Self-normalized Cramér-Type Large Deviations for Independent Random Variables

Qi-Man Shao

National University of Singapore and University of Oregon
qmshao@darkwing.uoregon.edu

1. Introduction

Let $X, X_{1}, X_{2}, \cdots, X_{n}$ be i.i.d. random variables and let

$$
S_{n}=\sum_{i=1}^{n} X_{i}, \quad V_{n}^{2}=\sum_{i=1}^{n} X_{i}^{2} .
$$

- Chernoff's large deviation:

If $E e^{t_{0}}<\infty$ for some $t_{0}>0$, then $\forall x>E X$,

$$
P\left(\frac{S_{n}}{n} \geq x\right)^{1 / n} \rightarrow \inf _{t \geq 0} e^{-t x} E e^{t X} .
$$

- Self-normalized large deviation (Shao, 1997):

If $E X=0$ or $E X^{2}=\infty$, then $\forall x>0$

$$
P\left(S_{n} / V_{n} \geq x n^{1 / 2}\right)^{1 / n} \rightarrow \lambda(x)
$$

where $\lambda(x)=\sup \inf _{t \geq 0} E e^{t\left(c X-x\left(|X|^{2}+c^{2}\right) / 2\right)}$

$$
c \geq 0 t \geq 0
$$

- Cramér's moderate deviation:

Assume $E X=0$ and $\sigma^{2}=E X^{2}<\infty$.

- If $E e^{\text {to }} X^{1 / 2}<\infty$ for $t_{0}>0$, then

$$
\frac{P\left(\frac{S_{n}}{\sigma \sqrt{n}} \geq x\right)}{1-\Phi(x)} \rightarrow 1
$$

uniformly in $0 \leq x \leq o\left(n^{1 / 6}\right)$.

- If $E e^{\operatorname{lox}}<\infty$ for $t_{0}>0$, then for $x \geq 0$ and $x=o\left(n^{1 / 2}\right)$

$$
\frac{P\left(\frac{S_{n}}{\sigma \sqrt{n}} \geq x\right)}{1-\Phi(x)}=\exp \left\{\frac{x^{3}}{\sqrt{n}} \lambda\left(\frac{x}{\sqrt{n}}\right)\right\}\left(1+O\left(\frac{1+x}{\sqrt{n}}\right)\right)
$$

where $\lambda(t)$ is the Cramér's series. In particular,

$$
\ln P\left(\frac{S_{n}}{\sigma \sqrt{n}} \geq x_{n}\right) \sim-\frac{1}{2} x_{n}^{2}
$$

for $x_{n} \rightarrow \infty$ and $x_{n}=o(\sqrt{n})$.

- Self-normalized moderate deviations (Shao, 1997, 1999):
- If $E X=0$ and $E X^{2} I\{|X| \leq x\}$ is slowly varying, then

$$
\ln P\left(S_{n} / V_{n}>x_{n}\right) \sim-x_{n}^{2} / 2
$$

for $x_{n} \rightarrow \infty$ and $x_{n}=o(\sqrt{n})$.

- If $E X=0$ and $E|X|^{3}<\infty$, then

$$
\frac{P\left(S_{n} / V_{n} \geq x\right)}{1-\Phi(x)} \rightarrow 1
$$

uniformly in $0 \leq x \leq o\left(n^{1 / 6}\right)$.

What if $\left\{X_{n}, n \geq 1\right\}$ are independent random variables?
2. Self-normalized Cramér type large deviation for independent random variables

Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent random variables with $E X_{i}=$ 0 and $E X_{i}^{2}<\infty$. Put

$$
\begin{gathered}
S_{n}=\sum_{i=1}^{n} X_{i}, \quad V_{n}^{2}=\sum_{i=1}^{n} X_{i}^{2} \\
B_{n}^{2}=\sum_{i=1}^{n} E X_{i}^{2}, \quad L_{n, p}=\sum_{i=1}^{n} E\left|X_{i}\right|^{p} .
\end{gathered}
$$

- Petrov (1968):

Suppose there exist positive constants $t_{0}, c_{1}, c_{2}, \cdots$ such that

$$
\begin{gathered}
\left|\ln E e^{t X_{i}}\right| \leq c_{i} \text { for }|t| \leq t_{0} \\
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left|c_{i}\right|^{3 / 2}<\infty
\end{gathered}
$$

$$
\liminf _{n \rightarrow \infty} B_{n} / \sqrt{n}>0
$$

If $x \geq 0$ and $x=o(\sqrt{n})$, then

$$
\frac{P\left(S_{n} / B_{n} \geq x\right)}{1-\Phi(x)}=\exp \left\{\frac{x^{3}}{\sqrt{n}} \lambda_{n}\left(\frac{x}{\sqrt{n}}\right)\right\}\left(1+O\left(\frac{1+x}{\sqrt{n}}\right)\right)
$$

where λ_{n} is a power series.

