ON THE ASYMPTOTIC EXPANSION OF BERGMAN KERNEL

XIANZHE DAI, KEFENG LIU, AND XIAONAN MA

ABSTRACT. We study the asymptotic of the Bergman kernel of the $spin^c$ Dirac operator on high tensor powers of a line bundle.

1. Introduction

The Bergman kernel in the context of several complex variables (i.e. for pseudoconvex domains) has long been an important subject (cf, for example, [2]). Its analogue for complex projective manifolds is studied in [28], [26], [30], [14], [23], establishing the asymptotic expansion for high powers of an ample line bundle. Moreover, the coefficients in the asymptotic expansion encode geometric information of the underlying complex projective manifolds. This asymptotic expansion plays a crucial role in the recent work of [19] where the existence of Kähler metrics with constant scalar curvature is shown to be closely related to Chow-Mumford stability.

In this paper, we study the asymptotic expansion of Bergman kernel for high powers of an ample line bundle in the more general context of symplectic manifolds and orbifolds. One of our motivations is to extend Donaldson's work [19] to orbifolds. Let (X, ω) be a compact symplectic manifold of real dimension 2n. Assume that there exists a Hermitian line bundle L over X endowed with a Hermitian connection ∇^L with the property that $\frac{\sqrt{-1}}{2\pi}R^L = \omega$, where $R^L = (\nabla^L)^2$ is the curvature of (L, ∇^L) . Let (E, h^E) be a Hermitian vector bundle on X with Hermitian connection ∇^E and its curvature R^E .

Let g^{TX} be a Riemannian metric on X. Let $\mathbf{J}: TX \longrightarrow TX$ be the skew-adjoint linear map which satisfies the relation

(1.1)
$$\omega(u,v) = g^{TX}(\mathbf{J}u,v)$$

for $u, v \in TX$. Let J be an almost complex structure which is (separately) compatible with g^{TX} and ω , then J commutes with \mathbf{J} . Let ∇^{TX} be the Levi-Civita connection on (TX, g^{TX}) with curvature R^{TX} , and ∇^{TX} induces a natural connection ∇^{\det} on $\det(T^{(1,0)}X)$ with curvature R^{\det} (cf. Section 2). The spin^c Dirac operator D_p acts on $\Omega^{0,\bullet}(X, L^p \otimes E) = \bigoplus_{q=0}^n \Omega^{0,q}(X, L^p \otimes E)$, the direct sum of spaces of (0,q)-forms with values in $L^p \otimes E$.

Let $\{S_i^p\}_{i=1}^{d_p}$ $(d_p = \dim \operatorname{Ker} D_p)$ be any orthonormal basis of $\operatorname{Ker} D_p$ with respect to the inner product (2.2). We define the diagonal of the Bergman kernel of D_p (the distortion

function) by

(1.2)
$$B_p(x) = \sum_{i=1}^{d_p} S_i^p(x) \otimes (S_i^p(x))^* \in \text{End}(\Lambda(T^{*(0,1)}X) \otimes E)_x$$

Clearly $B_p(x)$ does not depend on the choice of $\{S_i^p\}$. We denote by $I_{\mathbb{C}\otimes E}$ the projection from $\Lambda(T^{*(0,1)}X)\otimes E$ onto $\mathbb{C}\otimes E$ under the decomposition $\Lambda(T^{*(0,1)}X)=\mathbb{C}\oplus \Lambda^{>0}(T^{*(0,1)}X)$. Let det **J** be the determinant function of $\mathbf{J}_x\in \mathrm{End}(T_xX)$. A simple corollary of Theorem 3.18 is:

Theorem 1.1. There exist smooth coefficients $b_r(x) \in \operatorname{End}(\Lambda(T^{*(0,1)}X) \otimes E)_x$ which are polynomials in R^{TX} , R^{\det} , R^E (and R^L) and their derivatives with order $\leq 2r - 1$ (resp. 2r) and \mathbf{J}^{-1} at x, and $b_0 = (\det \mathbf{J})^{1/2}I_{\mathbb{C}\otimes E}$, such that for any $k, l \in \mathbb{N}$, there exists $C_{k,l} > 0$ such that for any $x \in X$, $p \in \mathbb{N}$,

(1.3)
$$\left| B_p(x) - \sum_{r=0}^k b_r(x) p^{n-r} \right|_{C^l} \le C_{k,l} p^{n-k-1}.$$

Moreover, the expansion is uniform in that for any $k, l \in \mathbb{N}$, there is an integer s such that if all data's run over a set which are bounded in C^s and with g^{TX} bounded below, there exists the constant $C_{k,l}$ independent of g^{TX} .

We also study the asymptotic expansion of the corresponding heat kernel and relates it to that of the Bergman kernel. Let $\exp(-\frac{u}{p}D_p^2)(x,x')$ be the smooth kernel of $\exp(-\frac{u}{p}D_p^2)$ with respect to the Riemannian volume form $dv_X(x')$.

Theorem 1.2. There exist smooth sections $b_{r,u}$ of $\operatorname{End}(\Lambda(T^{*(0,1)}X) \otimes E)$ on X such that for each u > 0 fixed, we have the asymptotic expansion in the sense of (1.3) as $p \to \infty$,

(1.4)
$$\exp(-\frac{u}{p}D_p^2)(x,x) = \sum_{r=0}^k b_{r,u}(x)p^{n-r} + \mathcal{O}(p^{n-k-1}).$$

Moreover, there exists c > 0 such that as $u \to +\infty$,

(1.5)
$$b_{r,u}(x) = b_r(x) + \mathcal{O}(e^{-cu}).$$

In fact, this gives us a way to compute the coefficient $b_r(x)$, as it is relatively easy to compute $b_{r,u}(x)$ (cf. (3.107), (3.124)). As an example, we compute b_1 which plays an important role in Donaldson's recent work [19]. Note if (X, ω) is Kähler and $\mathbf{J} = J$, then $B_p(x) \in C^{\infty}(X, \operatorname{End}(E))$ for p big enough, thus $b_r(x) \in \operatorname{End}(E)_x$.

Theorem 1.3. If (X, ω) is Kähler and $\mathbf{J} = J$, then there exist smooth functions $b_j(x) \in \operatorname{End}(E)_x$ such that we have (1.3), and b_j are polynomials in R^{TX} , R^E and their derivatives with order $\leq 2r - 1$ at x, and

(1.6)
$$b_0 = \mathrm{Id}_E, \quad b_1 = \frac{1}{4\pi} \Big[\sqrt{-1} \sum_i R^E(e_i, Je_i) + \frac{1}{2} r^X \, \mathrm{Id}_E \, \Big].$$

here r^X is the scalar curvature of (X, g^{TX}) , and $\{e_i\}$ is an orthonormal basis of (X, g^{TX}) .

Theorem 1.3 was essentially obtained in [23], [29] by applying the peak section trick, and in [14], [30] and [15] by applying the Boutet de Monvel-Sjöstrand parametrix for the Szegö kernel [11]. We refer the reader to [19], [29] for its interesting applications. Our proof of Theorems 1.1, 1.2 is inspired from the local Index Theory, especially from [7, §11], and we derive Theorem 1.1 from Theorem 1.2. The method can be easily generalized to the orbifold situation.

Theorem 1.4. If (X, ω) is a symplectic orbifold with the singular set X', and L, E are corresponding proper orbifold vector bundles on X as in Theorem 1.1. Then there exist smooth coefficients $b_r(x) \in \operatorname{End}(\Lambda(T^{*(0,1)}X) \otimes E)_x$ with $b_0 = (\det \mathbf{J})^{1/2}I_{\mathbb{C}\otimes E}$, and $b_r(x)$ are polynomials in R^{TX} , R^{\det} , R^E (and R^L) and their derivatives with order $\leq 2r - 1$ (resp. 2r) and \mathbf{J}^{-1} at x, such that for any $k, l \in \mathbb{N}$, there exist $C_{k,l} > 0$, $N \in \mathbb{N}$ such that for any $x \in X$, $p \in \mathbb{N}$,

$$(1.7) \left| \frac{1}{p^n} B_p(x) - \sum_{r=0}^k b_r(x) p^{-r} \right|_{C^l} \le C_{k,l} \left(p^{-k-1} + p^{l/2} (1 + \sqrt{p} d(x, X'))^N e^{-C\sqrt{p} d(x, X')} \right).$$

Moreover if the orbifold (X, ω) is Kähler, $\mathbf{J} = J$ and the proper orbifold vector bundles E, L are holomorphic on X, then $b_r(x) \in \operatorname{End}(E)_x$ and $b_r(x)$ are polynomials in R^{TX} , R^E and their derivatives with order $\leq 2r - 1$ at x.

This paper is organized as follows. In Section 2, we recall a result on the spectral gap of the spin^c Dirac operator [25]. In Section 3, we localizes the problem by finite propagation speed and use the rescaling in local index theorem to prove Theorems 1.1, 1.2. In Section 4, we compute the coefficients of the asymptotic expansion and explain how to generalize our method to the orbifold situation.

The results of this paper have been announced in [17].

2. The spectral gap of the $spin^c$ Dirac operator

The almost complex structure J induces a splitting $T_{\mathbb{R}}X \otimes_{\mathbb{R}} \mathbb{C} = T^{(1,0)}X \oplus T^{(0,1)}X$, where $T^{(1,0)}X$ and $T^{(0,1)}X$ are the eigenbundles of J corresponding to the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$ respectively. Let $T^{*(1,0)}X$ and $T^{*(0,1)}X$ be the corresponding dual bundles. For any $v \in TX$ with decomposition $v = v_{1,0} + v_{0,1} \in T^{(1,0)}X \oplus T^{(0,1)}X$, let $\overline{v}_{1,0}^* \in T^{*(0,1)}X$ be the metric dual of $v_{1,0}$. Then $c(v) = \sqrt{2}(\overline{v}_{1,0}^* \wedge -i_{v_{0,1}})$ defines the Clifford action of v on $\Lambda(T^{*(0,1)}X)$, where \wedge and i denote the exterior and interior product respectively. Set

(2.1)
$$\mu_0 = \inf_{u \in T_x^{(1,0)} X, \, x \in X} R_x^L(u, \overline{u}) / |u|_{g^{TX}}^2 > 0.$$

Let ∇^{TX} be the Levi-Civita connection of the metric g^{TX} . By [21, pp.397–398], ∇^{TX} induces canonically a Clifford connection ∇^{Cliff} on $\Lambda(T^{*(0,1)}X)$ (cf. also [25, §2]). Let ∇^{E_p} be the connection on $E_p = \Lambda(T^{*(0,1)}X) \otimes L^p \otimes E$ induced by ∇^{Cliff} , ∇^L and ∇^E .

Let $\langle \ \rangle_{E_p}$ be the metric on E_p induced by g^{TX} , h^L and h^E . Let dv_X be the Riemannian volume form of (TX, g^{TX}) . The L_2 -scalar product on $\Omega^{0,\bullet}(X, L^p \otimes E)$, the space of smooth sections of E_p , is given by

(2.2)
$$\langle s_1, s_2 \rangle = \int_X \langle s_1(x), s_2(x) \rangle_{E_p} \, dv_X(x) \,.$$

We denote the corresponding norm with $\|\cdot\|_{L^2}$. Let $\{e_i\}_i$ be an orthonormal basis of TX.

Definition 2.1. The spin^c Dirac operator D_p is defined by

(2.3)
$$D_p = \sum_{j=1}^{2n} c(e_j) \nabla_{e_j}^{E_p} : \Omega^{0,\bullet}(X, L^p \otimes E) \longrightarrow \Omega^{0,\bullet}(X, L^p \otimes E).$$

 D_p is a formally self-adjoint, first order elliptic differential operator on $\Omega^{0,\bullet}(X, L^p \otimes E)$, which interchanges $\Omega^{0,\text{even}}(X, L^p \otimes E)$ and $\Omega^{0,\text{odd}}(X, L^p \otimes E)$.

We denote by $P^{T^{(1,0)}X}$ the projection from $T_{\mathbb{R}}X \otimes_{\mathbb{R}} \mathbb{C}$ to $T^{(1,0)}X$. Let $\nabla^{T^{(1,0)}X} = P^{T^{(1,0)}X} \nabla^{TX} P^{T^{(1,0)}X}$ be the Hermitian connection on $T^{(1,0)}X$ induced by ∇^{TX} with curvature $R^{T^{(1,0)}X}$. Let $\nabla^{\det(T^{(1,0)}X)}$ be the connection on $\det(T^{(1,0)}X)$ induced by $\nabla^{T^{(1,0)}X}$ with curvature $R^{\det} = \text{Tr}[R^{T^{(1,0)}X}]$. Let $\{w_i\}$ be an orthonormal frame of $(T^{(1,0)}X, g^{TX})$. Set

(2.4)
$$\omega_d = -\sum_{l,m} R^L(w_l, \overline{w}_m) \, \overline{w}^m \wedge i_{\overline{w}_l} \,, \qquad \tau(x) = \sum_j R^L(w_j, \overline{w}_j) \,.$$

Let r^X is the scalar curvature of (TX, g^{TX}) , and

$$\mathbf{c}(R) = \sum_{l < m} \left(R^E + \frac{1}{2} \operatorname{Tr} \left[R^{T^{(1,0)}X} \right] \right) (e_l, e_m) c(e_l) c(e_m).$$

Then the Lichnerowicz formula [3, Theorem 3.52] (cf. [25, Theorem 2.2]) for D_p^2 is

(2.5)
$$D_p^2 = (\nabla^{E_p})^* \nabla^{E_p} - 2p\omega_d - p\tau + \frac{1}{4}r^X + \mathbf{c}(R),$$

If A is any operator, we denote by Spec(A) the spectrum of A.

The following simple result was obtained in [25, Theorems 0.1, 2.3] by applying the Lichnerowicz formula (cf. also [8, Theorem 1] in the holomorphic case).

Theorem 2.2. There exists $C_L > 0$ such that for any $p \in \mathbb{N}$ and any $s \in \Omega^{>0}(X, L^p \otimes E) = \bigoplus_{a \geq 1} \Omega^{0,q}(X, L^p \otimes E)$,

$$(2.6) $||D_p s||_{L^2}^2 \geqslant (2p\mu_0 - C_L)||s||_{L^2}^2.$$$

Moreover $\operatorname{Spec} D_p^2 \subset \{0\} \cup [2p\mu_0 - C_L, +\infty[$.

3. Bergman kernel

In this Section, we will study the uniform estimate with its derivatives on $t = \frac{1}{\sqrt{p}}$ of the heat kernel and the Bergman kernel of D_p^2 as $p \to \infty$. The first difficulty is that the space $\Omega^{0,\bullet}(X, L^p \otimes E)$ depends on p. To overcome this, we will localize the problem to a problem on \mathbb{R}^{2n} . Now, after rescaling, another substantial difficulty appears, which is the lack of the usual elliptic estimate on \mathbb{R}^{2n} for the rescaled Dirac operator. Thus we introduce a family of Sobolev norms defined by the rescaled connection on L^p , then we can extend the functional analysis technique developed in $[7, \S 11]$, and in this way, we can even get the estimate on its derivatives on $t = \frac{1}{\sqrt{p}}$.

This section is organized as follows. In Section 3.1, we establish the fact that the asymptotic expansion of $B_p(x)$ is local on X. In Section 3.2, we derive an asymptotic expansion of D_p in normal coordinate. In Section 3.3, we study the uniform estimate with its derivatives on t of the heat kernel and the Bergman kernel associated to the rescaled operator L_2^t from D_p^2 . In Theorem 3.16, we estimate uniformly the remainder term of the Taylor expansion of $e^{-uL_2^t}$ for $u \geq u_0 > 0, t \in [0, 1]$. In Section 3.4, we identify $J_{r,u}$ the coefficient of the Taylor expansion of $e^{-uL_2^t}$ with the Volterra expansion of the heat kernel, thus giving us a way to compute the coefficient b_j in Theorem 1.1. In Section 3.4, we prove Theorems 1.1, 1.2.

3.1. **Localization of the problem.** Let a^X be the injectivity radius of (X, g^{TX}) , and $\varepsilon \in (0, a^X/4)$. We denote by $B^X(x, \varepsilon)$ and $B^{T_xX}(0, \varepsilon)$ the open ball in X and T_xX with center x and radius ε , respectively. Then the map $T_xX \ni Z \to \exp_x^X(Z) \in X$ is a diffeomorphism from $B^{T_xX}(0, \varepsilon)$ on $B^X(x, \varepsilon)$ for $\varepsilon \le a^X$. From now on, we identify $B^{T_xX}(0, \varepsilon)$ with $B^X(x, \varepsilon)$.

Let $f: \mathbb{R} \to [0,1]$ be a smooth even function such that

(3.1)
$$f(v) = \begin{cases} 1 & \text{for } |v| \le \varepsilon/2, \\ 0 & \text{for } |v| \ge \varepsilon. \end{cases}$$

Set

(3.2)
$$F(a) = \left(\int_{-\infty}^{+\infty} f(v)dv\right)^{-1} \int_{-\infty}^{+\infty} e^{iva} f(v)dv.$$

Then F(a) lies in Schwartz space $\mathcal{S}(\mathbb{R})$ and F(0) = 1.

