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Abstract

In this paper, we study the semiclassical limit of the Gross-Pitaevskii equation
(a cubic nonlinear Schrödinger equation) with the Neumann boundary condition
in an exterior domain. We prove that before the formation of singularities in
the limit system, the quantum density and the quantum momentum converge to
the unique solution of the compressible Euler equation with the slip boundary
condition as the scaling parameter approaches 0.
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1 Introduction

Here we consider the local in time semi-classical limit of the Gross-Pitaevskii equation
(a cubic Schrödinger equation) in the exterior of two dimensional domain in R

2. More
precisely, let Ω be an exterior domain in R

2 such that ∂Ω is a bounded, smooth curve,
and let ν(x) be the unit outward normal vector to ∂Ω at x ∈ ∂Ω. We study the
following equations when the parameter ε goes to zero:



































i ε ∂t ψ
ε = −ε

2

2
∆ψε +

(

|ψε|2 − 1
)

ψε, in Ω × R+

ψε(t = 0, x) =
√

ρε0(x) exp

(

i

ε
Sε0(x)

)

,

∂ψε

∂ν

∣

∣

∣

∂Ω
= 0, ψε(t, x) → exp

(

i

ε
S∞(x)

)

as |x| → ∞,

(1.1)
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where ε is a small positive parameter, S∞(x) = u∞ ·x, and u∞ is a constant two-vector.
The motivation to study the problem (1.1) comes from many intresting issues con-

cerning a superfluid passing an obstacle, see for example [FPR] and [JP]. The nonlin-
ear Schrödinger equation (0.1), which is also called the Gross-Pitaevskii equation, has
been proposed and studied as the fundament equation for understanding superfluids,
see Ginzburg-Pitaevskii [GP], Landau-Lifschitz [LL], Gross [G] and many others. It
has also been used to model phenomena in the Bose-Einstein condensates. The model
mathematical problem for a superfluid passing an obstacle is as follows:

− i ut = ∆u+ u(1 − |u|2) in R
2/BR

with
∂u

∂ν

∣

∣

∣

∂BR

= 0 and u(x, 0) ≈ ei v0·x
(1.2)

at |x| = +∞. Here BR denotes the obstacle. Since in (1.2), one has normalized the
equation in such a way the Planck constant becomes 1. Thus the size R is often much
larger than the unity. The well-known Madelung transform (see [M]) is to introduce
two real variables ρ ≥ 0 and φ such that u =

√
ρ ei φ. Then under a suitable condition

one can show that (1.2) is equivalent to the fluid-type equations.















∂ρ

∂t
+ div (ρu) = 0

∂

∂t
(ρu) + div (ρ (u⊗ u)) + ∇

(

ρ2

2

)

= ρ∇
(

∆
√
ρ

√
ρ

)

.
(1.3)

Here u = ∇φ. We note also that the phase dynammics according to

∂φ

∂t
=

∆
√
ρ

√
ρ

− |∇φ|2 + (1 − ρ). (1.4)

The term on the right-hand side of the second equation in (1.3) is called the quantum
pressure. It can be formally argued that this quantum pressure term can neglected in
a limiting process when the obstacle size BR (or R) is much larger compared with the
microscopic scale of the Gross-Pitaevskii equation (which is normalized to be 1), and
when one is interested in only “long-wave” approximations (see [FPR]). Indeed, set

R = 1
ε
, and consider ψε(x, t) =

√

ρε(x, t) e
i
ε
Sε(x,t) with ∇Sε(x, •) ' u∞ at |x| = ∞,

then after a proper scaling of spatial and time-variables, one reduces to study (1.1)
and its associated fluid type equation:



















∂tρ
ε + div(ρεuε) = 0

∂t(ρ
ε uε) + div(ρε uε ⊗ uε) +

1

2
∇(ρε)2 =

ε2

2
ρε∇

(

∆
√
ρε√
ρε

)

ρε(t = 0, x) = ρε0(x), uε(t = 0, x) = ∇Sε0(x)

(1.5)

where uε = ∇Sε. The domain Ω is now given by R
2|B1, and the boundary conditions
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can be written in the following equivalent form:






ε
∂
√
ρε

∂ν

∣

∣

∣

∂Ω
= 0, uε · ν

∣

∣

∣

∂Ω
= 0, and ρε(t, x) → 1,

u(t, x) → u∞ as |x| → ∞.

(1.6)

Thus, the formal WKB-limit as ε → 0 of (1.5)–(1.6) is given by the following com-
pressible Euler equation:















∂t ρ + div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +
1

2
∇ρ2 = 0

u(t = 0, x) = u0(x), ρ(t = 0, x) = ρ0(x)

(1.7)

with the slip boundary condition.

u · ν
∣

∣

∣

∂Ω
= 0, and ρ(t, x) → 1, u(t, x) → u∞ as |x| → ∞. (1.8)

Of course, it is necessary to assume that (ρε0(x),∇Sε0(x)) converges to (ρ0(x), u0(x))
in some appropriate sense. It should be noted that the first boundary condition in
(1.6), that is, ε ∂

∂ν

(√
ρ ε
) ∣

∣

∂Ω
= 0, disappers in the limiting process ε → 0+. Otherwise

it would lead to an additional boundary condition for the limit system (1.7) which
would be undesirable.

When Ω = R
d and if there is no super fluid at the infinity, the nonlinear term

(|ψε|2 − 1)ψε in (1.1) is often replaced by g(|ψε|2)ψε with g′(·) > 0. If, in addition, the
phase function Sε is independent of ε, and the amplitude is given by the expansion:
∑N

j=1 aj(x)ε
j + εNrN (x, ε) with limε→0 ‖rN(·, ε)‖Hs = 0 for s large enough, Grenier

([Grenier98]) obtained a similar expansion for the solution of (1.1) in a small time. His
main idea is that: instead of looking, as usual ,for solutions ψε of the form:

ψε(t, x) = aε(t, x)ei
S(t,x)

ε (1.9)

with S(t, x) independent of ε, aε(t, x) a real valued function, he looks for solutions ψε

of the form:

ψε(t, x) = aε(t, x) ei
Sε(t,x)

ε = (aε1(t, x) + iaε2(t, x)) e
i

Sε(t,x)
ε (1.10)

with aε1, a
ε
2, S

ε being real valued functions. By plugging (1.10) into (1.1), separating
the real and imaginary part, one can get the governing equations for aε1, a

ε
2 and ∇Sε.

Then the standard energy estimate for symmetric hyperbolic system can be used to
solve the resulting problem. But unfortunately, this method can not be applied here.
The main difficulty lies in the Neumann boundary condition in (1.1). In fact, if we
assume the solution has the form (1.10), then the boundary condition ∂ψε

∂ν
|∂Ω= 0 can

be rewritten in the following equivalent form:
(

ε
∂aε1
∂ν

− aε2
∂Sε

∂ν

) ∣

∣

∣

∣

∂Ω

= 0,

(

ε
∂aε2
∂ν

+ aε1
∂Sε

∂ν

) ∣

∣

∣

∣

∂Ω

= 0.
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With these nonlinear boundary conditions, all known existing methods for the energy
estimates do not seem to work.

On the other hand,suppose Ω = R
d, if there is no super fluid at the infinity, and if

the nonlinear Schrödinger equation in (1.1) is replaced by Schrödinger-Poisson equation
(or slightly more general nonlinearity as that in [ZP2]), the second author uses Wigner
measure and modifies the modulated energy estimate, the latter was introduced by
Brenier in [Brenier2000] in the studying of the convergence of the scaled Vlasov-Poisson
system to the incompressible Euler system, to prove the convergence of the quantum
density and quantum momentum to the solution of compressible Euler equations before
the formation of singularities in the limit system as ε approaches 0. Indeed, let f ε(t, x, ξ)
be the Wigner transform of ψε(t, x), the main ingredient in [ZP1] (and slightly different
one in [ZP2]) is to study the evolution of the following functional:

Hε(t) =

∫

Rd

hε (t, x) dx =

∫

Rd

1

2

(
∫

Rd

|ξ − u(t, x)|2 f ε(t, x, ξ) dξ + |∇4−1(ρε − ρ)|2
)

dx,

(1.11)
where (ρ, u) is the unique local smooth solution to the limit system. Here, since we
work on the exterior domain Ω, we even do not know how to appropriately modify
the definition of the Wigner transform in Ω. Hence (1.11) cannot be directly applied.
Fortunately, we observe that by (3.24) in [ZP1] one has

∫

Rd

|ξ − u(t, x)|2 f ε(t, x, ξ) dξ = |(ε∇x − iu)ψε|2.

In other words what really was used in [ZP1] (or [ZP2]) is in fact
∫

Rd h
ε (t, x) dx with

hε(t) =:
1

2

(

|(ε∇x − iu)ψε|2 +
∣

∣∇∆−1(ρε − ρ)
∣

∣

2
)

.

In this paper, we shall consider even more direct and simpler functional:

Hε(t) =:
1

2

∫

Ω

|(ε∇x − i u)ψε|2 dx+
1

2

∫

Ω

|ρε − ρ|2 dx

It can be viewed as a defect measure in studying weakly convergent sequences of so-
lutions. We shall prove that H ε(t) satisfies a Gronwall-type growth estimate. Thus, if
Hε(0) → 0 as ε→ 0+, then Hε(t) → 0 for t in an interval of considerations.

