Self-normalized Cramér-Type Large Deviations
for Independent Random Variables

Qi-Man Shao

National University of Singapore
and
University of Oregon

gmshao@darkwing.uoregon. edu



1. Introduction

Let X, X1, Xo, -+, X, beiid. random variables and let

8, = zn:X U :zn:Xf.
g=ll 1=1

e Chernoff’s large deviation:

|f for some tg > 0, then V x > F X,

g 1/n
P (—n > :13) — infe ™R,

n >0

e Self-normalized large deviation (Shao, 1997):
If EX =0or EX* =00, thenV 2 > 0

P (Sn/vn > xnl/?) . Az)

where \(z) = sup inf Eot(eX—a(1X[*+c%)/2)

>0 t=>0



e Cramér’'s moderate deviation:

Assume EX =0 and ¢? = EX? < .

— If for to > 0, then
Sn
P = 7) 1
1 —d(x)
uniformly in 0 < & < o(n'/®).
—If for tg > 0, then for x > 0 and z = o(nl/Q)

S > o 3
ngﬁq)(z) ) e {%A(f#} (1+ 0(1%%),

where A() is the Cramér's series. In particular,

1
1nP( ) ~ —Zg2
o 2

for z, — oo and x,, = o(y/n).




e Self-normalized moderate deviations (Shao, 1997, 1999):

—If EX =0 and EX?I{|X| < z} is slowly varying, then
In P(S,,/Vy, > z,) ~ —x7 /2

for x,, — oo and z, = o(y/n).

—If EX =0 and E|X|® < o, then

P(Sn/Vy 2 )
1 —®(x)

uniformly in 0 < 2 < o(n'/®).




What if {X,,,n > 1} are independent random variables?



2. Self-normalized Cramér type large deviation for
independent random variables

Let X1, X, -, X,, beindependent random variables with £X; =
0 and EX? < oo. Put

=l 1=1

B = En; EX? Ly,= En; E|X;P.

e Petrov (1968):

Suppose there exist positive constants ¢, ¢1, ¢o, - -+ such that

[In Be'i| < ¢; for |t| < to,

¢
hmsup52|ci\3/2 < 00,

n—o0 3
1=1

liminf B,,/v/n > 0.

n—oo

If x >0 and z = o(y/n), then

S G

where ), is a power series.




e Wang and Jing (1999):
—If X is with E|X;]? < oo, then

, Ly, 2
P(S,/Vs < 2) = ()| < Amin { (1+]2f) oo, 1 e

n

—If Xy,---, X, with o2 = EX12 and E| X < 00,
then there exists an absolute constant such that

AE’X ‘ 2
|P(S,/Vy < x) — P(x)| < 010/31\/5 o 1T /2




e Chistyakov and Gotze (1999):
If X1, X5, - are with finite third moments, then

P(Su/Va > 2) = (1 - (@) (1+ O()(1 + 2B Ly )

for 0 <z < Bn/qu,/;’ where O(1) is bounded by an absolute
constant.



Can the assumption of symmetry be removed?



Let

(1+2)° ¢ 2
Mg = 5 D EX x5,/ (14m)

1=1

(1+2)° ¢ 3
5 > EIXiP I <. /040)
n 1=1

for x > 0.

Theorem 1 [Jing-Shao-Wang (2003)] There is an absolute con-
stant A such that

P(Sy 2 2Va) _ o@an.
1 —®(x)

for all x > 0 satisfying

(H1) 2° maxj<j<, EX? < B2
(H2) Ay < (1+2)°/A,
where |O(1)| < A.




Theorem 1 provides a very general framework. The following
results are direct consequences of the above general theorem.

Theorem 2 Let {a,,n > 1} be a sequence of positive numbers.

Assume that
< B?/ max EX?

1<i<n

and

Ve> O, BgQ ZEXZ'QI{\XZ‘\>€Bn/(1+an)} — 0 asn — oo.
1=1

Then
In P(S,/V, > x)

In(1 — o(x))

holds uniformly for x € (0, a,).

The next corollary is a special case of Theorem 2 and may be of
independent interest.

Corollary 1 Suppose that B,, > c\/n for some ¢ > 0 and that
{X? i > 1} is uniformly integrable. Then, for any sequence of real
numbers x,, satisfying x,, — oo and z, = o(y/n),

In P(S,/V,, > x,) ~ —22/2.
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When the X;'s have a finite pth moment, 2 < p < 3, we ob-
tain Chistyakov and Gotze' result without assuming any symmetric

condition.
Theorem 3 Let 2 < p < 3 and set

Lnp= Y E|X,P, dnp=Bp/L}/2.
1=1

Then,

P(S,/V, > x) 1+ z\»
—1+0()(=—)
T_e@ L TOUG,
for 0 < x < d,,,, where O(1) is bounded by an absolute constant.
In particular, if d,, , — 0o as n — 00, we have

P(S,/V, > x)
1 —P(x)

—

uniformly in 0 < x < o(d,, ).