Let P_p be the orthogonal projection from $\Omega^{0,\bullet}(X, L^p \otimes E)$ on Ker D_p , and let $P_p(x, x')$, $F(D_p)(x, x')$ be the smooth kernel of P_p , $F(D_p)$ with respect to the volume form $dv_X(x')$. Then by (1.2)

$$(3.3) B_p(x) = P_p(x, x).$$

Proposition 3.1. For any $l, m \in \mathbb{N}$, there exist $C_{l,m} > 0$ such that

$$(3.4) |F(D_p)(x, x') - P_p(x, x')|_{C^m(X \times X)} \le C_{l,m} p^{-l}.$$

Here the C^m norm is induced by ∇^L, ∇^E and ∇^{Cliff} .

Proof. For $a \in \mathbb{R}$, set

(3.5)
$$\phi_p(a) = 1_{[\sqrt{p\mu_0}, +\infty[}(|a|)F(a).$$

Then by Theorem 2.2,

$$(3.6) F(D_p) - P_p = \phi_p(D_p).$$

By (3.2), for any $m \in \mathbb{N}$ there exists $C_m > 0$ such that

$$\sup_{a \in \mathbb{R}} |a|^m |F(a)| \le C_m.$$

As X is compact, there exist $\{x_i\}_{i=1}^r$ such that $\{U_i = B^X(x_i, \varepsilon)\}_{i=1}^r$ is a covering of X. We identify $B^{T_{x_i}X}(0,\varepsilon)$ with $B^X(x_i,\varepsilon)$ by geodesic as above. We identify $(TX)_Z, (E_p)_Z$ for $Z \in B^{T_{x_i}X}(0,\varepsilon)$ to $T_{x_i}X, (E_p)_{x_i}$ by parallel transport with respect to the connections ∇^{TX} , ∇^{E_p} along the curve $\gamma_Z : [0,1] \ni u \to \exp_{x_i}^X(uZ)$. Let $\{e_i\}_i$ be an orthonormal basis of $T_{x_i}X$. Let $\widetilde{e}_i(Z)$ be the parallel transport of e_i with respect to ∇^{TX} along the above curve. Let $\Gamma^E, \Gamma^L, \Gamma^{\text{Cliff}}$ be the corresponding connection forms of ∇^E, ∇^L and ∇^{Cliff} with respect to any fixed frame for $E, L, \Lambda(T^{*(0,1)}X)$ which is parallel along the curve γ_Z under the trivialization on U_i .

Denote by ∇_U the ordinary differentiation operator on $T_{x_i}X$ in the direction U. Then

(3.8)
$$D_p = \sum_{i} c(\widetilde{e}_i) \Big(\nabla_{\widetilde{e}_i} + p \Gamma^L(\widetilde{e}_i) + \Gamma^{\text{Cliff}}(\widetilde{e}_i) + \Gamma^E(\widetilde{e}_i) \Big).$$

Let $\{\varphi_i\}$ be a partition of unity subordinate to $\{U_i\}$. We define a Sobolev norm on the l-th Sobolev space $H^l(X, E_p)$ by

(3.9)
$$||s||_{H_p^l}^2 = \sum_{i} \sum_{k=1}^{l} \sum_{i_1 \cdots i_k=1}^{2n} ||\nabla_{e_{i_1}} \cdots \nabla_{e_{i_k}} (\varphi_i s)||_{L^2}^2$$

Then by (3.8), there exists C > 0 such that for $p \ge 1$, $s \in H^1(X, E_p)$,

$$||s||_{H_p^1} \le C(||D_p s||_{L^2} + p||s||_{L^2}).$$

Let Q be a differential operator of order $m \in \mathbb{N}$ with scalar principal symbol and with compact support in U_i , then

$$(3.11) \quad [D_p, Q] = \sum_{i} p[c(\widetilde{e}_j)\Gamma^L(\widetilde{e}_j), Q] + \sum_{i} \left[c(\widetilde{e}_j) \left(\nabla_{\widetilde{e}_j} + \Gamma^{\text{Cliff}}(\widetilde{e}_j) + \Gamma^E(\widetilde{e}_j) \right), Q \right]$$

which are differential operators of order m-1, m respectively. By (3.10), (3.11),

(3.12)
$$||Qs||_{H_p^1} \le C(||D_pQs||_{L^2} + p||Qs||_{L^2})$$

$$\le C(||QD_ps||_{L^2} + p||s||_{H_p^m}).$$

From (3.12), for $m \in \mathbb{N}$, there exists $C'_m > 0$ such that for $p \geq 1$.

$$||s||_{H_n^{m+1}} \le C'_m(||D_p s||_{H_n^m} + p||s||_{H_n^m}).$$

This means

(3.14)
$$||s||_{H_p^{m+1}} \le C'_m \sum_{j=0}^{m+1} p^{m+1-j} ||D_p^j s||_{L^2}.$$

Moreover from $\langle D_p^{m'}\phi_p(D_p)Qs,s'\rangle=\langle s,Q^*\phi_p(D_p)D_p^{m'}s'\rangle$, (3.5) and (3.7), we know that for $l,m,m'\in\mathbb{N}$, there exists $C_{m,m'}>0$ such that for $p\geq 1$,

(3.15)
$$||D_p^{m'}\phi_p(D_p)Qs||_{L^2} \le C_{m,m'}p^{-l+m}||s||_{L^2}.$$

We deduce from (3.14) and (3.15) that if P, Q are differential operators of order m, m' with compact support in U_i , U_j respectively, then for any l > 0, there exists $C_l > 0$ such that for $p \ge 1$,

On $U_i \times U_j$, by using Sobolev inequality and (3.6), we get our Proposition 3.1.

By the finite propagation speed [13], [16], [12, §7.8], [27, §4.4], $F(D_p)(x, x')$ only depends on the restriction of D_p to $B^X(x, \varepsilon)$, and is zero if $d(x, x') \geq \varepsilon$. Thus we know that the asymptotic of $P_p(x, x')$ as $p \to \infty$ is localized on a neighborhood of x.

To compare the coefficients of the expansion of $P_p(x, x')$ with the heat kernel expansion of $\exp(-\frac{u}{p}D_p^2)$ in Theorem 1.2, we will use again the finite propagation speed to localize the problem.

Definition 3.2. For $u > 0, a \in \mathbb{C}$, set

(3.17)
$$G_{u}(a) = \int_{-\infty}^{+\infty} e^{iva} \exp(-\frac{v^{2}}{2}) f(\sqrt{u}v) \frac{dv}{\sqrt{2\pi}},$$

$$H_{u}(a) = \int_{-\infty}^{+\infty} e^{iva} \exp(-\frac{v^{2}}{2u}) (1 - f(v)) \frac{dv}{\sqrt{2\pi u}}.$$

The functions $G_u(a)$, $H_u(a)$ are even holomorphic functions. The restrictions of G_u , H_u to \mathbb{R} lie in the Schwartz space $\mathcal{S}(\mathbb{R})$. Clearly,

(3.18)
$$G_{\frac{u}{p}}(\sqrt{\frac{u}{p}}D_p) + H_{\frac{u}{p}}(D_p) = \exp(-\frac{u}{2p}D_p^2).$$

Let $G_{\frac{u}{p}}(\sqrt{\frac{u}{p}}D_p)(x,x')$, $H_{\frac{u}{p}}(D_p)(x,x')$ $(x,x'\in X)$ be the smooth kernels associated to $G_{\frac{u}{p}}(\sqrt{\frac{u}{p}}D_p)$, $H_{\frac{u}{p}}(D_p)$ calculated with respect to the volume form $dv_X(x')$.

Proposition 3.3. For any $m \in \mathbb{N}$, $u_0 > 0$, $\varepsilon > 0$, there exists C > 0 such that for any $x, x' \in X$, $p \in \mathbb{N}$, $u \ge u_0$,

(3.19)
$$\left| H_{\frac{u}{p}}(D_p)(x, x') \right|_{C^m} \le Cp^{m+2n+2} \exp(-\frac{\varepsilon^2 p}{8u}).$$

Proof. By (3.17), for any $m \in \mathbb{N}$ there exists $C_m > 0$ (which depends on ε) such that

(3.20)
$$\sup_{a \in \mathbb{R}} |a|^m |H_u(a)| \le C_m \exp(-\frac{\varepsilon^2}{8u}).$$

As (3.16), we deduce from (3.14) and (3.20) that if P, Q are differential operators of order m, m' with compact support in U_i , U_j respectively, then there exists C > 0 such that for $p \ge 1, u \ge u_0$,

(3.21)
$$||PH_{\frac{u}{p}}(D_p)Qs||_{L^2} \le Cp^{m+m'} \exp(-\frac{\varepsilon^2 p}{8u})||s||_{L^2}.$$

On $U_i \times U_j$, by using Sobolev inequality, we get our Proposition 3.3.

Using (3.17) and finite propagation speed [12, §7.8], [27, §4.4], it is clear that for $x, x' \in X$, $G_{\frac{u}{p}}(\sqrt{\frac{u}{p}}D_p)(x, x')$ only depends on the restriction of D_p to $B^X(x, \varepsilon)$, and is zero if $d(x, x') \geq \varepsilon$.

3.2. Rescaling and a Taylor expansion of the operator D_p . Now we fix $x_0 \in X$. We identify L_Z, E_Z and $(E_p)_Z$ for $Z \in B^{T_{x_i}X}(0, \varepsilon)$ to L_{x_0}, E_{x_0} and $(E_p)_{x_0}$ by parallel transport with respect to the connections ∇^L, ∇^E and ∇^{E_p} along the curve $\gamma_Z : [0, 1] \ni u \to \exp_{x_0}^X(uZ)$. Let $\{e_i\}_i$ be an oriented orthonormal basis of $T_{x_0}X$. We also denote by $\{e^i\}_i$ the dual basis of $\{e_i\}$. Let $\widetilde{e}_i(Z)$ be the parallel transport of e_i with respect to ∇^{TX} along the above curve.

Now, for $\varepsilon > 0$ small enough, we will extend the geometric objects on $B^{T_{x_0}X}(0,\varepsilon)$ to $\mathbb{R}^{2n} \simeq T_{x_0}X$ (here we identify $(Z_1, \dots, Z_{2n}) \in \mathbb{R}^{2n}$ to $\sum_i Z_i e_i \in T_{x_0}X$) such that D_p is the restriction of a spin^c Dirac operator on \mathbb{R}^{2n} associated to a Hermitian line bundle with positive curvature. In this way, we can replace X by \mathbb{R}^{2n} .

First of all, we denote L_0 , E_0 the trivial bundles L_{x_0} , E_{x_0} on $X_0 = \mathbb{R}^{2n}$. And we still denote by ∇^L , ∇^E , h^L etc. the connections and metrics on L_0 , E_0 on $B^{T_{x_i}X}(0, 4\varepsilon)$ induced by the above identification. Then h^L , h^E is identified with the constant metrics $h^{L_0} = h^{L_{x_0}}$, $h^{E_0} = h^{E_{x_0}}$. Let $\mathcal{R} = \sum_i Z_i e_i = Z$ be the radial vector field on \mathbb{R}^{2n} .

Let $\rho: \mathbb{R} \to [0,1]$ be a smooth even function such that

(3.22)
$$\rho(v) = 1 \text{ if } |v| < 2; \quad \rho(v) = 0 \text{ if } |v| > 4.$$

Let $\varphi_{\varepsilon}: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is the map defined by $\varphi_{\varepsilon}(Z) = \rho(|Z|/\varepsilon)Z$. Let $g^{TX_0}(Z) = g^{TX}(\varphi_{\varepsilon}(Z))$, $J_0 = \varphi_{\varepsilon}^*J$ be the metric and complex structure on X_0 . Let $\nabla^{E_0} = \varphi_{\varepsilon}^*\nabla^E$, then ∇^{E_0} is the extension of ∇^E on $B^{T_{x_0}X}(0,\varepsilon)$. Let ∇^{L_0} be the Hermitian connection on (L_0, h^{L_0}) defined by

(3.23)
$$\nabla^{L_0}|_Z = \varphi_{\varepsilon}^* \nabla^L + \frac{1}{2} (1 - \rho^2(|Z|/\varepsilon)) R_{x_0}^L(\mathcal{R}, \cdot).$$

Then we calculate easily that its curvature $R^{L_0} = (\nabla^{L_0})^2$ is

$$(3.24) \quad R^{L_0}(Z) = \varphi_{\varepsilon}^* R^L + \frac{1}{2} d\left((1 - \rho^2(|Z|/\varepsilon)) R_{x_0}^L(\mathcal{R}, \cdot) \right)$$

$$= \frac{1}{2} \left(1 - \rho^2(|Z|/\varepsilon) \right) R_{x_0}^L + \rho^2(|Z|/\varepsilon) R_{\varphi_{\varepsilon}(Z)}^L$$

$$- (\rho \rho') (|Z|/\varepsilon) \sum_i \frac{Z_i e^i}{\varepsilon |Z|} \wedge [R_{x_0}^L(\mathcal{R}, \cdot) - R_{\varphi_{\varepsilon}(Z)}^L(\mathcal{R}, \cdot)].$$

Thus R^{L_0} is positive in the sense of (2.1) for ε small enough, and the corresponding constant μ_0 for R^{L_0} is bigger than $\frac{1}{2}\mu_0$. From now on, we fix ε as above.

Let $T^{*(0,1)}X_0$ be the anti-holomorphic cotangent bundle of (X_0, J_0) . Let $\nabla^{\Lambda(T^{*(0,1)}X_0)}$ be the Clifford connection on $\Lambda(T^{*(0,1)}X_0)$ induced by the Levi-Civita connection ∇^{TX_0} on (X_0, g^{TX_0}) . Let $R^{E_0}, R^{TX_0}, R^{\Lambda(T^{*(0,1)}X_0)\otimes E_0}$ be the corresponding curvatures on E_0, TX_0 and $\Lambda(T^{*(0,1)}X_0)\otimes E_0$.

We identify $\Lambda(T^{*(0,1)}X_0)_Z$ with $\Lambda(T^{*(0,1)}_{x_0}X)$ by identifying first $\Lambda(T^{*(0,1)}X_0)_Z$ with $\Lambda(T^{*(0,1)}_{\varphi_{\varepsilon}(Z)}X)$, which in turn is identified with $\Lambda(T^{*(0,1)}_{x_0}X)$ by using parallel transport along $u \to u\varphi_{\varepsilon}(Z)$ with respect to $\nabla^{\Lambda(T^{*(0,1)}X_0)}$. We also trivialize $\Lambda(T^{*(0,1)}X_0)$ in this way. Let S_L be an unit vector of L_{x_0} . Using S_L and the above discussion, we get an isometry $\Lambda(T^{*(0,1)}X_0) \otimes E_0 \otimes L_0^p \simeq (\Lambda(T^{*(0,1)}X) \otimes E)_{x_0} = \mathbf{E}_{x_0}$.

Let $D_p^{X_0}$ be the Dirac operator on X_0 associated to the above data by the construction in Section 2. By the argument in [25, p. 656-657], we know that Theorem 2.2 still holds for $D_p^{X_0}$. In particular, there exists C > 0 such that

(3.25)
$$\operatorname{Spec}(D_{p}^{X_{0}})^{2} \subset \{0\} \cup [p\mu_{0} - C, +\infty[...]$$

Let P_p^0 be the orthogonal projection from $\Omega^{0,\bullet}(X_0, L_0^p \otimes E_0) \simeq C^{\infty}(X_0, \mathbf{E}_{x_0})$ on Ker $D_p^{X_0}$, and let $P_p^0(x, x')$ be the smooth kernel of P_p^0 with respect to the volume form $dv_{X_0}(x')$.

Proposition 3.4. For any $l, m \in \mathbb{N}$, there exists $C_{l,m} > 0$ such that for $x, x' \in B^{T_{x_0}X}(0, \varepsilon)$,

Proof. Using (3.2) and (3.25), we know that $P_p^0 - F(D_p)$ verifies also (3.4) for $x, x' \in B^{T_{x_0}X}(0, \varepsilon)$, thus we get (3.26).

To be complete, we prove the following result in [3, Proposition 1.28].