This argument can actually be used also to simplify part of proofs in [ZP1] and
[ZP2]. It also avoids the use of much more sophisticated analytic tool–Wigner measures.

It should be mentioned that a similar idea was also used in a recent work [MP1]
to study the quasi-neutral limit of the scaled Schrödinger-Poisson equation to the
incompressible Euler equation in a periodic domain.

Before the presentation of the main result of this paper, let us first make the
following assumptions :

(A1)
(

√

ρε0(x) exp
(

i
ε
Sε0(x)

)

− exp( iu
∞·x
ε

) ∈ H3(Ω)
)

, and ∇
√

ρε0(x), exp
(

i
ε
Sε0
)

−exp
(

iu∞·x
ε

)

,
√

ρε0(x) ∇Sε0(x) are uniformly bounded in L2(Ω);
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(A2) both ρε0(x) − ρ0(x) and
√

ρε0(x) (∇Sε0(x) − u0(x)) converge to 0 in L2(Ω).

To guarantee the local existence of smooth solution to the (1.7) and (1.8), we
need the following compatibility conditions for the initial data:

(A3) let 1
2
≤ ρ0(x), (ρ0(x) − 1, u0(x) − u∞) ∈ H3(Ω), then ν · ∂kt u(0)

∣

∣

∂Ω
= 0, 0 ≤ k ≤

2, with ∂kt u(0) the kth time derivative at t = 0 of any solution of (1.7) and
(1.8).These derivatives can be calculated from the second equation of (1.7) to
yield a condition in terms of ρ0 and u0.

Here is our main Theorem:

Theorem 1.1. Let the initial datum (ρε0(x), S
ε(x)), (ρ0(x), u0(x)) satisfy (A1–A3).

ψε(t, x), (ρ(t, x), u(t, x)) be the solutions to (1.1) and (1.7)–(1.8) respectively. Then
there exists a positive constant T ∗ such that for all T < T ∗, (ρ(t, x)−1, u(t, x)−u∞) ∈
⋂2
j=0C

j([0, T ], H3−j(Ω)), furthermore,

|ψε(t, x)|2 − ρ(t, x) → 0 in L∞
(

[0, T ], L2(Ω)
)

, (1.12)

εIm
(

ψε(t, x)∇ψε(t, x)
)

→ (ρu)(t, x) in L∞
(

[0, T ], L1

loc(Ω)
)

, (1.13)

as ε→ 0.

Remark 1.1.

1) Comparing the above Theorem with the results in [ZP1] and [ZP2], we improved
the convergence in (1.13). In [ZP1] and [ZP2], one only proved: for any fixed
t < T ∗, there holds

εIm(ψε(t, ·)∇ψε(t, ·)) ⇀ (ρu)(t, ·) in the sense of measure.

2) By modifying the proof a little bit, we can show Theorem 1.1 for a more general
nonlinearity and in exterior domain of general space dimension. For a clear
presentation, we are not going to pursue that here.

Finally, we would like to point out that for the classical fluids, it is well-known (see
[DD]) there is a critical speed v0 of the fluids at infinity such that whenever |u∞| < v0,
there is a steady state solution of (1.7). More precisely, there is a smooth solution of

div(ρ∇φ) = 0 in Ω, ∇φ(∞) = u∞, (1.14)

with ρ = 1 − |∇φ|2 > 0 in Ω (see also (1.4)). Solutions of (1.14) have maximum of
|∇φ| achieved somewhere on ∂Ω.

On the other hand, when |u∞| > v0, then there is no smooth solution to (1.14).
The flow (1.7) with such initial data would develop shock in a later time.

One often refer to the former case as subsonic and the later case as supersonic.
One consequence, of our convergence theorem (1.1) for the semiclassical limit, is that
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in this limiting process the same picture remains valid in the subsonic case. Since a
superfluid is by definition frictionless, there cannot be shock waves developed for (1.1).
(In particular the flow (1.1) is time reversible.) What would be the substitution for
“shock” has been addressed in [FPR] and [JP]. However, a precisely mathematical
proof has not been found particularly for the case of transonic, that is when |u∞| ' v0.

2 The local existence of smooth solution to (1.7)-

(1.8)

In this section, we will prove the local existence of smooth solution to the exterior
problem of the limit system (1.7-1.8). Actually we will study the problem with more
general pressure term than that in (1.7):











∂tρ+ div(uρ) = 0, x ∈ Ω, t ≥ 0,

∂tu+ u · ∇u+ ∇P (ρ) = 0,

(ρ(t = 0, x), u(t = 0, x)) = (ρ0(x), u0(x)),

(2.1)

with the boundary conditions:

u · ν |∂Ω= 0, ρ(t, x) → ρ∞, u→ u∞, as |x| → ∞. (2.2)

To guarantee the strict hyperbolicity of (2.1), we need the assumption that

P ′(·) > 0. (2.3)

When ρ∞ = 0, u∞ = 0 and Ω is a bounded domain, this problem has been studied by
Beirao in [Bei81] and [Bei92]. And the local existence of smooth solutions to the full
ideal gas dynamics equations in a bounded domain has been studied by Schochet in
[Sch86]. In this section, we are going to modify the arguments in [Bei81], [Bei92] and
[Sch86] to yield the local well-posedness of (2.1–2.2).

For convenience, let us denote
⋂k

j=0C
j([0, T ], Hk−j(Ω)) by Xk,T , with the norm

‖|w‖|k,T = sup0≤t≤T ‖|w(t)‖|k and ‖|w(t)‖|k =
∑k

j=0 ‖∂
j
tw(t, ·)‖Hk−j(Ω). As a conven-

tion in this section, C(·, ·, · · · ) will be constants, which are nondecreasing functions of
their variables and they may change from line to line.

Then the following Theorem is the main result of this section:

Theorem 2.1. Let (ρ0(x) − ρ∞, u0(x) − ū(x)) ∈ H3(Ω), and satisfy the compatibility
condition (A3) in the introduction, where ū(x) ∈ C∞(Ω), with

ū(x) =

{

0, if x ∈ {x : |x| ≤ R},
u∞, if x ∈ {x : |x| ≥ 2R},

for a sufficiently large R so that Ω ⊂ {x : |x| ≤ R}. Then there exists a positive
constant T ∗, such that (2.1–2.2) has a unique local smooth solution (ρ, u) with (ρ(t, x)−
ρ∞, u(t, x) − ū(x)) ∈ X3,T , for any T < T ∗.
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Remark 2.1. It should be noted here that with more smooth initial data and along
with compatibility conditions, we can get a more smooth solution. And the proof of the
Theorem is not only for space dimension 2, but it works for general space dimension
greater than 1.

Proof. Motivated by [Bei81] and [Bei92], let us denote g(t, x) =: log ρ(t,x)
ρ∞

, then (2.1)
can be written in the following equivalent form:











∂tg + u · ∇g + divu = 0, x ∈ Ω, t ≥ 0,

∂tu+ u · ∇u+ ∇h(g) = 0,

(g(t = 0, x), u(t = 0, x)) = (g0, u0),

(2.4)

together with the boundary conditions:

u · ν |∂Ω= 0, g(t, x) → 0, u(t, x) → u∞, as |x| → ∞, (2.5)

where h(g) = P (ρ∞eg). Then by (2.3), we have h′(g) > 0. The initial condition that
(ρ0(x) − ρ∞, u0(x) − ū(x)) ∈ H3(Ω) is changed to (g0(x), u0(x) − ū(x)) ∈ H3(Ω).

To construct the approximate solutions, let us first smooth the initial data. As in
[RM74] and [Sch86], we can obtain (gn0 , u

n
0) such that (gn0 (x), un0 (x) − ū(x)) ∈ H5(Ω)

obeying the compatibility conditions for (2.4) and (2.5) up to the order three, and
converging in H3 to (g0(x), u0(x) − ū(x)) as n → ∞. In particular, from the second
equation of (2.4), ∂kt u

n(0, x) ∈ H5−k(Ω), 0 ≤ k ≤ 5. Let T0 > 0, by Theorem 2.5.7 of
[H63], there exist functions ũn(t, x) with ũn(t, x) − ū(x) ∈ H5([0, T0] × Ω) satisfying
∂kt ũ

n(0, x) = ∂kt u
n(0, x), 0 ≤ k ≤ 4.