- Wang and Jing (1999):
- If X_{i} is symmetric with $E\left|X_{i}\right|^{3}<\infty$, then
$\left|P\left(S_{n} / V_{n} \leq x\right)-\Phi(x)\right| \leq A \min \left\{\left(1+|x|^{3}\right) \frac{L_{n, 3}}{B_{n}^{3}}, 1\right\} e^{-x^{2} / 2}$
- If X_{1}, \cdots, X_{n} i.i.d. with $\sigma^{2}=E X_{1}^{2}$ and $E\left|X_{1}\right|^{10 / 3}<\infty$, then there exists an absolute constant $0<\eta<1$ such that

$$
\left|P\left(S_{n} / V_{n} \leq x\right)-\Phi(x)\right| \leq \frac{A E\left|X_{1}\right|^{10 / 3}}{\sigma^{10 / 3} \sqrt{n}} e^{-\eta x^{2} / 2}
$$

- Chistyakov and Götze (1999):

If X_{1}, X_{2}, \cdots are symmetric with finite third moments, then

$$
P\left(S_{n} / V_{n} \geq x\right)=(1-\Phi(x))\left(1+O(1)(1+x)^{3} B_{n}^{-3} L_{n, 3}\right)
$$

for $0 \leq x \leq B_{n} / L_{n, 3}^{1 / 3}$, where $O(1)$ is bounded by an absolute constant.

Can the assumption of symmetry be removed?

$$
\begin{aligned}
\Delta_{n, x}= & \frac{(1+x)^{2}}{B_{n}^{2}} \sum_{i=1}^{n} E X_{i}^{2} I_{\left\{\left|X_{i}\right|>B_{n} /(1+x)\right\}} \\
& +\frac{(1+x)^{3}}{B_{n}^{3}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3} I_{\left\{\left|X_{i}\right| \leq B_{n} /(1+x)\right\}}
\end{aligned}
$$

for $x>0$.

Theorem 1 [Jing-Shao-Wang (2003)] There is an absolute constant A such that

$$
\frac{P\left(S_{n} \geq x V_{n}\right)}{1-\Phi(x)}=e^{O(1) \Delta_{n, x}}
$$

for all $x \geq 0$ satisfying
(H1) $x^{2} \max _{1 \leq i \leq n} E X_{i}^{2} \leq B_{n}^{2}$.
(H2) $\Delta_{n, x} \leq(1+x)^{2} / A$,
where $|O(1)| \leq A$.

Theorem 1 provides a very general framework. The following results are direct consequences of the above general theorem.

Theorem 2 Let $\left\{a_{n}, n \geq 1\right\}$ be a sequence of positive numbers. Assume that

$$
a_{n}^{2} \leq B_{n}^{2} / \max _{1 \leq i \leq n} E X_{i}^{2}
$$

and

$$
\forall \varepsilon>0, \quad B_{n}^{-2} \sum_{i=1}^{n} E X_{i}^{2} I_{\left\{\left|X_{i}\right|>\varepsilon B_{n} /\left(1+a_{n}\right)\right\}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Then

$$
\frac{\ln P\left(S_{n} / V_{n} \geq x\right)}{\ln (1-\Phi(x))} \rightarrow 1
$$

holds uniformly for $x \in\left(0, a_{n}\right)$.

The next corollary is a special case of Theorem 2 and may be of independent interest.

Corollary 1 Suppose that $B_{n} \geq c \sqrt{n}$ for some $c>0$ and that $\left\{X_{i}^{2}, i \geq 1\right\}$ is uniformly integrable. Then, for any sequence of real numbers x_{n} satisfying $x_{n} \rightarrow \infty$ and $x_{n}=o(\sqrt{n})$,

$$
\ln P\left(S_{n} / V_{n} \geq x_{n}\right) \sim-x_{n}^{2} / 2
$$

When the X_{i} 's have a finite p th moment, $2<p \leq 3$, we obtain Chistyakov and Götze' result without assuming any symmetric condition.