Lemma 3.5. The Taylor expansion of $\widetilde{e}_i(Z)$ with respect to the basis $\{e_i\}$ to order r is a polynomial of the Taylor expansion of R^{TX} to order r-2. Moreover we have

$$(3.27) \qquad \widetilde{e}_i(Z) = e_i - \frac{1}{6} \sum_j \left\langle R_{x_0}^{TX}(\mathcal{R}, e_i) \mathcal{R}, e_j \right\rangle e_j + \sum_{|\alpha| \ge 3} \left(\frac{\partial^{\alpha}}{\partial Z^{\alpha}} \widetilde{e}_i \right) (0) \frac{Z^{\alpha}}{\alpha!}.$$

Proof. Let Γ^{TX} the connection form of ∇^{TX} with respect to the frame $\{\tilde{e}_i\}$ of TX. Let $\partial_i = \nabla_{e_i}$ be the partial derivatives along e_i . By the definition of our fixed frame, we have $i_{\mathcal{R}}\Gamma^{TX} = 0$. As in [3, (1.12)],

(3.28)
$$\mathcal{L}_{\mathcal{R}}\Gamma^{TX} = [i_{\mathcal{R}}, d]\Gamma^{TX} = i_{\mathcal{R}}(d\Gamma^{TX} + \Gamma^{TX} \wedge \Gamma^{TX}) = i_{\mathcal{R}}R^{TX}$$

Let $\Theta(Z) = (\theta^i_j(Z))^{2n}_{i,j=1}$ be the $2n \times 2n$ -matrix such that

(3.29)
$$e_i = \sum_j \theta_i^j(Z)\widetilde{e}_j(Z), \quad \widetilde{e}_j(Z) = (\Theta(Z)^{-1})_j^k e_k.$$

Set
$$\theta^{j}(Z) = \sum_{i} \theta_{i}^{j}(Z)e^{i}$$
 and

(3.30)
$$\theta = \sum_{j} e^{j} \otimes e_{j} = \sum_{j} \theta^{j} \widetilde{e}_{j} \in T^{*}X \otimes TX.$$

As ∇^{TX} is torsion free, $\nabla^{TX}\theta = 0$, thus the \mathbb{R}^{2n} -valued one-form $\theta = (\theta^{j}(Z))$ satisfies the structure equation,

$$(3.31) d\theta + \Gamma^{TX} \wedge \theta = 0.$$

Observe first that (cf. [3, Proposition 1.27])

(3.32)
$$\mathcal{R} = \sum_{j} Z_{j} \widetilde{e}_{j}(Z), \quad i_{\mathcal{R}} \theta = \sum_{j} Z_{j} e_{j} = \mathcal{R}.$$

Substituting (3.32) and $(\mathcal{L}_{\mathcal{R}} - 1)\mathcal{R} = 0$, into the identity $i_{\mathcal{R}}(d\theta + \Gamma^{TX} \wedge \theta) = 0$, we obtain

$$(3.33) \qquad (\mathcal{L}_{\mathcal{R}} - 1)\mathcal{L}_{\mathcal{R}}\theta = (\mathcal{L}_{\mathcal{R}} - 1)(d\mathcal{R} + \Gamma^{TX}\mathcal{R}) = (\mathcal{L}_{\mathcal{R}}\Gamma^{TX})\mathcal{R} = (i_{\mathcal{R}}R^{TX})\mathcal{R}.$$

Using (3.32) once more gives

$$(3.34) i_{e_i}(\mathcal{L}_{\mathcal{R}} - 1)\mathcal{L}_{\mathcal{R}}\theta^i(Z) = \langle R^{TX}(\mathcal{R}, e_j)\mathcal{R}, \widetilde{e}_i \rangle(Z).$$

Thus

(3.35)
$$\sum_{|\alpha| \ge 1} (|\alpha|^2 + |\alpha|) (\partial^{\alpha} \theta_j^i)(0) \frac{Z^{\alpha}}{\alpha!} = \langle R^{TX}(\mathcal{R}, e_j) \mathcal{R}, \widetilde{e}_i \rangle (Z).$$

Now by (3.29) and $\theta_j^i(x_0) = \delta_{ij}$, (3.35) determines the Taylor expansion of $\theta_j^i(Z)$ to order m in terms of the Taylor expansion of R^{TX} to order m-2. And

$$(3.36) \qquad (\Theta^{-1})_j^i = \delta_{ij} - \frac{1}{6} \left\langle R_{x_0}^{TX}(\mathcal{R}, e_i) \mathcal{R}, e_j \right\rangle + \mathcal{O}(|Z|^3).$$

By
$$(3.29)$$
, (3.36) , we get (3.27) .

For $s \in C^{\infty}(\mathbb{R}^{2n}, \mathbf{E}_{x_0})$ and $Z \in \mathbb{R}^{2n}$, for $t = \frac{1}{\sqrt{p}}$, set

(3.37)
$$(S_t s)(Z) = s(Z/t), \quad \nabla_t = S_t^{-1} t \nabla^{\Lambda(T^{*(0,1)}X_0) \otimes E_0 \otimes L_0^p} S_t,$$

$$\mathbf{D}_t = S_t^{-1} t D_p^{X_0} S_t, \quad L_2^t = S_t^{-1} t^2 D_p^{X_0,2} S_t.$$

Denote by ∇_U the ordinary differentiation operator on $T_{x_0}X$ in the direction U. If $\alpha = (\alpha_1, \dots, \alpha_{2n})$ is a multi-index, set $Z^{\alpha} = Z_1^{\alpha_1} \dots Z_{2n}^{\alpha_{2n}}$. Set

(3.38)
$$\mathcal{O}_0 = \sum_{i} c(e_i) \left(\nabla_{e_i} + \frac{1}{2} R_{x_0}^L(Z, e_i) \right).$$

Theorem 3.6. There exist $\mathcal{B}_{i,r}$ (resp. $\mathcal{A}_{i,r}$, resp. $\mathcal{C}_{i,r}$) $(r \in \mathbb{N}, i \in \{1, \dots, 2n\})$ homogeneous polynomials in Z of degree r with coefficients polynomials in R^{TX} , R^{det} , R^{det} , R^{E} (resp. R^{TX} , resp. R^{L} , R^{TX}) and their derivatives at x_0 to order r-1 (resp. r-2, resp. r-1, r-2) such that if we denote by

(3.39)
$$\mathcal{O}_{i,r} = \sum_{i} \mathcal{A}_{i,r} \nabla_{e_i} + \mathcal{B}_{i,r-1} + \mathcal{C}_{i,r+1}, \quad \mathcal{O}_r = \sum_{i=1}^{2n} c(e_i) \mathcal{O}_{i,r},$$

then

(3.40)
$$\mathbf{D}_t = \mathcal{O}_0 + \sum_{r=1}^m t^r \mathcal{O}_r + \mathcal{O}(t^{m+1}).$$

Moreover, there exists $m' \in \mathbb{N}$ such that for any $k \in \mathbb{N}$, $t \leq 1$, $|tZ| \leq \varepsilon$, the derivatives of order $\leq k$ of the coefficients of the operator $\mathcal{O}(t^{m+1})$ are dominated by $Ct^{m+1}(1+|Z|)^{m'}$.

Proof. By the definition of ∇^{Cliff} , \widetilde{e}_i , for $Z \in \mathbb{R}^{2n}$

$$(3.41) [\nabla_Z^{\text{Cliff}}, c(\widetilde{e}_i)(tZ)] = c(\nabla_Z^{TX}\widetilde{e}_i)(tZ) = 0,$$

Thus we know that under our trivialization

$$(3.42) c(\widetilde{e}_j)(tZ) = c(e_j).$$

We identify $(\det(T^{(1,0)}X))_Z$ for $Z \in B^{T_{x_0}X}(0,\varepsilon)$ to $(\det(T^{(1,0)}X))_{x_0}$ by parallel transport with respect to the connection $\nabla^{\det(T^{(1,0)}X)}$ along the curve γ_Z . Let Γ^E , Γ^{\det} and Γ^L be the connection forms of ∇^E , $\nabla^{\det(T^{(1,0)}X)}$ and ∇^L with respect to any fixed frames for E, $\det(T^{(1,0)}X)$ and L which are parallel along the curve γ_Z under our trivialization on $B^{T_{x_0}X}(0,\varepsilon)$. Then the corresponding connection form of $\Lambda(T^{*(0,1)}X)$ is

(3.43)
$$\Gamma^{\text{Cliff}} = \frac{1}{4} \left\langle \Gamma^{TX} \widetilde{e}_k, \widetilde{e}_l \right\rangle c(\widetilde{e}_k) c(\widetilde{e}_l) + \frac{1}{2} \Gamma^{\text{det}}.$$

Now for $\Gamma^{\bullet} = \Gamma^{E}$, Γ^{L} or Γ^{det} and $R^{\bullet} = R^{E}$, R^{L} or R^{det} respectively, by the definition of our fixed frame, we have as in (3.28)

(3.44)
$$i_{\mathcal{R}}\Gamma^{\bullet} = 0, \qquad \mathcal{L}_{\mathcal{R}}\Gamma^{\bullet} = [i_{\mathcal{R}}, d]\Gamma^{\bullet} = i_{\mathcal{R}}(d\Gamma^{\bullet} + \Gamma^{\bullet} \wedge \Gamma^{\bullet}) = i_{\mathcal{R}}R^{\bullet}.$$

Expanding the Taylor's series of both sides of (3.44) at Z=0, we obtain

(3.45)
$$\sum_{\alpha} (|\alpha| + 1)(\partial^{\alpha} \Gamma^{\bullet})_{x_0}(e_j) \frac{Z^{\alpha}}{\alpha!} = \sum_{\alpha} (\partial^{\alpha} R^{\bullet})_{x_0}(\mathcal{R}, e_j) \frac{Z^{\alpha}}{\alpha!}.$$

By equating coefficients of Z^{α} on both sides, we see from this formula

(3.46)
$$\sum_{|\alpha|=r} (\partial^{\alpha} \Gamma^{\bullet})_{x_0}(e_j) \frac{Z^{\alpha}}{\alpha!} = \frac{1}{r+1} \sum_{|\alpha|=r-1} (\partial^{\alpha} R^{\bullet})_{x_0}(\mathcal{R}, e_j) \frac{Z^{\alpha}}{\alpha!}$$

Especially,

(3.47)
$$\partial_i \Gamma_{x_0}^{\bullet}(e_j) = \frac{1}{2} R_{x_0}^{\bullet}(e_i, e_j).$$

Furthermore, it follows that the Taylor coefficients of $\Gamma^{\bullet}(e_j)(Z)$ at x_0 to order r are determined by those of R^{\bullet} to order r-1.

By (3.38), (3.42), for
$$t = 1/\sqrt{p}$$
, for $|Z| \leq \sqrt{p\varepsilon}$, then

(3.48)
$$\nabla_t|_Z = \nabla + (t\Gamma^{\text{Cliff}} + t\Gamma^E + \frac{1}{t}\Gamma^L)(tZ),$$

$$\mathbf{D}_t = \sum_{j=1}^{2n} c(e_j) \nabla_{t,\tilde{e}_j(tZ)}|_Z.$$

By Lemma 3.5, (3.45) and (3.48), we get our Theorem.

3.3. Uniform estimate on the heat kernel and the Bergman kernel. Recall that the operators L_2^t , ∇_t were defined in (3.37). We also denote by \langle , \rangle_0 and $|| ||_0$ the scalar product and the L^2 norm on $C^{\infty}(X_0, \mathbf{E}_{x_0})$ induced by g^{TX_0} , h^{E_0} as in (2.2).

Let dv_{TX} be the Riemannian volume form on $(T_{x_0}X, g^{T_{x_0}X})$. Let $\kappa(Z)$ be the smooth positive function defined by the equation

$$(3.49) dv_{X_0}(Z) = \kappa(Z)dv_{TX}(Z).$$

with k(0) = 1. For $s \in C^{\infty}(T_{x_0}X, \mathbf{E}_{x_0})$, set

$$(3.50) ||s||_{t,0}^2 = \int_{\mathbb{R}^{2n}} |s(Z)|_{h^{\Lambda(T^{*}(0,1)}X_{0})\otimes E_{0}(tZ)}^2 dv_{X_{0}}(tZ) = t^{-2n} ||S_{t}s||_{0}^2,$$

$$||s||_{t,m}^2 = \sum_{l=0}^{m} \sum_{i_{1},\dots,i_{l}=1}^{2n} ||\nabla_{t,e_{i_{1}}} \dots \nabla_{t,e_{i_{l}}} s||_{t,0}^2.$$

We denote by $\langle s', s \rangle_{t,0}$ the inner product on $C^{\infty}(X_0, \mathbf{E}_{x_0})$ corresponding to $\| \|_{t,0}^2$. Let H_t^m be the Sobolev space of order m with norm $\| \|_{t,m}$. Let H_t^{-1} be the Sobolev space of order -1 and let $\| \|_{t,-1}$ be the norm on H_t^{-1} defined by $\|s\|_{t,-1} = \sup_{0 \neq s' \in H_t^1} |\langle s, s' \rangle_{t,0}| / \|s'\|_{t,1}$. If $A \in \mathcal{L}(H^m, H^{m'})$ $(m, m' \in \mathbb{Z})$, we denote by $\| \|_{t}^{m,m'}$ the norm of A with respect to the norms $\| \|_{t,m}$ and $\| \|_{t,m'}$.

Then L_t^2 is a formally self adjoint elliptic operator with respect to $\| \|_{t,0}^2$, and is a smooth family of operators with parameter $x_0 \in X$.

Theorem 3.7. There exist constants $C_1, C_2, C_3 > 0$ such that for $t \in]0,1]$ and any $s, s' \in C_0^{\infty}(\mathbb{R}^{2n}, \mathbf{E}_{x_0}),$

(3.51)
$$\langle L_2^t s, s \rangle_{t,0} \ge C_1 ||s||_{t,1}^2 - C_2 ||s||_{t,0}^2,$$
$$|\langle L_2^t s, s' \rangle_{t,0}| \le C_3 ||s||_{t,1} ||s'||_{t,1}.$$

Proof. Now from (2.5),

$$(3.52) \quad \left\langle D_p^{X_0,2} s, s \right\rangle_0 = \| \nabla^{\Lambda(T^{*(0,1)} X_0) \otimes E_0 \otimes L_0^p} s \|_0^2 + \left\langle \left(-2p\omega_d - p\tau + \frac{1}{4}r^X + \mathbf{c}(R) \right) s, s \right\rangle_0.$$

Thus from (3.50), (3.52),

(3.53)
$$\langle L_2^t s, s \rangle_{t,0} = \|\nabla_t s\|_{t,0}^2 + \left\langle \left(-2S_t^{-1}\omega_d - S_t^{-1}\tau + \frac{t^2}{4}S_t^{-1}r^X + t^2S_t^{-1}\mathbf{c}(R) \right) s, s \right\rangle_{t,0}$$
.
From (3.53), we get (3.51).

Let δ be the circle in \mathbb{C} of center 0 and radius $\mu_0/4$, and let Δ be the oriented path in \mathbb{C} which goes parallel to the real axis from $+\infty + i$ to $\frac{\mu_0}{2} + i$ then parallel to the imaginary axis to $\frac{\mu_0}{2} - i$ and the parallel to the real axis to $+\infty - i$.

By (3.14), (3.37), for t small enough,

(3.54) Spec
$$L_2^t \subset \{0\} \cup [\frac{3}{4}\mu_0, +\infty[$$
.

Thus $(\lambda - L_2^t)^{-1}$ exists for $\lambda \in \delta \cup \Delta$.

Theorem 3.8. There exists C > 0 such that for $t \in]0,1]$, $\lambda \in \delta \cup \Delta$, and $x_0 \in X$,

(3.55)
$$\|(\lambda - L_2^t)^{-1}\|_t^{0,0} \le C,$$
$$\|(\lambda - L_2^t)^{-1}\|_t^{-1,1} \le C(1 + |\lambda|^2).$$

Proof. The first inequality of (3.55) is from (3.54). Now, by (3.51), for $\lambda_0 \in \mathbb{R}$, $\lambda_0 \leq -2C_2$, $(\lambda_0 - L_2^t)^{-1}$ exists, and we have $\|(\lambda_0 - L_2^t)^{-1}\|_t^{-1,1} \leq \frac{1}{C_1}$. Now,

$$(3.56) (\lambda - L_2^t)^{-1} = (\lambda_0 - L_2^t)^{-1} + (\lambda - \lambda_0)(\lambda - L_2^t)^{-1}(\lambda_0 - L_2^t)^{-1}.$$

Thus for $\lambda \in \delta \cup \Delta$, from (3.56), we get

(3.57)
$$\|(\lambda - L_2^t)^{-1}\|_t^{-1,0} \le \frac{1}{C_1} \left(1 + \frac{4}{\mu_0} |\lambda - \lambda_0| \right).$$

Now we change the last two factors in (3.56), and apply (3.57), we get

(3.58)
$$\|(\lambda - L_2^t)^{-1}\|_t^{-1,1} \le \frac{1}{C_1} + \frac{|\lambda - \lambda_0|}{C_1^2} \left(1 + \frac{4}{\mu_0} |\lambda - \lambda_0|\right)$$

$$\le C(1 + |\lambda|^2).$$

The proof of our Theorem is complete.

