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Abstract

We give necessary and sufficient conditions for the d-nary multilog network to be
strictly nonblocking under the discrete multirate model, and sufficient conditions for
the same under the continuous multirate model.
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1 Introduction

In a multirate network, each link has a (normalized) capacity 1 and each request for connec-
tion is associated with a weight (bandwidth requirement) w. Many paths can go through a
link simultaneously as long as their total weight has not exceeded unity. In particular, an
input or output (link) can generate or receive many requests as long as their total weight
does not exceed unity. Often, the weight of a request is bounded in the range [b, B]. A
more general model is to assume that an input or output link has capacity 8 < 1 to reflect
the reality that many networks need an internal-to-external speed-up to be more efficient.
In the discrete case (the channel model), we assume that each internal link has f; channels,
each input or output has fy < fi channels, and a request is associated with a positive
integer number ¢,1 < g < @, where () < fj is an upper bound of the number of channels a
request can demand.

A network state is a set of paths connecting a set of requests {(is, 0y, w)} such that no
link carries a load exceeding 1 (or fi), where i, is an input, o, is an output and w is the
associated weight. Given a state, a new request (4,0, w) must satisfy the condition that 4
has not generated and o has not received requests whose total weights are more than 1 —w
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(or fo —w). A network is strictly nonblocking if at any state a new request can always be
connected without any link carrying a load exceeding 1 (or f).

Strictly nonblocking multirate networks have been studied for the 3-stage Clos network
and the d-nary Cantor network [1], d > 2. In this paper, we extend the results on the
Cantor network to the more general log,(N,m,p) network (also called the d-nary multilog
network), where the Cantor network is the special case with m = n—1. In particular, we give
necessary and sufficient conditions for log,(N,m,p) to be multirate strictly nonblocking.

2 The channel model

The log,; (N, m, p) network was first proposed by Shyy and Lea [6], extending the log,(N, 0, p)
network proposed by Lea [4]. The log,;(N, m,p) network has an input (output) stage con-
sisting of N = d™ 1 xp (px1) crossbars, and p copies of d-nary m-extra-stage, 1 <m < n—1,
inverse banyan network BYdfl(n, m), where each input and output crossbar is connected to
every copy of BY; !(n,m). Figure 1 illustrates an example of log,(N,m, p).

Figure 1: A logy(8,0,2) network

We study the channel model in this section.
Theorem 2.1. Consider the (Q, fo, f1) channel model with dLanlJfg > f1+ 1. Then



log,(N,0,p) is multirate strictly nonblocking if and only if
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Proof: Suppose the new request is (i,0,q). Call an internal link g-saturated if it always
carries a load exceeding f;1 — ¢ + 1 (hence cannot carry a new g¢-request). Note that the
channel graph between 7 and o is just a single path [. An intersecting path is a path p from
input ¢/ # ¢ to output o’ # o such that p shares a link with /. In particular, let [; denote the
stage-i link (a link between stage ¢ and stage ¢ + 1) in /. Then an i-intersecting path is one
which intersects [ at /;. Note that an i-intersecting path can also be a j-intersecting path
for ¢ # j.

Sufficiency. The new request cannot be carried in a copy of BYd_l(n, 0) if and only if
there exists an /; which is ¢-saturated by i-intersecting paths. We divide /; into two disjoint
halves:

Hy={l;:1<i<[(n—1)/2]}

Hy={l;: [(n+1)/2) <i<n—1}.

Note that only dl(®=1/2] inputs can generate i-intersecting paths for ¢ in Hy. The total
weight of these paths is bounded by dl("~1/2] f; — ¢ since the weight of the new request
must be excluded. In the right-hand side of the inequality in Theorem 2.1, the first term
is an upper bound of the number of ¢g-saturated [/; for ¢+ in Hy. Similarly, only dl(n=1)/2]
outputs can generate i-intersecting paths for 7 in Ho, and the second term in the inequality
is an upper bound of the number of g-saturated [; for 7 in Hy. Thus their sum is an upper
bound of the number of saturated links in /, hence an upper bound of the number of blocked
copies of BYdfl(n, 0). One more copy suffices to route the new request.

