−1∑
i=1

i2g−2−k

=
2g−2∑
k=0

(−1)2g−1−k

(
2g − 1
k

)
dk

2g−k∑
l=0

(
2g − 1− k

l

)
2g − 1− k

Bld
2g−1−k−l + d2g−1

d−1∑
i=1

1
i

=
2g−2∑
k=0

2g−2−k∑
l=0

(−1)2g−1−k

2g − 1− k

(
2g − 1
k

) (
2g − 1− k

l

)
Bld

2g−1−l + d2g−1
d−1∑
i=1

1
i
.

The coefficient of d in F0,g(d) or Fg.0(d) is

−B2g−2.

The coefficient of d2g−1 in F0,g(d) or Fg,0(d) is given by:

2g−2∑
k=0

(−1)2g−1−k

2g − 1− k

(
2g − 1
k

)
=

2g−1∑
k=1

(−1)i

i

(
2g − 1
i

)
.

5.3. Proof of (19). By Lemma 2.1, the coefficient of dλ2g of the left-hand side of
(23) is:

(25) (−1)g−1

∫
Mg,1

ψ1λgλg−1λg−2 = (−1)g−1(2g − 2)
∫
Mg

λgλg−1λg−2.

By the above discussions, the coefficient of dλ2g on the right-hand side of (23) is

−B2g−2

2

∑
g1+g2=g

bg1bg2 =
−B2g−2

2
· |B2g|

2g
1

(2g − 2)!

Comparing with (25) we get∫
Mg

λgλg−1λg−2 =
(−1)gB2g−2

2(2g − 2)
· |B2g|

2g
1

(2g − 2)!

This is exactly (19).

5.4. Proof of (20). The coefficient of d2g−1λ2g on the left-hand side of (23) is

−
∫
Mg,1

ψ2g−1
1 λg−1 = −

∫
Mg,1

λg−1

1− ψ1
.

By the above discussions, it is equal to

bg

2g−1∑
i=1

(−1)i

i

(
2g − 1
i

)
+

1
2

∑
g1+g2=g
g1,g2>0

bg1bg2

2g2−1∑
k=0

(−1)2g2−1−k

2g − 1− k

(
2g2 − 1
k

)
.

Hence (20) is proved by the following:
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Lemma 5.2.
2g2−1∑
k=0

(−1)2g2−1−k

2g − 1− k

(
2g2 − 1
k

)
=

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

,

2g−1∑
i=1

(−1)i

i

(
2g − 1
i

)
= −

2g−1∑
i=1

1
i
.

Proof. Let

f(x) =
2g−1∑
i=1

(−1)i

i

(
2g − 1
i

)
xi.

Then we have

f ′(x) =
2g−1∑
i=1

(−1)i

(
2g − 1
i

)
xi−1 =

(1− x)2g−1 − 1
x

= −
2g−2∑
i=0

(1− x)i

Hence we have
2g−1∑
i=1

(−1)i

i

(
2g − 1
i

)
=

∫ 1

0

f ′(x)dx = −
∫ 1

0

2g−2∑
i=0

(1− x)idx = −
2g−1∑
i=1

1
i
.

Similarly, let

g(x) =
2g2−1∑
k=0

(−1)2g2−1−k

2g − 1− k

(
2g2 − 1
k

)
x2g−1−k.

Then we have

g′(x) =
2g2−1∑
k=0

(−1)2g2−1−k

(
2g2 − 1
k

)
x2g−2−k = x2g1−1(1− x)2g2−1.

Hence we have by integrations by parts:
2g2−1∑
k=0

(−1)2g2−1−k

2g − 1− k

(
2g2 − 1
k

)

=
∫ 1

0

g′(x)dx =
∫ 1

0

x2g1−1(1− x)2g2−1dx

=
(2g2 − 1)

2g1

∫ 1

0

x2g1(1− x)2g2−2dx

=
(2g2 − 1)(2g2 − 2)

2g1(2g1 + 1)

∫ 1

0

x2g1+1(1− x)2g2−3dx

= · · · = (2g2 − 1)!
2g1(2g1 + 1) · · · (2g1 + 2g2 − 1)

=
(2g1 − 1)!(2g2 − 1)!

(2g − 1)!
.

�

5.5. Computation of the λg−1 integrals. We now describe how to generalize
the above method to compute integrals of form∫

Mg,l(µ)

λg−1∏l(µ)
i=1 (1− µiψi)
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for a partition µ of d with l(µ) > 1. We rewrite the Mariño-Vafa formula as follows.

∑
g≥0

λ2g(τ + 1)l(µ)−1

l(µ)∏
i=1

∏µi−1
a=1 (µiτ + a)
(µi − 1)!

∫
Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)∏l(µ)
i=1 (1− µiψi)

=− |Aut(µ)|λl(µ)−2

√
−1

|µ|+l(µ)

Rµ(λ; τ)
τ l(µ)−1

.