Proposition 3.9. Take $m \in \mathbb{N}^*$. There exists $C_m > 0$ such that for $t \in]0,1]$, $Q_1, \dots, Q_m \in \{\nabla_{t,e_i}, Z_i\}_{i=1}^{2n}$ and $s, s' \in C_0^{\infty}(\mathbb{R}^{2n}, \mathbf{E}_{x_0})$,

(3.59)
$$\left| \left\langle [Q_1, [Q_2, \dots, [Q_m, L_2^t]] \dots] s, s' \right\rangle_{t,0} \right| \leq C_m \|s\|_{t,1} \|s'\|_{t,1}.$$

Proof. Set $g_{ij}(Z) = g^{TX_0}(e_i, e_j)(Z)$. Let $(g^{ij}(Z))$ be the inverse of the matrix $(g_{ij}(Z))$. Let $\nabla^{TX_0}_{e_i}e_j = \Gamma^k_{ij}(Z)e_k$, then by (2.5),

(3.60)
$$L_2^t(Z) = -g^{ij}(tZ)(\nabla_{t,e_i}\nabla_{t,e_j} - t\Gamma_{ij}^k(tZ)\nabla_{t,e_i})$$

 $-2\omega_d(tZ) + \tau(tZ) + t^2(\frac{1}{4}r^X + \mathbf{c}(R))(tZ).$

Note that $[\nabla_{t,e_i}, Z_j] = \delta_{ij}$. Thus by (3.60), we know that $[Z_j, L_2^t]$ verifies (3.59). Note that by (3.37)

$$(3.61) \left[\nabla_{t,e_i}, \nabla_{t,e_j}\right] = \left(R^{L_0}(tZ) + t^2 R^{\Lambda(T^{*(0,1)}X_0) \otimes E_0}(tZ)\right) (e_i, e_j).$$

Thus from (3.60) and (3.61), we know that $[\nabla_{t,e_k}, L_2^t]$ has the same structure as L_2^t for $t \in]0,1]$, i.e. $[\nabla_{t,e_k}, L_2^t]$ has the type as

$$(3.62) \qquad \sum_{ij} a_{ij}(t,tZ) \nabla_{t,e_i} \nabla_{t,e_j} + \sum_i b_i(t,tZ) \nabla_{t,e_i} + c(t,tZ),$$

and $a_{ij}(t, Z), b_i(t, Z), c(t, Z)$ and their derivatives on Z are uniformly bounded for $Z \in \mathbb{R}^{2n}, t \in [0, 1]$; moreover, they are polynomial in t.

Let $(\nabla_{t,e_i})^*$ be the adjoint of ∇_{t,e_i} with respect to $\langle , \rangle_{t,0}$, then by (3.50),

$$(3.63) \qquad (\nabla_{t,e_i})^* = -\nabla_{t,e_i} - (k^{-1}\nabla_{e_i}k)(tZ),$$

the last term of (3.63) and its derivatives in Z are uniformly bounded in $Z \in \mathbb{R}^{2n}, t \in [0, 1]$.

By (3.62) and (3.63), (3.59) is verified for m = 1.

By iteration, we know that $[Q_1, [Q_2, \dots, [Q_m, L_2^t]] \dots]$ has the same structure (3.62) as L_2^t . By (3.63), we get Proposition 3.9.

Theorem 3.10. For any $t \in]0,1]$, $\lambda \in \delta \cup \Delta$, $m \in \mathbb{N}$, the resolvent $(\lambda - L_2^t)^{-1}$ maps H_t^m into H_t^{m+1} . Moreover for any $\alpha \in \mathbb{Z}^{2n}$, there exist $N \in \mathbb{N}$, $C_{\alpha,m} > 0$ such that for $t \in]0,1]$, $\lambda \in \delta \cup \Delta$, $s \in C^{\infty}(X_0, \mathbf{E}_{x_0})$,

(3.64)
$$||Z^{\alpha}(\lambda - L_2^t)^{-1}s||_{t,m+1} \le C_{\alpha,m}(1 + |\lambda|^2)^N \sum_{\alpha' \le \alpha} ||Z^{\alpha'}s||_{t,m}.$$

Proof. For $Q_1, \dots, Q_m \in \{\nabla_{t,e_i}\}_{i=1}^{2n}, Q_{m+1}, \dots, Q_{m+|\alpha|} \in \{Z_i\}_{i=1}^{2n}$, We can express $Q_1 \dots Q_{m+|\alpha|}(\lambda - L_2^t)^{-1}$ as a linear combination of operators of the type

$$(3.65) [Q_1, [Q_2, \dots [Q_{m'}, (\lambda - L_2^t)^{-1}]] \dots] Q_{m'+1} \dots Q_{m+|\alpha|} m' \le m + |\alpha|.$$

Let \mathscr{R}_t be the family operators $\mathscr{R}_t = \{[Q_{j_1}, [Q_{j_2}, \dots [Q_{j_l}, L_2^t]] \dots]\}$. Clearly, any commutator $[Q_1, [Q_2, \dots [Q_{m'}, (\lambda - L_2^t)^{-1}]] \dots]$ is a linear combination of operators of the form

$$(3.66) (\lambda - L_2^t)^{-1} R_1 (\lambda - L_2^t)^{-1} R_2 \cdots R_{m'} (\lambda - L_2^t)^{-1}$$

with $R_1, \dots, R_{m'} \in \mathcal{R}_t$.

By Proposition 3.9, the norm $\| \|_t^{1,-1}$ of the operators $R_j \in \mathscr{R}_t$ is uniformly bound by C. By Theorem 3.8, we find that there exist C > 0, $N \in \mathbb{N}$ such that the norm $\| \|_t^{0,1}$ of operators (3.66) is dominated by $C(1+|\lambda|^2)^N$.

Let $e^{-uL_2^t}(Z,Z')$, $(L_2^te^{-uL_2^t})(Z,Z')$ be the smooth kernels of the operators $e^{-uL_2^t}$, $(L_2^te^{-uL_2^t})$ with respect to $dv_{TX}(Z')$. Note that L_2^t are families of differential operators with coefficients in $\operatorname{End}(\mathbf{E}_{x_0}) = \operatorname{End}(\Lambda(T^{*(0,1)}X) \otimes E)_{x_0}$. Let $\pi: TX \times_X TX \to X$ be the natural projection from the fiberwise product of TX on X. Then we can view $e^{-uL_2^t}(Z,Z')$, $(L_2^te^{-uL_2^t})(Z,Z')$ as smooth section of $\pi^*(\operatorname{End}(\Lambda(T^{*(0,1)}X) \otimes E))$ on $TX \times_X TX$. Let $\nabla^{\operatorname{End}(\mathbf{E})}$ be the connection on $\operatorname{End}(\Lambda(T^{*(0,1)}X) \otimes E)$ induced by $\nabla^{\operatorname{Cliff}}$ and ∇^E . And $\nabla^{\operatorname{End}(\mathbf{E})}$ induces naturally a C^m -norm for the parameter $x_0 \in X$.

Theorem 3.11. There exist C'' > 0 such that for any $m, m' \in \mathbb{N}$, $u_0 > 0$, there exist C > 0, $N \in \mathbb{N}$ such that for $t \in]0,1]$, $u \geq u_0$, $Z, Z' \in T_{x_0}X$,

(3.67)
$$\sup_{|\alpha|,|\alpha'|,r\leq m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \frac{\partial^{r}}{\partial t^{r}} e^{-uL_{2}^{t}} (Z,Z') \right|_{C^{m'}(X)} \\ \leq C(1+|Z|+|Z'|)^{N} \exp(\frac{1}{2}\mu_{0}u - \frac{2C''}{u}|Z-Z'|^{2}), \\ \sup_{|\alpha|,|\alpha'|,r\leq m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \frac{\partial^{r}}{\partial t^{r}} (L_{2}^{t} e^{-uL_{2}^{t}}) (Z,Z') \right|_{C^{m'}(X)} \\ \leq C(1+|Z|+|Z'|)^{N} \exp(-\frac{1}{4}\mu_{0}u - \frac{2C''}{u}|Z-Z'|^{2}).$$

here $C^{m'}(X)$ is the $C^{m'}$ norm for the parameter $x_0 \in X$.

Proof. By (3.54), for any $k \in \mathbb{N}^*$,

(3.68)
$$e^{-uL_2^t} = \frac{(-1)^{k-1}(k-1)!}{2\pi i u^{k-1}} \int_{\delta \cup \Delta} e^{-u\lambda} (\lambda - L_2^t)^{-k} d\lambda,$$
$$L_2^t e^{-uL_2^t} = \frac{(-1)^{k-1}(k-1)!}{2\pi i u^{k-1}} \int_{\Delta} \lambda e^{-u\lambda} (\lambda - L_2^t)^{-k} d\lambda.$$

For $m \in \mathbb{N}$, let \mathcal{Q}^m be the set of operators $\{\nabla_{t,e_{i_1}} \cdots \nabla_{t,e_{i_j}}\}_{j \leq m}$. From Theorem 3.10, we deduce that if $Q \in \mathcal{Q}^m$, there is $M \in \mathbb{N}$ such that if $\lambda \in \delta \cup \Delta$

(3.69)
$$||Q(\lambda - L_2^t)^{-m}||_t^{0,0} \le C_m (1 + |\lambda|^2)^M.$$

Next we study L_2^{t*} , the formal adjoint of L_2^t with respect to (3.50). Then L_2^{t*} has the same structure (3.62) as the operator L_2^t , especially,

After taken the adjoint of (3.70), we get

(3.71)
$$\|(\lambda - L_2^t)^{-m}Q\|_t^{0,0} \le C_m (1 + |\lambda|^2)^M.$$

From (3.68), (3.69) and (3.71), we get if $Q, Q' \in \mathcal{Q}^m$,

(3.72)
$$\|Qe^{-uL_2^t}Q'\|_t^{0,0} \le C_m e^{\frac{1}{4}\mu_0 u},$$

$$\|Q(L_2^t e^{-uL_2^t})Q'\|_t^{0,0} \le C_m e^{-\frac{1}{2}\mu_0 u}.$$

Let $| \quad |_m$ be the usual Sobolev norm on $C^{\infty}(\mathbb{R}^{2n}, \mathbf{E}_{x_0})$ induced by $h^{\mathbf{E}_{x_0}} = h^{\Lambda(T_{x_0}^{*(0,1)}X) \otimes E_{x_0}}$ and the volume form $dv_{TX}(Z)$ as in (3.50). Observe that by (3.48), (3.50), there exists C > 0 such that for $s \in C^{\infty}(X_0, \mathbf{E}_{x_0})$, supp $s \subset B^{T_{x_0}X}(0, q)$, $m \geq 0$,

(3.73)
$$\frac{1}{C}(1+q)^{-m}||s||_{t,m} \le |s|_m \le C(1+q)^m||s||_{t,m}.$$

Now (3.72), (3.73) together with Sobolev's inequalities implies that if $Q, Q' \in \mathcal{Q}^m$,

(3.74)
$$\sup_{|Z|,|Z'| \le q} |Q_Z Q'_{Z'} e^{-uL_2^t} (Z, Z')| \le C(1+q)^{2n+2} e^{\frac{1}{4}\mu_0 u},$$

$$\sup_{|Z|,|Z'| \le q} |Q_Z Q'_{Z'} (L_2^t e^{-uL_2^t}) (Z, Z')| \le C(1+q)^{2n+2} e^{-\frac{1}{2}\mu_0 u}.$$

Thus by (3.48), (3.74), we derive (3.67) for the case when r = m' = 0 and C'' = 0.

To obtain (3.67) in general, we proceed as in the proof of [6, Theorem 11.14]. Note that the function f is defined in (3.1). For h > 1, put

(3.75)
$$K_{u,h}(a) = \int_{-\infty}^{+\infty} \exp(iv\sqrt{2u}a) \exp(-\frac{v^2}{2}) \left(1 - f(\frac{1}{h}\sqrt{2u}v)\right) \frac{dv}{\sqrt{2\pi}}.$$

Then there exist $C', C_1 > 0$ such that for any c > 0, $m, m' \in \mathbb{N}$, there is C > 0 such that for $t \in]0,1], u \geq u_0, a \in \mathbb{C}, |\operatorname{Im}(a)| \leq c$, we have

$$(3.76) |a|^m |K_{u,h}^{(m')}(a)| \le C \exp\left(C'c^2 u - \frac{C_1}{u}h^2\right).$$

For any c > 0, let V_c be the images of $\{\lambda \in \mathbb{C}, |\mathrm{Im}\lambda| \leq c\}$ by the map $\lambda \to \lambda^2$. Then $V_c = \{\lambda \in \mathbb{C}, \mathrm{Re}(\lambda) \geq \frac{1}{4c^2} \mathrm{Im}(\lambda)^2 - c^2\}$, and $\delta \cup \Delta \subset V_c$ for c big enough. Let $\widetilde{K}_{u,h}$ be the holomorphic function such that $\widetilde{K}_{u,h}(a^2) = K_{u,h}(a)$. Then by (3.76), for $\lambda \in V_c$,

$$(3.77) |\lambda|^m |\widetilde{K}_{u,h}^{(m')}(\lambda)| \le C \exp\left(C'c^2u - \frac{C_1}{u}h^2\right).$$

Using finite propagation speed and (3.75), we find that there exist a fixed constant (which depends on ε) c' > 0 such that

(3.78)
$$\widetilde{K}_{u,h}(L_2^t)(Z, Z') = e^{-uL_2^t}(Z, Z') \quad \text{if } |Z - Z'| \ge c'h.$$

By (3.77), we see that given $k \in \mathbb{N}$, there is a unique holomorphic function $\widetilde{K}_{u,h,k}(\lambda)$ defined on a neighborhood of V_c such that it verifies the same estimates as $\widetilde{K}_{u,h}$ in (3.77) and $\widetilde{K}_{u,h,k}(\lambda) \to 0$ as $\lambda \to +\infty$; moreover

(3.79)
$$\widetilde{K}_{u,h,k}^{(k-1)}(\lambda)/(k-1)! = \widetilde{K}_{u,h}(\lambda).$$

Thus as in (3.68),

(3.80)
$$\widetilde{K}_{u,h}(L_2^t) = \frac{1}{2\pi i} \int_{\delta \cup \Delta} \widetilde{K}_{u,h,k}(\lambda) (\lambda - L_2^t)^{-k} d\lambda,$$

$$L_2^t \widetilde{K}_{u,h}(L_2^t) = \frac{1}{2\pi i} \int_{\Delta} \lambda \widetilde{K}_{u,h,k}(\lambda) (\lambda - L_2^t)^{-k} d\lambda.$$

By (3.69), (3.71) and by proceeding as in (3.72)-(3.74), we find that for $\mathbf{K}(a) = \widetilde{K}_{u,h}(a)$ or $a\widetilde{K}_{u,h}(a)$, for $|Z|, |Z'| \leq q$,

(3.81)
$$\sup_{|\alpha|,|\alpha'| \le m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \mathbf{K}(L_2^t)(Z, Z') \right| \le C(1+q)^N \exp(C'c^2 u - \frac{C_1}{u}h^2)$$

Setting $h = \frac{1}{c'}|Z - Z'|$ in (3.81), we get for α, α' verified $|\alpha|, |\alpha'| \leq m$,

$$(3.82) \quad \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \mathbf{K}(L_2^t)(Z, Z') \right| \le C(1+|Z|+|Z'|)^N \exp(C'c^2 u - \frac{C_1}{2c'^2 u} |Z-Z'|^2).$$

By (3.67) for r = m' = C'' = 0, (3.82), we get (3.67) for r = m' = 0.

To get (3.67) for $r \ge 1$, note that from (3.68), for $k \ge 1$

(3.83)
$$\frac{\partial^r}{\partial t^r} e^{-uL_2^t} = \frac{(-1)^{k-1}(k-1)!}{2\pi i u^{k-1}} \int_{\delta \cup \Delta} e^{-u\lambda} \frac{\partial^r}{\partial t^r} (\lambda - L_2^t)^{-k} d\lambda.$$

We have the similar equation for $\frac{\partial^r}{\partial t^r}(L_2^t e^{-uL_2^t})$. Set

(3.84)
$$I_{k,r} = \left\{ (\mathbf{k}, \mathbf{r}) = (k_i, r_i) | \sum_{i=0}^{j} k_i = k + j, \sum_{i=1}^{j} r_i = r, \ k_i, r_i \in \mathbb{N}^* \right\}.$$

Then there exist $a_{\mathbf{r}}^{\mathbf{k}} \in \mathbb{R}$ such that

$$(3.85) A_{\mathbf{r}}^{\mathbf{k}}(\lambda,t) = (\lambda - L_{2}^{t})^{-k_{0}} \frac{\partial^{r_{1}} L_{2}^{t}}{\partial t^{r_{1}}} (\lambda - L_{2}^{t})^{-k_{1}} \cdots \frac{\partial^{r_{j}} L_{2}^{t}}{\partial t^{r_{j}}} (\lambda - L_{2}^{t})^{-k_{j}},$$

$$\frac{\partial^{r}}{\partial t^{r}} (\lambda - L_{2}^{t})^{-k} = \sum_{(\mathbf{k},\mathbf{r})\in I_{k,r}} a_{\mathbf{r}}^{\mathbf{k}} A_{\mathbf{r}}^{\mathbf{k}}(\lambda,t).$$

We claim that $A_{\mathbf{r}}^{\mathbf{k}}(\lambda, t)$ is well defined and for any $m \in \mathbb{N}$, there exist C > 0, $N \in \mathbb{N}$ such that for $\lambda \in \delta \cup \Delta$, $s \in C_0^{\infty}(X_0, \mathbf{E}_{x_0})$,

(3.86)
$$||A_{\mathbf{r}}^{\mathbf{k}}(\lambda, t)s||_{t,m} \le C(1+|\lambda|)^{N} \sum_{|\alpha| \le 2r} ||Z^{\alpha}s||_{t,2r+m-k}.$$

In fact, by (3.60), $\frac{\partial^r}{\partial t^r} L_2^t$ is combination of $\frac{\partial^{r_1}}{\partial t^{r_1}} (g_{ij}^{TX_0}(tZ)) (\frac{\partial^{r_2}}{\partial t^{r_2}} \nabla_{t,e_i}) (\frac{\partial^{r_3}}{\partial t^{r_3}} \nabla_{t,e_j})$, $\frac{\partial^{r_1}}{\partial t^{r_1}} (b(tZ))$, $\frac{\partial^{r_1}}{\partial t^{r_1}} (a_i(tZ)) (\frac{\partial^{r_2}}{\partial t^{r_2}} \nabla_{t,e_i})$. Now $\frac{\partial^{r_1}}{\partial t^{r_1}} (b(tZ))$ (resp. $\frac{\partial^{r_1}}{\partial t^{r_1}} \nabla_{t,e_i}$) $(r_1 \ge 1)$ are functions of the

type as $b'(tZ)Z^{\beta}$, $|\beta| \le r_1$ (resp. $r_1 + 1$) and b'(Z) and its derivatives on Z are bounded smooth functions. Thus by (3.64), we get (3.86).