Now let us extend ν(x) to be in C∞(Ω) As in [Sch86], we define the approximate
solutions (gn, un) through the following equations:











∂tg
n + un · ∇gn + divun = 0, x ∈ Ω, t ≥ 0,

∂tu
n + un · ∇un + ε(ν · ∇)un + ∇h(gn) = ε(ν · ∇)ũn,

(gn(t = 0, x), un(t = 0, x)) = (gn0 , u
n
0),

(2.6)

together with the boundary condition (2.5).
Then the boundary is non-characteristic for this system, the boundary condition

is maximally nonnegative, and compatibility conditions are satisfied up to the order
three (see [RM74] and [Sch86] for more details). Hence by modifying the arguments in
the Appendix of [Sch86] or [RM74], and the energy estimates, we can conclude that:
there is a positive constant Tε,n such that (2.6–2.5) has a unique solution (gn, un) with
(gn(t, x), un(t, x) − ū(x)) ∈ X3 ([0, Tε,n] × Ω). We are going to prove that: there exists
a n-independent positive constant T and a ε̃(n) such that if ε ≤ ε̃(n) and if n large
enough, Tε,n ≥ T and

‖|(gn, un − ū)‖|3,T ≤ C, (2.7)

for some constant C independent of ε and n.
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We observe that (2.6) can also be written in the following form:

∂tw
n +

2
∑

l=1

Al(wn) ∂lw
n = L(wn), (2.8)

where

wn =





gn

u1
n

u2
n



 , A(wn, ξ) =

2
∑

l=1

ξlA
l(wn) =





un · ξ ξ1 ξ2
h′(gn)ξ1 (un + εν) · ξ 0
h′(gn)ξ2 0 (un + εν) · ξ



 ,

which can be symmetrized by

S(gn) =





1 0 0
0 1
h′(gn)

0

0 0 1
h′(gn)





Define Ωδ = {x ∈ Ω | dist(x, ∂Ω) ≤ δ}, then we can find an open covering {Uj}1≤j≤k

of Ωδ, and a partition of unity θj(x), j = 1, 2, · · ·k, and θ0(x), such that suppθj ⊂
Uj, suppθ0 ⊂ {x ∈ Ω | dist(x, ∂Ω) > δ

2
}. Let us assume further that on each Uj,

Uj ∩ ∂Ω is given locally as the solution set of

0 = φj(x1, x2) = x2 − fj(x1), (2.9)

such that Uj ∩ Ω = {(x1, x2) ∈ Uj | φj(x) ≥ 0}.
Now let us divide the energy estimates into two parts. We first multiply θ0(x) to

both sides of (2.8) to obtain

∂t(θ0 w
n) +

2
∑

l=1

Al(wn) ∂l(θ0 w
n) =

2
∑

l=1

Al(wn) ∂l θ0 w
n + θ0 L(wn). (2.10)

Let us denote vn = (gn, un − ū(x)), then by multiplying (2.10) by 2S(gn)(θ0v
n), inte-

grating over the space variables, and notice that S(gn)Al(wn), l = 1, 2, are symmetric
matrixes, we can use integration by parts to get

d

dt

∫

Ω

(θ0 v
n) · (S(gn)(θ0 v

n)) dx =

∫

Ω

{

(θ0 v
n) · ((S(gn))t θ0 v

n)

+
2
∑

l=1

(θ0 v
n) ·
(

(S(gn)Al(wn))xl
θ0 v

n
)

−
2
∑

l=1

(

S(gn)Al(wn) · ∂l(θ0 ū)
)

· (θ0 vn)

+2
2
∑

l=1

(

Al(wn) ∂l θ0 w
n
)

· (S(gn) θ0 v
n) + 2(θ0 Lw

n) · (S(gn)θ0v
n)

}

dx. (2.11)
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From (2.11) and the fact that θ0(x) = 1 for |x| large enough, we get

d

dt

∫

Ω

(θ0 v
n) · (S(gn)(θ0v

n)) dx

≤ C (‖∂t gn‖L∞, ‖∇xw
n‖L∞, ‖wn‖L∞)

(

1 + ‖θ0 v
n‖2

L2 + ‖∇x θ0 w
n‖L2

)

≤ C (‖∂t gn‖L∞, ‖∇xv
n‖L∞, ‖vn‖L∞)

(

1 + ‖vn‖2
L2

)

(2.12)

≤ C(‖|vn‖|3)(‖vn‖2
L2 + 1).

On the other hand, let α = (α1, α2), then for 1 ≤ |α| ≤ 3, take ∂αx to both sides of
(2.10), we have

∂t ∂
α
x (θ0w

n) +
2
∑

l=1

Al(wn) ∂l ∂
α
x (θ0 w

n) =
2
∑

l=1

[

Al(wn), ∂αx
]

∂l(θ0 w
n)

+
2
∑

l=1

∂αx
(

Al(wn) ∂l θ0 w
n
)

+ ∂αx (θ0 L(wn)). (2.13)

We observe that

A1(wn) = A(vn) +





ū1(x) 0 0
0 ū1(x) 0
0 0 ū1(x)



 .

One also has a similar observation for A2(wn). By the Moser-type calculus inequality,
we have
∥

∥

[

Aj(vn), ∂αx
]

∂l (θ0 v
n)
∥

∥

L2 ≤ C
(∥

∥∇Aj(vn)
∥

∥

L∞ ‖θ0vn‖H3 + ‖∂l (θ0 vn)‖L∞

∥

∥Aj(vn)
∥

∥

H3

)

.

Thus multiplying (2.13) by 2S(gn) ∂αx (θ0 w
n), and following the line of estimates of

(2.12), we conclude

d

dt

∫

Ω

(∂αx (θ0w
n)) · (S(gn)∂αx (θ0w

n)) dx ≤ C(‖|vn‖|3)
∑

1≤|α|≤3

‖∂αxwn‖2
L2. (2.14)

Combining (2.12) with (2.14), and by the definition of wn and vn, we find

d

dt

∑

|α|≤3

∫

Ω

(∂αx (θ0v
n(t, ·))) · (S(gn)(∂αx (θ0v

n(t, ·))) dx ≤ C(‖|vn(t)‖|3), (2.15)

which together with (2.3)implies that

d

dt
‖θ0vn(t, ·)‖H3 ≤ C(‖|vn(t)‖|3). (2.16)

While by applying ∂mt to (2.8) for m = 1, 2, 3 and manipulate the same energy estimate
as that for (2.16), one can obtain

d

dt
‖∂mt (θ0v

n(t, ·))‖H3−m ≤ C(‖|vn(t)‖|3). (2.17)
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Combining (2.16) with (2.17), we get

d

dt
‖|θ0vn(t)‖|3 ≤ C(‖|vn(t)‖|3). (2.18)

Next let us turn to the energy estimate near the boundary. On each Uj ∩ Ω, by
making the standard change of variables: y1 = x1, y2 = φj(x1, x2), we are lead to the
following equations



































∂tg
n + un1 ∂y1 g

n + un · ∇φj ∂y2 gn + ∂y1 u
n
1 + ∂y2 u

n · ∇φj = 0

∂t u
n
m + (un1 + ε∂x1φj) ∂y1 u

n
m +

(

un · ∇φj + ε|∇φj|2
)

∂y2 u
n
m

+















∂y1 h(g
n) + ∂y2 h(g

n)
∂φj
∂x1

, if m = 1,

∂y2 h(g
n)
∂φj
∂x2

, if m = 2,

= ε (∇φj · ∇x) ũ
n
m.

(2.19)

Following the proof of (2.18), one deduces

d

dt

(

∑

m+α1≤3

∫

Ω

(

∂mt ∂
α1
y1

(θj g
n(t, ·))

)

·
(

S(gn) ∂mt ∂
α1
y1

(θj g
n(t, ·))

)

dx

)

≤ C (‖|vn(t)‖|3) .

(2.20)
Moreover, the estimate

d

dt





∑

m+|α|≤2

∫

Ω

(∂mt ∂
α
y (θjg

n(t, ·))) · (S(gn)∂mt ∂
α
y (θjg

n(t, ·))) dx



 ≤ C(‖|vn(t)‖|3)

(2.21)
can be obtained in the standard fashion by simply integration the spatial derivatives
by parts.

On the other hand, from (2.19), we get

(

un · ∇φj 1
(1 + f 2

y1
) h′(gn) un · ∇φj + ε|∇φj|2

)(

∂y2g
n

∂y2u
n · ∇φj

)

(2.22)

= −
(

∂tg
n + un1∂y1g

n + ∂y1u
n
1

(∂tu
n + (un1 + ε∂x1φj) ∂y1u

n) · ∇φj + ∂y1h(g
n) ∂x1φj − ε(∇φj · ∇x) ũ

n · ∇xφj

)

.

Since the boundary condition un · ∇φj |∂Ω= 0, we thus have, for x ∈ Uj ∩ Ω, x̄ ∈
∂(Uj ∩ Ω), that

|(un∇φj)(t, x)− (un ·∇φj)(t, x̄)| ≤ C‖∇un‖L∞ |x− x̄| ≤ C‖∇un(t, ·)‖H2|x− x̄|, (2.23)

Thus by taking Uj such that diam(suppUj) � 1, we can solve (∂y2 g
n, ∂y2 u

n · ∇φj)
through (2.22).
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While for any small ε2 > 0, there exists a positive constant C(ε2) such that there
holds (see (4.6) of [Sch86]):

∥

∥∂k1y1 ∂
k2
y2
f
∥

∥

L2 ≤ ε2
∥

∥∂k1+k2
y2

f
∥

∥

L2 + C(ε2)

(

∑

α1≤k1+k2

‖∂α1
y1
f‖L2 + ‖f‖Hk1+k2−1

)

. (2.24)

By combining (2.22-2.24) we get

‖|(θj ∂y2gn, θj ∂y2 un · ∇φj‖|2 ≤ C(‖|vn‖|3)
(

C(ε2)

(

1 +
∑

m+α1≤3

‖∂mt ∂α1
y1
vn‖L2

)

+ ε2 (‖|(θj ∂y2 gn, θj ∂y2 un · ∇φj)‖|2 + ‖|θj ∂y2 un1‖|2)
)

. (2.25)