Theorem 3 Let $2<p \leq 3$ and set

$$
L_{n, p}=\sum_{i=1}^{n} E\left|X_{i}\right|^{p}, d_{n, p}=B_{n} / L_{n, p}^{1 / p} .
$$

Then,

$$
\frac{P\left(S_{n} / V_{n} \geq x\right)}{1-\Phi(x)}=1+O(1)\left(\frac{1+x}{d_{n, p}}\right)^{p}
$$

for $0 \leq x \leq d_{n, p}$, where $O(1)$ is bounded by an absolute constant. In particular, if $d_{n, p} \rightarrow \infty$ as $n \rightarrow \infty$, we have

$$
\frac{P\left(S_{n} / V_{n} \geq x\right)}{1-\Phi(x)} \rightarrow 1
$$

uniformly in $0 \leq x \leq o\left(d_{n, p}\right)$.
By the fact that $1-\Phi(x) \leq 2 e^{-x^{2} / 2} /(1+x)$ for $x \geq 0$, we have the following exponential non-uniform Berry-Esseen bound

$$
\left|P\left(S_{n} / V_{n} \geq x\right)-(1-\Phi(x))\right| \leq A(1+x)^{p-1} e^{-x^{2} / 2} / d_{n, p}^{p}
$$

holds for $0 \leq x \leq d_{n, p}$.

For i.i.d. random variables, Theorem 3 simply reduces to
Corollary 2 Let X_{1}, X_{2}, \cdots be i.i.d. with $E X_{i}=0, \sigma^{2}=E X_{1}^{2}$, $E\left|X_{1}\right|^{p}<\infty(2<p \leq 3)$. Then, there exists an absolute constant A such that

$$
\frac{P\left(S_{n} / V_{n} \geq x\right)}{1-\Phi(x)}=1+O(1)\left(\frac{(1+x)^{p} E\left|X_{1}\right|^{p}}{n^{(p-2) / 2} \sigma^{p}}\right)
$$

for $0 \leq x \leq n^{1 / 2-1 / p} \sigma /\left(E\left|X_{1}\right|^{p}\right)^{1 / p}$, where $|O(1)| \leq A$.

Question: Can condition (H1) be removed?

- Shao (2003): Theorem 2 remains valid under (H2). That is, if $a_{n} \rightarrow \infty$ and

$$
\forall \varepsilon>0, \quad B_{n}^{-2} \sum_{i=1}^{n} E X_{i}^{2} I_{\left\{\left|X_{i}\right|>\varepsilon B_{n} /\left(1+a_{n}\right)\right\}} \rightarrow 0 \text { as } n \rightarrow \infty,
$$

then

$$
\frac{\ln P\left(S_{n} / V_{n} \geq x\right)}{\ln (1-\Phi(x))} \rightarrow 1
$$

holds uniformly for $x \in\left(0, a_{n}\right)$.

3. Self-normalized law of the iterated logarithm

Theorem 4 (Shao (2003)) Let X_{1}, X_{2}, \cdots be independent random variables with $E X_{i}=0$ and $0<E X_{i}^{2}<\infty$. Assume that $B_{n} \rightarrow \infty$ and that

$$
\forall \varepsilon>0, B_{n}^{-2} \sum_{i=1}^{n} E X_{i}^{2} I_{\left\{\left|X_{i}\right|>\varepsilon B_{n} /\left(\log \log B_{n}\right)^{1 / 2}\right\}} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Then,

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{V_{n}\left(2 \log \log B_{n}\right)^{1 / 2}}=1 \text { a.s. }
$$

4. Self-normalized central limit theorem

- Gine-Götze-Mason (1995):

Let $\left\{X_{n}, n \geq 1\right\}$ be i.i.d. Then
$E X=0$ and $\max _{1 \leq i \leq n}\left|X_{i}\right| / V_{n} \rightarrow 0$ in probability

$$
\Longleftrightarrow S_{n} / V_{n} \xrightarrow{d .} N(0,1)
$$

- Egorov (1996):

If X_{i} are independent and symmetric, then

$$
S_{n} / V_{n} \xrightarrow{d .} N(0,1) \Longleftrightarrow \max _{1 \leq i \leq n}\left|X_{i}\right| / V_{n} \rightarrow 0 \text { in probability }
$$