By (3.83), (3.85) and the above argument, we get the similar estimates (3.67) with m' = C'' = 0, (3.82) for $\frac{\partial^r}{\partial t^r} e^{-uL_2^t}$, $\frac{\partial^r}{\partial t^r} (L_2^t e^{-uL_2^t})$. Thus we get (3.67) for m' = 0.

Finally, for U a vector on X,

(3.87)
$$\nabla_{U}^{\pi^* \operatorname{End}(\mathbf{E})} e^{-uL_2^t} = \frac{(-1)^{k-1}(k-1)!}{2\pi i u^{k-1}} \int_{\delta \cup \Delta} e^{-u\lambda} \nabla_{U}^{\pi^* \operatorname{End}(\mathbf{E})} (\lambda - L_2^t)^{-k} d\lambda.$$

Now, by using the similar formula (3.85) for $\nabla_U^{\pi^* \operatorname{End}(\mathbf{E})}(\lambda - L_2^t)^{-k}$ by replacing $\frac{\partial^{r_1} L_2^t}{\partial t^{r_1}}$ by $\nabla_U^{\pi^* \operatorname{End}(\mathbf{E})} L_2^t$, and remark that $\nabla_U^{\pi^* \operatorname{End}(\mathbf{E})} L_2^t$ is a differential operator on $T_{x_0}X$ with the same structure as L_2^t . Then by the above argument, we get (3.67) for $m' \geq 1$.

Let $P_{0,t}$ be the orthogonal projection from $C^{\infty}(X_0, \mathbf{E}_{x_0})$ to the kernel of L_2^t with respect to $\langle , \rangle_{t,0}$. Set

(3.88)
$$F_u(L_2^t) = \frac{1}{2\pi i} \int_{\Lambda} e^{-u\lambda} (\lambda - L_2^t)^{-1} d\lambda.$$

Let $P_{0,t}(Z, Z')$, $F_u(L_2^t)(Z, Z')$ be the smooth kernels of $P_{0,t}$, $F_u(L_2^t)$ with respect to $dv_{TX}(Z')$. Then by (3.54),

(3.89)
$$F_u(L_2^t) = e^{-uL_2^t} - P_{0,t} = \int_0^{+\infty} L_2^t e^{-u_1 L_2^t} du_1.$$

Corollary 3.12. With the notation in Theorem 3.11,

$$(3.90) \quad \sup_{|\alpha|,|\alpha'|,r\leq m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha}\partial Z'^{\alpha'}} \frac{\partial^{r}}{\partial t^{r}} F_{u}(L_{2}^{t}) \left(Z,Z'\right) \right|_{C^{m'}(X)} \\ \leq C(1+|Z|+|Z'|)^{N} \exp\left(-\frac{1}{8}\mu_{0}u - \sqrt{C''\mu_{0}}|Z-Z'|\right).$$

Proof. Note that $\frac{1}{8}\mu_0 u + \frac{2C''}{u}|Z - Z'|^2 \ge \sqrt{C''\mu_0}|Z - Z'|$, thus

$$(3.91) \int_{u}^{+\infty} e^{-\frac{1}{4}\mu_{0}u_{1} - \frac{2C''}{u_{1}}|Z - Z'|^{2}} du_{1} \leq e^{-\sqrt{C''\mu_{0}}|Z - Z'|} \int_{u}^{+\infty} e^{-\frac{1}{8}\mu_{0}u_{1}} du_{1}$$

$$= \frac{8}{\mu_{0}} e^{-\frac{1}{8}\mu_{0}u - \sqrt{C''\mu_{0}}|Z - Z'|}.$$

By
$$(3.67)$$
, (3.89) , (3.91) , we get (3.90) .

Remark 3.13. Under the condition of Lindholm [22], the metric on the trivial holomorphic line bundle on \mathbb{C}^n is $||1|| = e^{-\varphi/2}$. Now we use the unit section $S_L = e^{\varphi/2}1$ to trivialize this line bundle. Then if φ is C^{∞} , from (3.67), (3.89), (3.90) with r = 0, we can derive the off-diagonal estimate of the Bergman kernel on \mathbb{C}^n . Actually, the C^0 -estimate was obtained by Lindholm [22, Prop. 9].

For k big enough, set

(3.92)
$$F_{r,u} = \frac{(-1)^{k-1}(k-1)!}{2\pi i \, r! u^{k-1}} \int_{\Delta} e^{-u\lambda} \sum_{(\mathbf{k},\mathbf{r})\in I_{k,r}} a_{\mathbf{r}}^{\mathbf{k}} A_{\mathbf{r}}^{\mathbf{k}}(\lambda,0) d\lambda,$$

$$J_{r,u} = \frac{(-1)^{k-1}(k-1)!}{2\pi i \, r! u^{k-1}} \int_{\delta \cup \Delta} e^{-u\lambda} \sum_{(\mathbf{k},\mathbf{r})\in I_{k,r}} a_{\mathbf{r}}^{\mathbf{k}} A_{\mathbf{r}}^{\mathbf{k}}(\lambda,0) d\lambda,$$

$$F_{r,u,t} = \frac{1}{r!} \frac{\partial^{r}}{\partial t^{r}} F_{u}(L_{2}^{t}) - F_{r,u}, \quad J_{r,u,t} = \frac{1}{r!} \frac{\partial^{r}}{\partial t^{r}} e^{-uL_{2}^{t}} - J_{r,u}.$$

Certainly, as $t \to 0$, the limit of $\| \cdot \|_{t,m}$ exists, and we denote it by $\| \cdot \|_{0,m}$.

Theorem 3.14. For any r, k > 0, there exists C > 0, $N \in \mathbb{N}$ such that for $t \in [0, 1], \lambda \in \delta \cup \Delta$,

Proof. Note that by (3.48), (3.50), for $t \in [0, 1]$,

(3.94)
$$||s||_{t,0} \le C||s||_{0,0}, \quad ||s||_{t,k} \le C \sum_{|\alpha| \le k} ||Z^{\alpha}s||_{0,k}.$$

An application of Taylor expansion for (3.60) leads to the following equation, if s, s' has compact support,

$$(3.95) \qquad \left| \left\langle \left(\frac{\partial^r L_2^t}{\partial t^r} - \frac{\partial^r L_2^t}{\partial t^r} |_{t=0} \right) s, s' \right\rangle_{0,0} \right| \leq Ct \|s'\|_{t,1} \sum_{|\alpha| \leq r+2} \|Z^{\alpha} s\|_{0,1}.$$

Thus we get the first inequality of (3.93). Note that

$$(3.96) (\lambda - L_2^t)^{-1} - (\lambda - L_2^0)^{-1} = (\lambda - L_2^t)^{-1} (L_2^t - L_2^0)(\lambda - L_2^0)^{-1}.$$

Now from (3.95) and (3.96),

(3.97)
$$\| \left((\lambda - L_2^t)^{-1} - (\lambda - L_2^0)^{-1} \right) s \|_{0,0} \le Ct(1 + |\lambda|^4) \sum_{|\alpha| \le 2} \| Z^{\alpha} s \|_{0,1}.$$

Now from the first inequality of (3.93) for r = 0, (3.85) and (3.97), we get (3.93).

Theorem 3.15. There exist C > 0, $N \in \mathbb{N}$ such that for $t \in]0,1]$, $u \geq u_0$, $q \in \mathbb{N}$, $Z, Z' \in T_{x_0}X$, $|Z|, |Z'| \leq q$,

(3.98)
$$\left| F_{r,u,t}(Z,Z') \right| \le Ct^{1/2(2n+1)} (1+q)^N e^{-\frac{1}{8}\mu_0 u},$$
$$\left| J_{r,u,t}(Z,Z') \right| \le Ct^{1/2(2n+1)} (1+q)^N e^{\frac{1}{2}\mu_0 u}.$$

Proof. Let $J_{x_0,q}^0$ be the vector space of square integrable sections of \mathbf{E}_{x_0} over $\{Z \in T_{x_0}X, |Z| \leq q+1\}$. If $s \in J_{x_0,q}^0$, put $\|s\|_{(q)}^2 = \int_{|Z| \leq q+1} |s|_{\mathbf{E}_{x_0}}^2 dv_{TX}(Z)$. Let $\|A\|_{(q)}$ be the operator norm of $A \in \mathcal{L}(J_{x_0,q}^0)$ with respect to $\|\cdot\|_{(q)}$. By (3.83), (3.92) and (3.93), we get: There exist $C > 0, N \in \mathbb{N}$ such that for $t \in]0,1], u \geq u_0$,

(3.99)
$$||F_{r,u,t}||_{(q)} \le Ct(1+q)^N e^{-\frac{1}{2}\mu_0 u},$$

$$||J_{r,u,t}||_{(q)} \le Ct(1+q)^N e^{\frac{1}{4}\mu_0 u}.$$

Let $\phi : \mathbb{R} \to [0,1]$ be a smooth function with compact support, equal 1 near 0, such that $\int_{T_{x_0}X} \phi(Z) dv_{TX}(Z) = 1$. Take $\nu \in]0,1]$. By the proof of Theorem 3.11, $F_{r,u}$ verifies the similar inequality as in (3.90). Thus by (3.90), there exists C > 0 such that if $|Z|, |Z'| \leq q, U, U' \in \mathbf{E}_{x_0}$,

$$(3.100) \left| \langle F_{r,u,t}(Z,Z')U,U' \rangle - \int_{T_{x_0}X \times T_{x_0}X} \langle F_{r,u,t}(Z-W,Z'-W')U,U' \rangle \right|$$

$$\frac{1}{\nu^{4n}} \phi(W/\nu) \phi(W'/\nu) dv_{TX}(W) dv_{TX}(W') \left| \leq C\nu (1+q)^N e^{-\frac{1}{8}\mu_0 u} |U||U'|.$$

On the other hand, by (3.99),

$$(3.101) \left| \int_{T_{x_0}X \times T_{x_0}X} \langle F_{r,u,t}(Z - W, Z' - W')U, U' \rangle \right|$$

$$\frac{1}{\nu^{4n}} \phi(W/\nu) \phi(W'/\nu) dv_{TX}(W) dv_{TX}(W') \right| \leq Ct \frac{1}{\nu^{2n}} (1+q)^N e^{-\frac{1}{2}\mu_0 u} |U| |U'|.$$

By taking $\nu = t^{1/2(2n+1)}$, we get (3.98). In the same way, we get (3.98) for $J_{r,u,t}$.

Theorem 3.16. For any $k, m, m' \in \mathbb{N}$, there exist $N \in \mathbb{N}$, C, C'' > 0 such that if $t \in]0,1], u \geq u_0, Z, Z' \in T_{x_0}X$,

$$(3.102) \qquad \sup_{|\alpha|,|\alpha'| \le m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \Big(F_u(L_2^t) - \sum_{r=0}^k F_{r,u} t^r \Big) (Z, Z') \right|_{C^{m'}(X)}$$

$$\leq C t^{k+1} (1 + |Z| + |Z'|)^N \exp(-\frac{1}{8} \mu_0 u - \sqrt{C''' \mu_0} |Z - Z'|),$$

$$\sup_{|\alpha|,|\alpha'| \le m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \Big(e^{-uL_2^t} - \sum_{r=0}^k J_{r,u} t^r \Big) (Z, Z') \right|_{C^{m'}(X)}$$

$$\leq C t^{k+1} (1 + |Z| + |Z'|)^N \exp(\frac{1}{2} \mu_0 u - \frac{2C'''}{u} |Z - Z'|^2).$$

Proof. By (3.92), (3.98),

(3.103)
$$\frac{1}{r!} \frac{\partial^r}{\partial t^r} F_u(L_2^t)|_{t=0} = F_{r,u}, \quad \frac{1}{r!} \frac{\partial^r}{\partial t^r} e^{-uL_2^t}|_{t=0} = J_{r,u}.$$

Now by Theorem 3.11 and (3.92), $J_{r,u}$, $F_{r,u}$ have the same estimates as $\frac{\partial^r}{\partial t^r}e^{-uL_2^t}$, $\frac{\partial^r}{\partial t^r}F_u(L_2^t)$, in (3.67), (3.90). Again from (3.92), (3.98), and the Taylor expansion, we get (3.102).

3.4. Evaluation of $J_{r,u}$. For u > 0, we will write $u\Delta_j$ for the rescaled simplex $\{(u_1, \dots, u_j) | 0 \le u_1 \le u_2 \le \dots \le u_j \le u\}$. By (3.40),

(3.104)
$$\mathbf{D}_{t}^{2} = \mathcal{O}_{0}^{2} + \sum_{r=1}^{\infty} \sum_{r_{1}+r_{2}=r} \mathcal{O}_{r_{1}} \mathcal{O}_{r_{2}} t^{r} = L_{2}^{0} + \sum_{r=1}^{\infty} \mathcal{Q}_{r} t^{r}.$$

Set $\mathcal{J} = -2\pi\sqrt{-1}\mathbf{J}$. By (1.1), $\mathcal{J} \in \operatorname{End}(T^{(1,0)}X)$ is positive, and the \mathcal{J} action on TX is skew-symmetric. We denote by $\det_{\mathbb{C}}$ for the determinant function on the complex bundle $T^{(1,0)}X$. By (2.4), (3.60),

(3.105)
$$L_2^0 = -\sum_{i} (\nabla_{e_i} + \frac{1}{2} R_{x_0}^L(Z, e_i))^2 - 2\omega_{d, x_0} - \tau_{x_0}.$$

Let $\exp(-uL_2^0)(Z, Z')$ be the smooth kernel of $\exp(-uL_2^0)$ with respect to $dv_{TX}(Z')$. Now from (3.105) (cf. [5, (6.37), (6.38)])

$$(3.106) \quad \exp(-uL_2^0)(Z, Z') = \frac{1}{(2\pi)^n} \det_{\mathbb{C}} \left(\frac{\mathcal{J}_{x_0}}{1 - e^{-2u\mathcal{J}_{x_0}}} \right) \exp\left(-\frac{1}{2} \left\langle \frac{\mathcal{J}_{x_0}/2}{\tanh(u\mathcal{J}_{x_0})} Z, Z \right\rangle \right) - \frac{1}{2} \left\langle \frac{\mathcal{J}_{x_0}/2}{\tanh(u\mathcal{J}_{x_0})} Z', Z' \right\rangle + \left\langle \frac{\mathcal{J}_{x_0}/2}{\sinh(u\mathcal{J}_{x_0})} e^{u\mathcal{J}_{x_0}} Z, Z' \right\rangle e^{2u\omega_{d,x_0}}.$$

Theorem 3.17. For $r \geq 0$, we have

$$(3.107) \quad J_{r,u} = \sum_{\sum_{i=1}^{j} r_i = r, \, r_i \ge 1} (-1)^j \int_{u\Delta_j} e^{-(u-u_j)L_2^0} \mathcal{Q}_{r_j} e^{-(u_j - u_{j-1})L_2^0} \cdots \mathcal{Q}_{r_r} e^{-u_1 L_2^0} du_1 \cdots du_j.$$

where the product in the integrand is the convolution product. Moreover, there exist $J_{r,\beta,\beta'}(u)$ smooth on $u \in]0,+\infty[$ such that

(3.108)
$$J_{r,u}(Z,Z') = \sum_{|\beta|,|\beta'| \le 3r} J_{r,\beta,\beta'}(u) Z^{\beta} Z'^{\beta'} e^{-uL_2^0}(Z,Z'),$$

and $\sum_{|\beta|,|\beta'|\leq 3r} J_{r,\beta,\beta'}(u) Z^{\beta} Z'^{\beta'}$ as polynomial of Z,Z' is even or odd according to whether x is even or odd

Proof. We introduce an even extra-variable σ such that $\sigma^{r+1} = 0$. Set $[\]^{[r]}$ the coefficient of σ^r , $L_{\sigma} = L_2^0 + \sum_{j=1}^r \mathcal{Q}_j \sigma^j$. From (3.92), (3.103), we know

(3.109)
$$J_{r,u}(Z,Z') = \frac{1}{r!} \frac{\partial^r}{\partial t^r} e^{-uL_2^t} (Z,Z')|_{t=0} = [\exp(-uL_\sigma)]^{[r]} (Z,Z').$$

Now from (3.109) and the Volterra expansion of $\exp(-uL_{\sigma})$ (cf. [3, §2.4]), we get (3.107). We prove (3.108) by iteration. By (3.106), (3.107) and Theorem 3.6, we immediately derive (3.108). By the iteration, (3.106) and Theorem 3.6, the polynomial of Z, Z' has the same parity with r.