On the other hand, by the special structure of the equation in (2.1), and a easy calcu-
lation as that in [Sch86], we have

d

dt
‖|∇ × un‖|2 ≤ C(‖|(gn(t), un(t))‖|3. (2.26)

Since ∂x1 φj(x) = −f ′
j(x1), ∂x2 φj(x) = 1, and since

(

−f ′
j 1

1 f ′
j

)(

∂y2u
n
1

∂y2u
n
2

)

=

(

∂y2u
n · ∇φj

−∂y1un2 + ∇× un

)

, (2.27)

we hence conclude

‖|∂y2 un‖|2 ≤ K (‖|∂y2 un · ∇φj‖|3 + ‖|∂y1 un2‖|2 + ‖|∇ × un‖|2) . (2.28)

Iterating estimates (2.27) and (2.28) several times, we lead to

‖|∂y2 un‖|2 ≤ C

(

∑

m+α1≤3

‖∂mt ∂α1
y1
wn‖L2 + ‖|vn‖|2 + ‖|∇ × un‖|2

)

. (2.29)

Substituting (2.29) to (2.25), we get for ε2 small enough, there holds

‖|θj ∂y2 wn‖|2 ≤ C(‖|vn‖|3)
(

∑

m+α1≤3

‖∂mt ∂α1
y1
vn‖L2 + ‖|vn‖|2 + ‖|∇ × un‖|2

)

(2.30)

From (2.3), (2.20) and (2.30), we obtain

d

dt

(

∑

m+α1≤3

‖∂mt ∂α1
y1

(θj w
n(t, ·)) ‖L2 + ‖| (θj gn(t, ·), θj vn(t, ·),∇× vn) ‖|2

)

≤ Cj

(

∑

m+α1≤3

‖∂mt ∂α1
y1
gn(t, ·)‖L2, ‖|(θj gn(t, ·), θj vn(t, ·),∇× vn)‖|2

)

. (2.31)
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By summing up estimate (2.31) for j from 1 to k together with (2.18), we conclude,
for a positive constant T ∗, and for any T < T ∗, that

k
∑

j=1

(

∑

m+α1≤3

‖∂mt ∂α1
y1

(θj w
n(t, ·)) ‖L2 + ‖| (θj gn(t, ·), θj vn(t, ·),∇× vn) ‖|2

)

+ ‖|θ0 v
n(t)‖|3 ≤ C (T,Ω, ‖(g0, v0)‖H3) . (2.32)

Substituting (2.32) to (2.30), we obtain the estimate

‖|(gn(t, ·), vn(t, ·))‖|3,T ≤ C (T,Ω, ‖(g0, v0)‖H3) . (2.33)

Thus if we take ε = min
(

ε̃(n), 1
n

)

, as [Sch86], it is standard to prove the convergence
of vn(t, x) in L∞ ([0, T ], L2(Ω)) to v(t, x) = (g(t, x), u(t, x) − ū(x)) ∈ X3,T . This pro-
cedure also implies the uniqueness of smooth solution to the equation (2.4). This
completes the proof of the Theorem.

3 The proof of Theorem 1.1

In this section, we will employ and improve some arguments in [ZP1] and [ZP2] to
prove Theorem 1.1. If the initial data of (1.1) satisfies (A1) in the introduction, by
Theorem 4.1 in the Appendix, we know that (1.1) has a unique global smooth solution
ψε(t, x) such that ∂jt ∂

α
x (ψε(t, x) − Aε(t, x)) ∈ L∞([0, T ], Hs−2j−|α| (Ω)) for all T <

∞, 1 ≤ 2j + |α| ≤ 3, where Aε(t, x) = χ(x) e
i
ε
(u∞·x−

|u∞|2

2
t), and χ(x) ∈ C∞(R2) with

χ(x) =

{

0, for |x| ≤ R

1, for |x| ≥ 2R,
and R is big enough such that Ωc ⊂ BR(0).

Before we proceed further, let us first modify the madelung’s fluid dynamic equation
to the following form, see [LX].

Lemma 3.1. Let ρε(t, x) =: |ψε(t, x)|2, J εj (t, x) =: εIm(ψε ∂j ψ
ε). Then there holds

1)

∂t ρ
ε + divJ ε = 0, (3.1)

∂t J
ε
j +

ε2

4

2
∑

k=1

∂k
(

4<(∂j ψ
ε ∂k ψε) − ∂j ∂k|ψε|2

)

+
1

2
∂j(ρ

ε)2 = 0. (3.2)

2) Let R be large enough such that |x + u∞T ∗| ≤ R for all x ∈ ∂Ω, then for
0 ≤ t ≤ T ∗, there holds
∫

Ω

(

ε2(1 − χ)|∇ψε|2 + χ|ε∇ψε − iu∞ ψε|2
)

dx+

∫

Ω

(ρε(t, x) − 1)2 dx ≤ CeCt,

(3.3)
where C is a constant depending only on χ(x) and various constants in the as-
sumptions (A1)–(A3) in the introduction.
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Proof. 1) Multiplying (1.1) by ψε, we get

iε ∂t ψ
εψε = −ε

2

2
div
(

∇ψεψε
)

+
ε2

2
|∇ψε|2 +

(

|ψε|2 − 1
)

|ψε|2.

Take the imaginary part of the above equation, we get (3.1).

Next we multiply the conjugate equation of (1.1) by ∂j ψ
ε, to obtain

iε ∂t ψε ∂j ψ
ε =

ε2

2

2
∑

k=1

∂k
(

∂k ψε ∂j ψ
ε
)

− ε2

2

2
∑

k=1

∂k ψε ∂j ∂k ψ
ε − (|ψε|2 − 1)ψε ∂j ψ

ε.

(3.4)
While by applying ∂j to the first equation of (1.1), and multiplying the resulting
equation by ψε, we get

iε ∂t ∂j ψ
ε ψε = −ε

2

2
∆ ∂j ψ

ε ψε + ∂j(|ψε|2)|ψε|2 + (|ψε|2 − 1)ψε ∂j ψ
ε (3.5)

= −ε
2

2

2
∑

k=1

∂k(∂j ∂k ψ
ε ψε) +

ε2

2

2
∑

k=1

∂j ∂k ψ
ε ∂k ψε +

1

2
∂j(|ψε|4) + (|ψε|2 − 1)ψε ∂j ψ

ε.

Summing up (3.4) and (3.5), we find

iε ∂t
(

ψε ∂j ψ
ε
)

=
ε2

2

2
∑

k=1

∂k
(

∂k ψε ∂j ψ
ε − ∂j ∂k ψ

ε ψε
)

+
1

2
∂j(ρ

ε)2.

To get (3.2), we simply take the real part of the above equation.

2) By taking the complex L2 inner product of (1.1) with (1−χ(x))∂tψ
ε, and taking

the real part, we obtain

d

dt

{

ε2

2

∫

Ω

(1 − χ)|∇ψε|2 dx+
1

2

∫

Ω

(1 − χ)(|ψε|2 − 1)2 dx

}

= −ε2 <
∫

Ω

∇ψε∇(1 − χ) ∂tψε dx.

(3.6)

In order to prove (3.3), we need to estimate the other terms in the left hand side
of (3.3). For this purpose, we denote

φε(t, x) = ψε(t, x+ u∞t) e
− i

ε

„

u∞·x+
|u∞|2

2
t

«

, (3.7)

then by a trivial calculation, we find that φε(t, x) satisfies:

iε ∂t φ
ε = −ε

2

2
∆φε +

(

|φε|2 − 1
)

φε. (3.8)
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Note that by the definition of φε and χ, χ(x+ u∞t) ∂φ
ε

∂ν
|∂Ω= 0. By taking the complex

L2 inner product of (3.8) with χ(x+ u∞t) ∂t φ
ε, and by taking the real part, we get

d

dt

{

ε2

2

∫

Ω

χ(x+ u∞ t)|∇φε|2 dx +
1

2

∫

Ω

χ(x + u∞ t)(|φε|2 − 1)2 dx

}

= −ε2 <
∫

Ω

∇φε∇χ(x + u∞ t) ∂t φε dx

+
1

2

∫

Ω

u∞ · ∇χ(x + u∞ t)
(

ε2|∇φε|2 + (|φε|2 − 1)2
)

dx. (3.9)

Substituting (3.7) into (3.9), and using the change of variables that y = x+u∞t in the
above integral, we obtain

1

2

d

dt

∫

Ω

χ
(

|ε∇ψε − iu∞ ψε|2 + (|ψε|2 − 1)2
)

dx

=
1

2

∫

Ω

u∞ · ∇χ|ε∇ψε − iu∞ ψε|2 dx+
1

2

∫

Ω

u∞ · ∇χ
(

|ψε|2 − 1
)2
dx

+ ε<
∫

Ω

(iu∞ ψε − ε∇ψε)∇χ
(

u∞∇ψε +
i

2ε
|u∞|2ψε

)

dx

− ε2 <
∫

Ω

∇ψε∇χ ∂t ψε dx+ ε<
∫

Ω

(

iu∞ · ∇χψε ∂t ψε
)

dx. (3.10)

One notices that the second line of (3.6) plus the first term in the last line of (3.10)
equal 0, by adding up (3.6) and (3.10), we find