- Shao and Zhou (2003):

Let $\left\{X_{n}, n \geq 1\right\}$ be independent. Suppose the following conditions are satisfied

$$
\begin{aligned}
& \max _{1 \leq i \leq n}\left|X_{i}\right| / V_{n} \rightarrow 0 \text { in probability, } \\
& \sum_{i=1}^{n}\left\{E\left(X_{i} / V_{n}\right)\right\}^{2} \rightarrow 0, \\
& E\left(\frac{S_{n}}{\max \left(V_{n}, a_{n}\right)}\right) \rightarrow 0
\end{aligned}
$$

where a_{n} satisfies

$$
\sum_{i=1}^{n} E \frac{X_{i}^{2}}{a_{n}^{2}+X_{i}^{2}}=1
$$

Then

$$
S_{n} / V_{n} \xrightarrow{d .} N(0,1)
$$

5. An application to the Student-t statistic

Let

$$
T_{n}=\frac{S_{n}}{s \sqrt{n}}
$$

where $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-S_{n} / n\right)^{2}$.
T_{n} and S_{n} / V_{n} are closely related via the following identity:

$$
T_{n}=\frac{S_{n}}{V_{n}}\left(\frac{n-1}{n-\left(S_{n} / V_{n}\right)^{2}}\right)^{1 / 2} .
$$

Hence

$$
\left\{T_{n} \geq x\right\}=\left\{\frac{S_{n}}{V_{n}} \geq x\left(\frac{n}{n+x^{2}-1}\right)^{1 / 2}\right\}
$$

and the results for S_{n} / V_{n} remain valid for T_{n}.
6. The main idea of proof of Theorem 1

It suffices to show that

$$
P\left(S_{n} \geq x V_{n}\right) \geq(1-\Phi(x)) e^{-A \Delta_{n, x}}
$$

and

$$
P\left(S_{n} \geq x V_{n}\right) \leq(1-\Phi(x)) e^{A \Delta_{n, x}}
$$

for all $x>0$ satisfying (H1) and (H2).
Let

$$
b:=b_{x}=x / B_{n} .
$$

Observe that, by the Cauchy inequality

$$
x V_{n} \leq\left(x^{2}+b^{2} V_{n}^{2}\right) /(2 b) .
$$

Thus, we have

$$
\begin{aligned}
P\left(S_{n} \geq x V_{n}\right) & \geq P\left(S_{n} \geq\left(x^{2}+b^{2} V_{n}^{2}\right) /(2 b)\right) \\
& =P\left(2 b S_{n}-b^{2} V_{n}^{2} \geq x^{2}\right) .
\end{aligned}
$$

Therefore, the lower bound follows from the following proposition immediately.

Proposition 1 There exists an absolute constant $A>1$ such that

$$
P\left(2 b S_{n}-b^{2} V_{n}^{2} \geq x^{2}\right)=(1-\Phi(x)) e^{O(1) \Delta_{n, x}}
$$

for all $x>0$ satisfying (H1) and (H2), where $|O(1)| \leq A$.

As for the upper bound: when $0<x \leq 2$, this bound is a direct consequence of the Berry-Esseen bound. For $x>2$, let

$$
\tau:=\tau_{n, x}=B_{n} /(1+x)
$$

and define

$$
\begin{aligned}
& \bar{X}_{i}=X_{i} I_{\left\{\left|X_{i}\right| \leq \tau\right\}}, \quad \bar{S}_{n}=\sum_{i=1}^{n} \bar{X}_{i}, \bar{V}_{n}^{2}=\sum_{i=1}^{n} \bar{X}_{i}^{2}, \\
& S_{n}^{(i)}=S_{n}-X_{i}, V_{n}^{(i)}=\left(V_{n}^{2}-X_{i}^{2}\right)^{1 / 2}, \bar{B}_{n}^{2}=\sum_{i=1}^{n} E \bar{X}_{i}^{2} .
\end{aligned}
$$

Noting that for any $s, t \in R^{1}, c \geq 0$ and $x \geq 1$,

$$
x \sqrt{c+t^{2}} \geq t+\sqrt{\left(x^{2}-1\right) c},
$$

we have

$$
\left\{s+t \geq x \sqrt{c+t^{2}}\right\} \subset\left\{s \geq\left(x^{2}-1\right)^{1 / 2} \sqrt{c}\right\} .
$$