3.5. **Proof of Theorems 1.1, 1.2.** By (3.89), (3.102), for any u > 0 fixed, there exists $C_u > 0$ such that for $t = \frac{1}{\sqrt{p}}$, $Z, Z' \in T_{x_0}X$, $x_0 \in X$, we have

$$(3.110) \quad \sup_{|\alpha|, |\alpha'| \le m} \left| \frac{\partial^{|\alpha| + |\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \left(P_{0,t} - \sum_{r=0}^{k} t^{r} (J_{r,u} - F_{r,u}) \right) (Z, Z') \right|_{C^{m'}(X)} \\ \le C_{u} t^{k+1} (1 + |Z| + |Z'|)^{N} \exp(-\sqrt{C'' \mu_{0}} |Z - Z'|),$$

Set

$$(3.111) P^{(r)} = J_{r,u} - F_{r,u}.$$

Then $P^{(r)}$ does not depend on u > 0 by (3.110), as $P_{0,t}$ does not depend on u. Moreover, by taken the limit of (3.90) as $t \to 0$,

$$(3.112) \left| F_{r,u}(Z,Z') \right|_{C^m(X)} \le C(1+|Z|+|Z'|)^N \exp(-\frac{1}{8}\mu_0 u - \sqrt{C''\mu_0}|Z-Z'|).$$

Thus

(3.113)
$$J_{r,u}(Z,Z') = P^{(r)}(Z,Z') + F_{r,u}(Z,Z') = P^{(r)}(Z,Z') + \mathcal{O}(e^{-\frac{1}{8}\mu_0 u}),$$

uniformly on any compact set of $T_{x_0}X \times T_{x_0}X$.

We denote by $|\mathcal{J}_{x_0}| = (\mathcal{J}_{x_0}^2)^{1/2}$, and by $L_{2,\mathbb{C}}^0$ the restriction of L_2^0 on $C^{\infty}(\mathbb{R}^{2n},\mathbb{C})$, then

$$L_{2,\mathbb{C}}^0 = -\sum_{j} (\nabla_{e_j} + \frac{1}{2} R_{x_0}^L(Z, e_j))^2 - \tau_{x_0}.$$

Let P(Z, Z') be the Bergman kernel of $L_{2,\mathbb{C}}^0$, i.e. the smooth kernel of the orthogonal projection from $C^{\infty}(\mathbb{R}^{2n}, \mathbb{C})$ on Ker $L_{2,\mathbb{C}}^0$. Then for $Z, Z' \in T_{x_0}X$,

$$(3.114) P(Z,Z') = \frac{\det_{\mathbb{C}} \mathcal{J}_{x_0}}{(2\pi)^n} \exp\left(-\frac{1}{4} \langle |\mathcal{J}_{x_0}|(Z-Z'), (Z-Z')\rangle + \frac{1}{2} \langle \mathcal{J}_{x_0}Z, Z'\rangle\right).$$

Now $e^{u\mathcal{J}_{x_0}} = \cosh(u|\mathcal{J}_{x_0}|) + \sinh(u|\mathcal{J}_{x_0}|) \frac{\mathcal{J}_{x_0}}{|\mathcal{J}_{x_0}|}$, thus $\frac{\mathcal{J}_{x_0}/2}{\sinh(u\mathcal{J}_{x_0})} e^{u\mathcal{J}_{x_0}} = \frac{1}{2}(|\mathcal{J}_{x_0}| + \mathcal{J}_{x_0}) + \mathcal{O}(e^{-2u|\mathcal{J}_{x_0}|})$. From (3.106), (3.107), we get as $u \to \infty$,

(3.115)
$$J_{0,u}(Z,Z') = e^{-uL_2^0}(Z,Z') = P(Z,Z')I_{\mathbb{C}\otimes E} + \mathcal{O}(e^{-\mu_0 u}),$$
$$P^{(0)}(Z,Z') = P(Z,Z')I_{\mathbb{C}\otimes E}.$$

uniformly on any compact set of $T_{x_0}X \times T_{x_0}X$. From (3.108), (3.113), (3.115),we know that as $u \to \infty$,

(3.116)
$$J_{r,\beta,\beta'}(u) = J_{r,\beta,\beta'}(\infty) + \mathcal{O}(e^{-\frac{1}{8}\mu_0 u}).$$

and by (3.113), (3.115) and (3.116),

$$(3.117) P^{(r)}(Z,Z') = J_{r,\infty}(Z,Z') = \sum_{\beta,\beta'} J_{r,\beta,\beta'}(\infty) Z^{\beta} Z'^{\beta'} P(Z,Z') I_{\mathbb{C}\otimes E}.$$

Note that in (3.49), $\kappa(Z) = (\det g_{ij}(Z))^{1/2} = (\det(\theta_i^k \theta_j^k))^{1/2}$. By (3.37), for $Z, Z' \in T_{x_0}X$,

(3.118)
$$P_p^0(Z, Z') = p^n P_{0,t}(Z/t, Z'/t) \kappa^{-1}(Z'),$$
$$\exp(-\frac{u}{p} D_p^{X_0, 2})(Z, Z') = p^n e^{-uL_2^t}(Z/t, Z'/t) \kappa^{-1}(Z').$$

We note in passing that, as a consequence of (3.26), (3.110) and (3.118), we obtain the following estimate.

Theorem 3.18. For any $k, m, m' \in \mathbb{N}$, there exist $N \in \mathbb{N}$, C > 0 such that for $Z, Z' \in T_{x_0}X$, $|Z|, |Z'| \leq \varepsilon$, $x_0 \in X$,

(3.119)

$$\sup_{|\alpha|+|\alpha'| \le m} \left| \frac{\partial^{|\alpha|+|\alpha'|}}{\partial Z^{\alpha} \partial Z'^{\alpha'}} \left(\frac{1}{p^n} P_p(Z, Z') - \sum_{r=0}^k P^{(r)}(\sqrt{p}Z, \sqrt{p}Z') \kappa^{-1}(Z') p^{-r/2} \right) \right|_{C^{m'}(X)} \\
\le C p^{-(k+1-m)/2} (1 + |\sqrt{p}Z| + |\sqrt{p}Z'|)^N \exp(-\sqrt{C''\mu_0} \sqrt{p}|Z - Z'|).$$

From Theorem 3.17, we know that $J_{r,u}(0,0) = 0$ for r odd. Thus from (3.113), $P^{(r)}(0,0) = 0$ for r odd. Thus from (3.119), for Z = Z' = 0, m = 0, we get

(3.120)
$$\left| \frac{1}{p^n} P_p(x_0, x_0) - \sum_{r=0}^k P^{(2r)}(0, 0) p^{-r} \right|_{C^{m'}(X)} \le C p^{-k-1}.$$

From (3.115),

(3.121)
$$P^{(0)}(0,0) = P(0,0)I_{\mathbb{C}\otimes E} = (\det \mathbf{J})^{1/2}I_{\mathbb{C}\otimes E}.$$

Moreover, from Theorems 3.6, 3.17, (3.104), we get the property on b_r in Theorem 1.1. To get the last part of Theorem 1.1, we notice that the constants in Theorems 3.11 and 3.15 will be uniform bounded under our condition, thus we can take $C_{k,l}$ in (1.6) independent of ω . Thus we have proven Theorem 1.1.

From Proposition 3.3, Theorem 3.17, we know that for any u > 0 fixed, there exists C > 0 such that for $Z, Z' \in T_{x_0}X$, $|Z|, |Z'| \le \varepsilon$, $x_0 \in X$,

$$\left| \left(\exp(-\frac{u}{p}D_p^2) - \exp(-\frac{u}{p}D_p^{X_0,2}) \right) (Z, Z') \right|_{C^{m'}} \le Cp^{-l}.$$

Thus from (3.102), (3.118), (3.122), we get

(3.123)
$$\left| \frac{1}{p^n} \exp(-\frac{u}{p} D_p^2)(x_0, x_0) - \sum_{r=0}^k J_{2r, u}(0, 0) p^{-r} \right|_{C^{m'}(X)} \le C p^{-k-1}.$$

Thus we get (1.4) and at x_0 ,

$$(3.124) b_{r,u} = J_{2r,u}(0,0).$$

Now, from (3.113), (3.120), (3.124), we deduce Theorem 1.2.

From our proof of Theorems 1.1, 1.2, we also obtain a method to compute the coefficients. Namely, we compute first the heat kernel expansion of $\exp(-\frac{u}{p}D_p^2)(x,x)$ when $p \to \infty$ by $\sum_{r=0}^{j} b_{r,u}(x)p^{n-r}$ (cf. (3.123)), then let $u \to \infty$, we get the corresponding coefficients of the expansion of $\frac{1}{p^n}P_p(x,x)$. As an example, we will calculate b_1 in the next section.

In practice, we choose $\{w_i\}_{i=1}^n$ an orthonormal basis of $T_{x_0}^{(1,0)}X$, such that

(3.125)
$$\mathcal{J}_{x_0} = \operatorname{diag}(a_1(x_0), \cdots, a_n(x_0)) \in \operatorname{End}(T_{x_0}^{(1,0)}X),$$

with $0 < a_1(x_0) \le a_2(x_0) \le \cdots \le a_n(x_0)$, and let $\{w^j\}_{j=1}^n$ be its dual basis. Then $e_{2j-1} = \frac{1}{\sqrt{2}}(w_j + \overline{w}_j)$ and $e_{2j} = \frac{\sqrt{-1}}{\sqrt{2}}(w_j - \overline{w}_j)$, $j = 1, \ldots, n$ forms an orthonormal basis of $T_{x_0}X$. In the coordinate induced by $\{e_i\}$ as above, all even function $g(\mathcal{J}_{x_0})$ of \mathcal{J}_{x_0} is diagonal, and $g(\mathcal{J}_{x_0}) = g(|\mathcal{J}_{x_0}|)$.

4. Applications

This section is organized as follows. In Section 4.1, we calculate the coefficient b_1 in Theorem 1.1 when the manifold is Kähler. In Section 4.2, we extend Theorem 1.1 to the orbifold case. Again the finite propagation speed allows us to localize the problem which was also used in [24].

4.1. **Kähler case.** In this Section, we assume that (X, ω) is Kähler and $\mathbf{J} = J$, and the vector bundles E, L are holomorphic on X. Then $a_j(x) = 2\pi$ for $j \in \{1, \dots, n\}$ in (3.125). Note that for $\{w_j\}$ (resp. $\{e_j\}$) an orthonormal basis of $T^{(1,0)}X$ (resp TX), the scalar curvature r^X of (X, g^{TX}) is given by

$$(4.1) r^X = -\sum_{jk} \left\langle R^{TX}(e_j, e_k) e_j, e_k \right\rangle = 2 \sum_{jk} \left\langle R^{TX}(w_j, \overline{w}_j) w_k, \overline{w}_k \right\rangle.$$

Now the Levi-Civita connection ∇^{TX} preserves $T^{(1,0)}X$ and $T^{(0,1)}X$, and $\nabla^{T^{(1,0)}X} = P^{T^{(1,0)}X}\nabla^{TX}P^{T^{(1,0)}X}$ is the holomorphic Hermitian connection on $T^{(1,0)}X$. In this situation, the Clifford connection ∇^{Cliff} on $\Lambda(T^{*(0,1)}X)$ is $\nabla^{\Lambda(T^{*(0,1)}X)}$, the natural connection induced by $\nabla^{T^{(1,0)}X}$. Let $\overline{\partial}^{E_p,*}$ be the formal adjoint of the Dolbeault operator $\overline{\partial}^{E_p}$ on $\Omega^{0,\bullet}(X,L^p\otimes E)$. Then the operator D_p in (2.3) is $D_p=\sqrt{2}(\overline{\partial}^{E_p}+\overline{\partial}^{E_p,*})$. Note that D_p^2 preserves the \mathbb{Z} -grading of $\Omega^{0,\bullet}(X,L^p\otimes E)$. Let $D_{p,i}^2=D_p^2|_{\Omega^{0,i}(X,L^p\otimes E)}$, then for p big enough,

(4.2)
$$\operatorname{Ker} D_p = \operatorname{Ker} D_{p,0}^2 = H^0(X, L^p \otimes E).$$

By (4.2), $B_p(x) \in \text{End}(E)$ and we only need to do the computation for $D_{p,0}^2$. In what follows, we compute everything on $C^{\infty}(X, L^p \otimes E)$. Especially, \mathcal{Q}_r in (3.104) takes value in End(E). Now, we replace X by $\mathbb{R}^{2n} \simeq T_{x_0}X$ as in Section 3.2, and we use the notation therein. We denote by $(g^{ij}(Z))$ the inverse of the matrix $(g_{ij}(Z)) = (g_{ij}^{TX}(Z))$.

Let $\Delta^{TX} = \sum_{i} \frac{\partial^{2}}{\partial Z_{i}^{2}}$ be the standard Euclidean Laplacian on $T_{x_{0}}X$ with respect to the metric $g^{T_{x_{0}}X}$. Then by (3.29), (3.35),

$$(4.3) g_{ij}(Z) = \sum_{k} \theta_i^k \theta_j^k(Z) = \delta_{ij} + \frac{1}{3} \left\langle R_{x_0}^{TX}(\mathcal{R}, e_i) \mathcal{R}, e_j \right\rangle + \mathcal{O}(|Z|^3).$$

Theorem 4.1.

$$(4.4) \quad \mathcal{Q}_{0} = -\Delta^{TX} + \pi^{2}|Z|^{2} - 2\pi n + 2\sqrt{-1}\pi\nabla_{J\mathcal{R}}, \quad \mathcal{Q}_{1} = 0,$$

$$\mathcal{Q}_{2} = \sum_{j} \left(\frac{2}{3}\left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{i})e_{i}, e_{j}\right\rangle - \frac{\sqrt{-1}\pi}{2}\left\langle R_{x_{0}}^{TX}(\mathcal{R}, J\mathcal{R})\mathcal{R}, e_{j}\right\rangle - R_{x_{0}}^{E}(\mathcal{R}, e_{j})\right)\nabla_{e_{j}}$$

$$-\sqrt{-1}\sum_{j} \left(\frac{1}{2}R_{x_{0}}^{E}(e_{j}, Je_{j}) + \frac{5\pi}{6}\left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{j})\mathcal{R}, Je_{j}\right\rangle\right) + \pi\sqrt{-1}R_{x_{0}}^{E}(\mathcal{R}, J\mathcal{R})$$

$$-\frac{\pi^{2}}{6}\left\langle R_{x_{0}}^{TX}(\mathcal{R}, J\mathcal{R})\mathcal{R}, J\mathcal{R}\right\rangle + \frac{1}{3}\sum_{ij}\left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{i})\mathcal{R}, e_{j}\right\rangle\nabla_{e_{i}}\nabla_{e_{j}}.$$

Proof. Let Γ_{ij}^l be the connection form of ∇^{TX} with respect to the basis $\{e_i\}$, then $(\nabla_{e_i}^{TX}e_j)(Z) = \Gamma_{ij}^l(Z)e_l$. By (4.3),

$$(4.5) \qquad \Gamma_{ij}^{l}(Z) = \frac{1}{2} \sum_{k} g^{lk} (\partial_{i} g_{jk} + \partial_{j} g_{ik} - \partial_{k} g_{ij})(Z)$$

$$= \frac{1}{3} \left[\left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{j}) e_{i}, e_{l} \right\rangle_{x_{0}} + \left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{i}) e_{j}, e_{l} \right\rangle_{x_{0}} \right] + \mathcal{O}(|Z|^{2}).$$

Observe that J is parallel with respect to ∇^{TX} , thus $\langle J\widetilde{e}_i, \widetilde{e}_j \rangle_Z = \langle Je_i, e_j \rangle_{x_0}$. By (1.1), (3.29), (3.35),

$$(4.6) \quad \frac{\sqrt{-1}}{2\pi} R^L(e_k, e_l)(Z) = \sum_{ij} \theta_k^i(Z) \theta_l^j(Z) \left\langle J\widetilde{e}_i, \widetilde{e}_j \right\rangle_Z$$

$$= \left\langle Je_k, e_l \right\rangle_{x_0} - \frac{1}{6} \left\langle R_{x_0}^{TX}(\mathcal{R}, e_k) \mathcal{R}, Je_l \right\rangle_{x_0} + \frac{1}{6} \left\langle R_{x_0}^{TX}(\mathcal{R}, Je_k) \mathcal{R}, e_l \right\rangle_{x_0} + \mathcal{O}(|Z|^3).$$
By (3.37), (3.46) and (4.6), for $t = \frac{1}{\sqrt{p}}$, we get

$$(4.7) \quad \nabla_{t,e_{i}}|_{Z} = tS_{t}^{-1}\nabla_{e_{i}}^{L^{p}\otimes E}S_{t}|_{Z} = \nabla_{e_{i}} + \frac{1}{t}\Gamma^{L}(e_{i})(tZ) + t\Gamma^{E}(e_{i})(tZ)$$

$$= \nabla_{e_{i}} - \sqrt{-1}\pi \left\langle J\mathcal{R}, e_{i} \right\rangle - \frac{\sqrt{-1}\pi}{12}t^{2} \left\langle R_{x_{0}}^{TX}(\mathcal{R}, J\mathcal{R})\mathcal{R}, e_{i} \right\rangle + \frac{t^{2}}{2}R_{x_{0}}^{E}(\mathcal{R}, e_{i}) + \mathcal{O}(t^{3}).$$