1

2

d

dt

∫

Ω

(

ε2(1 − χ) |∇ψε|2 + χ |ε∇ψε − iu∞ψε|2 +
(

|ψε|2 − 1
)2
)

dx

=
1

2

∫

Ω

u∞∇χ|ε∇ψε − iu∞ψε|2 dx +
1

2

∫

Ω

u∞∇χ(|ψε|2 − 1)2 dx

+ ε<
∫

Ω

(iu∞ψε − ε∇ψε)∇χ
(

u∞∇ψε +
i

2ε
|u∞|2ψε

)

dx

+ ε<
∫

Ω

iu∞ · ∇χψε ∂tψε dx. (3.11)

To complete the proof of (3.3), we shall estimate the right-hand side of the above
formula term by term. First of all, since ∇χ has compact support, we have

∫

Ω

u∞ · ∇χ|ε∇ψε − iu∞ψε|2 dx =

∫

Ω

u∞ · ∇χ (χ + (1 − χ)) |ε∇ψε − iu∞ψε|2 dx

≤ C

{
∫

Ω

χ|ε∇ψε − iu∞ψε|2 dx +

∫

Ω

(1 − χ)
(

ε2|∇ψε|2 + |ψε|2
)

dx

)

≤ C

{

1 +

∫

Ω

(

(1 − χ)|∇ψε|2 + χ |ε∇ψε − iu∞ψε|2 +
(

|ψε|2 − 1
)2
)

dx

}

, (3.12)
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Similarly, we can estimate the second term on the right-hand side of (3.11) as follows:
∣

∣

∣

∣

ε<
∫

Ω

(iu∞ψε − ε∇ψε)∇χ
(

u∞∇ψε +
i

2ε
|u∞|2 ψε

)

dx

∣

∣

∣

∣

≤ C

{

1 +

∫

Ω

(

(1 − χ)|∇ψε|2 + χ |ε∇ψε − iu∞ψε|2 +
(

|ψε|2 − 1
)2
)

dx

}

. (3.13)

While by using the first equation of (1.1), we have

ε<
∫

Ω

iu∞∇χψε ∂tψε dx =
ε2

4

∫

Ω

∆ (u∞ · ∇χ) ρε dx− ε2

2

∫

Ω

u∞ · ∇χ|∇ψε|2 dx

−
∫

Ω

u∞ · ∇χ(ρε − 1) ρε dx,

(3.14)

then we follow the same line of estimates as for (3.12) to handle ε<
∫

Ω
iu∞∇χψε ∂tψε dx.

By combining (3.6)–(3.14) all together, we find

d

dt

∫

Ω

(

ε2(1 − χ) |∇ψε|2 + χ|ε∇ψε − iu∞ ψε|2 +
(

|ψε|2 − 1
)2
)

dx

≤ C

{

1 +

∫

Ω

(

ε2(1 − χ) |∇ψε|2 + χ|ε∇ψε − iu∞ψε|2 +
(

|ψε|2 − 1
)2
)

dx

}

.

(3.15)

Note that by the assumptions (A1)–(A3) in the introduction, we have
∫

Ω

|ε∇ψε0 − iu∞ψε|2 dx ≤2

∫

Ω

∣

∣

∣
ε∇
(

ψε0 − e
iu∞x

ε

)∣

∣

∣

2

dx + 2|u∞|2
∫

Ω

∣

∣

∣
ψε0 − e

iu∞x
ε

∣

∣

∣

2

dx

≤ C,
(3.16)

(3.15), (3.16) together with the Gronwall inequality yield (3.3). This completes the
proof of the Lemma.

Remark 3.1. Notice by the argument at the beginning of this section, we know that
ψε(t, x) − Aε(t, x) → 0 as |x| → ∞. However, we do not know how to obtain the
uniform estimate for

∫

Ω
|ε∇(ψε − Aε)|2 dx+

∫

Ω
(ρε − 1)2 dx, as we did in the Appendix

for ε fixed case.

Let (ρ0(x), u0(x)) satisfies (A3) in the introduction, then by Theorem 2.1, (1.9–1.10)
has a unique local smooth solution (ρ(t, x), u(t, x)) with (ρ(t, x)−1, u(t, x)−u∞) ∈ X3,T ,
for any T < T ∗. As it was pointed out in the introduction, We shall study the evolution
to the following functional:

Hε(t) =:
1

2

∫

Ω

|(ε∇x − iu)ψε|2 dx+
1

2

∫

Ω

|ρε − ρ|2 dx, (3.17)

for 0 < t < T ∗.
The key ingredient in the proof of Theorem 1.1 will then be the following lemma:
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Lemma 3.2. Let Hε(t) be defined as (3.17). Then we have

d

dt
Hε(t) = −

2
∑

j,k=1

∫

Ω

∂j ukRe
(

(

ε∂xj
− iuj

)

ψε(ε∂xk
− iuk)ψε

)

dx

− 1

2

∫

Ω

divu (ρε − ρ)2 dx+
ε2

4

∫

Ω

∇ρε(∇divu) dx. (3.18)

Proof. Let χ be the cutoff function defined in 2) of Lemma 3.1. From the definition of
Hε(t), we can rewrite H ε(t) in the following way:

Hε(t) =
1

2

∫

Ω

(

ε2(1 − χ) |∇xψ
ε|2 + χ|ε∇xψ

ε − iu∞ψε|2 + (ρε − 1)2
)

dx

−
∫

Ω

(u− χu∞) · (J ε − u∞ρε) dx +
1

2

∫

Ω

ρε
(

|u|2 − 2u · u∞ + χ|u∞|2
)

dx

+
1

2

∫

Ω

(

(ρ− 1)2 − 2(ρ− 1)(ρε − 1)
)

dx. (3.19)

We now calculate the time derivative of the above expression term by term.
By (3.2), we obtain first that

− d

dt

∫

Ω

(u− χu∞) · (J ε − u∞ρε) dx

=

∫

Ω

(−(u− χu∞) · (∂tJ ε − u∞∂tρ
ε) − ∂tu · (J ε − u∞ρε)) dx

=

∫

Ω

2
∑

j=1

(

ε2

4

2
∑

k=1

∂k
(

4<(∂jψ
ε∂kψε) − ∂j∂k|ψε|2

)

− u∞ div J ε

)

(

uj − χu∞j
)

dx

+
1

2

∫

Ω

∇(ρε)2 · (u− χu∞) dx−
∫

Ω

∂tu · (J ε − u∞ρε) dx.

(3.20)

Using the boundary conditions in (1.8),(1.6) and (1.1) that u · ν |∂Ω= 0, ∂ψε

∂ν
|∂Ω= 0,

and by integration by parts, we have the followings

∫

Ω

∇(ρε)2 · (u− χu∞) dx =

∫

∂Ω

(ρε)2u · ν dS −
∫

Ω

(

(ρε)2 − 1
)

div (u− χu∞) dx

= −
∫

Ω

(

(ρε)2 − 1
)

div (u− χu∞) dx, (3.21)
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2
∑

j=1

∫

Ω

∆ ∂j
(

|ψε|2
)

·
(

uj − χu∞j
)

dx

=

∫

∂Ω

∆|ψε|2 u · ν dS −
∫

Ω

∆ρεdiv (u− χu∞) dx

= −
∫

Ω

∆ρεdiv (u− χu∞) dx

= −
∫

∂Ω

∂ρε

∂ν
div (u− χu∞) dS +

∫

Ω

∇ρε · ∇div (u− χu∞) dx

=

∫

Ω

∇ρε · ∇div (u− χu∞) dx.

(3.22)

Here dS is the surface measure on ∂Ω. We also note that

∫

Ω

2
∑

j=1

(

ε2
2
∑

k=1

∂k Re
(

∂jψ
ε ∂kψε

)

− u∞j divJ ε

)

(

uj − χu∞j
)

dx

=

∫

∂Ω

2
∑

j=1

(

ε2Re

(

∂jψ
ε∂ψ

ε

∂ν

)

+ u∞j J
ε · ν

)

(

uj − χu∞j
)

dS

−
∫

Ω

2
∑

j, k=1

(

ε2 Re
(

∂jψ
ε ∂kψε

)

− u∞j J
ε
k

)

∂k (uj − χu∞) dx

= −
∫

Ω

2
∑

j,k=1

(

ε2 Re
(

∂jψ
ε ∂kψε

)

− u∞j J
ε
k

)

∂k (uj − χu∞) dx.

(3.23)

Combining (3.20) with (3.23), we get

− d

dt

∫

Ω

(u− χu∞) · (J ε − ρεu∞) dx

= −ε
2

4

∫

Ω

∇ρε · ∇div (u− χu∞) dx− 1

2

∫

Ω

(

(ρε)2 − 1
)

div (u− χu∞) dx

−
∫

Ω

2
∑

j,k=1

(

ε2 Re
(

∂jψ
ε ∂kψε

)

− u∞j J
ε
k

)

∂k
(

uj − χu∞j
)

dx

−
∫

Ω

(J ε − u∞ρε) · ∂tu dx. (3.24)

Next we observe that the boundary condition ∂ψε

∂ν
|∂Ω= 0 implies J ε · ν |∂Ω= 0. Thus
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by (3.1) and integration by parts, we have

1

2

d

dt

∫

Ω

ρε
(

|u|2 − 2u · u∞ + χ|u∞|2
)

dx

=
1

2

∫

Ω

∂tρ
ε
(

|u|2 − 2u · u∞ + χ|u∞|2
)

dx+

∫

Ω

ρε(u− u∞) · ∂tu dx

= −1

2

∫

Ω

divJ ε
(

|u|2 − 2u · u∞ + χ|u∞|2
)

dx+

∫

Ω

ρε(u− u∞) · ∂tu dx (3.25)

=
1

2

∫

Ω

J ε · ∇
(

|u|2 − 2u · u∞ + χ|u∞|2
)

dx+

∫

Ω

ρε(u− u∞) · ∂tu dx.