Hence,

$$
\begin{aligned}
& P\left(S_{n} \geq x V_{n}\right) \\
& \leq P\left(\bar{S}_{n} \geq x \bar{V}_{n}\right)+P\left(S_{n} \geq x V_{n}, \max _{1 \leq i \leq n}\left|X_{i}\right|>\tau\right) \\
& \leq P\left(\bar{S}_{n} \geq x \bar{V}_{n}\right)+\sum_{i=1}^{n} P\left(S_{n} \geq x V_{n},\left|X_{i}\right|>\tau\right) \\
& \leq P\left(\bar{S}_{n} \geq x \bar{V}_{n}\right)+\sum_{i=1}^{n} P\left(S_{n}^{(i)} \geq\left(x^{2}-1\right)^{1 / 2} V_{n}^{(i)},\left|X_{i}\right|>\tau\right) \\
& \leq P\left(\bar{S}_{n} \geq x \bar{V}_{n}\right)+\sum_{i=1}^{n} P\left(S_{n}^{(i)} \geq\left(x^{2}-1\right)^{1 / 2} V_{n}^{(i)}\right) P\left(\left|X_{i}\right|>\tau\right) .
\end{aligned}
$$

By the inequality $(1+y)^{1 / 2} \geq 1+y / 2-y^{2}$ for any $y \geq-1$, we have

$$
\begin{aligned}
& P\left(\bar{S}_{n} \geq x \bar{V}_{n}\right) \\
= & P\left(\bar{S}_{n} \geq x\left(\bar{B}_{n}^{2}+\sum_{i=1}^{n}\left(\bar{X}_{i}^{2}-E \bar{X}_{i}^{2}\right)\right)^{1 / 2}\right) \\
\leq & P\left(\bar{S}_{n} \geq x \bar{B}_{n}\left\{1+\frac{1}{2 \bar{B}_{n}^{2}} \sum_{i=1}^{n}\left(\bar{X}_{i}^{2}-E \bar{X}_{i}^{2}\right)\right.\right. \\
& \left.\left.\quad-\frac{1}{\bar{B}_{n}^{4}}\left(\sum_{i=1}^{n}\left(\bar{X}_{i}^{2}-E \bar{X}_{i}^{2}\right)\right)^{2}\right\}\right) \\
:= & K_{n} .
\end{aligned}
$$

Thus, the upper bound follows from the next two propositions:
Proposition 2 There is an absolute constant A such that

$$
P\left(S_{n}^{(i)} \geq x V_{n}^{(i)}\right) \leq\left(1+x^{-1}\right) \frac{1}{\sqrt{2 \pi x}} \exp \left(-x^{2} / 2+A \Delta_{n, x}\right)
$$

Proposition 3 There exists an absolute constant A such that

$$
K_{n} \leq(1-\Phi(x)) e^{A \Delta_{n, x}}
$$

for all $x>2$ satisfying conditions (H1) and (H2).

References

[1] Shao, Q.M. (1997). Self-normalized large deviations. Ann. Probab. 25, 285-328.
[2] Shao, Q.M. (1999). A Cramér type large deviation result for Student's t-statistic. J. Theoret. Probab. 12, 387-398.
[3] Jing, B.Y., Shao, Q.M. and Wang, Q.Y. (2003). Selfnormalized Cramér type large deviations for independent random variables. Ann. Probab. 31, 2167-2215.
[4] Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23, 493-507.
[5] Griffin, P. and Kuelbs, J. (1989). Self-normalized laws of the iterated logarithm. Ann. Probab. 17, 1571-1601.
[6] Logan, B. F., Mallows, C. L., Rice, S. O. and Shepp, L. A. (1973). Limit distributions of self-normalized sums. Ann. Probab. 1, 788-809.
[7] Wang, Q. Y. and Jing, B.-Y. (1999). An exponential nonuniform Berry-Esseen bound for self-normalized sums. Ann. Probab. 27, 2068-2088.
[8] Chistyakov, G. P. and Götze, F. (1999). Moderate deviations for self-normalized sums. Preprint.
[9] Gine, E., Götze, F. and Mason, D. M. (1997). When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25, 1514-1531.
[10] Hahn, M. G., Mason, D.M, Weiner, D.C. (eds) (1991). Sums, Trimmed Sumsand Extremes. Birkhauser, Boston.