Necessity. With respect to [, an input (output) is called i-marginal if it can generate an
i-intersecting path but not an (¢ — 1)-intersecting ((7 + 1)-intersecting) path. Then there
are d* s-marginal inputs and d"~* ¢-marginal outputs. Note that

di < dnt for i in Hj,
db > dnt for i in Ho.

Compute the maximum number b; of g-saturated links generated by 1-marginal inputs.
Assign a total weight of by (f1 —g+1) of requests to 1-marginal outputs (doable by the above
inequalities), and mix the remaining requests of weight dfy —q— b1 (f1 — ¢+ 1) with requests
generated by 2-marginal inputs. Again, compute the maximum number by of g-saturated
links generated by this mixture of requests. Assign requests with a total weight b (f1 —g+1)
to 2-marginal outputs, and mix the rest with requests from 3-marginal inputs. Proceed like
this until the last step s = [(n — 1)/2]. At step s, assign requests with a total weight of
bs(f1 —q+ 1) to s-marginal outputs and ignore unassigned requests. It is straightforward
to verify that the number of saturated [; for ¢ in H; constructed by this assignment is the



first term in the inequality of Theorem 2.1. Similarly, the corresponding number for 7 in
H, is the second term. Thus their sum plus one copy is the necessary number of copies to
route the new request. O

Next we consider the general m case. Define

dJ — A1 #

Theorem 2.2 Consider the (Q, fo, f1) channel model with dLnT_lJfg > fi + 1. Then
log, (N, m,p) is multirate strictly nonblocking for 0 < m <n — 1 if and only if
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Proof: The m = 0 case was proved in Theorem 2.1 and the m = n —1 (the Cantor network)
case in [1]. We prove the general m case.

The strategy is to partition the network stages into two parts: the outer part consists
of m outer stages from both the input side and the output side; and the inner part consists
of m — m inner stages composed by d™ copies of BYd_l(n —m,0). For the outer part, we
adopt (and extend) the approach of Chung and Ross [2] given for the special case of Cantor
network. For the inner part we apply Theorem 2.1.

More specifically, for the outer part, we compute the total weight of requests which can
reach a stage—j link, 1 < j5 < (n+m — 1)/2, in the (i,0) channel graph to be &’ fy — q,
while a g-saturated link carries a load at least fi — ¢ + 1. Thus at most

& fo—q
fi—q+1
links in the channel graph at or before stage j can be saturated. The worst case is to assign

the saturated links to as early a stage as possible since links in the early stages have more
blocking power. This results in assigning

| ]

dfo—q
fi—q+1
saturated links to stage j, each of which blocks 1/d’ copies of a BY; ' (n,m). Thus |g,(q)]

is the number of copies of BYdfl(n, m) blocked by paths intersecting the links of the (i, 0)
channel graph in the first or last m stages.

| ]

The total weight of request which can reach at or before a stage—j link, 1 < 5 <
|(n+m—1)/2], is

d|_n+gz—1

Vo —q.



But a total weight of .

0—4q
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was already connected in the first m stages. Therefore only the difference of these two

weights can be used to saturate stage—j links for m < j < n. Since the log,(N,m,p)

network between these stages consists of d" copies of BYdfl(n —m,0), we apply Theorem

2.1 (only the input side) to the number of copies of BYd_l(n — m, 0) blocked, which must

be divided by d™ to convert to the number of copies of BYdfl(n, m) blocked.

The argument for the output side is analogous. One extra channel then guarantees the
routing of the current request. Therefore
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is a sufficient condition for log,;(N,m,p) being multirate strictly nonblocking for 0 < m <
n — 1. We show the maximum is achieved at ¢ = ). To see it, define
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for simplicity. Then trivially Ag = | flfﬂgj_lj =0 and A; > 0 is nondecreasing in ¢ for every
ij,l,---,L""’Tm_lJ. We have
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Since every term is positive and nondecreasing in ¢, we conclude that the first term in the
right-hand side of (1) is maximized at . A similar conclusion holds for the second term.

It follows that (1) is maximized at Q.

The necessity part follows from the fact that the conditions of Chung and Ross and of
Theorem 2.1 are both necessary. O

We further study the situation where the internal links have different capacities. Suppose
the input and output have capacity fo, the stage-i links and stage-(n—1) links have capacity

f’ia = 172a LR [nJrglil—‘a and fifl < f’L




We define

k—1
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and
m

1
gm(q) = le (e for 1<m<n—1.