On the other hand, from the limit equation (1.7), we have

1

2

d

dt

∫

Ω

(ρ− 1)2 dx =

∫

Ω

(ρ− 1) ∂tρ dx = −
∫

Ω

(ρ− 1) div (ρu) dx

= −1

2

∫

Ω

(ρ2 − 1)divu dx.

(3.26)

Finally, by (3.1) and J ε · ν |∂Ω= 0 again, we can calculate

− d

dt

∫

Ω

(ρ− 1)(ρε − 1) dx = −
∫

Ω

(∂t ρ(ρ
ε − 1) + (ρ− 1) ∂t ρ

ε) dx

=

∫

Ω

(div(ρu)(ρε − 1) + (ρ− 1) div (χu∞(ρε − 1)) + (ρ− 1) div (χu∞)

−∇ρ (J ε − χu∞ρε)) dx

=

∫

Ω

(div(ρu)(ρε − 1) − u∞ · ∇ρχ(ρε − 1) + (ρ− 1) u∞ · ∇χ−∇ρ (J ε − χu∞ρε)) dx

=

∫

Ω

(ρρεdivu+ ρεu · ∇ρ−∇ρ · J ε) dx.
(3.27)

We also observe, by (3.11) and (3.14), that

1

2

d

dt

∫

Ω

(

ε2(1 − χ)| ∇ψε|2 + χ|ε∇ψε − iu∞ψε|2 +
(

|ψε|2 − 1
)2
)

dx

=
ε2

4

∫

Ω

∆ (u∞∇χ) ρε dx+

∫

Ω

(

1

2

2
∑

k=1

|u∞|2 J εk ∂kχ− ε2
2
∑

j,k=1

<
(

∂jψ
ε ∂kψε

)

u∞k ∂jχ

−1

2
u∞ · ∇χ(ρε)2

)

dx.

(3.28)
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By combining (3.19) and (3.24-3.28), we conclude

d

dt
Hε(t) =

∫

Ω

(

−ε2
2
∑

j,k=1

∫

Ω

Re
(

∂jψ
ε ∂kψε

)

∂kuj − J ε · (∂tu+ ∇ρ)

+ρεu · (∂tu+ ∇ρ) +
1

2
J ε · ∇|u|2

)

dx

− 1

2

∫

Ω

div u
((

ρε)2 + ρ2 − 2 ρρε
))

dx +
ε2

4

∫

Ω

∇ρε · ∇div u dx

=

∫

Ω

(

−ε2
2
∑

j,k=1

Re
(

∂jψ
ε ∂kψε

)

∂kuj + J ε · (u · ∇u) − ρεu · (u · ∇u)

+
1

2
J ε · ∇|u|2

)

dx− 1

2

∫

Ω

div u (ρε − ρ)2 dx +
ε2

4

∫

Ω

∇ρε · ∇divu dx

= −
2
∑

j,k=1

∫

Ω

∂kuj Re
(

(ε∂xj
− iuj)ψ

ε (ε∂xk
− iuk)ψε

)

dx

− 1

2

∫

Ω

divu (ρε − ρ)2 dx+
ε2

4

∫

Ω

∇ρε · ∇div u dx (3.29)

This completes the proof of the Lemma.

Proof of Theorem 1.1. First of all we have, by (3.3), that

ε2
∣

∣

∣

∣

∫

Ω

∇ρε · (∇div u) dx

∣

∣

∣

∣

= ε

∣

∣

∣

∣

∫

Ω

(

ψε (ε∇ψε − iu∞ψε) + (ε∇ψε − iu∞ψε)ψε
)

∇div u dx

∣

∣

∣

∣

≤ 2ε

(
∫

Ω

|ε∇ψε − iu∞ψε|2 dx
)

1
2
(
∫

Ω

(

|ψε|2 − 1
)

|∇div u|2 dx+

∫

Ω

|∇div u|2 dx
)

1
2

≤ Cε

(

(
∫

Ω

(

|ψε|2 − 1
)2
dx

)
1
4
(
∫

Ω

|∇divu|4 dx
)

1
4

+ ‖div u‖H1

)

≤ Cε‖∇u(t, ·)‖H2(Ω).
(3.30)

Next, from (3.18), (3.30) and the Gronwall inequality, we obtain

Hε(t) ≤ C(T ) e
R t

0 ‖∇u(s,·)‖L∞ ds (Hε(0) + ε) , 0 < t ≤ T < T ∗. (3.31)
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Finally by assumption (A2) in the introduction, we conclude

Hε(0) =
1

2

∫

Ω

|(ε∇x − iu0)ψ
ε
0|2 dx +

1

2

∫

Ω

(ρε0 − ρ0)
2 dx

≤ 1

2

∫

Ω

ρε0 |u0 −∇Sε|2 dx+ ε

∫

Ω

∣

∣

∣
∇
√

ρε0

∣

∣

∣

2

dx

+
1

2

∫

Ω

(ρε0 − ρ)2 dx = o(1), as ε→ 0.

(3.32)

Therefore, one has
lim
ε→0

Hε(t) = 0, 0 ≤ t ≤ T < T ∗. (3.33)

In particular, (3.33) implies that

ρε(t, x) − 1 → ρ(t, x) − 1 in L∞
(

[0, T ], L2(Ω)
)

as ε→ 0, (3.34)

and that

J ε(t, x) − (ρu)(t, x) = εIm
(

ψε∇ψε
)

(t, x) − (ρu)(t, x)

= εIm
(

ψε(∇− iu)ψε
)

(t, x) + εIm
((

|ψε|2 − ρ
)

u
)

(t, x)

−→ 0, in L∞
(

[0, T ], L1

loc(Ω)
)

as ε→ 0.

(3.35)

This completes the proof of the Theorem.

4 Appendix: The global existence of solution to

(1.1)

For simplicity, let us set ε = 1 in (1.1). More precisely, let Ω be an exterior domain
of R

2, with ∂Ω bounded and smooth.Suppose u∞ = (u∞1 , u
∞
2 ) is a constant two vector,

we consider the global existence of smooth solutions to the following initial boundary
value problem:























i ∂t ψ = −1

2
∆ψ +

(

|ψ|2 − 1
)

ψ, x ∈ Ω, t ≥ 0,

ψ(t = 0, x) = ψ0(x), ψ0(x) → eiu
∞·x as |x| → ∞,

∂ψ

∂ν
|∂Ω= 0.

(4.1)

Comparing with the problems in [BG] and [TS], one of the main difficulties here is
that: since ψ0(x) → eiu

∞·x as |x| → ∞, ψ0(·) and ∇ψ0(·) /∈ L2(Ω). We will actually
prove the existence of more regular solutions than those obtained in [BG] and [TS].
The main result can be stated as the following:
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Theorem 4.1. Let s ≥ 2 be a positive integer, ψ0(x) − eiu
∞·x ∈ Hs(Ω). Then (4.1)

has a unique global smooth solution ψ(t, x) such that ∂jt ∂
α
x

(

ψ(t, x) − ei(u
∞·x− |u∞|2

2
t)
)

∈
L∞

(

[0, T ], Hs−2j−|α|(Ω)
)

for all T <∞ and 1 ≤ 2j + |α| ≤ s.

Proof. We use the Galerkin’s approximation method to construct the global approxi-
mate solutions. As in [H80], we first modify the arguments from page 131 to 133 on
[L69] to construct solutions in a bounded domain, then the whole domain Ω. In the
arguments for proving the convergence of the approximate solutions, it is essential to
obtain a priori estimates of the approximate solutions. For simplicity, we will establish
a priori estimates for the smooth solutions of (4.1) instead of the approximate solu-
tions. Therefore in the rest of this section, let us assume that ψ(t, x) is a global smooth
solution to (4.1). We divide the proof into two steps.

Step 1. H
2 estimate. First of all, as ψ0(x) → eiu

∞·x when |x| → ∞, by the
special structure of the Gross-Pitaevskii equation, we expect that for any fixed time

t > 0, ψ(t, x) approaches e
i

„

u∞·x− |u∞|2

2
t

«

as |x| → ∞. Let us take χ(x) ∈ C∞(R2) be

a cut-off function with χ(x) =

{

0, for |x| ≤ R

1, for |x| ≥ 2R,
where R is big enough such that

Ωc ⊂ BR(0). We denote B(t, x) = e
i

„

u∞·x−
|u∞|2

2
t

«

and A(t, x) = χ(x)B(t, x), then by
the first equation of (4.1), we have

i ∂t(ψ − A) = −1

2
∆(ψ − A) −

(

1

2
∆χ+ iu∞ · ∇χ

)

B +
(

|ψ|2 − 1
)

ψ, (4.2)

Notice that ∂(ψ−A)
∂ν

|∂Ω = ∂ψ

∂ν
|∂Ω = 0, by taking the complex L2 inner product of (4.2)

with ∂t(ψ − A) and then take the real part, we obtain

1

2

d

dt

∫

Ω

(

|∇(ψ − A)|2 + (|ψ|2 − 1)2
)

dx

= 2<
{

d

dt

∫

Ω

(

1

2
∆χ+ iu∞∇χ

)

B
(

ψ̄ − Ā
)

dx

+
|u∞|2

2
i

∫

Ω

(

1

2
∆χ + iu∞∇χ

)

B
(

ψ̄ − Ā
)

dx

+
|u∞|2

2
i

∫

Ω

(

|ψ|2 − 1
)

(ψ − A) B̄ dx

}

.

