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1. Introduction

Let X, X1, X2, · · · , Xn be i.i.d. random variables and let

Sn =

n∑
i=1

Xi, V 2
n =

n∑
i=1

X2
i .

• Chernoff’s large deviation:

If Eet0X < ∞ for some t0 > 0, then ∀ x > EX,

P

(
Sn

n
≥ x

)1/n

→ inf
t≥0

e−txEetX.

• Self-normalized large deviation (Shao, 1997):

If EX = 0 or EX2 = ∞, then ∀ x > 0

P
(
Sn/Vn ≥ xn1/2

)1/n

→ λ(x)

where λ(x) = sup
c≥0

inf
t≥0

Eet(cX−x(|X|2+c2)/2)
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• Cramér’s moderate deviation:

Assume EX = 0 and σ2 = EX2 < ∞.

– If Eet0|X|1/2 < ∞ for t0 > 0, then

P
(

Sn
σ
√

n
≥ x

)
1− Φ(x)

→ 1

uniformly in 0 ≤ x ≤ o(n1/6).

– If Eet0|X| < ∞ for t0 > 0, then for x ≥ 0 and x = o(n1/2)

P
(

Sn
σ
√

n
≥ x

)
1− Φ(x)

= exp

{
x3

√
n
λ(

x√
n

)

} (
1 + O(

1 + x√
n

)
)
,

where λ(t) is the Cramér’s series. In particular,

ln P

(
Sn

σ
√

n
≥ xn

)
∼ −1

2
x2

n

for xn →∞ and xn = o(
√

n).
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• Self-normalized moderate deviations (Shao, 1997, 1999):

– If EX = 0 and EX2I{|X| ≤ x} is slowly varying, then

ln P (Sn/Vn > xn) ∼ −x2
n/2

for xn →∞ and xn = o(
√

n).

– If EX = 0 and E|X|3 < ∞, then

P (Sn/Vn ≥ x)

1− Φ(x)
→ 1

uniformly in 0 ≤ x ≤ o(n1/6).
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What if {Xn, n ≥ 1} are independent random variables?
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2. Self-normalized Cramér type large deviation for
independent random variables

Let X1, X2, · · · , Xn be independent random variables with EXi =
0 and EX2

i < ∞. Put

Sn =

n∑
i=1

Xi, V 2
n =

n∑
i=1

X2
i ,

B2
n =

n∑
i=1

EX2
i , Ln,p =

n∑
i=1

E|Xi|p.

• Petrov (1968):

Suppose there exist positive constants t0, c1, c2, · · · such that

| ln EetXi| ≤ ci for |t| ≤ t0,

lim sup
n→∞

1

n

n∑
i=1

|ci|3/2 < ∞,

lim inf
n→∞

Bn/
√

n > 0.

If x ≥ 0 and x = o(
√

n), then

P (Sn/Bn ≥ x)

1− Φ(x)
= exp

{
x3

√
n
λn(

x√
n

)

} (
1 + O(

1 + x√
n

)
)

where λn is a power series.
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• Wang and Jing (1999):

– If Xi is symmetric with E|Xi|3 < ∞, then

|P (Sn/Vn ≤ x)−Φ(x)| ≤ A min
{

(1+|x|3)Ln,3

B3
n

, 1
}

e−x2/2.

– If X1, · · · , Xn i.i.d. with σ2 = EX2
1 and E|X1|10/3 < ∞,

then there exists an absolute constant 0 < η < 1 such that

|P (Sn/Vn ≤ x)− Φ(x)| ≤ AE|X1|10/3

σ10/3
√

n
e−ηx2/2
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• Chistyakov and Götze (1999):

If X1, X2, · · · are symmetric with finite third moments, then

P (Sn/Vn ≥ x) = (1− Φ(x))
(
1 + O(1)(1 + x)3B−3

n Ln,3

)
for 0 ≤ x ≤ Bn/L

1/3
n,3 , where O(1) is bounded by an absolute

constant.
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Can the assumption of symmetry be removed?
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Let

∆n,x =
(1 + x)2

B2
n

n∑
i=1

EX2
i I{|Xi|>Bn/(1+x)}

+
(1 + x)3

B3
n

n∑
i=1

E|Xi|3I{|Xi|≤Bn/(1+x)}

for x > 0.