By a direct calculation (3.60) or by Lichnerowicz formula in [4, Proposition 1.2], we know

$$(4.8) \ D_{p,0}^2 = -\sum_{ij} g^{ij} \left[\nabla_{e_i}^{L^p \otimes E} \nabla_{e_j}^{L^p \otimes E} - \Gamma_{ij}^l \nabla_{e_l}^{L^p \otimes E} \right] - \frac{\sqrt{-1}}{2} \sum_i R^E(\widetilde{e}_i, J\widetilde{e}_i) - 2\pi np.$$

Thus from (4.3), (3.38), (4.7), (4.8),

(4.9)

$$\begin{split} \mathbf{D}_{t,0}^{2} &= S_{t}^{-1} t^{2} D_{p,0}^{2} S_{t} \\ &= -\sum_{ij} g^{ij}(tZ) \Big[\nabla_{t,e_{i}} \nabla_{t,e_{j}} - t \Gamma_{ij}^{l}(t\cdot) \nabla_{t,e_{l}} \Big] (Z) - \frac{\sqrt{-1}}{2} t^{2} \sum_{i} R^{E}(\widetilde{e}_{i}, J\widetilde{e}_{i})(tZ) - 2\pi n \\ &= -\sum_{ij} \Big(\delta_{ij} - \frac{t^{2}}{3} \left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{i}) \mathcal{R}, e_{j} \right\rangle + \mathcal{O}(t^{3}) \Big) \\ &\Big\{ \Big(\nabla_{e_{i}} - \sqrt{-1}\pi \left\langle J\mathcal{R}, e_{i} \right\rangle - \frac{\sqrt{-1}\pi}{12} t^{2} \left\langle R_{x_{0}}^{TX}(\mathcal{R}, J\mathcal{R}) \mathcal{R}, e_{i} \right\rangle + \frac{t^{2}}{2} R_{x_{0}}^{E}(\mathcal{R}, e_{i}) + \mathcal{O}(t^{3}) \Big) \\ &\Big(\nabla_{e_{j}} - \sqrt{-1}\pi \left\langle J\mathcal{R}, e_{j} \right\rangle - \frac{\sqrt{-1}\pi}{12} t^{2} \left\langle R_{x_{0}}^{TX}(\mathcal{R}, J\mathcal{R}) \mathcal{R}, e_{j} \right\rangle + \frac{t^{2}}{2} R_{x_{0}}^{E}(\mathcal{R}, e_{j}) + \mathcal{O}(t^{3}) \Big) \\ &- t \Gamma_{ij}^{l}(tZ) \Big(\nabla_{e_{l}} - \sqrt{-1}\pi \left\langle J\mathcal{R}, e_{l} \right\rangle + \mathcal{O}(t^{2}) \Big) \Big\} \\ &- \frac{\sqrt{-1}}{2} t^{2} \sum_{i} R_{x_{0}}^{E}(e_{i}, Je_{i}) - 2\pi n + \mathcal{O}(t^{3}). \end{split}$$

From (4.5), (4.9) and the fact that R^{TX} is a (1,1)-form, we derive (4.4).

Proof of Theorem 1.3. From (3.106), (4.4),

(4.10)

$$e^{-uL_2^0}(Z, Z') = \frac{1}{(1 - e^{-4\pi u})^n} \exp\left(-\frac{\pi(|Z|^2 + |Z'|^2)}{2\tanh(2\pi u)} + \frac{\pi}{\sinh(2\pi u)} \left\langle e^{-2\sqrt{-1}\pi u J} Z, Z' \right\rangle\right).$$

By (3.107), (4.4), (4.10), $J_{1,u}(Z, Z') = 0$, and

$$(4.11) \quad J_{2,u}(0,0) = -\int_0^u du_1 \int_{\mathbb{R}^{2n}} \frac{1}{(1 - e^{-4\pi u_1})^n (1 - e^{-4\pi (u - u_1)})^n} \exp\left(-\frac{\pi |Z|^2}{2 \tanh(2\pi (u - u_1))}\right) \mathcal{Q}_2(Z) \exp\left(-\frac{\pi |Z|^2}{2 \tanh(2\pi u_1)}\right).$$

By (4.4),

$$(4.12) \quad \mathcal{Q}_{2}(Z) \exp\left(\frac{-\pi |Z|^{2}}{2 \tanh(2\pi u_{1})}\right) = \left\{\pi \sqrt{-1} R_{x_{0}}^{E}(\mathcal{R}, J\mathcal{R}) - \frac{\pi^{2}}{6} \left\langle R_{x_{0}}^{TX}(\mathcal{R}, J\mathcal{R})\mathcal{R}, J\mathcal{R} \right\rangle - \frac{5}{6} \sqrt{-1}\pi \sum_{i} \left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{i})\mathcal{R}, Je_{i} \right\rangle + \frac{\pi}{3 \tanh(2\pi u_{1})} \sum_{i} \left\langle R_{x_{0}}^{TX}(\mathcal{R}, e_{i})\mathcal{R}, e_{i} \right\rangle - \frac{\sqrt{-1}}{2} \sum_{i} R_{x_{0}}^{E}(e_{i}, Je_{i}) \right\} \exp\left(\frac{-\pi |Z|^{2}}{2 \tanh(2\pi u_{1})}\right) dZ.$$

Now $\int_{-\infty}^{+\infty} x^2 e^{-x^2/2} dx = \int_{-\infty}^{+\infty} e^{-x^2/2} dx = \sqrt{2\pi}$, and $\int_{-\infty}^{+\infty} x^4 e^{-x^2/2} dx = 3\sqrt{2\pi}$. Thus

$$(4.13) \int_{\mathbb{R}^{2n}} \left\langle R_{x_0}^{TX}(\mathcal{R}, J\mathcal{R}) \mathcal{R}, J\mathcal{R} \right\rangle \exp\left(-\frac{|Z|^2}{2}\right) = (2\pi)^n \sum_{jk} \left[\left\langle R_{x_0}^{TX}(e_j, Je_j) e_k, Je_k \right\rangle + \left\langle R_{x_0}^{TX}(e_j, Je_k) e_j, Je_k \right\rangle + \left\langle R_{x_0}^{TX}(e_j, Je_k) e_k, Je_j \right\rangle \right]$$

$$= -(2\pi)^n \times 4r_{x_0}^X.$$

Set $c(u_1) = \frac{\sinh(2\pi(u-u_1))\sinh(2\pi u_1)}{\sinh(2\pi u)}$. Then from (4.11)-(4.13), we get

$$(4.14) \quad J_{2,u}(0,0) = -\int_0^u \frac{du_1}{(1 - e^{-4\pi u})^n} \left[(c(u_1) - \frac{1}{2})\sqrt{-1} \sum_i R_{x_0}^E(e_i, Je_i) + \frac{1}{3} \left(\frac{c(u_1)}{\tanh(2\pi u_1)} - 2c(u_1)^2 \right) r_{x_0}^X \right]$$

$$= \frac{-1}{(1 - e^{-4\pi u})^n} \left\{ \left[(\tanh(2\pi u) - 1)\frac{u}{2} - \frac{1}{4\pi} \right] \sqrt{-1} \sum_i R_{x_0}^E(e_i, Je_i) + \frac{1}{3} \left[\frac{u}{2} - \frac{u}{2} \tanh^2(2\pi u) - \frac{2}{\sinh^2(2\pi u)} \left(\frac{-3}{32\pi} \sinh(4\pi u) + \frac{u}{8} \right) \right] r_{x_0}^X \right\}.$$

Thus by (1.5), (3.124),

(4.15)
$$b_1 = \lim_{u \to \infty} J_{2,u}(0,0) = \frac{1}{4\pi} \left[\sqrt{-1} \sum_i R^E(e_i, Je_i) + \frac{1}{2} r^X \operatorname{Id}_E \right].$$

From Theorem 1.1 and (4.15), the proof of Theorem 1.3 is completed.

4.2. **Orbifold case.** Let (X, ω) be a compact symplectic orbifold of real dimension 2n with singular set X'. By definition, for any $x \in X$, there exists a small neighborhood $U_x \subset X$, a finite group G_x acting linearly on \mathbb{R}^{2n} , and $\widetilde{U}_x \subset \mathbb{R}^{2n}$ an G_x -open set such that $\widetilde{U}_x \stackrel{\tau_x}{\to} \widetilde{U}_x/G_x = U_x$ and $\{0\} = \tau_x^{-1}(x) \in \widetilde{U}_x$. We will use \widetilde{z} to denote the point in \widetilde{U}_x representing $z \in U_x$. Let $\Sigma X = \{(x, (h_x^j)) | x \in X, G_x \neq 1, (h_x^j) \text{ runs over the conjugacy classes in } G_x\}$. Then ΣX has a natural orbifold structure defined by (cf. [20])

(4.16)
$$\left\{ (Z_{G_x}(h_x^j)/K_x^j, \widetilde{U}_x^{h_x^j}) \to \widetilde{U}_x^{h_x^j}/Z_{G_x}(h_x^j) \right\}_{(x,U_x,j)}.$$

Here $\widetilde{U}_x^{h_x^j}$ is the fixed points of h_x^j over \widetilde{U}_x , $Z_{G_x}(h_x^j)$ is the centralizer of h_x^j in G_x , and K_x^j is the kernel of the representation $Z_{G_x}(h_x^j) \to \text{Diffeo } (\widetilde{U}_x^{h_x^j})$. The number $|K_x^j|$ is locally constant on ΣX and we call it as the multiplicity m_i of each connected component X_i of $X \cup \Sigma X$.

An orbifold vector bundle E on an orbifold X means that for any $x \in X$, there exists $\widetilde{p}_{U_x} : \widetilde{E}_{U_x} \to \widetilde{U}_x$ a $G_{U_x}^E$ -equivariant vector bundle and $(G_{U_x}^E, \widetilde{E}_{U_x})$ (resp. $(G_{U_x}^E/K_{U_x}, \widetilde{U}_x)$, $K_{U_x} = \operatorname{Ker}(G_{U_x}^E \to \operatorname{Diffeo}(\widetilde{U}_x))$) is the orbifold structure of E (resp. X). We say E is

proper if $G_{U_x}^E = G_x$ for any $x \in X$. For any orbifold vector bundle E, its proper part is a proper orbifold vector bundle.

Now, any structure on X or E should be locally G_x or $G_{U_x}^E$ equivariant.

Assume that there exists a proper orbifold Hermitian line bundle L over X endowed with a Hermitian connection ∇^L with the property that $\frac{\sqrt{-1}}{2\pi}R^L = \omega$ (Thus there exist $k \in \mathbb{N}$ such that L^k is a line bundle in the usual sense). Let (E, h^E) be a proper orbifold Hermitian vector bundle on X with Hermitian connection ∇^E and its curvature R^E .

Then the construction in Section 2 works well here. Especially, the spin^c Dirac operator D_p is well defined. In our situation, let $\{S_1^p, \dots, S_{d_p}^p\}$ $(d_p = \dim \operatorname{Ker} D_p)$ be any orthonormal basis of $\operatorname{Ker} D_p$ with respect to the inner product (2.2). We have still (3.3), in fact, on the local coordinate above, $\widetilde{S}_i^p(\widetilde{z})$ on \widetilde{U}_x are G_x invariant, and

$$(4.17) P_p(z,z') = \sum_{i=1}^{d_p} \widetilde{S}_i^p(\widetilde{z}) \otimes (\widetilde{S}_i^p(\widetilde{z}'))^*.$$

We note that if $Q: C^{\infty}(X, E) \to C^{\infty}(X, F)$ is a pseudo-differential operator of order m ($m < -2n - k, k \in \mathbb{N}$), and E, F are proper orbifold vector bundles, then the operator Q has a C^k -kernel. In fact, Q_{U_x} lifts to a pseudo-differential operator \widetilde{Q}_{U_x} on \widetilde{U}_x and for $\widetilde{Q}_{U_x}(\widetilde{z}, \widetilde{z'})$ the C^k -kernel on $\widetilde{U}_x \times \widetilde{U}_x$ with respect to $dv_{\widetilde{U}_x}$, we have (cf. also [24, (2.2)])

(4.18)
$$Q_{U_x}(z, z') = \sum_{g \in G_x} (g, 1) \widetilde{Q}_{U_x}(g^{-1} \widetilde{z}, \widetilde{z'}), \quad (z, z') \in U_x \times U_x,$$

is the kernel of the operator $Q_{U_x}: C^{\infty}(U_x, E_{|U_x}) \to C^{\infty}(U_x, F_{|U_x})$. Indeed, for $s \in C^{\infty}(U_x, E)$ with compact support, by definition, $(Qs)(z) = \int_{\widetilde{U}_x} \widetilde{Q}_{U_x}(\widetilde{z}, \widetilde{z}') s(\widetilde{z}') dv_{\widetilde{U}_x}(\widetilde{z}') = \frac{1}{|G_x|} \sum_{g \in G_x} \int_{\widetilde{U}_x} (g, 1) \widetilde{Q}_{U_x}(g^{-1}\widetilde{z}, \widetilde{z}') s(\widetilde{z}') dv_{\widetilde{U}_x}(\widetilde{z}') = \int_{U_x} \sum_{g \in G_x} (g, 1) \widetilde{Q}_{U_x}(g^{-1}\widetilde{z}, z') s(z) dv_{U_x}(z').$

Proof. of Theorem 1.4. At first, we have the analogue of Propositions 3.1,

$$(4.19) |P_p(x, x') - F(D_p)(x, x')|_{C^m(X)} \le C_{l,m} p^{-l}.$$

To prove (4.19), we work on \widetilde{U}_{x_i} , and the Sobolev norm in (3.9) is summed on \widetilde{U}_{x_i} .

Note that on orbifold, the property of the finite propagation speed of hyperbolic equation still holds if we check the proof therein [12, §7.8], [27, §4.4] as pointed out in [24]. Thus for $x, x' \in X$, if $d(x, x') \geq \varepsilon$, then $F(D_p)(x, x') = 0$, and given $x \in X$, $F(D_p)(x, \cdot)$ only depends on the restriction of D_p to $B^X(x, \varepsilon)$. Thus the problem to compute the asymptotic expansion of $B_p(x)$ is local.

Now, we replace X by \mathbb{R}^{2n}/G_{x_0} , and let $\widetilde{L},\widetilde{E}$ be the G_{x_0} -equivariant vector bundles on \widetilde{U}_{x_0} corresponding to L,E on $\widetilde{U}_{x_0}/G_{x_0}$. In particular, G_{x_0} acts linearly and effectively on \mathbb{R}^{2n} . We will add a superscript $\widetilde{}$ to indicate the corresponding objects on \mathbb{R}^{2n} .