(4.3)
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Note that both ∆χ and ∇χ have compact support. By integrating the above equation
over [0, t], we get

1

4

∫

Ω

(

|∇(ψ − A)|2(+|ψ|2 − 1)2
)

dx

≤
∥

∥

(

ψ0 − χ eiu
∞·x
)∥

∥

2

L2 +
∥

∥

(

|ψ0|2 − 1
)∥

∥

2

L2

+ CR +
1

2

∫

Ω

|ψ − A|2 dx +

∫ t

0

∫

Ω

|ψ − A|2 dx ds.

(4.4)

Next we perform the complex L2 inner product of (4.2) with ψ−A, and then take the
imaginary part, we find

d

dt

∫

Ω

|ψ − A|2 dx (4.5)

= 2Im
{

−
∫

Ω

(

1

2
∆χ + iu∞∇χ

)

B
(

ψ̄ − Ā
)

dx

−
∫

Ω

(|ψ|2 − 1)(ψ − A) B̄ dx

}

≤ CR +

∫

Ω

|ψ − A|2 dx+

∫

Ω

(|ψ|2 − 1)2 dx.

(4.4) and (4.5) together with the Gronwall inequality yield

‖(ψ − A)(t, ·)‖2
H1 +

∥

∥(|ψ|2 − 1)
∥

∥

2

L2 ≤
(

CR +
∥

∥ψ0 − χeiu
∞·x
∥

∥

2

H1 +
∥

∥(ψ0|2 − 1)
∥

∥

2

L2

)

et.

(4.6)

Again since ∂(ψ−A)
∂ν

|∂Ω= ∂ψ

∂ν
|∂Ω= 0, one has, by the standard elliptic and Sobolev

estimates and (4.2), 4.6), that

‖(ψ − A)(t, ·)‖H2 ≤ C (‖∆(ψ − A)‖L2 + ‖(ψ − A)‖L2)

≤ C

(

‖∂t(ψ − A)‖L2 +

∥

∥

∥

∥

1

2
∆χ+ iu∞∇χ

∥

∥

∥

∥

L2

+
∥

∥(ψ|2 − 1)ψ
∥

∥

L2 + et
)

≤ C
(

‖∂t(ψ − A)‖L2 + ‖ψ‖L∞ + et
)

≤ C
(

‖∂t(ψ − A)‖L2 + ‖(ψ − A)‖L∞ + et
)

≤ C
(

‖∂t(ψ − A)‖L2 + et
)

+
1

2
‖(ψ − A)(t, ·)‖H2 .

The latter implies that

‖(ψ − A)(t, ·)‖H2 ≤ C
(

‖∂t(ψ − A)(t, ·)‖L2 + et
)

. (4.7)

On the other hand, by applying ∂t to the first equation of (4.2), and taking the complex
L2 inner product of the resulting equation with ∂t(ψ − A). (Note that the boundary

condition for ψ implies that: ∂(∂t(ψ−A))
∂ν

|∂Ω= 0), one has

d

dt

∫

Ω

|∂t(ψ − A)|2 dx = |u∞|2 <
∫

Ω

(

1

2
∆χ + iu∞∇χ

)

B ∂t
(

ψ̄ − Ā
)

dx

+ 2Im
∫

Ω

(

(|ψ|2 − 1)ψt + ψt|ψ|2 + ψ2ψ̄t
)

∂t
(

ψ̄ − Ā
)

dx.

(4.8)
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We observe that

Im
∫

Ω

(

|ψ|2 − 1
)

ψt ∂t
(

ψ̄ − Ā
)

dx = −|u∞|2
2

<
∫

Ω

(

|ψ|2 − 1
)

χB ∂t
(

ψ̄ − Ā
)

dx,

(4.9)

Im
∫

Ω

ψt |ψ|2 ∂t
(

ψ̄ − Ā
)

dx = −|u∞|2
2

<
∫

Ω

|ψ|2 χB ∂t
(

ψ̄ − Ā
)

dx

= −|u∞|2
2

<
∫

Ω

((

|ψ|2 − 1
)

+ 1
)

χB ∂t
(

ψ̄ − Ā
)

dx,

(4.10)

and that

Im
∫

Ω

ψ2 ∂t ψ̄ ∂t
(

ψ̄ − Ā
)

dx = Im
{
∫

Ω

ψ2
(

∂t
(

ψ̄ − Ā
))2

dx

+
i|u∞|2

2

∫

Ω

ψ2 χ B̄
(

∂t
(

ψ̄ − Ā
))

dx

}

. (4.11)

Note
∫

Ω

ψ2χB̄ ∂t
(

ψ̄ − Ā
)

dx =

∫

Ω

ψ(ψ − A)χ B̄ ∂t
(

ψ̄ − Ā
)

dx

+

∫

Ω

(ψ − A)χ2 ∂t
(

ψ̄ − Ā
)

dx+

∫

Ω

χ3B∂t
(

ψ̄ − Ā
)

dx.

By summing up (4.9) through (4.11), and using the Gronwall’s inequality, we obtain

d

dt

∫

Ω

|∂t(ψ − A)|2 dx ≤ CR

(

1 +

∫

Ω

(|ψ|2 − 1)2 dx+

∫

Ω

|ψ − A|2 dx+

∫

Ω

(χ3 − χ)2 dx

)

+ 2
(

‖(ψ − A)‖2
L∞ + 1

)

∫

Ω

|∂t(ψ − A)|2 dx. (4.12)

Note that χ3 − χ has compact support, then from (4.6), (4.7) and Lemma 2 of [BG],
we get

d

dt

(
∫

Ω

|∂t(ψ − A)|2 dx+ 1

)

≤ C
(

et + log (1 + ‖(ψ − A)(t, ·)‖H2)
)

(
∫

Ω

|∂t(ψ − A)|2 dx+ 1

)

≤ C
(

et + log
(

et + ‖∂t(ψ − A)‖L2

))

(
∫

Ω

|∂t(ψ − A)|2 dx+ 1

)

. (4.13)

The latter together with (4.7) and the Gronwall’s inequality shows that
∥

∥∂jt ∂
α
x (ψ − A)(t, ·)

∥

∥

L2 ≤ C
(

t, ‖(ψ0 − eiu
∞·x)‖H2

)

, ∀ 1 ≤ ∀ 2j + |α| ≤ 2. (4.14)
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Step 2. High order estimates. In this step, we are going to prove inductively that

∥

∥∂jt ∂
α
x (ψ − A)(t, ·)

∥

∥

L2 ≤ C
(

t, ‖(ψ0 − eiu
∞·x)‖Hs

)

, ∀ 1 ≤ ∀ 2j + |α| ≤ s. (4.15)

Let us assume first that (4.15) holds for all j and α with 1 ≤ 2j + |α| ≤ s− 1. We are
going to prove that (4.15) also holds for all j and α with 1 ≤ 2j + |α| ≤ s. If s is an
even number, let us denote j0 = s

2
, j2 = s−2

2
, · · · , if s is an odd number, let us denote

j1 = s−1
2

, j3 = s−3
2
, · · · .

We first apply ∂jt to the first equation of (4.2) to get

i ∂j+1
t (ψ − A) = −1

2
∆ ∂jt (ψ − A) −

(

−|u∞|2
2

i

)j
(

1

2
∆χ

+ i u∞ · ∇χ
)

B + ∂jt
((

|ψ|2 − 1
)

ψ
)

. (4.16)

Step 2.1. If s is an even number, let us set j = j0 in (4.16), and take the complex
L2 inner product of the resulting equation with ∂j0t (ψ − A). Again by the boundary

condition that
∂(∂

j0
t (ψ−A))

∂ν
|∂Ω= 0, and integration by parts, we find

d

dt

∫

Ω

∣

∣∂j0t (ψ − A)
∣

∣

2
dx = 2Im

{

∫

Ω

∂j0t
((

|ψ|2 − 1
)

ψ
)

∂j0t
(

ψ̄ − Ā
)

dx

−
(

−|u∞|2
2i

)j ∫

Ω

(

1

2
∆χ + iu∞ · ∇χ

)

B ∂j0t
(

ψ̄ − Ā
)

dx

}

.

(4.17)

We can decompose (|ψ|2 − 1) as

|ψ|2 − 1 = (ψ − A) ψ̄ + A
(

ψ̄ − Ā
)

+ (χ2 − 1), (4.18)

therefore by the Leibnitz formula, we get

∣

∣

∣

∣

∫

Ω

∂j0t
(

(ψ − A)|ψ|2
)

∂j0t
(

ψ̄ − Ā
)

dx

∣

∣

∣

∣

≤
∑

m1+m2+m3=j0

∣

∣

∣

∣

∫

Ω

∂m1
t (ψ − A) ∂m2

t ψ̄∂m3
t ψ ∂j0t

(

ψ̄ − Ā
)

dx

∣

∣

∣

∣

.