(26)

Now we take derivative in τ and then set τ = 0. The left-hand side is given by∑
g≥0

λ2g(l(µ)− 1)
∫
Mg,l(µ)

Λ∨g (1)Λ∨g (−1)Λ∨g (0)∏l(µ)
i=1 (1− µiψi)

+
∑
g≥0

λ2g

l(µ)∑
i=1

µi−1∑
a=1

µi

a

∫
Mg,l(µ)

Λ∨g (1)Λ∨g (−1)Λ∨g (0)∏l(µ)
i=1 (1− µiψi)

+
∑
g≥0

λ2g

∫
Mg,l(µ)

d
dτ

∣∣
τ=0

(Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ))∏l(µ)
i=1 (1− µiψi)

= (l(µ)− 1)dl(µ)−3 dλ/2
sin(dλ/2)

+
l(µ)∑
i=1

µi−1∑
a=1

µi

a
dl(µ)−3 dλ/2

sin(dλ/2)

+
∑
g≥0

λ2g

∫
Mg,l(µ)

−λg−1 + gλg − λg

∑
k≥1 k!(−1)k−1 chk(E)∏l(µ)

i=1 (1− µiψi)

= (l(µ)− 1)dl(µ)−3 dλ/2
sin(dλ/2)

+
l(µ)∑
i=1

µi−1∑
a=1

µi

a
dl(µ)−3 dλ/2

sin(dλ/2)

−
∑
g≥0

λ2g

∫
Mg,l(µ)

λg−1∏l(µ)
i=1 (1− µiψi)

+
∑
g≥0

gλ2g

∫
Mg,l(µ)

λg∏l(µ)
i=1 (1− µiψi)

−
∑
g≥0

λ2g

∫
Mg,l(µ)

λg

∑
k≥1 k!(−1)k−1 chk(E)∏l(µ)

i=1 (1− µiψi)
.

The last term can be computed by using Mumford’s GRR relations [11]. The
right-hand side can be computed by L’Hospital’s rule:

lim
τ→0

∂

∂τ

(
Rµ(λ; τ)
τ l(µ)−1

)
= lim

τ→0

τ∂τRµ(λ; τ)− (l(µ)− 1)Rµ(λ; τ)
τ l(µ)

=
∂

l(µ)
τ [τ∂τRµ(λ; τ)− (l(µ)− 1)Rµ(λ; τ)]|τ=0

l(µ)!

=
[τ∂l(µ)+1

τ Rµ(λ; τ) + ∂
l(µ)
τ Rµ(λ; τ)]|τ=0

l(µ)!
=
∂

l(µ)
τ Rµ(λ; τ)|τ=0

l(µ)!
,

hence it can be found by applying the cut-and-join equation repeatedly and by the
initial value of R. Therefore, one gets a method to compute∑

g≥0

λ2g

∫
Mg,l(µ)

λg−1∏l(µ)
i=1 (1− µiψi)

.



12 CHIU-CHU MELISSA LIU, KEFENG LIU, AND JIAN ZHOU

Appendix A. Bernoulli numbers

In this Appendix we recall some well known facts about Bernoulli numbers.
These numbers are defined by the following series expansion:

t

et − 1
=

∞∑
m=0

Bm
tm

m!
.(27)

The first few terms are given by

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = 0.

For odd m > 1, Bm = 0, and for even m, the sign of B2n is (−1)n−1.

Lemma A.1. For m > 0,
m∑

k=0

(
m+ 1
k

)
Bk = 0.(28)

Proof. Multiply both sides of (27) by et. The left-hand side becomes

et t

et − 1
= t+

t

et − 1
= t+

∞∑
m=0

Bm
tm

m!
;

the right-hand side becomes
∞∑

m=0

Bm
tm

m!
·
∞∑

n=0

tn

n!
=

∞∑
m=0

m∑
k=0

Bk
tm

k!(m− k)!
.

Hence for m > 1, we have

Bm

m!
=

m∑
k=0

Bk

k!(m− k)!
.

(28) follows easily. �

Lemma A.2.

t/2
sinh(t/2)

=
∞∑

m=0

1− 2m−1

2m−1

Bm

m!
tm,(29)

t

2
coth(t/2) =

∞∑
n=0

B2n
t2n

(2n)!
.(30)

Proof. These can be proved by easy algebraic manipulations as follows.

t/2
sinh(t/2)

=
t

et − 1
et/2 = 2

t/2
et/2 − 1

− t

et − 1

= 2
∞∑

m=0

Bm
(t/2)m

m!
−

∞∑
m=0

Bm
tm

m!
=

∞∑
m=0

1− 2m−1

2m−1

Bm

m!
tm.

t

2
coth(t/2) =

t

2
et + 1
et − 1

=
1
2

+
t

et − 1
=

∞∑
n=0

B2n
t2n

(2n)!
.

�
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Corollary A.1. ∑
i+j=n

1− 21−2i

(2i)!
B2i ·

1− 21−2j

(2j)!
B2j =

(1− 2n)B2n

(2n)!
.(31)

Proof. Apply the operator t d
dt on both sides of (30):

t

2
coth

t

2
−

(
t/2

sinh(t/2)

)2

=
∞∑

n=1

B2n
t2n

(2n− 1)!
.

Hence (
t/2

sinh(t/2)

)2

=
t

2
coth

t

2
−

∞∑
n=0

B2n
t2n

(2n− 1)!
=

∞∑
n=0

(1− 2n)B2n
t2n

(2n)!
.

From this (31) easily follows. �

By changing t to
√
−1t, one gets from (29) by recalling B2n = (−1)n−1|B2n|:

t/2
sin(t/2)

= 1 +
∑
g≥1

22g−1 − 1
22g−1

|B2g|
(2g)!

t2g.(32)

And (31) becomes∑
g1+g2=g

22g1−1 − 1
22g1−1

|B2g1 |
(2g1)!

22g2−1 − 1
22g2−1

|B2g2 |
(2g2)!

=
|B2g|
2g

1
(2g − 2)!

(33)

Finally recall for any positive integer m,

d−1∑
i=1

im =
m∑

k=0

(
m+ 1
k

)
m+ 1

Bkd
m+1−k.(34)
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