Now for $Z, Z' \in \mathbb{R}^{2n}/G_{x_0}$, $|Z|, |Z'| \leq \varepsilon/2$ and $\widetilde{Z}, \widetilde{Z}' \in \mathbb{R}^{2n}$ represent Z, Z', then by (3.4), (3.26), (4.18), for any $l, m \in \mathbb{N}$, there exists $C_{l,m} > 0$ such that for $p \geq 1$,

(4.20)
$$F(D_p)(Z, Z') = \sum_{g \in G_x} (g, 1) F(\widetilde{D}_p)(g^{-1}\widetilde{Z}, \widetilde{Z}'),$$
$$|F(\widetilde{D}_p)(\widetilde{Z}, \widetilde{Z}') - \widetilde{P}_p^0(\widetilde{Z}, \widetilde{Z}')|_{C^m} \le C_{l,m} p^{-l}.$$

Moreover, for $t = \frac{1}{\sqrt{p}}$,

(4.21)
$$\widetilde{P}_p^0(\widetilde{Z}, \widetilde{Z}') = \frac{1}{t^{2n}} \widetilde{P}_{0,t}(\widetilde{Z}/t, \widetilde{Z}'/t) \kappa^{-1}(Z').$$

We will denote $P^{(r)}$ in (3.108) by $P_{x_0}^{(r)}$ to indicate the base point x_0 . For $g \in G_{x_0}$, we denote by $\widetilde{Z} = \widetilde{Z}_{1,g} + \widetilde{Z}_{2,g}$ with $\widetilde{Z}_{1,g} \in T\widetilde{U}_{x_0}^g$, $\widetilde{Z}_{2,g} \in N_{g,x_0}$ (here N_{g,x_0} is the normal bundle to $\widetilde{U}_{x_0}^g$ in \widetilde{U}_{x_0}). By (3.89), (3.102), as in (3.119), for $|\widetilde{Z}| \leq \varepsilon/2$, α, α' with $|\alpha| \leq m, |\alpha'| \leq m'$,

$$(4.22) \left| \frac{\partial^{|\alpha|}}{\partial \widetilde{Z}_{1,g}^{\alpha}} \frac{\partial^{|\alpha'|}}{\partial \widetilde{Z}_{2,g}^{\alpha'}} \left(\frac{1}{p^n} \widetilde{P}_p^0(g^{-1}\widetilde{Z}, \widetilde{Z}) - \sum_{r=0}^k t^r P_{\widetilde{Z}_{1,g}}^{(r)}(\sqrt{p}g^{-1}\widetilde{Z}_{2,g}, \sqrt{p}\widetilde{Z}_{2,g}) \kappa_{\widetilde{Z}_{1,g}}^{-1}(\widetilde{Z}_{2,g}) \right) \right| \\ \leq C t^{k-m'} (1 + \sqrt{p} |\widetilde{Z}_{2,g}|)^N \exp(-\sqrt{C''\mu_0} \sqrt{p} |\widetilde{Z}_{2,g}|).$$

Especially, for $Z \in \mathbb{R}^{2n}/G_{x_0}$, $|\widetilde{Z}| \leq \varepsilon/2$, as in (3.120),

$$(4.23) \qquad \sup_{|\alpha| \le m} \left| \frac{\partial^{|\alpha|}}{\partial \widetilde{Z}^{\alpha}} \left(\frac{1}{p^n} \widetilde{P}_p^0(\widetilde{Z}, \widetilde{Z}) - \sum_{r=0}^k p^{-r} P_{\widetilde{Z}}^{(2r)}(0, 0) \right) \right| \le C p^{-k-1}.$$

Thus from (4.19)-(4.23), we get for $|\widetilde{Z}| \leq \varepsilon/2$,

$$(4.24) \quad \sup_{|\alpha| \le m'} \left| \frac{\partial^{|\alpha|}}{\partial \widetilde{Z}^{\alpha}} \left(\frac{1}{p^{n}} P_{p}(\widetilde{Z}, \widetilde{Z}) - \sum_{r=0}^{k} b_{r}(\widetilde{Z}) p^{-r} \right) - \sum_{r=0}^{2k} p^{-\frac{r}{2}} \sum_{1 \ne g \in G_{x_{0}}} (g, 1) P_{\widetilde{Z}_{1,g}}^{(r)} \left(\sqrt{p} g^{-1} \widetilde{Z}_{2,g}, \sqrt{p} \widetilde{Z}_{2,g} \right) \kappa_{\widetilde{Z}_{1,g}}^{-1} (\widetilde{Z}_{2,g}) \right) \right| \\ \le C \left(p^{-k-1} + p^{-k + \frac{m'-1}{2}} \left(1 + \sqrt{p} d(Z, X') \right)^{N} \exp\left(-\sqrt{C'' \mu_{0}} \sqrt{p} d(Z, X') \right) \right).$$

By (3.117), we get for α, α' with $|\alpha| \leq m, |\alpha'| \leq m'$,

$$(4.25) \left| \frac{\partial^{|\alpha|}}{\partial \widetilde{Z}_{1,g}^{\alpha}} \frac{\partial^{|\alpha'|}}{\partial \widetilde{Z}_{2,g}^{\alpha'}} \sum_{r=0}^{2k} t^r P_{\widetilde{Z}_{1,g}}^{(r)} (g^{-1} \widetilde{Z}_{2,g}/t, \widetilde{Z}_{2,g}/t) \right| \leq C t^{-m'} (1 + |\frac{\widetilde{Z}_{2,g}}{t}|)^N \exp(-\frac{C'}{t} |\widetilde{Z}_{2,g}|).$$

For any compact set $K \subset X \setminus X'$, we get the uniform estimate (1.7) from (4.23) as in Section 3.5 as $G_x = \{1\}$. From (4.24), (4.25), we get (1.7) near the singular set X'.

By the argument in Section 4.1, we get the last part of Theorem 1.4.

Note that if $x_0 \in X'$, then $|G_{x_0}| > 1$. If in addition, L and E are usual vector bundles, i.e. G_{x_0} acts on L_{x_0} and E_{x_0} as identity, then by (4.24),

$$\left| \frac{1}{p^n} P_p(x_0, x_0) - |G_{x_0}| b_0(x_0) \right| \le C p^{-1/2}.$$

Thus we can never have an uniform asymptotic expansion on X if X' is not empty.

Remark 4.2. On $\widetilde{U}_{x_0}^g$, g acts on L by multiplication by $e^{i\theta}$, the action of g on $E_{\widetilde{U}_{x_0}^g}$ and on $\Lambda(T^{*(0,1)}X)$ is parallel with respect to the connections ∇^E and ∇^{Cliff} . We denote by $g|_{\Lambda\otimes E}$, $g|_E$ the action of g on $\Lambda(T^{*(0,1)}X)\otimes E$, E on $\widetilde{U}_{x_0}^g$. We define on $\widetilde{U}_{x_0}^g$

(4.27)

$$\psi_{r,q}(\widetilde{Z}_{1,g}) = \sum_{|\alpha|=q} \frac{1}{\alpha!} \left[\int_{N_{g,x_0}} g|_{\Lambda \otimes E} P_{\widetilde{Z}_{1,g}}^{(r)}(g^{-1}\widetilde{Z}_{2,g}, \widetilde{Z}_{2,g}) \widetilde{Z}_{2,g}^{\alpha} dv_N(\widetilde{Z}_{2,g}) \right] \left(\frac{\partial}{\partial \widetilde{Z}_{2,g}} \right)^{\alpha} (\kappa_{\widetilde{Z}_{1,g}}^{-1} \cdot).$$

Then $e^{i\theta p}\psi_{r,q}(\widetilde{Z}_{1,g})$ are a family of differential operators on $\widetilde{U}_{x_0}^g$ along the normal direction N_{g,x_0} with coefficients in $\operatorname{End}(\Lambda(T^{*(0,1)}X)\otimes E)$, and they are well defined on $\widetilde{U}_{x_0}^g/Z_{G_{x_0}}(g)$ and on ΣX . By (3.117), (4.24), we know that in the sense of distributions,

$$(4.28) \qquad \frac{1}{p^n} B_p(x) = \sum_{r=0}^k p^{-r/2} \sum_{X_j \subset X \cup \Sigma X} \frac{1}{m_j} p^{-n + \dim X_j} e^{i\theta_j p} \delta_{X_j} \sum_{q \ge 0} p^{-\frac{q}{2}} \psi_{r,q} + \mathcal{O}(p^{-k}).$$

Here X_j runs over all the connected component of $X \cup \Sigma X$ and g acts on $L|_{X_j}$ as multiplication by $e^{i\theta_j}$, and m_j is the multiplicity of X_j defined in [20] (cf. also [24]).

Especially, if $\Sigma X = \{y_j\}$ is finite points, then $m_j = |G_{y_j}|$ and $g|_{\Lambda(T^{*(0,1)}X)\otimes E} \circ I_{\mathbb{C}\otimes E} = g|_E \circ I_{\mathbb{C}\otimes E}$. Moreover, as g commutes with \mathcal{J}_{x_0} , from (3.114), for $Z = z + \overline{z}$,

$$(4.29) \int_{\mathbb{R}^{2n}} P(g^{-1}Z, Z) dZ$$

$$= \frac{\det_{\mathbb{C}} \mathcal{J}_{x_0}}{(2\pi)^n} \int_{\mathbb{R}^{2n}} \exp\left(-\frac{1}{4}||\mathcal{J}_{x_0}|^{\frac{1}{2}}(g^{-1} - 1)Z|^2 + \frac{1}{2} \left\langle \mathcal{J}_{x_0} g^{-1}Z, Z \right\rangle \right) dZ$$

$$= \frac{\det_{\mathbb{C}} \mathcal{J}_{x_0}}{(2\pi)^n} \int_{\mathbb{R}^{2n}} \exp\left(-\frac{1}{2} \left\langle |\mathcal{J}_{x_0}|Z, Z \right\rangle + \frac{1}{2} \left\langle (|\mathcal{J}_{x_0}| + \mathcal{J}_{x_0})g^{-1}Z, Z \right\rangle \right) dZ$$

$$= \frac{\det_{\mathbb{C}} \mathcal{J}_{x_0}}{(2\pi)^n} \int_{\mathbb{R}^{2n}} \exp\left(-\left\langle \mathcal{J}_{x_0} z, \overline{z} \right\rangle + \left\langle \mathcal{J}_{x_0} g^{-1}z, \overline{z} \right\rangle \right) dZ$$

$$= \frac{1}{\det_{\mathbb{C}} (1 - g_{\mathcal{T}(1,0)}^{-1}X)}.$$

Thus from (3.117), (4.28), (4.29),

$$(4.30) B_p(x) = \sum_{r=0}^n b_r(x) p^{n-r} + \sum_{y_j} \frac{e^{i\theta_j p} g|_E \circ I_{\mathbb{C} \otimes E}}{|G_{y_j}| \det_{\mathbb{C}} (1 - g_{T^{(1,0)}X}^{-1})} \delta_{y_j} + \mathcal{O}(\frac{1}{p}).$$

Remark 4.3. Now assume that (X, ω) is a Kähler orbifold and $\mathbf{J} = J$, moreover L is an usual line bundle on X. Then we can embed X into $\mathbb{P}(H^0(X, L^p))$ by using the orbifold Kodaira embedding ϕ_p for p big enough (cf. $[1, \S 7]$). Let $\{S_j\}_{j=1}^{d_p}$ be an orthonormal basis of $H^0(X, L^p)$ with respect to (2.2); also, choose a local G_x -invariant holomorphic frame S_L (which is possible as G_x acts on L_x as identity) and write $S_j = f_j S_L^p$. Then $\phi_p : X \to \mathbb{P}(H^0(X, L^p))$ is defined by $\phi_p(x) = [f_1(x), \dots, f_{d_p}(x)]$. Let ω_{FS} be the Fubini-Study metric on $\mathbb{P}(H^0(X, L^p))$. Then

(4.31)
$$\frac{1}{p}\phi_p^*\omega_{FS} = \frac{1}{p}\partial\overline{\partial}\log(\sum_{j=1}^{d_p}|f_j|^2) = \omega + \frac{\sqrt{-1}}{2\pi p}\partial\overline{\partial}\log B_p(x).$$

Note that $g \in G_{x_0}$ acts as identity on L_{x_0} , for $\widetilde{Z} = z + \overline{z}$, by (3.114),

$$(4.32) \quad (g,1)P_{\widetilde{Z}_{1,g}}(\sqrt{p}g^{-1}\widetilde{Z}_{2,g},\sqrt{p}\widetilde{Z}_{2,g})$$

$$=\exp\left(-\frac{\pi}{2}p|(g^{-1}-1)\widetilde{Z}_{2,g}|^2+\pi p\left\langle g^{-1}(z_{2,g}-\overline{z}_{2,g}),\widetilde{Z}_{2,g}\right\rangle\right).$$

Set $\widetilde{b}_0(\widetilde{Z}) = 1 + \sum_{1 \neq g \in G_{x_0}} (g, 1) P_{\widetilde{Z}_{1,g}}(\sqrt{p}g^{-1}\widetilde{Z}_{2,g}, \sqrt{p}\widetilde{Z}_{2,g}) \kappa_{\widetilde{Z}_{1,g}}(\widetilde{Z}_{2,g})$. Then $\widetilde{b}_0(\widetilde{Z})$ has a positive real part on $T_{x_0}X$. By (4.24), for $m \in \mathbb{N}$, taking $k \gg m$, then for p big enough, for $|Z| \leq \varepsilon/2$, under the norms C^m ,

$$(4.33) \quad \log(\frac{1}{p^n}B_p(Z)) = \log(\widetilde{b}_0(\widetilde{Z})) + \log\left(1 + \sum_{r=1}^k \widetilde{b}_0(\widetilde{Z})^{-1}b_r(\widetilde{Z})p^{-r}\right) - \sum_{r=1}^{2k} p^{-\frac{r}{2}}\widetilde{b}_0(\widetilde{Z})^{-1} \sum_{1 \neq g \in G_{x_0}} (g, 1)P_{\widetilde{Z}_{1,g}}^{(r)}(\sqrt{p}g^{-1}\widetilde{Z}_{2,g}, \sqrt{p}\widetilde{Z}_{2,g})\kappa_{\widetilde{Z}_{1,g}}(\widetilde{Z}_{2,g})\right) + \mathcal{O}(p^{-k+\frac{m}{2}}).$$

Thus from (3.117), (4.31), (4.33), for any $l \in \mathbb{N}$, there exist $C_l > 0$ such that

$$\left| \frac{1}{p} \phi_p^* \omega_{FS}(x) - \omega(x) \right|_{C^l} \le C_l \left(\frac{1}{p} + p^{\frac{l}{2}} e^{-c\sqrt{p}d(x,X')} \right).$$

Aknowledgements. We thank Professors Jean-Michel Bismut, Jean-Michel Bony and Johannes Sjöstrand for useful conversations. We also thank Xiaowei Wang for useful discussions, and Laurent Charles for sending us his paper.

References

- [1] W. L. Baily, On the imbedding of V-manifolds in projective space. Amer. J. Math. 79 (1957), 403-430.
- [2] M. Beals, C. Fefferman, R. Grossman, Strictly pseudoconvex domains in C^n . Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 125–322.
- [3] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Springer-Verlag, 1992.
- [4] J.-M. Bismut, Demailly's asymptotic Morse inequalities: a heat equation proof. J. Funct. Anal. 72 (1987), no. 2, 263–278.

- [5] J.-M. Bismut, Koszul complexes, harmonic oscillators and the Todd class, J.A.M.S. 3 (1990), 159-256.
- [6] J.-M. Bismut, Equivariant immersions and Quillen metrics, J. Diff. Geom. 41 (1995), 53-159.
- [7] J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Publ. Math. IHES., Vol. 74, 1991, 1-297.
- [8] J.-M. Bismut and E. Vasserot, The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, *Commun. Math. Phys.*, 125 (1989), 355–367.
- [9] D. Borthwick and A. Uribe, Almost complex structures and geometric quantization, *Math. Res. Lett.*, 3 (1996), 845–861. Erratum: 5 (1998), 211-212.
- [10] T. Bouche, Convergence de la métrique de Fubini-Study d'un fibré linéaire positif. Ann. Inst. Fourier. 40 (1990), 117–130.
- [11] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976), 123-164.
- [12] J. Charazain, A. Piriou, Introduction à la théorie des équations aux dérivées partielles, Paris: Gauthier-villars 1981.
- [13] J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, *J. Differential Geom.* 17 (1982), 15-53.
- [14] D. Catlin, The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), 1–23, Trends Math., Birkhäuser Boston, Boston, MA, 1999.
- [15] L. Charles, Berezin-Toeplitz operators, a semi-classical approach. *Comm. Math. Phys.* 239 (2003), 1–28.
- [16] P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations. J. Functional Analysis 12 (1973), 401–414.
- [17] X. Dai, K. Liu, X. Ma, On the asymptotic expansion of Bergman kernel. C.R.A.S. Paris, to appear.
- [18] J.P. Demailly, Holomorphic Morse inequalities. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 93–114, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.
- [19] S. K. Donaldson, Scalar curvature and projective embeddings. I. J. Differential Geom. 59 (2001), no. 3, 479–522.
- [20] T. Kawasaki, The Riemann-Roch theorem for V-manifolds. Osaka J. Math 16 (1979) 151-159.
- [21] H. B. Lawson and M.-L. Michelson, *Spin geometry*, Princeton Univ. Press, Princeton, New Jersey, 1989.
- [22] N. Lindholm, Sampling in weighted L^p spaces of entire functions in \mathbb{C}^n and estimates of the Bergman kernel. J. Funct. Anal. 182 (2001), 390–426
- [23] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. *Amer. J. Math.* 122 (2000), no. 2, 235–273.
- [24] X. Ma, Orbifolds and analytic torsions. Preprint.
- [25] X. Ma, G. Marinescu, The spin^c Dirac operator on high tensor powers of a line bundle. *Math. Z.* 240 (2002), no. 3, 651–664.
- [26] W. Ruan, Canonical coordinates and Bergman metrics. Comm. Anal. Geom. 6 (1998), 589-631.
- [27] M. Taylor, Pseudodifferential operators, Princeton Univ Press, Princeton 1981.
- [28] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99–130.
- [29] X. Wang, Thesis, 2002.
- [30] S. Zelditch, Szegő kernels and a theorem of Tian. Internat. Math. Res. Notices 1998, no. 6, 317–331.

DEPARTMENT OF MATHEMATICS, UCSB, CA 93106 USA (DAI@MATH.UCSB.EDU)

Center of Mathematical Science, Zhejiang University and Department of Mathematics, UCLA, CA 90095-1555, USA (Liu@math.ucla.edu)

CENTRE DE MATHÉMATIQUES, UMR 7640 DU CNRS, ECOLE POLYTECHNIQUE, 91128 PALAISEAU CEDEX, FRANCE (MA@MATH.POLYTECHNIQUE.FR)