Theorem 2.3 Consider the (Q, fo, f1,- -, f|’n+m—1'|) channel model with dLnT_lJfg > fHi+1.
2
Then logy(N,m,p) is multirate strictly nonblocking for 0 < m <mn — 1 if and only if
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Proof: The proof is analogous to the proof of Theorem 2.2. The assumption f;_1 < f; for
1=1,2,---, ["J“Z‘*l] is needed to guarantee
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such that if an intersecting path intersects at several stages, the blocking effect is always
greatest at the outmost stage, justifying our assigning it to that stage. O

for 1 <k<m,

3 The continuous model

We first quote a lemma proved by Melen and Turner [5].

Lemma 3.1 |

brwre) = 15w

Theorem 3.2 Consider the (b, B, ) continuous model satisfying dLnTilJ,B > 1. Then
log,(N,0,p) is strictly nonblocking if

1—1if a > b, where € is positive and tends to 0.
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and the condition is necessary if b < % < B for some integer k.

Proof: With an argument analogous to the proof of Theorem 2.1, we obtain the sufficient
condition to route an (i, 0, w) new request to be

d* g —w,  d B —w
1
L1—w—i—eJ+L1—w+eJ+
A5 —w. A8 —w
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which is maximized at w = B.

To prove necessity, note that the combination of k¥ — 1 weights of % and one weight of
%-I— € constitute a total weight of 1+e€. Therefore if w = %, then we can have every saturated
link carrying a load of 1 — % +e O

If the condition b < % < B is not met, say k+r1 <b< B< %, then every internal link

can carry a maximum of k connections. If further, kiﬂ <b< B< %, then this can be

treated as the channel model and Theorem 2.1 applies with Q) = 1.
Theorem 3.3 Consider the (b, B, ) continuous model satisfying b+B > 1. Thenlog,(N,0,p)
is strictly nonblocking if and only if

p> (21 -1+ | D)@ -1 41
Proof: Let the new request be (i,0,w). Note that the channel graph between i and o is
just a single path [. Similar to the proof of Theorem 2.1, d[("~1/2] — 1 inputs other than
i can generate i-intersecting paths for i in Hi, and d/(»~Y/2] — 1 outputs can generate
t-intersecting paths for ¢ in Hs. Since either an input or an output can generate at most

|B/b] requests,
g

J5} n-1 n-1
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is an upper bound of the number of intersecting paths, hence an upper bound of the number
of blocked copies. Thus one extra copy suffices to carry the new request. Note that whether
the extra copy carries any load from 4 or o is immaterial since the load cannot exceed 8 — w.

On the other hand, suppose w = B. Then the worst case described above can happen
and the new request cannot be routed through any link already carrying a load b. Hence
the sufficient condition is also necessary. O

Next we consider m > 0 case. Define

1 dip— 1B -
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Theorem 3.4 Consider the (b, B, ) continuous model satisfying dLnTilJ,B > 1. Then
log,(N, m,p) is strictly nonblocking if
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and the condition is necessary if b < % < B for some integer k.

Proof: Analogous to the proof of Theorem 2.2. O



Theorem 3.5 Consider the (b, B, ) continuous model satisfying b+B > 1. Thenlog,(N,m,p)
is strictly nonblocking if and only if
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Proof: Each input can generate at most |/3/b| requests. Let each internal link carry at
most one request. Then there are d/ — d’~! inputs generating (&’ — d’~1)|3/b] requests
to intersect a stage—j link in the (i, 0)-channel graph for 1 < j < m. Since each such
intersecting path blocks 1/d/ copies of BY; ' (n,m), they block a total of

, ) d

7j=1
copies. Similarly, the output side blocks the same number of copies. Finally, stage m+1 to
stage n —m — 1 consists of d™ copies of BYdfl(n —m,0). We use an argument analogous
to the proof of Theorem 2.2 to compute the number of copies blocked in these stages to be

[t [t
| - DI/, - DILZUN

So one extra copy suffices to route the new request.

To prove necessity, let w = B. Then the worst case discussed above can happen. O
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