Theorem 1 [Jing-Shao-Wang (2003)] There is an absolute con-
stant A such that

P (Sn ≥ xVn)

1− Φ(x)
= eO(1)∆n,x

for all x ≥ 0 satisfying

(H1) x2 max1≤i≤n EX2
i ≤ B2

n.

(H2) ∆n,x ≤ (1 + x)2/A,

where |O(1)| ≤ A.
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Theorem 1 provides a very general framework. The following
results are direct consequences of the above general theorem.

Theorem 2 Let {an, n ≥ 1} be a sequence of positive numbers.
Assume that

a2
n ≤ B2

n/ max
1≤i≤n

EX2
i

and

∀ ε > 0, B−2
n

n∑
i=1

EX2
i I{|Xi|>εBn/(1+an)} → 0 as n →∞.

Then
ln P (Sn/Vn ≥ x)

ln(1− Φ(x))
→ 1

holds uniformly for x ∈ (0, an).

The next corollary is a special case of Theorem 2 and may be of
independent interest.

Corollary 1 Suppose that Bn ≥ c
√

n for some c > 0 and that
{X2

i , i ≥ 1} is uniformly integrable. Then, for any sequence of real
numbers xn satisfying xn →∞ and xn = o(

√
n),

ln P (Sn/Vn ≥ xn) ∼ −x2
n/2.
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When the Xi’s have a finite pth moment, 2 < p ≤ 3, we ob-
tain Chistyakov and Götze’ result without assuming any symmetric
condition.

Theorem 3 Let 2 < p ≤ 3 and set

Ln,p =

n∑
i=1

E|Xi|p, dn,p = Bn/L
1/p
n,p .

Then,
P (Sn/Vn ≥ x)

1− Φ(x)
= 1 + O(1)

(1 + x

dn,p

)p

for 0 ≤ x ≤ dn,p, where O(1) is bounded by an absolute constant.
In particular, if dn,p →∞ as n →∞, we have

P (Sn/Vn ≥ x)

1− Φ(x)
→ 1

uniformly in 0 ≤ x ≤ o(dn,p).

By the fact that 1−Φ(x) ≤ 2e−x2/2/(1 + x) for x ≥ 0, we have
the following exponential non-uniform Berry-Esseen bound

|P (Sn/Vn ≥ x)− (1− Φ(x))| ≤ A(1 + x)p−1e−x2/2/dp
n,p

holds for 0 ≤ x ≤ dn,p.
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For i.i.d. random variables, Theorem 3 simply reduces to

Corollary 2 Let X1, X2, · · · be i.i.d. with EXi = 0, σ2 = EX2
1 ,

E|X1|p < ∞ (2 < p ≤ 3). Then, there exists an absolute constant
A such that

P (Sn/Vn ≥ x)

1− Φ(x)
= 1 + O(1)

((1 + x)pE|X1|p

n(p−2)/2σp

)
for 0 ≤ x ≤ n1/2−1/pσ/(E|X1|p)1/p, where |O(1)| ≤ A.
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Question: Can condition (H1) be removed?

• Shao (2003): Theorem 2 remains valid under (H2). That is, if
an →∞ and

∀ ε > 0, B−2
n

n∑
i=1

EX2
i I{|Xi|>εBn/(1+an)} → 0 as n →∞,

then
ln P (Sn/Vn ≥ x)

ln(1− Φ(x))
→ 1

holds uniformly for x ∈ (0, an).
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3. Self-normalized law of the iterated logarithm

Theorem 4 (Shao (2003)) Let X1, X2, · · · be independent ran-
dom variables with EXi = 0 and 0 < EX2

i < ∞. Assume that
Bn →∞ and that

∀ ε > 0, B−2
n

n∑
i=1

EX2
i I{|Xi|>εBn/(log log Bn)1/2} → 0 as n →∞.

Then,

lim sup
n→∞

Sn

Vn(2 log log Bn)1/2
= 1 a.s.
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4. Self-normalized central limit theorem

• Gine-Götze-Mason (1995):

Let {Xn, n ≥ 1} be i.i.d. Then

EX = 0 and max1≤i≤n |Xi|/Vn → 0 in probability

⇐⇒ Sn/Vn
d.−→ N(0, 1)

• Egorov (1996):

If Xi are independent and symmetric, then

Sn/Vn
d.−→ N(0, 1) ⇐⇒ max

1≤i≤n
|Xi|/Vn → 0 in probability
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• Shao and Zhou (2003):

Let {Xn, n ≥ 1} be independent. Suppose the following con-
ditions are satisfied

max
1≤i≤n

|Xi|/Vn → 0 in probability,

n∑
i=1

{E(Xi/Vn)}2 → 0,

E
( Sn

max(Vn, an)

)
→ 0

where an satisfies
n∑

i=1

E
X2

i

a2
n + X2

i

= 1.