(4.19)
If m3 = j0 (resp. m2 = j0), then m1 = m2 = 0 (resp. m1 = m3 = 0). Thus one has

∫

Ω

(ψ − A) ψ̄ ∂j0t ψ ∂
j0
t

(

ψ̄ − Ā
)

dx

≤
∥

∥(ψ − A) ψ̄
∥

∥

L∞

∫

Ω

∣

∣∂j0t (ψ − A)
∣

∣

2
dx+

∥

∥ψ̄ ∂j0t A
∥

∥

L∞

∫

Ω

|ψ − A|
∣

∣∂j0t
(

ψ̄ − Ā
)∣

∣ dx.

(4.20)
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The other terms in (4.19) can be estimated by

≤ C
∑

l≤j0−1

∥

∥∂lt ψ
∥

∥

2

L∞

(

∑

m≤j0

∫

Ω

|∂mt (ψ − A)|2 dx
)

≤ C
∑

l≤j0−1

(

1 +
∥

∥∂lt(ψ − A)
∥

∥

2

L∞

)

(

∑

m≤j0

∫

Ω

|∂mt (ψ − A)|2 dx
)

.

(4.21)

By the inductive hypothesis, we have
∥

∥∂j0−1
t (ψ − A)(t, ·)

∥

∥

H1 ,
∥

∥∂lt(ψ − A)(t, ·)
∥

∥

H3 ≤
C
(

t, ‖(ψ0 − eiu
∞·x‖Hs−1

)

, for all l ≤ j0 − 2, which together with (4.17–4.21) implies
that

d

dt

∫

Ω

∣

∣∂j0t (ψ − A)
∣

∣

2
dx ≤ C(t)

(

1 + ‖∂j0−1
t (ψ − A)‖L∞

)

(

1 +

∫

Ω

|∂j0t (ψ − A)|2 dx
)

.

(4.22)
While by the standard elliptic theory, and (4.16), we have

∥

∥∂j0−1
t (ψ − A)(t, ·)

∥

∥

H2 ≤ C
(

‖∆ ∂j0−1
t (ψ − A)

∥

∥

L2 + ‖∂j0−1
t (ψ − A)

∥

∥

L2

)

≤ C

(

∥

∥∂j0t (ψ − A)
∥

∥

L2 +

∥

∥

∥

∥

(

1

2
∆χ+ iu∞∇χ

)∥

∥

∥

∥

L2

+
∥

∥∂j0−1
t

((

|ψ|2 − 1
)

ψ
)∥

∥

L2 + C(t)

)

≤ C
(∥

∥∂j0t (ψ − A)
∥

∥

L2 + C(t)
)

. (4.23)

Combining (4.22–4.23) and Lemma 2 in [BG], we find

d

dt

∫

Ω

∣

∣∂j0t (ψ − A)
∣

∣

2
dx ≤ C(t)

(

1 + log
(

C(t) +
∥

∥∂j0t (ψ − A)
∥

∥

L2

)) (

1 +
∥

∥∂j0t (ψ − A)
∥

∥

L2

)

.

(4.24)
From the Gronwall inequality, one obtains

∥

∥∂j0t (ψ − A)(t, ·)
∥

∥

L2 ≤ C
(

t,
∥

∥

(

ψ0 − eiu
∞·x
)∥

∥

Hs

)

. (4.25)

Consequently, by (4.23), we get

∥

∥∂j0−1
t ∂αx (ψ − A)(t, ·)

∥

∥

L2 ≤ C
(

t,
∥

∥

(

ψ0 − eiu
∞·x
)∥

∥

Hs

)

, |α| ≤ 2. (4.26)

On the other hand, from (4.16), we have











































1

2
∆ ∂j0−2

t (ψ − A) = −i ∂j0−1
t (ψ − A) +

(

−|u∞|2
2

i

)j0−2
(

1

2
∆χ

+ iu∞∇χ
)

B + ∂j0−2
t

((

|ψ|2 − 1
)

ψ
)

∂
(

∂j0−2
t (ψ − A)

)

∂ν

∣

∣

∂Ω
= 0.
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Then it follows from (4.26) and (4.19–4.21), that
∥

∥∆ ∂j0−2
t (ψ − A)

∥

∥

H2 ≤ C
(

t,
∥

∥

(

ψ0 − eiu
∞·x
)∥

∥

Hs

)

.

The last estimate together with the standard elliptic theory implies
∥

∥∂j0−2
t ∂αx (ψ − A)

∥

∥

L2 ≤ C
(

t,
∥

∥

(

ψ0 − eiu
∞·x
)∥

∥

Hs

)

, |α| ≤ 4. (4.27)

Following the similar derivation as that for (4.25)–(4.27), we prove (4.15) when s is an
even number.

Step 2.2. Suppose s is an odd number and let us set j = j1 in (4.16). We take the
complex L2 inner product of the resulting equation with ∂j1t (ψ−A) and use integration
by parts, after taking the real part we arrive at

1

2

d

dt

∫

Ω

|∇∂j1t (ψ − A)|2 dx+ 2<
∫

Ω

∂j1t
((

|ψ|2 − 1
)

ψ
)

∂j1+1
t

(

ψ̄ − Ā
)

dx (4.28)

− 2<
(

(

−|u∞|2
2

i

)j1 ∫

Ω

(

1

2
∆χ+ iu∞∇χ

)

B ∂j1+1
t

(

ψ̄ − Ā
)

dx

)

= 0.

By using (4.18) and the Lebnitz formula, we get

∂j1t
(

(|ψ|2 − 1)ψ
)

=
(

|ψ|2 − 1
)

∂j1t ψ + ∂j1t (ψ − A)|ψ|2 + A∂j1t
(

ψ̄ − Ā
)

ψ

+
∑

m1+m2+m3=j1
max(mk)≤j1−1

(

∂m1
t (ψ − A) ∂m2

t ψ̄ ∂m3
t ψ + ∂m1

t A∂m2
t

(

ψ̄ − Ā
)

∂m3
t ψ

)

.

By using integration by parts on the t variable in (4.28), we find

1

2

d

dt

∫

Ω

∣

∣∇ ∂j1t (ψ − A)
∣

∣

2
dx+

d

dt

∫

Ω

(

(

2|ψ|2 − 1
) ∣

∣∂j1t (ψ − A)
∣

∣

2
+ <

(

Aψ
(

∂j1t
(

ψ̄ − Ā
)2
)))

dx

+
∑

m1+m2+m3=j1
max(mk)≤j1−1

d

dt

∫

Ω

(

∂m1
t (ψ − A) ∂m2

t ψ̄ ∂m3
t ψ + ∂m1

t A∂m2
t

(

ψ̄ − Ā
)

∂m3
t ψ

)

∂j1t
(

ψ̄ − Ā
)

dx

+ 2
d

dt
<
{

(

−|u∞|2
2i

)j1 ∫

Ω

(

1

2
∆χ + iu∞∇χ

)

B
(

∂j1t
(

ψ̄ − Ā
))

dx

}

≤ CR
∥

∥∂j1t (ψ − A)
∥

∥

L2 +
∑

m1+m2≤j1+1
max(m1,m2)≤j1−1

(∥

∥∂m1
t ψ̄ ∂m2

t ψ̄
∥

∥

L∞ + ‖∂m1
t A∂m2

t ψ‖L∞

)

·

(

∑

m≤j1

‖∂mt (ψ − A)‖2
L2

)

≤ C(t)









1 +
∑

m1+m2≤j1+1
max(m1,m2)≤j1−1

(

‖∂m1
t ψ‖L∞ ‖∂m2

t ψ̄‖L∞ + ‖∂m1
t ψ‖L∞

)









, (4.29)
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where we used the facts that 2j1 = s− 1 and the inductive assumption. We also note
that 2mk + |α| ≤ 2(j1 − 1) + |α| ≤ s− 1, hence |α| ≤ 2. By the inductive assumption,
we therefore have

‖∂mk

t (ψ − A)(t, ·)‖H2 ≤ C
(

t,
∥

∥

(

ψ0 − eiu
∞·x
)∥

∥

Hs−1

)

, k = 1, 2.

Finally, we integrate (4.29) over [0, t] and use the inductive assumption again, to obtain

∥

∥∇∂j1t (ψ − A)(t, ·)
∥

∥

L2 ≤ C
(

t, ‖(ψ0 − eiu
∞·x)‖Hs

)

. (4.30)

With (4.30) and the equation



























1

2
∆ ∂j1−1

t (ψ − A) = −i ∂j1t (ψ − A) +

(

−|u∞|2
2

i

)j1−1(
1

2
4χ

+iu∞∇χ)B +
(

∂j1−1
t (|ψ|2 − 1)ψ

)

,

∂(∂j1t (ψ − A)

∂ν
|∂Ω= 0,

we follow the similar arguments as in deriving (4.25)–(4.27), to conclude

∥

∥∂j1−1
t ∂αx (ψ − A)(t, ·)

∥

∥

L2 ≤ C
(

t, ‖(ψ0 − eiu
∞x)‖Hs

)

, ∀ |α| ≤ 3. (4.31)

Similar to the proof of (4.31), we can prove (4.15) when s is an odd number. This
completes the proof of the Theorem.
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