By the fact that 1 — &(x) < 26_372/2/(1 +x) for > 0, we have
the following exponential non-uniform Berry-Esseen bound

P(S,/ Vi > z) — (1 = B(x))| < A(L+ 2)P~le 2 d,

holds for 0 < x < d,, .
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For i.i.d. random variables, Theorem 3 simply reduces to

Corollary 2 Let X1, X9,-+- beiid with EX,;, =0, g’ = EX12,
E|X1|P < o0 (2 < p < 3). Then, there exists an absolute constant
A such that

P(S,/V, > x) (14+ z)PE| X4 P
—o@ O<1>( no—2/25p )

for 0 < x < n'/2=Yrq /(B X,|P)'/?, where |O(1)] < A.
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Question: Can condition (H1) be removed?

e Shao (2003): Theorem 2 remains valid under (H2). That is, if

a, — 00 and

Ve>0, Bgz Z EX@'QI{!X@'!>6Bn/(1+an)} — 0 as n — o0,
1=1

then
In P(S,/V, > x)

In(1 — &(x))
holds uniformly for z € (0, a,).
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3. Self-normalized law of the iterated logarithm

Theorem 4 (Shao (2003)) Let X3, Xy, - - - be independent ran-
dom variables with EX; = 0 and 0 < EX? < co. Assume that
B,, — oo and that

Ve>0, B, ZE Lixii>eB, /0100 B2y = U 35 M= 00,

Then,
S

li =1 a.s.
lnmj;i V,,(2loglog B,,)/? -2
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4. Self-normalized central limit theorem

e Gine-Gotze-Mason (1995):
Let {X,,,n > 1} bei.i.d. Then
EX =0 and maxj<;<, | X;|/V, — 0 in probability

— S,/V, o N(0,1)

e Egorov (1996):
If X, are independent and then

Sn/ Vi N N(0,1) <= max |X;|/V,, — 0 in probability

1<i<n
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e Shao and Zhou (2003):

Let {X,,,n > 1} be independent. Suppose the following con-
ditions are satisfied

max | X;|/V;, — 0 in probability,

1<i<n

> {B(X/V)Y =0,

b (maxg};, an)) V

where a,, satisfies

Then
S,/ Vi = N(0,1)
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5. An application to the Student-t statistic

Let S
Tn: . )
S\/ﬁ
1 n
2 o 2
where s b E (X; — Sp/n)”.

i=1
T, and S,,/V,, are closely related via the following identity:

I = i (n —Tzs;/lvn)z)m'

2= (2o ) )

n n+xz2—-1
and the results for .S,,/V,, remain valid for T},.

Hence
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6. The main idea of proof of Theorem 1

It suffices to show that

P(S, > 2V,) > (1 — &(x))e “one

and
P(S, > xV,) < (1 — CD(a:))eAA”’I

for all = > 0 satisfying (H1) and (H2).
Let
b:=0b,=1z/B,.

Observe that, by the Cauchy inequality
oV, < (z* + b*V)/(2b).
Thus, we have

P(S, > zV,) > P(S, > (z* + b*V?)/(2b))
= P(2bS, — bV > %),

Therefore, the lower bound follows from the following proposition
immediately.

Proposition 1 There exists an absolute constant A > 1 such that

P(2bS, — b*V? > %) = (1 — B(z))ePHAna
for all x > 0 satisfying (H1) and (H2), where |O(1)| < A.
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As for the upper bound: when 0 < 2 < 2, this bound is a direct
consequence of the Berry-Esseen bound. For z > 2, let

T =Ty, = B,/(1+x)

and define
Xi — XZ]{\XZ|§T}7 STL — ZXM ‘7712 — ZXQ
i=1 i=1

S0 = 8, - X, VIO = (V2 - X2, B2 = 3" X
i=1
Noting that for any s, € R', ¢ > 0 and x > 1,

rVe+ 2>t + /(22— 1)c

WIEVE
{s+t>aVe+t2} C {s> (- 1)/ /c).
Hence,

P(S, > zV,)
< P(S, > zV,) + P(S, > zV,, max | X;| > 1)

1<i<n

< P(S, > zV,) + ZP(Sn > Vi, | Xi| > 7)

1= 1

< P(S, > V+ZP

| \/

(2® = DYV, X5 > 1)

| /\

P(S, > zV,) +ZP ) > (22 — D2V P(1X,] > 7).
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By the inequality (1 + y)1/2 > 1+ 1y/2 —y? forany y > —1, we
have

P(S, > zV;)
= P(5,>=z(B+> (X7 — EX)))'?)
1=1
< P(S > 2B {1 4 izn:(XQ _ EX?)
S n = n QB% . i i

= K,,.
Thus, the upper bound follows from the next two propositions:

Proposition 2 There is an absolute constant A such that

. : 1
P(SY > V) < (14271 = exp(—22/2 + AN, ;)
X

Proposition 3 There exists an absolute constant A such that
K, < (1= ®(zx))ettna
for all x > 2 satisfying conditions (H1) and (H2).
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