Then
Sn/Vn

d.−→ N(0, 1)
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5. An application to the Student-t statistic

Let

Tn =
Sn

s
√

n
,

where s2 =
1

n− 1

n∑
i=1

(Xi − Sn/n)2.

Tn and Sn/Vn are closely related via the following identity:

Tn =
Sn

Vn

( n− 1

n− (Sn/Vn)2

)1/2

.

Hence

{Tn ≥ x} =
{Sn

Vn
≥ x

( n

n + x2 − 1

)1/2}
and the results for Sn/Vn remain valid for Tn.
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6. The main idea of proof of Theorem 1

It suffices to show that

P (Sn ≥ xVn) ≥ (1− Φ(x))e−A∆n,x

and
P (Sn ≥ xVn) ≤ (1− Φ(x))eA∆n,x

for all x > 0 satisfying (H1) and (H2).
Let

b := bx = x/Bn.

Observe that, by the Cauchy inequality

xVn ≤ (x2 + b2V 2
n )/(2b).

Thus, we have

P (Sn ≥ xVn) ≥ P (Sn ≥ (x2 + b2V 2
n )/(2b))

= P (2bSn − b2V 2
n ≥ x2).

Therefore, the lower bound follows from the following proposition
immediately.

Proposition 1 There exists an absolute constant A > 1 such that

P (2bSn − b2V 2
n ≥ x2) = (1− Φ(x))eO(1)∆n,x

for all x > 0 satisfying (H1) and (H2), where |O(1)| ≤ A.
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As for the upper bound: when 0 < x ≤ 2, this bound is a direct
consequence of the Berry-Esseen bound. For x > 2, let

τ := τn,x = Bn/(1 + x)

and define

X̄i = XiI{|Xi|≤τ}, S̄n =

n∑
i=1

X̄i, V̄ 2
n =

n∑
i=1

X̄2
i ,

S(i)
n = Sn −Xi, V (i)

n = (V 2
n −X2

i )1/2, B̄2
n =

n∑
i=1

EX̄2
i .

Noting that for any s, t ∈ R1, c ≥ 0 and x ≥ 1,

x
√

c + t2 ≥ t +
√

(x2 − 1)c,

we have

{s + t ≥ x
√

c + t2} ⊂ {s ≥ (x2 − 1)1/2
√

c}.
Hence,

P (Sn ≥ xVn)

≤ P (S̄n ≥ xV̄n) + P (Sn ≥ xVn, max
1≤i≤n

|Xi| > τ )

≤ P (S̄n ≥ xV̄n) +

n∑
i=1

P (Sn ≥ xVn, |Xi| > τ )

≤ P (S̄n ≥ xV̄n) +

n∑
i=1

P (S(i)
n ≥ (x2 − 1)1/2V (i)

n , |Xi| > τ )

≤ P (S̄n ≥ xV̄n) +

n∑
i=1

P (S(i)
n ≥ (x2 − 1)1/2V (i)

n )P (|Xi| > τ ).
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By the inequality (1 + y)1/2 ≥ 1 + y/2 − y2 for any y ≥ −1, we
have

P (S̄n ≥ xV̄n)

= P (S̄n ≥ x(B̄2
n +

n∑
i=1

(X̄2
i − EX̄2

i ))1/2)

≤ P
(
S̄n ≥ xB̄n

{
1 +

1

2B̄2
n

n∑
i=1

(X̄2
i − EX̄2

i )

− 1

B̄4
n

(

n∑
i=1

(X̄2
i − EX̄2

i ))2
})

:= Kn.

Thus, the upper bound follows from the next two propositions:

Proposition 2 There is an absolute constant A such that

P (S(i)
n ≥ xV (i)

n ) ≤ (1 + x−1)
1√
2πx

exp(−x2/2 + A∆n,x)

Proposition 3 There exists an absolute constant A such that

Kn ≤ (1− Φ(x))eA∆n,x

for all x > 2 satisfying conditions (H1) and (H2).
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